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Abstract 
 

Plant breeding programmes, usually evaluate genotypes that are mostly at the final 

stages of development across locations and years or make recommendations from among the 

well-established varieties suitable for a given region or location. Plant breeders invariably 

encounter genotype × environment interactions (G×E or GEI) while testing genotypes 

(cultivars) in multi-environment trials (METs). G×E interactions are observed as differential 

responses of genotypes in different environments. The presence of interaction complicates the 

selection of widely adapted or superior genotypes for quantitative traits in particular, and in 

making cultivar recommendations for the target population of environments (TPE). 

Conventional statistical methods such as analysis of variance (ANOVA) and principal 

component analysis (PCA) have shown to be inadequate in handling large data sets with 

complex G×E interactions that typically emerge from METs.  The draw backs have been 

overcome using the Additive Main effects and Multiplicative Interaction (AMMI) model by 

combining the ANOVA of the genotype (G) and environment (E) main effects with the PCA 

of the G×E interaction. The main purposes of AMMI analysis are: (i) understanding complex 

GEI patterns, (ii) exploit specific adaptations (iii) increasing accuracy to improve heritability, 

selections, and therefore genetic gains. AMMI analysis and biplots are demonstrated using 

simulated multi-environment evaluation of genotypes.  

 

Key words: Breeding experiments, multi-environment trials, G×E interactions, AMMI 

models, Biplots. 

___________________________________________________________________________ 

1 Introduction 
 

The main stages of a plant breeding programme include (i) generating genetic 

variability, (ii) selection and (iii) testing of experimental cultivars (Ceccarelli, 2009). The 

experimental cultivars in the last stage are usually tested in multi-environment trials (METs) 

and at the end, new varieties are recommended for cultivation. In METs, a large number of 

genotypes are evaluated for yield or other economically important traits in replicated field 

trials that are conducted across several environments. Most common environments are 

locations in a region and years within location.  Within years and location, genotypes can be 

tested under different conditions / stresses, varying input levels, soil type / topography, 

varying field management protocols and varying abiotic stresses such as drought, 

submergence salinity. The pattern of conditions / stresses that the genotypes experience is 
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representative of future growing environments and its performance is a prediction of its 

future performances. 

 

Genotypes tested in METs respond differently across the range of environments 

referred to as the genotype x environment interaction (G×E). Especially, quantitative traits, 

which are controlled by several genes, are highly influenced by environmental factors and 

display a continuous variation. GEI occurs in all stages of a breeding program either in terms 

of changing mean performances across environments or in terms of heterogeneity of 

variances across environments or as lack of correlation between environments (Malosetti et 

al., 2013). Therefore, the main objective of METs is to estimate the effects of treatments 

across broad or specific environments. Plant breeders usually look for non-crossover G×E 

(interaction without rank changes in genotype means among environments) when selecting 

genotypes for broad adaptation to a wide range of environments and crossover G×E 

(interaction with rank changes in genotype means among environments) for specific 

adaptations of genotypes to subsets of environments. 

 

Several statistical models have been proposed for studying the GxE interaction in 

different crops. Under broad adaptation (ignore G×E) the aim is to (i) identify varieties that 

have high mean across a range of environments using ANOVA and (ii) evaluate the 

consistency of genotypic performance across the range of environments based on regression 

techniques. The model for ANOVA in a single environment consists of the genotype and the 

design effects for the individual location. ANOVA for the combined analysis across locations 

extends the model for individual location by adding the location factor and the genotype x 

location interactions. However, the genotypes that are superior across environments might 

not be the best ones for specific environments. ANOVA defines if G×E is significant or not 

and provides a quantitative estimate of the amount of phenotypic variation associated with 

the interaction but does not explore the possibility of partitioning the same into interpretable 

components. The idea of partitioning the interaction is the basis for regression models (Finlay 

and Wilkinson, 1963; Eberhart and Russell, 1966; Perkins and Jinks, 1968). However, a 

major drawback of the regression analysis is that the method is not informative if linearity 

fails and is highly dependent on the set of genotypes and environments included.  

 

On the other hand, crossover interactions are the most important for breeders as they 

imply that the choice of the best genotype is determined by the environment (Malosetti et al., 

2013). The presence of crossover interaction implies that improvements made in one set of 

environments will not be carried over when the selected genotypes are grown in other 

environments. Therefore, under specific adaptation, the aim is (i) either to subdivide 

environments into groups so that there is little GEI within each group (reduce G×E) or (ii) to 

select different genotypes suitable for different set of environments (exploit G×E).  

 

The Additive Main effects and Multiplicative Interaction (AMMI) model (Gauch, 

1988; Zobel et al., 1988; Gauch, 1992) and the genotype + genotype by environment 

interaction (GGE) model (Yan et al., 2000) are based on singular value decomposition (SVD)  

that partition the G×E interaction into the sum of a set of multiplicative terms. The objectives 

of AMMI are (i) to identify genotypes with similar responses across environments, (ii) to 

identify environments that discriminate genotypes in a similar manner, (iii) increasing 

accuracy by separating signal from noise to improve recommendations, repeatability, 

selections and genetic gains (Gauch, 2013). 
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2 AMMI Model 
 

In AMMI, the ANOVA is first applied to a two-way table of genotypes and 

environments. ANOVA partitions the variation into the genotype (G) and environment (E) 

main effects and the G×E interaction. The multiplicative principal component analysis (PCA) 

model is applied to the residual (i.e. the G×E interaction) from the additive model. Both 

genotypes and environments are regarded as fixed effects. The AMMI model (for the mean 

phenotype) is written as 

gege

M

m

emgmmegge vuy ερλβαµ +++++= ∑
=1

**
                                      (1) 

gey is the mean phenotypic observation of the genotype g in environment e, µ is the grand 

mean, gα  is the effect of genotype g,  
eβ  is the effect of environment e, 

mλ is the singular 

value for PCA axis m, 
*

gmu   is the m
th

 element of the genotype eigen vector for axis m,
*

emv  is 

the m
th

 element of the environment eigen vector for axis m,  geρ  is the residual that remains 

if not all axes are used and geε  is the error term (Gauch, 1992). Scaling the terms in the 

interaction sum results in two vectors of parameters called the interaction principal 

component axes (IPCA) for genotypes and environments. The m
th

 IPCA for genotypes has 

the elements   
*

gmmgm uu λ= and the m
th

 IPCA for the environments has elements 

*

emmem vv λ=  . The choice of M, the number of axes to be retained is complicated. The 

fewer the components retained, the simpler and more interpretable the model, but more axes 

may be required to model complex interactions. Thus equation (1) is known as the AMMI 

model of order m or AMMIm and rewritten as 
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where geρ  is usually assumed to be zero 

 

2.1 Steps in the AMMI analysis 

 

The steps involved in the AMMI analysis according to Gauch (2013) are  

(i)  ANOVA  

(ii)  Model diagnosis 

(iii)  Mega-environment delineation  

(iv)  Selection and recommendation.  

 

ANOVA test is first carried out to examine whether AMMI analysis is effective for 

the given data. AMMI analysis is said to be effective only if  is at least as 

large as that  where  

 

◦                 (3)                       

◦  

Model diagnosis deals with the problem of determining the number of multiplicative 

terms to be retained in the AMMI model. The criteria include  
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(i) Statistical test of significance for the multiplicative terms (Gollob, 1968; Cornelius, 

1993; Piepho, 1995) based on distributional assumptions. 

(ii) Agricultural interpretability.  

(iii) Predictive accuracy (Gauch, 1988; Crossa et al, 1991; Piepho, 1994; Dias and 

Krzanowski, 2003) based on cross validation of the model by data splitting and the 

root mean square prediction difference (RMSPD). 

 

Mega-environment is a group of environments which causes groups of genotypes with 

similar response to a trait (Gauch and Zobel, 1997). It can also be defined as a geographical 

region within which a single cultivar performs the best everywhere (Yan, 2014). Mega-

environment subdivision implies exploiting rather than ignoring the potential for yield 

increases that resides in G×E interactions. The criteria for mega-environment delineation 

include (Gauch and Zobel, 1997) 

(i) Focuses on the variation relevant for mega environment subdivision – given by 

 

(ii) Answers breeders and agronomists question “Which won where”? – Grouping of 

locations with identical winners into mega-environments and targeting suitable 

genotypes for each mega-environment. 

(iii)   Dual analysis of both genotypes and environments – should integrate both G and E 

into a single model (biplot analysis). 

  Flexibility with handling various data structures – two-way (G×L) or a three way (G× 

L×Year) structure, complete or incomplete factorial designs with unreplicated or replicated 

trials, is an interesting part of the analysis.  

 

3 Biplot Analysis 
 

The AMMI parameters are represented on Biplots (Gabriel, 1971). Biplots are an 

extensively used graphical technique to display interaction patterns, to visualize the 

interrelationships among genotypes, environments, and the interactions between genotypes 

and environments. Two dimensional biplot is a graphical approximation of a two-way G×E 

data table. For example, consider the factorization 

 

 
 

 

The biplot is a plot of this factorization where the  

X-axis : First column of R and first row of C 

Y axis :  Second column of R and second row of C 

 

Biplot involves two steps: (i) decomposing the two-way table into principal 

components (PCs) and (ii) plotting the PC1 scores against the PC2 scores for each of the rows 

and columns to form a biplot. 
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3.1 AMMI Biplot 
  

The results of the AMMI model are interpreted using the AMMI biplots. AMMI 

biplots are two dimensional graphs where aspects of both genotypes and environments are 

plotted on the same axis (Kempton, 1984). However, a biplot is only a descriptive graphical 

tool and cannot be used for hypothesis testing. AMMI biplots allow graphical representation 

of the G×E interactions on a low dimensional space (Bradu and Gabriel, 1978; Kempton, 

1984).  Gauch (2013) provided a protocol for the AMMI analysis of MET data. AMMI 

biplots are of two major kinds 

 

 

3.1.1 Rank–1 or AMMI–1 biplot 
 

 The abscissa is the main effects of genotype and environment and the ordinate 

constitutes the IPAC1 (interaction principal component axis) scores from SVD of the 

empirical interactions (i.e., deviations of cell means from additive main effects of genotypes 

and environments (Zobel et al., 1988). AMMI-1 biplot enables a simultaneous view of the 

mean performance and the stability of the genotypes (Samonte et al., 2005; Asfaw et al., 

2009; Rashidi et al., 2013). 

 

1. The horizontal line shows an IPCA1 score of 0 and the vertical line indicates the 

grand mean. 

2. Distances in the direction of abscissa show main effect differences but have similar 

interactions. 

3. Distances in the direction of ordinate show interaction effect differences but have 

similar main effects. 

4. For any G–E combination, AMMI estimates the yield of genotype G in environment E 

as 

. 

5. IPCA = 0 showed stability and general adaptability with yield close to mean yield and 

negligible interaction. 

6. Best genotypes that combine high yield and stable performances are adaptive. 

7. Cultivars with IPCA 1 scores > 0 responded positively (adaptable) to environments 

that had IPCA 1 scores > 0 (i.e., their interaction is positive) and responded negatively 

to environments that had IPCA 1 scores < 0. The reverse applies for cultivars that had 

IPCA 1 scores < 0. 

8. Adaptability of specific cultivars are assessed by plotting their nominal yields at 

specific environments. Nominal yields are the yield from the AMMI model equation 

without the environment deviation that is, based on G and IPCA1 effects only. 

 

 

3.1.2 Rank–2 or AMMI–2 biplot 
 

AMMI–2 biplot provides an easy understanding of the interaction patterns. Here the 

abscissa is the IPCA1 scores of genotype and environment and the ordinate is the IPCA2 

scores of genotype and environment.  
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1. Genotype points near the origin are non-sensitive to environmental interactive forces. 

2. Genotype points close to each other (close or farther from the origin) have similar 

interactive patterns while those distant from each other are different. 

3. Sites with short spokes on the plot do not exert strong interactive forces while sites 

with long spokes exert strong interaction. 

4. The interaction effect of a genotype in an environment is approximated by projecting 

the genotype point onto the line determined by the environmental vector, where 

distance from the origin provides information about the magnitude of the interaction. 

5. Connecting the extreme genotypes on a GE biplot forms a polygon and the 

perpendiculars to the sides of the polygon form sectors of genotypes and sites. The 

genotypes at vertex are the winners in the sites included in that sector. 

 

 

4  Mixed Model Analysis 

 
In the AMMI model both genotypes and environments are regarded as fixed. The 

traditional linear model, coupled with ordinary least squares estimation procedures, is too 

restrictive to perform satisfactory data analyses majorly because of the assumption of (a) 

constant error variances and (b) independence of errors. Homogeneity of error variance 

causes most concern when carrying out analysis of variance of multiple location trials. With 

the Bartlett test it can be tested if the error variance of the trials is significantly different. The 

test requires at least two replicates at each factor level. Moreover, the Bartlett’s test is 

oversensitive to deviations thus the heterogeneity of variances should be considered at the 

99.9% level or higher (Brown and Calgari, 2008). If the error variances differ significantly 

the only practical solution is to transform the data (sqrt, log, scale). Experimental plots in 

close proximity to each other are more similar than are plots that are further apart and 

therefore the assumption of independence of errors does not hold. Therefore, an enhanced 

statistical analysis that accounts for heterogeneous field conditions would improve 

predictions. Thus, error structure in “real world” experiments is often more complex than 

assumed in standard linear models for conventional data analysis. Moreover, the variances of 

the genotypes often differ and the responses of some pairs of genotypes are more similar than 

those of others (Piepho and van Eeuwijk, 2002). Moreover, data generated from METs are 

highly unbalanced as the test genotypes and the test sites vary from year to year and the 

number of replicates varies from site to site. Therefore, plant breeding experiments require 

broad range of models that can be used for 

  

• Modelling of spatially correlated residuals (correlation between adjacent plots). 

• Allows each environment to have its own error variance. 

• Allows each environment to have a different genetic variation. 

• Allows each pair of environments to have different genetic correlations. 

• Ease with which incomplete data (not all varieties in all environments) can be 

handled. 

• Allows extrapolation of results. 

 

Thus, mixed models are the preferred class of models for the analysis of MET data. 

Mixed model has two components of effects, fixed and random, 

• fixed effects – these are units selected purposefully because those are the only units of 

interest. Only a finite set of levels that can be represented and inferences are to be 

made only concerning the levels defined for the study. 
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• random effects – there is an 'infinite' set of levels (a population of levels). The levels 

present in the study are a sample from that population and the population is the focus. 

 

 

5 AMMI in a Mixed Model Framework 

 

For  genotypes grown in environments in  replications, the G×E model is 

given by    

                                                          (4) 

 

 is the l
th

 observation of genotype i in environment j,  is the effect of the i
th

 genotype  

is the effect of the j
th

 environment, is the interaction effect between genotype i and 

environment j and  is the error. Oman (1991) and Piepho (1997a, b) discussed 

multiplicative models from a mixed model perspective. They proposed, a covariance 

structure should be fit to the multiplicative interactions such that the correlation among 

interaction terms are accounted for, as opposed to the AMMI where the interactions are 

explicitly modeled as multiplicative terms. 

 

A factor-analytic (FA) structure involving one or two multiplicative terms together 

with equal specific variances for the genotypes and an environment main effect in the model 

corresponds to the mixed model version of AMMI. The factor-analytic covariance structure is 

used to model the covariance of the multiplicative interactions as opposed to a Principal 

Components model for fixed interaction effects in AMMI models. Factor-analysis is also 

concerned with the pattern of relationships among variables and is a method that is closely 

related to the principal component analysis (PCA). While PCA assumes that new variables 

(principal components) are functions of observed variables, factor analysis assumes the 

observed variables are functions of unobserved underlying factors. PCA searches for a new 

set of components, which preserve as much variance of the observed variables as possible. 

Factor Analysis searches for a new set of factors, which contain as much of the covariance 

between the observed variables as possible i.e. in PCA, all of the observed variance is 

analyzed, while in factor analysis it is only the shared variances that is analyzed. 

  

Piepho (1994, 1997b) proposed a method to obtain the best linear unbiased predictors 

(BLUPs) for factor scores of the factor-analytic model used to model interactions. 

Considering genotypes as fixed and environments as random he showed how to construct 

biplots using the BLUPs.  Therefore, the modified AMMI model incorporating the factor-

analytic structure is  

gege

M

m

emgmegge wy εδλβαµ +++++= ∑
=1

                             (5) 

where the variance-covariance structure of genotypes within an environment is   

∑
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                                  (6) 

For the mixed model in (2), estimation of variance components is carried out by the 

Restricted Maximum Likelihood (REML) procedure. 
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The method is illustrated using mean yield (t/ha) data simulated for a two-way table 

of 10 genotypes in 17 environments. A factor-analytic-FA0(2) model is fitted using SAS 

PROC MIXED in which the specific variances are assumed to be absent. The BLUPs of 

the interaction effects from the model are subject to SVD (Piepho, 1997a; Anitha, 2005; 

Kumar et al., 2012) to obtain the IPCA scores for the AMMI model. The interpretation of the 

biplots provide an insight and understanding of the interaction pattern between genotypes and 

environments.  

 

 

Figure 1: Biplots 

 
 

 

6  Conclusions 

 

The models based on regression analysis are basically additive in nature and those 

based on multivariate models is multiplicative in nature. Each of the approaches has its own 

distinct characteristics with due merits and demerits. But presence of interaction effect 

complicates the issues involved especially in multi environmental trials of a breeding 

experiment and the above approaches separately have limitations to be considered for 

modeling the same. 

 

Thus the use of conventional methods to study G x E interactions in METs poses 

additional challenges in the analysis.  The interactive approach has been well developed 

known as Additive Main effects and Multiplicative Interaction (AMMI) model based on a 

combination of two simple models (i) the ANOVA (Analysis of Variance) and (ii) the PCA 

(Principal Components Analysis). The results of the AMMI model are well interpreted using 

two dimensional graphs called biplots, where aspects of both genotypes and environments are 

plotted. However, a biplot is only a descriptive graphical tool and cannot be used for testing 

any hypothesis of relevance. 



 AMMI MODELS AND ITS APPLICATIONS   139 

 

Similarly, the mixed-model with factor-analytic covariance structure was also 

developed by assuming environments (or treatments) as random and T×E interaction is 

analyzed in a mixed-model framework. Similarly, graphical Biplots provide an insight and 

understanding of the interaction pattern between genotypes and environments.  
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