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Abstract
Random walks are mathematical objects for modelling random trajectories where the 

future of the trajectory does not depend on the past. We take three simple random walk 
where the increments are distributed as +1, −1 valued random variables with probabilities p 
and 1 − p. We study the expected first collision time of three such random walks. This work is 
an extension of the work of Coupier et. al. (2020) where they studied the case of p = 1/2.
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1. Introduction

A random walk, denoted by RW, represents a trajectory or collection of trajectories
that consists of taking successive random steps, each of which are independent and identically
distributed. The most studied example of random walk is the walk on the integers Z, which
starts at an integer point and at each step moves by +1 or −1. This is known as the simple
random walk (SRW). When the probabilities of moving to +1 and to −1 are identical, we
call it the simple symmetric random walk (SSRW).

Random walks originate in almost all sciences quite naturally and find applications in
various branches of mathematics, computer science, biology, chemistry, physics. In Physics,
random walks are used to model the movement of particles in a random environment. The
limiting process of the random walk yields the Brownian motion which is central to almost
many predictive models. This has connected various branches of Mathematics and physics
through the application of random walk.

In biological science, the genetic drift is modelled using random walks, which provide a
general idea of the statistical processes involved. In physics, we can random walks to describe
an ideal chains of polymers. The concepts of random work has been very crucially used in
several fields such as psychology, finance, ecology. In Economics Stock market modelling
and pricing are done through the Brownian motion. It is possible to describe fluctuations
in the stock market with the random walk concepts. This has resulted several Nobel prizes
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in Economics. Random walks also find application in the Google search engine algorithms,
namely the page rank algorithm.

A simple way to construct the random walk is to flip a coin, and if the toss results
in a HEAD, move to right by single step, whereas if the toss results in a TAIL, move to left
by a single step. To define this walk formally, we take a sequence of independent random
variables independent and identically distributed random variables, called the increment
sequence, {Ik : k ∈ N} and an initial state x ∈ Z. The random walk, starting from x, is
defined as follows:

S0 = x and Sn = x +
n∑

k=1
Ik for n ∈ N.

This sequence {Sn : n ≥ 0} is called the random walk on Z.

In this article we deal with three independent simple random walks. Therefore, we will
consider three starting points. We note that if the starting positions of two random walks are
of different parity, they will never be at the same position at any time point. Thus, we need
to consider all starting positions of same parity. Since the intersection times and collision
times will not change when we translate all the processes by same amount, we may choose
the starting positions so that one random walk starts below the origin (the left random walk),
one at the origin (the middle random walk) and the other above the origin (the right random
walk). More precisely, we choose a and b positive even numbers and start the random walks
at −a, 0 and b respectively. We also consider three independent sequences of independent
and identically distributed increment random variables

{
I

(L)
k : k ≥ 1

}
,
{

I
(M)
k : k ≥ 1

}
and{

I
(R)
k : k ≥ 1

}
with

P
(

I
(s)
k = +1

)
= p = 1 − P

(
I

(s)
k = −1

)
(1)

where p ∈ (0, 1) and s ∈ {L, M, R}. Now, we consider the random walks represented by

S(L)
n = −a +

n∑
k=1

I
(L)
k , S(M)

n =
n∑

k=1
I

(M)
k and S(R)

n = b +
n∑

k=1
I

(R)
k .

By construction, these three random walks S(L)
n , S(M)

n and S(R)
n , starting from −a, 0 and +b

respectively, are independent. We define the first collision time of these three random walks
by

τc = inf
{

n ≥ 1 : (S(M)
n − S(L)

n )(S(R)
n − S(M)

n )(S(L)
n − S(R)

n ) = 0
}

. (2)

In this article we compute the expectation of τc. Coupier et. al. (2020) studied the behavior
of τc in the case of simple symmetric random walks, i.e., the increment random variables are
distributed as random variables taking values +1 with probability 1

2 and −1 with probability
1
2 . We extend the result of Coupier et. al. (2020) for any value of p ∈ (0, 1).

2. Collision of two random walks

In Spitzer (1964) it is shown that the first hitting time of a random walk to a state
where increment random variables are independent and identically distributed having mean
0 and finite variance is finite almost surely.
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We observe that the expectation of the increment random variables and the expecta-
tion of the square of the increment random variables are given by : for s ∈ {L, M, R},

E
(
I

(s)
k

)
= p − (1 − p) = 2p − 1 and

E
((

I
(s)
k

)2
)

= p + 1 − p = 1.

Therefore, we have

Var
(
I

(s)
k

)
= E

((
I

(s)
k

)2
)

−
(
E

(
I

(s)
k

))2
= 4p(1 − p).

In our particular case, we consider first the collision times of the left random walk and the
middle random walk, i.e., set

τL,M = inf
{

n ≥ 1 : S(L)
n = S(M)

n

}
= inf

{
n ≥ 1 : S(L)

n − S(M)
n = 0

}
. (3)

Similarly, we may define the first collision time of the middle random walk and the right
random walk by

τM,R = inf
{

n ≥ 1 : S(M)
n = S(R)

n

}
= inf

{
n ≥ 1 : S(M)

n − S(R)
n = 0

}
. (4)

We consider the collision time of the left and the middle random walk. We set the
difference of the two walks by

Xn = S(M)
n − S(L)

n (5)
for all n ≥ 0. Similarly set

Yn = S(R)
n − S(M)

n (6)
for all n ≥ 0. Hence, we observe that X0 = a and Y0 = b.

We may now rephrase the first collision time of two random walks as follows:

τL,M = inf
{

n ≥ 1 : Xn = 0
}

and τM,R = inf
{

n ≥ 1 : Yn = 0
}

. (7)

We observe that, for n ≥ 1,

Xn = S(M)
n − S(L)

n = a +
n∑

k=1

[
I

(M)
k − I

(L)
k

]
= a +

n∑
k=1

D
(M,L)
k

where D
(M,L)
k = I

(M)
k −I

(L)
k for any any k ≥ 1. Note that E

(
D

(M,L)
k

)
= E

(
I

(M)
k

)
−E

(
I

(M)
k

)
= 0

and Var
(
D

(M,L)
k

)
= Var

(
I

(M)
k

)
+ Var

(
I

(L)
k

)
= 8p(1 − p). Thus, it is clear that the difference

process {Xn : n ≥ 0} can also be be presented as a random walk with increments having
mean 0 with finite variance. Therefore, using the result of Spitzer (1964), we may conclude
that is finite almost surely. However, we will provide a direct argument and will actually
compute the generating function of the collision time of the middle random walk and left
random walk.
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Theorem 1: Under the Assumption, we have

τL,M < +∞ almost surely.

Note that there is nothing special about the middle and left random walks. The result
may be applied to any pair of random walks. So, as a corollary, we also have

Corollary 1: Under the Assumption, we have

τM,R < +∞ almost surely.

We will prove the result using martingale method. The method is inspired by the
results in Williams (1991).Let us define the filtration

{
F (M,L)

n : n ≥ 0
}

, where

F (M,L)
n = σ

(
I

(L)
k , I

(M)
k : k ≤ n

)
= σ

(
S

(L)
k , S

(M)
k : k ≤ n

)
is the σ-algebra generated by the increment random variables of the middle random walk
and the left random walk up to time n. Also, this is same as the σ-algebra generated by the
middle random walk and the left random walk up to time n. This is the natural filtration
associated with two random walks we are studying.

We have already observed that

Xn = a +
n∑

k=1

(
I

(M)
k − I

(L)
k

)

for n ≥ 0. The random variables {I
(M)
k − I

(L)
k : k ≥ 1} is a sequence of independently and

identically distributed random variables with common distribution being the same as of a
random variable taking values +2 with probability p(1 − p), −2 with probability p(1 − p)
and 0 with probability 1 − 2p(1 − p). Let us set α = p(1 − p).

For λ ∈ R, let us define, the Laplace transform of the common increment distribution
by

f(λ) = E
[
exp

(
−λ

(
I

(M)
1 − I

(L)
1

))]
= α

(
e2λ + e−2λ

)
+ (1 − 2α). (8)

Clearly, we have

f(λ) = α
(
e2λ + e−2λ − 2

)
+ 1 = α

(
eλ − e−λ

)2
+ 1.

This implies that f(λ) > 1 for λ ∈ R and f(λ) = 1 for λ = 0. Also, by continuity of f at 0,
f(λ) ↓ 1 as λ → 0.

Let us define, for n ≥ 0,

Zn = exp (−λXn)
(
f(λ)

)−n
. (9)

We first show
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Proposition 1: The sequence {Zn : n ≥ 0} is an F (M,L)
n -martingale.

Proof: Clearly Z0 = exp
(
−λX0

)
= exp(−λa). We observe that the Xn is F (M,L)

n adapted
by definition. Since Zn is a measurable function of Xn, Zn is also F (M,L)

n adapted. It is easy
to check that for each n ≥ 0, we have |Zn| ≤ exp

(
|λ|(a + n)

)
and hence E(|Zn|) < ∞ for all

n ≥ 1.

Now, to show {Zn : n ≥ 0} is a martingale with respect to F (M,L)
n , we note that Xn

is measurable with respect to F (M,L)
n . We have

E
(

Zn+1 | F (M,L)
n

)
= E

[
exp (−λXn+1)

(
f(λ)

)−n−1
| F (M,L)

n

]
= E

[
exp

(
−λ

(
Xn + I

(M)
n+1 − I

(L)
n+1

))(
f(λ)

)−n−1
| F (M,L)

n

]
= exp

(
−λXn

)(
f(λ)

)−n−1
E

[
exp

(
−λ

(
I

(M)
n+1 − I

(L)
n+1

))]
= exp

(
−λXn

)(
f(λ)

)−n−1
f(λ) = exp

(
−λXn

)(
f(λ)

)−n
= Zn.

This completes the proof of the proposition.

Now we prove Theorem 1.

Proof: We note that

{τL,M = n} = {X0 = a > 0, X1 > 0, . . . , Xn−1 > 0, Xn = 0}

and hence {τL,M = n} ∈ F (M,L)
n . Thus, τL,M is a stopping time relative to {F (M,L)

n }. Hence,
the family

{
Zn∧τL,M

: n ≥ 0
}

is also a F (M,L)
n -martingale. Therefore, we obtain

E
(

exp(−λXn∧τL,M
)
(
f(λ)

)n∧τL,M
)

= E
(
Zn∧τL,M

)
= E

(
Z0∧τL,M

)
= E (Z0) = exp(−λa). (10)

Now, we specialize to the case of λ > 0 and take limit as n → ∞ in equation (10).
We have already noted that f(λ) > 1 for λ ∈ R, in particular for λ > 0.

• On the event {τL,M = +∞}, clearly
(
f(λ)

)−n∧τL,M → 0 as n → ∞.

• On the event {τL,M < ∞}, we have Xn∧τL,M
→ XτL,M

= 0. Thus, exp(−λXn∧τL,M
) → 1

as n → ∞ and
(
f(λ)

)−n∧τL,M →
(
f(λ)

)−τL,M as n → ∞.

Combining, we have

exp
(
−λXn∧τL,M

)
(f(λ))−(n∧τL,M) → I (τL,M < ∞) (f(λ))−τL,M

as n → ∞. Further, we observe that
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• For all n ≥ 0, Xn∧τL,M
≥ 0. For λ > 0, this implies that

exp
(
−λXn∧τL,M

)
≤ 1.

• Since f(λ) > 1 for λ > 0 and n ≥ 0, we have

(f(λ))−(n∧τL,M ) ≤ 1.

Thus, we have
exp(−λXn∧τL,M

)
(
f(λ)

)n∧τL,M ≤ 1.

Thus, we can use DCT in equation (10) to obtain, for all λ > 0,

E
(
I (τL,M < ∞)

(
f(λ)

)−τL,M
)

= exp(−λa). (11)

Now, we will take limit by letting λ ↓ 0 in equation (11). On the event {τL,M < ∞},
using continuity of f , we get

(
f(λ)

)−τL,M → 1 as λ ↓ 0. Therefore, we have

I (τL,M < ∞)
(
f(λ)

)−τL,M → I (τL,M < ∞) .

Furthermore, we have
I (τL,M < ∞)

(
f(λ)

)−τL,M ≤ 1

as f(λ) > 1 for any λ > 0. Thus, by apply DCT in (11), we have

P
(
τL,M < ∞

)
= E

(
I (τL,M < ∞)

)
= lim

λ↓0
E

(
I (τL,M < ∞)

(
f(λ)

)−τL,M
)

= lim
λ↓0

exp(−λa) = 1.

This proves that τL,M < ∞ with probability 1.

The result in (11) yields more information. Indeed, we may calculate the probability
generating function of τL,M , in in turn provides more information.

Corollary 2: The probability generating function of τL,M is given by

E
(

sτL,M

)
= 1

(2
√

α)a

√
1
s

− 1 + 4α −
√

1
s

− 1
a

(12)

for −1 < s ≤ 1.

Proof: Since τL,M < ∞ almost surely, we can rewrite equation (11), for all λ > 0

E
(
(f(λ))−τL,M

)
= exp(−λa).
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This formula may be used to get the probability generating function of τL,M . Letting s =(
f(λ)

)−1
for λ > 0 and solving λ in terms of s, we have

E (sτL,M ) = exp(−λa) = 1
(2

√
α)a

√
1
s

− 1 + 4α −
√

1
s

− 1
a

.

This proves the corollary.

This may be used to show that the expectation is infinite. Indeed, we have

d

ds
E (sτL,M ) = a

(2√
q)a

√
1
s

− 1 + 4q −
√

1
s

− 1
a−1

× 1
2s2

 1√
1
s

− 1
− 1√

1
s

− 1 + 4q

 .

So, when s ↑ 1, the right hand side diverges to ∞. Thus, E (τL,M) = ∞. Similarly we can
also prove that E (τM,R) = ∞. We may also obtain the tail behaviour of the stopping time.

3. Collision time of three random walks : simulation

Before we go into the theoretical derivation, we carry out some simulation studies.
Here we use a cutoff, to stop the process the process if the the simulation has not resulted
in a value. Our cutoff is 10000000 and we have simulated for 10000000 times. We have also
taken different values of a and b where a and b are both even positive integers. We have
carried out the simulation using 3 different values of p, which are 1

2 , 1
3 and 5

7 respectively.

For p = 1
2 , y1 is the observed mean of the first collision time of three random walks

after simulating it 10000000 times, For p = 1
3 , y2 is the observed mean of the first collision

time of three random walks after simulating it 10000000 times, For p = 5
7 , y3 is the observed

mean of the first collision time of three random walks after simulating it 10000000 times.
Now we will look at the scatter plots of (ab,y1), (ab,y2) and (ab,y3) and also we will find and
plot regression lines of y1 on ab, y2 on ab and y3 on ab. Here S

(L)
0 , S

(M)
0 and S

(R)
0 are −a, 0

and +b respectively.

Simulation output

Table 1: Simulation of expected collision times

−a +b y1 y2 y3 ab

-2 2 3.9987 4.4956 4.8801 4
-2 4 7.9961 9.0174 9.7983 8
-2 6 12.0102 13.4858 14.6516 12
-2 8 15.9895 17.9811 19.6139 16
-2 10 20.0246 22.5134 24.4733 20
-2 12 24.0198 27.0171 29.3998 24
-2 14 28.0139 31.4881 34.3256 28
-2 16 31.9907 35.9944 39.2114 32
-2 18 35.9821 40.4913 44.0897 36
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Table 1: Simulation of expected collision times

−a +b y1 y2 y3 ab

-2 20 40.0912 44.9591 48.9771 40
-4 4 15.9931 17.5619 19.5812 16
-4 6 23.9978 27.0127 29.3665 24
-4 8 31.9914 36.0223 39.1997 32
-4 10 40.0297 45.0136 49.0315 40
-4 12 47.9956 53.9889 58.7969 48
-4 14 55.9992 62.9156 68.5899 56
-4 16 63.9958 71.9929 78.3878 64
-4 18 72.0154 81.0147 88.2156 72
-4 20 80.0083 90.0396 97.9089 80
-6 6 35.9841 40.5069 44.0989 36
-6 8 47.9892 53.9574 58.7899 48
-6 10 59.9946 67.4998 73.5017 60
-6 12 71.9839 80.9758 88.1898 72
-6 14 84.0629 94.5195 102.8761 84
-6 16 95.9779 108.0251 117.6112 96
-6 18 108.0022 121.5245 132.2893 108
-6 20 119.9141 134.9596 146.9674 120
-8 8 63.9951 72.0212 78.3894 64
-8 10 79.9917 90.0018 97.9825 80
-8 12 95.9679 107.9786 117.5997 96
-8 14 112.0091 125.9925 137.2119 112
-8 16 127.9899 143.9512 156.7898 128
-8 18 143.9769 161.9213 176.2996 144
-8 20 160.0998 179.9621 196.0176 160
-10 10 100.0518 112.5185 122.4886 100
-10 12 119.9371 135.0121 147.0259 120
-10 14 139.9145 157.4852 171.4966 140
-10 16 159.9159 179.9597 195.9979 160
-10 18 180.0263 202.5096 220.3999 180
-10 20 199.9564 224.9917 244.9732 200
-12 12 143.9768 161.9129 176.3993 144
-12 14 168.0459 189.0432 205.7915 168
-12 16 192.0091 216.0278 235.2112 192
-12 18 215.9316 242.9841 264.5889 216
-12 20 239.9089 269.9124 294.0113 240
-14 14 195.9989 220.5398 240.1376 196
-14 16 223.9388 251.9492 274.2998 224
-14 18 251.9164 283.4919 308.6779 252
-14 20 279.9936 315.0154 342.9547 280
-16 16 255.9989 287.9754 313.6291 256
-16 18 287.9669 324.0478 352.7959 288
-16 20 319.9799 359.9954 391.9286 320
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Table 1: Simulation of expected collision times

−a +b y1 y2 y3 ab

-18 18 323.9193 364.3991 396.8777 324
-18 20 359.9899 404.9145 441.1223 360
-20 20 399.9918 449.7982 489.8979 400

The scatter plots of the above data is very instructive as they clearly bring out the
relation between ab and the expected time of the first collision time τc.

Figure 1: Scatter plot of (ab,y1) and regression line of y1 on ab

Table 2: Summary statistics of simulation

Statistics Estimate T statistics P value
Constant1 0.00727396818 0.8787564386 0.3835000647

Slope1 0.9998608551 19192.1238453652 0
Constant2 -0.0096277426 -0.6188423746 0.5386710900

Slope2 1.1248997399 11488.2891168571 0
Constant3 -0.0077084624 -0.9309990213 0.3560755895

Slope3 1.2249623703 23506.6195548538 0
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Figure 2: Scatter plot of (ab,y2) and regression line of y2 on ab

Figure 3: Scatter plot of (ab,y3) and regression line of y3 on ab
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The regression lines on ab are for different values of p:

ŷ1 = 0.00727396818 + 0.9998608551 × ab

ŷ2 = −0.0096277426 + 1.1248997399 × ab

ŷ3 = −0.0077084624 + 1.2249623703 × ab.

The correlation coefficients are 0.9999999281, 0.9999997992, 0.9999999952 respectively. In
each of the three cases the correlation coefficient is very close to +1, so here we can observe
near perfect positive correlation.

The summary statistics of the above data, which from the above scatter plots is quite
expected, clearly shows that there should be a linear relationship between the expected time
and the product of the initial distances ab. In each of the three cases the estimate of the
constant is very close to 0 and the estimate of the slope is very close to

(
4p(1 − p)

)−1
. Also

in each of the three cases the p-value of the intercept is greater than 0.05, so the intercept
is not significant. From these observations we postulate that the expectation of τc should be
ab

(
4p(1 − p)

)−1
. In the next section we derive these theoretical results.

4. Theoretical results

We first note that we are working with random walks having steps size of ±1 with
the starting points are on even lattice. Therefore, these independent random walks do not
cross each other before intersecting. So, we can write the first collision time of these three
random walks τc as,

τc = min
{
τL,M , τM,R

}
. (13)

As an immediate consequence of Theorem 1, we have

τc < +∞ with probability 1.

Further from the above observation, it is easy to conclude that at τc either the pair
of left random walk and the middle random walk collides or the pair of middle random walk
and the right random walk collides. So, we can rephrase the definition of τc (see equation
(2)) as follows:

τc = inf
{

n ≥ 1 : (S(M)
n − S(L)

n )(S(R)
n − S(M)

n )(S(L)
n − S(R)

n ) = 0
}

= inf
{

n ≥ 1 : (S(M)
n − S(L)

n )(S(R)
n − S(M)

n ) = 0
}

= inf
{

n ≥ 1 : XnYn = 0
}

. (14)

We will use this identification to justify these results.

We will again use the martingale method. Let us define the filtration
{

Fn : n ≥ 0
}

,
where

Fn = σ
(

I
(L)
k , I

(M)
k , I

(R)
k : k ≤ n

)
= σ

(
S

(L)
k , S

(M)
k , S

(R)
k : k ≤ n

)
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is the σ-algebra generated by the increment random variables of all the random walks. Also,
this is same as the σ-algebra generated by the all the random walk up to time n. This is the
natural filtration associated with all three random walks we are studying.

Proposition 2: The family {XnYn + 4np(1 − p) : n ≥ 0} is an Fn-martingale.

Proof: It is easy to see that random variable XnYn +4np(1−p) is Fn-adapted for any n ≥ 0.
Further, for any n ≥ 0,

|XnYn| ≤ (a + 2n)(b + 2n)

Thus, we have E
(

|XnYn + 4np(1 − p)|
)

< ∞ for all n ≥ 0.

Now, we have

Xn+1Yn+1 + 4(n + 1)p(1 − p)

=
(

Xn +
(
I

(M)
n+1 − I

(L)
n+1

))(
Yn +

(
I

(R)
n+1 − I

(M)
n+1

))
+ 4(n + 1)p(1 − p)

= XnYn + Xn

(
I

(R)
n+1 − I

(M)
n+1

)
+ Yn

(
I

(M)
n+1 − I

(L)
n+1

)
+

(
I

(R)
n+1 − I

(M)
n+1

)(
I

(M)
n+1 − I

(L)
n+1

)
+ 4(n + 1)p(1 − p).

Thus, we have

(Xn+1Yn+1 + 4(n + 1)p(1 − p)) − (XnYn + 4np(1 − p))
= Xn

(
I

(R)
n+1 − I

(M)
n+1

)
+ Yn

(
I

(M)
n+1 − I

(L)
n+1

)
+

(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)
+ 4p(1 − p).

Note that Xn and Yn are Fn-measurable and the random variables
(
I

(R)
n+1−I

(M)
n+1

)
,
(
I

(M)
n+1−I

(L)
n+1

)
are independent of Fn with expectation 0. Further, the random variables I

(L)
n+1, I

(M)
n+1 and I

(R)
n+1

are also independent of Fn and are independent with expectation 2p−1 and variance 4p(1−p).

Now, we take conditional expectation with respect to Fn. Observe that

• E
[
Xn

(
I

(R)
n+1 −I

(M)
n+1

)
| Fn

]
= XnE

[(
I

(R)
n+1 −I

(M)
n+1

)
| Fn

]
= XnE

[(
I

(R)
n+1 −I

(M)
n+1

)]
= 0 where

we have used the fact that Xn is Fn-measurable and the increments random variables
are independent of Fn.

• Similarly we have E
[
Yn

(
I

(M)
n+1 − I

(L)
n+1

)
| Fn

]
= 0 .

• Finally, using the fact that the increments are independent of Fn, we have

E
[(

I
(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)
| Fn

]
= E

[(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)]
= E

[(
(I(M)

n+1 − (2p − 1)) − (I(L)
n+1 − (2p − 1)

)(
(I(R)

n+1 − (2p − 1)) − (I(M)
n+1 − (2p − 1))

)]
= −Var

(
I

(M)
n+1

)
= −4p(1 − p).
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Combing the above and the fact that XnYn is measurable with respect to Fn, we now
have

E
(

Xn+1Yn+1 + 4(n + 1)p(1 − p) | Fn

)
= XnYn + 4np(1 − p).

This proves the proposition.

Next we proves another similar proposition.

Proposition 3: The family {XnYn (Xn + Yn) : n ≥ 0} is an Fn-martingale.

Proof: The adaptedness of XnYn(Xn+Yn) with respect Fn is again straightforward. Further,
it is also obvious that |XnYn(Xn+Yn)| ≤ (a+2n)(b+2n)(a+b+4n) and hence E

(
|XnYn(Xn+

Yn)|
)

< ∞ for any n ≥ 0.

As in the earlier proposition, we have

Xn+1Yn+1 (Xn+1 + Yn+1)
=

(
Xn +

(
I

(M)
n+1 − I

(L)
n+1

)) (
Yn +

(
I

(R)
n+1 − I

(M)
n+1

)) (
Xn + Yn +

(
I

(R)
n+1 − I

(L)
n+1

))
= XnYn (Xn + Yn) + XnYn

(
I

(R)
n+1 − I

(L)
n+1

)
+ Xn (Xn + Yn)

(
I

(R)
n+1 − I

(M)
n+1

)
+ Yn (Xn + Yn)

(
I

(M)
n+1 − I

(L)
n+1

)
+ Xn

(
I

(R)
n+1 − I

(M)
n+1

) (
I

(R)
n+1 − I

(L)
n+1

)
+ Yn

(
I

(M)
n+1 − I

(L)
n+1

) (
I

(R)
n+1 − I

(L)
n+1

)
+ (Xn + Yn)

(
I

(M)
n+1 − I

(L)
n+1

) (
I

(R)
n+1 − I

(M)
n+1

)
(
I

(M)
n+1 − I

(L)
n+1

) (
I

(R)
n+1 − I

(M)
n+1

) (
I

(R)
n+1 − I

(L)
n+1

)
.

As in the previous proposition, we have Xn and Yn are Fn-measurable and the ran-
dom variables

(
I

(R)
n+1 − I

(M)
n+1

)
,
(
I

(M)
n+1 − I

(L)
n+1

)
and

(
I

(R)
n+1 − I

(L)
n+1

)
are independent of Fn with

expectation 0. Thus, same arguments as above, apply to show that

• E
[
XnYn

(
I

(R)
n+1−I

(L)
n+1

)
| Fn

]
= E

[
Xn(Xn+Yn)

(
I

(R)
n+1−I

(M)
n+1

)
| Fn

]
=

[
Yn(Xn+Yn)

(
I

(R)
n+1−

I
(L)
n+1

)
| Fn

]
= 0.

• Same arguments as above, yield

(a) E
[
Xn

(
I

(R)
n+1 − I

(M)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)
| Fn

]
= XnVar

(
I

(R)
n+1

)
= 4p(1 − p)Xn

(b) E
[
Yn

(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)
| Fn

]
= YnVar

(
I

(L)
n+1

)
= 4p(1 − p)Yn

(c) E
[(

Xn + Yn

)(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)
| Fn

]
= −(Xn + Yn)Var

(
I

(M)
n+1

)
= −4p(1 − p)(Xn + Yn).
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• We also have

E
[(

I
(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)
| Fn

]
= E

[(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)]
= E

[(
(I(M)

n+1 − (2p − 1)) − (I(L)
n+1 − (2p − 1))

)(
(I(R)

n+1 − (2p − 1)) − (I(M)
n+1 − (2p − 1))

)
×

(
(I(R)

n+1 − (2p − 1)) − (I(L)
n+1 − (2p − 1))

)]
= 0

by independence of the random variables and the fact that they have expectation 0.

Combining the above and the fact that XnYn(Xn + Yn) is Fn-measurable, we have

E
(

Xn+1Yn+1
(
Xn+1 + Yn+1

)
| Fn

)
= XnYn

(
Xn + Yn

)
.

This completes the proof.

Now, we are in a position to state and prove our main result.

Theorem 2: We have
E

(
τc

)
= ab

(
4p(1 − p)

)−1
. (15)

Proof: We observe that, from equation (13), that

{τc = n} =
{
X0Y0 > 0, X1Y1 > 0, . . . , Xn−1Yn−1 > 0, XnYn = 0

}
.

Clearly {τc = n} ∈ Fn, which implies that τc is also stopping time relative to {Fn}.

By using Proposition 2, we get that,
{
Xn∧τcYn∧τc + 4p(1 − p) (n ∧ τc) : n ≥ 0

}
is a

martingale and hence for any n ≥ 1,

E
(

Xn∧τcYn∧τc + 4p(1 − p) (n ∧ τc)
)

= E
(

X0∧τcY0∧τc + 4p(1 − p) (0 ∧ τc)
)

= E
(

X0Y0

)
= ab (16)

since τc ≥ 0.

Now, we will take limit in equation (16) as n → ∞. Since τc < ∞ almost surely,
n ∧ τc ↑ τc as n → ∞. By MCT, we obtain

E
(
n ∧ τc

)
→ E

(
τc

)
as n → ∞.
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To complete the proof we show that E
(
Xn∧τcYn∧τc

)
→ 0 as n → ∞. Since τc < ∞

almost surely, we have that
Xn∧τcYn∧τc → XτcYτc = 0 (17)

as n → ∞.

In order to show that the expected value also converges to 0, we will use Theorem
26.13 of Billingsley (1986). For this we require to show that the sequence of random variable
{Xn∧τcYn∧τc : n ≥ 0} is an uniformly integrable family. A sufficient condition for a family of
random variables to be uniformly integrable (see Billingsley (1986)) is given by

sup
n≥0

E
[(

Xn∧τcYn∧τc

)1+ϵ
]

< ∞

for some ϵ > 0.

By using Proposition 3, we get that
{
Xn∧τcYn∧τc (Xn∧τc + Yn∧τc) : n ≥ 0

}
is also a

martingale. Hence, for any n ≥ 1,

E
[
Xn∧τcYn∧τc

(
Xn∧τc + Yn∧τc

)]
= E

[
X0∧τcY0∧τc

(
X0∧τc + Y0∧τc

)]
= E

[
X0Y0

(
X0 + Y0

)]
= ab(a + b).

For non-negative u, v ≥ 0, using AM-GM inequality, we have (uv)3/2 ≤ 1
2uv(u + v). Since

Xn∧τc and Yn∧rc are both non negative, we have, for any n ≥ 0

E
[(

Xn∧τcYn∧τc

)3/2
]

≤ 1
2E

[
Xn∧τcYn∧τc

(
Xn∧τc + Yn∧τc

)]
= 1

2ab(a + b).

Therefore,
sup
n≥0

E
[(

Xn∧τcYn∧τc

)1+1/2
]

≤ 1
2ab(a + b) < ∞.

Hence, we conclude that {Xn∧τcYn∧τc : n ≥ 0} is an uniformly integrable family. Therefore,
we have

E
(

Xn∧τcYn∧τc

)
→ 0 as n → ∞.

This completes the proof of the Theorem.
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ANNEXURE

R code for simulation

Increment<−f unc t i on ( uniform , p)
{

# uniform := uniform v a r i a b l e
# p := p r o b a b i l i t y o f increment o f +1,

# output := the increment with p r o b a b i l i t y d i s t r i b u t i o n

i f ( uniform <= p)
{

r e turn (1 )
}
r e turn (−1)

}

FindCo l l i s i on <−f unc t i on (
s t a r t r i g h t ,
startmid ,
s t a r t l e f t ,
p ,
c u t o f f )

{
# s t a r t r i g h t := s t a r t i n g p o s i t i o n o f r i g h t random walk
# startmid := s t a r t i n g p o s i t i o n o f mid random walk
# s t a r t l e f t := s t a r t i n g p o s i t i o n o f l e f t random walk
# c u t o f f := the max length o f random walk to be cons ide r ed

# output := F i r s t C o l l i s i o n time o f 3 random walks

# i n i t i a l i z e s t a r t i n g p o s i t i o n s
r i gh tpo s = s t a r t r i g h t



2023] FIRST COLLISION TIME 167

midpos = startmid
l e f t p o s = s t a r t l e f t

# s e t time f o r c o l l i s i o n to c u t o f f + 1
time = c u t o f f+1

# run the loop u n t i l c u t o f f time
f o r ( i in 1 : c u t o f f )
{

# Get three uni forms
uni forms = r u n i f (3 )

# update the random walk p o s i t i o n s
r i gh tpo s = r i gh tpo s + Increment ( uni forms [ 1 ] , p )
midpos = midpos + Increment ( uni forms [ 2 ] , p )
l e f t p o s = l e f t p o s + Increment ( uni forms [ 3 ] , p )

# Check f o r c o l l i s i o n
i f ( ( r i gh tpo s − midpos )∗ ( midpos−l e f t p o s ) == 0 )
{

# C o l l i s i o n has happened
# se t time to t h i s c o l l i s i o n time
time = i

# stop the s imu la t i on
break

}
}

# return the time
return ( time )

}

RW<−f unc t i on (
s t a r t r i g h t ,
startmid ,
s t a r t l e f t ,
p ,
cu to f f ,
num)

{
# output := mean o f F i r s t C o l l i s i o n t imes o f num repea ta t i on
W = rep (0 , num)

# run loop f o r r e p ea t a t i on s o f t imes
f o r ( i in 1 :num)
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{
W[ i ] = F indCo l l i s i on (

s t a r t r i g h t ,
startmid ,
s t a r t l e f t ,
p ,
c u t o f f )

}
ava = c (mean(W))
re turn ( ava )

}
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