

First Collision Time of Three Independent Random Walks

Arighna Dey¹, Kumarjit Saha², and Anish Sarkar³

¹Indian Statistical Institute, Kolkata, West Bengal, India ²Department of Mathematics, Ashoka University, Sonepat, Haryana, India ³Indian Statistical Institute, Delhi, India

Received: 29 July 2023; Revised: 07 August 2023; Accepted: 10 August 2023

Abstract

Random walks are mathematical objects for modelling random trajectories where the future of the trajectory does not depend on the past. We take three simple random walk where the increments are distributed as +1, -1 valued random variables with probabilities p and 1 - p. We study the expected first collision time of three such random walks. This work is an extension of the work of Coupier *et. al.* (2020) where they studied the case of p = 1/2.

Key words: Random walks; First collision time; Martingale.

AMS Subject Classifications: 62D05

1. Introduction

A random walk, denoted by RW, represents a trajectory or collection of trajectories that consists of taking successive random steps, each of which are independent and identically distributed. The most studied example of random walk is the walk on the integers \mathbb{Z} , which starts at an integer point and at each step moves by +1 or -1. This is known as the simple random walk (SRW). When the probabilities of moving to +1 and to -1 are identical, we call it the simple symmetric random walk (SSRW).

Random walks originate in almost all sciences quite naturally and find applications in various branches of mathematics, computer science, biology, chemistry, physics. In Physics, random walks are used to model the movement of particles in a random environment. The limiting process of the random walk yields the Brownian motion which is central to almost many predictive models. This has connected various branches of Mathematics and physics through the application of random walk.

In biological science, the genetic drift is modelled using random walks, which provide a general idea of the statistical processes involved. In physics, we can random walks to describe an ideal chains of polymers. The concepts of random work has been very crucially used in several fields such as psychology, finance, ecology. In Economics Stock market modelling and pricing are done through the Brownian motion. It is possible to describe fluctuations in the stock market with the random walk concepts. This has resulted several Nobel prizes

in Economics. Random walks also find application in the Google search engine algorithms, namely the page rank algorithm.

A simple way to construct the random walk is to flip a coin, and if the toss results in a HEAD, move to right by single step, whereas if the toss results in a TAIL, move to left by a single step. To define this walk formally, we take a sequence of independent random variables independent and identically distributed random variables, called the increment sequence, $\{I_k : k \in \mathbb{N}\}$ and an initial state $x \in \mathbb{Z}$. The random walk, starting from x, is defined as follows:

$$S_0 = x$$
 and $S_n = x + \sum_{k=1}^n I_k$ for $n \in \mathbb{N}$.

This sequence $\{S_n : n \ge 0\}$ is called the random walk on \mathbb{Z} .

In this article we deal with three independent simple random walks. Therefore, we will consider three starting points. We note that if the starting positions of two random walks are of different parity, they will never be at the same position at any time point. Thus, we need to consider all starting positions of same parity. Since the intersection times and collision times will not change when we translate all the processes by same amount, we may choose the starting positions so that one random walk starts below the origin (the left random walk), one at the origin (the middle random walk) and the other above the origin (the right random walk). More precisely, we choose a and b positive even numbers and start the random walks at -a, 0 and b respectively. We also consider three independent sequences of independent and identically distributed increment random variables $\{I_k^{(L)} : k \ge 1\}, \{I_k^{(M)} : k \ge 1\}$ and $\{I_k^{(B)} : k \ge 1\}$

$$\left\{I_k^{(R)}: k \ge 1\right\} \text{ with}$$

$$\mathbb{P}\left(I_k^{(s)} = +1\right) = p = 1 - \mathbb{P}\left(I_k^{(s)} = -1\right) \tag{1}$$

where $p \in (0, 1)$ and $s \in \{L, M, R\}$. Now, we consider the random walks represented by

$$S_n^{(L)} = -a + \sum_{k=1}^n I_k^{(L)}, \qquad S_n^{(M)} = \sum_{k=1}^n I_k^{(M)} \qquad \text{and} \qquad S_n^{(R)} = b + \sum_{k=1}^n I_k^{(R)}.$$

By construction, these three random walks $S_n^{(L)}$, $S_n^{(M)}$ and $S_n^{(R)}$, starting from -a, 0 and +b respectively, are independent. We define the first collision time of these three random walks by

$$\tau_c = \inf \left\{ n \ge 1 : (S_n^{(M)} - S_n^{(L)})(S_n^{(R)} - S_n^{(M)})(S_n^{(L)} - S_n^{(R)}) = 0 \right\}.$$
 (2)

In this article we compute the expectation of τ_c . Coupier et. al. (2020) studied the behavior of τ_c in the case of simple symmetric random walks, i.e., the increment random variables are distributed as random variables taking values +1 with probability $\frac{1}{2}$ and -1 with probability $\frac{1}{2}$. We extend the result of Coupier et. al. (2020) for any value of $p \in (0, 1)$.

2. Collision of two random walks

In Spitzer (1964) it is shown that the first hitting time of a random walk to a state where increment random variables are independent and identically distributed having mean 0 and finite variance is finite almost surely. We observe that the expectation of the increment random variables and the expectation of the square of the increment random variables are given by : for $s \in \{L, M, R\}$,

$$\mathbb{E}\left(I_k^{(s)}\right) = p - (1-p) = 2p - 1 \text{ and}$$
$$\mathbb{E}\left(\left(I_k^{(s)}\right)^2\right) = p + 1 - p = 1.$$

Therefore, we have

$$\operatorname{Var}(I_k^{(s)}) = \mathbb{E}\left(\left(I_k^{(s)}\right)^2\right) - \left(\mathbb{E}\left(I_k^{(s)}\right)\right)^2 = 4p(1-p).$$

In our particular case, we consider first the collision times of the left random walk and the middle random walk, i.e., set

$$\tau_{L,M} = \inf\left\{n \ge 1 : S_n^{(L)} = S_n^{(M)}\right\} = \inf\left\{n \ge 1 : S_n^{(L)} - S_n^{(M)} = 0\right\}.$$
(3)

Similarly, we may define the first collision time of the middle random walk and the right random walk by

$$\tau_{M,R} = \inf\left\{n \ge 1 : S_n^{(M)} = S_n^{(R)}\right\} = \inf\left\{n \ge 1 : S_n^{(M)} - S_n^{(R)} = 0\right\}.$$
(4)

We consider the collision time of the left and the middle random walk. We set the difference of the two walks by

$$X_n = S_n^{(M)} - S_n^{(L)}$$
(5)

for all $n \ge 0$. Similarly set

$$Y_n = S_n^{(R)} - S_n^{(M)}$$
(6)

for all $n \ge 0$. Hence, we observe that $X_0 = a$ and $Y_0 = b$.

We may now rephrase the first collision time of two random walks as follows:

$$\tau_{L,M} = \inf \left\{ n \ge 1 : X_n = 0 \right\} \quad \text{and} \quad \tau_{M,R} = \inf \left\{ n \ge 1 : Y_n = 0 \right\}.$$
(7)

We observe that, for $n \ge 1$,

$$X_n = S_n^{(M)} - S_n^{(L)} = a + \sum_{k=1}^n \left[I_k^{(M)} - I_k^{(L)} \right] = a + \sum_{k=1}^n D_k^{(M,L)}$$

where $D_k^{(M,L)} = I_k^{(M)} - I_k^{(L)}$ for any any $k \ge 1$. Note that $\mathbb{E}(D_k^{(M,L)}) = \mathbb{E}(I_k^{(M)}) - \mathbb{E}(I_k^{(M)}) = 0$ and $\mathbb{V}ar(D_k^{(M,L)}) = \mathbb{V}ar(I_k^{(M)}) + \mathbb{V}ar(I_k^{(L)}) = 8p(1-p)$. Thus, it is clear that the difference process $\{X_n : n \ge 0\}$ can also be be presented as a random walk with increments having mean 0 with finite variance. Therefore, using the result of Spitzer (1964), we may conclude that is finite almost surely. However, we will provide a direct argument and will actually compute the generating function of the collision time of the middle random walk and left random walk. **Theorem 1:** Under the Assumption, we have

 $\tau_{L,M} < +\infty$ almost surely.

Note that there is nothing special about the middle and left random walks. The result may be applied to any pair of random walks. So, as a corollary, we also have

Corollary 1: Under the Assumption, we have

 $\tau_{M,R} < +\infty$ almost surely.

We will prove the result using martingale method. The method is inspired by the results in Williams (1991).Let us define the filtration $\left\{\mathcal{F}_{n}^{(M,L)}: n \geq 0\right\}$, where

$$\mathcal{F}_n^{(M,L)} = \sigma\left(I_k^{(L)}, I_k^{(M)} : k \le n\right) = \sigma\left(S_k^{(L)}, S_k^{(M)} : k \le n\right)$$

is the σ -algebra generated by the increment random variables of the middle random walk and the left random walk up to time n. Also, this is same as the σ -algebra generated by the middle random walk and the left random walk up to time n. This is the natural filtration associated with two random walks we are studying.

We have already observed that

$$X_n = a + \sum_{k=1}^{n} \left(I_k^{(M)} - I_k^{(L)} \right)$$

for $n \ge 0$. The random variables $\{I_k^{(M)} - I_k^{(L)} : k \ge 1\}$ is a sequence of independently and identically distributed random variables with common distribution being the same as of a random variable taking values +2 with probability p(1-p), -2 with probability p(1-p) and 0 with probability 1 - 2p(1-p). Let us set $\alpha = p(1-p)$.

For $\lambda \in \mathbb{R}$, let us define, the Laplace transform of the common increment distribution by

$$f(\lambda) = \mathbb{E}\left[\exp\left(-\lambda\left(I_1^{(M)} - I_1^{(L)}\right)\right)\right] = \alpha\left(e^{2\lambda} + e^{-2\lambda}\right) + (1 - 2\alpha).$$
(8)

Clearly, we have

$$f(\lambda) = \alpha \left(e^{2\lambda} + e^{-2\lambda} - 2 \right) + 1 = \alpha \left(e^{\lambda} - e^{-\lambda} \right)^2 + 1$$

This implies that $f(\lambda) > 1$ for $\lambda \in \mathbb{R}$ and $f(\lambda) = 1$ for $\lambda = 0$. Also, by continuity of f at 0, $f(\lambda) \downarrow 1$ as $\lambda \to 0$.

Let us define, for $n \ge 0$,

$$Z_n = \exp\left(-\lambda X_n\right) \left(f(\lambda)\right)^{-n}.$$
(9)

We first show

Proposition 1: The sequence $\{Z_n : n \ge 0\}$ is an $\mathcal{F}_n^{(M,L)}$ -martingale.

Proof: Clearly $Z_0 = \exp(-\lambda X_0) = \exp(-\lambda a)$. We observe that the X_n is $\mathcal{F}_n^{(M,L)}$ adapted by definition. Since Z_n is a measurable function of X_n , Z_n is also $\mathcal{F}_n^{(M,L)}$ adapted. It is easy to check that for each $n \ge 0$, we have $|Z_n| \le \exp(|\lambda|(a+n))$ and hence $\mathbb{E}(|Z_n|) < \infty$ for all $n \ge 1$.

Now, to show $\{Z_n : n \ge 0\}$ is a martingale with respect to $\mathcal{F}_n^{(M,L)}$, we note that X_n is measurable with respect to $\mathcal{F}_n^{(M,L)}$. We have

$$\mathbb{E}\left(Z_{n+1} \mid \mathcal{F}_{n}^{(M,L)}\right)$$

$$= \mathbb{E}\left[\exp\left(-\lambda X_{n+1}\right) \left(f(\lambda)\right)^{-n-1} \mid \mathcal{F}_{n}^{(M,L)}\right]$$

$$= \mathbb{E}\left[\exp\left(-\lambda \left(X_{n} + I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\right) \left(f(\lambda)\right)^{-n-1} \mid \mathcal{F}_{n}^{(M,L)}\right]$$

$$= \exp\left(-\lambda X_{n}\right) \left(f(\lambda)\right)^{-n-1} \mathbb{E}\left[\exp\left(-\lambda \left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\right)\right]$$

$$= \exp\left(-\lambda X_{n}\right) \left(f(\lambda)\right)^{-n-1} f(\lambda) = \exp\left(-\lambda X_{n}\right) \left(f(\lambda)\right)^{-n} = Z_{n}.$$

This completes the proof of the proposition.

Now we prove Theorem 1.

Proof: We note that

$$\{\tau_{L,M} = n\} = \{X_0 = a > 0, X_1 > 0, \dots, X_{n-1} > 0, X_n = 0\}$$

and hence $\{\tau_{L,M} = n\} \in \mathcal{F}_n^{(M,L)}$. Thus, $\tau_{L,M}$ is a stopping time relative to $\{\mathcal{F}_n^{(M,L)}\}$. Hence, the family $\{Z_{n \wedge \tau_{L,M}} : n \geq 0\}$ is also a $\mathcal{F}_n^{(M,L)}$ -martingale. Therefore, we obtain

$$\mathbb{E}\left(\exp(-\lambda X_{n\wedge\tau_{L,M}})\left(f(\lambda)\right)^{n\wedge\tau_{L,M}}\right) = \mathbb{E}\left(Z_{n\wedge\tau_{L,M}}\right)$$
$$= \mathbb{E}\left(Z_{0\wedge\tau_{L,M}}\right) = \mathbb{E}\left(Z_{0}\right) = \exp(-\lambda a).$$
(10)

Now, we specialize to the case of $\lambda > 0$ and take limit as $n \to \infty$ in equation (10). We have already noted that $f(\lambda) > 1$ for $\lambda \in \mathbb{R}$, in particular for $\lambda > 0$.

- On the event $\{\tau_{L,M} = +\infty\}$, clearly $(f(\lambda))^{-n \wedge \tau_{L,M}} \to 0$ as $n \to \infty$.
- On the event $\{\tau_{L,M} < \infty\}$, we have $X_{n \wedge \tau_{L,M}} \to X_{\tau_{L,M}} = 0$. Thus, $\exp(-\lambda X_{n \wedge \tau_{L,M}}) \to 1$ as $n \to \infty$ and $(f(\lambda))^{-n \wedge \tau_{L,M}} \to (f(\lambda))^{-\tau_{L,M}}$ as $n \to \infty$.

Combining, we have

$$\exp\left(-\lambda X_{n\wedge\tau_{L,M}}\right)(f(\lambda))^{-(n\wedge\tau_{L,M})} \to \mathbb{I}\left(\tau_{L,M}<\infty\right)(f(\lambda))^{-\tau_{L,M}}$$

as $n \to \infty$. Further, we observe that

• For all $n \ge 0$, $X_{n \land \tau_{L,M}} \ge 0$. For $\lambda > 0$, this implies that

$$\exp\left(-\lambda X_{n\wedge\tau_{L,M}}\right) \le 1.$$

• Since $f(\lambda) > 1$ for $\lambda > 0$ and $n \ge 0$, we have

$$(f(\lambda))^{-(n \wedge \tau_{L,M})} \le 1.$$

Thus, we have

$$\exp(-\lambda X_{n\wedge\tau_{L,M}}) \left(f(\lambda)\right)^{n\wedge\tau_{L,M}} \le 1.$$

Thus, we can use DCT in equation (10) to obtain, for all $\lambda > 0$,

$$\mathbb{E}\left(\mathbb{I}\left(\tau_{L,M} < \infty\right) \left(f(\lambda)\right)^{-\tau_{L,M}}\right) = \exp(-\lambda a).$$
(11)

Now, we will take limit by letting $\lambda \downarrow 0$ in equation (11). On the event $\{\tau_{L,M} < \infty\}$, using continuity of f, we get $(f(\lambda))^{-\tau_{L,M}} \to 1$ as $\lambda \downarrow 0$. Therefore, we have

$$\mathbb{I}(\tau_{L,M} < \infty) \left(f(\lambda)\right)^{-\tau_{L,M}} \to \mathbb{I}(\tau_{L,M} < \infty).$$

Furthermore, we have

$$\mathbb{I}\left(\tau_{L,M} < \infty\right) \left(f(\lambda)\right)^{-\tau_{L,M}} \le 1$$

as $f(\lambda) > 1$ for any $\lambda > 0$. Thus, by apply DCT in (11), we have

$$\mathbb{P}(\tau_{L,M} < \infty) = \mathbb{E}(\mathbb{I}(\tau_{L,M} < \infty))$$
$$= \lim_{\lambda \downarrow 0} \mathbb{E}(\mathbb{I}(\tau_{L,M} < \infty)(f(\lambda))^{-\tau_{L,M}})$$
$$= \lim_{\lambda \downarrow 0} \exp(-\lambda a) = 1.$$

This proves that $\tau_{L,M} < \infty$ with probability 1.

The result in (11) yields more information. Indeed, we may calculate the probability generating function of $\tau_{L,M}$, in in turn provides more information.

Corollary 2: The probability generating function of $\tau_{L,M}$ is given by

$$\mathbb{E}\left(s^{\tau_{L,M}}\right) = \frac{1}{(2\sqrt{\alpha})^a} \left[\sqrt{\frac{1}{s} - 1 + 4\alpha} - \sqrt{\frac{1}{s} - 1}\right]^a \tag{12}$$

for $-1 < s \le 1$.

Proof: Since $\tau_{L,M} < \infty$ almost surely, we can rewrite equation (11), for all $\lambda > 0$

$$\mathbb{E}\left((f(\lambda))^{-\tau_{L,M}}\right) = \exp(-\lambda a).$$

This formula may be used to get the probability generating function of $\tau_{L,M}$. Letting $s = (f(\lambda))^{-1}$ for $\lambda > 0$ and solving λ in terms of s, we have

$$\mathbb{E}\left(s^{\tau_{L,M}}\right) = \exp(-\lambda a) = \frac{1}{(2\sqrt{\alpha})^a} \left[\sqrt{\frac{1}{s} - 1 + 4\alpha} - \sqrt{\frac{1}{s} - 1}\right]^a.$$

This proves the corollary.

This may be used to show that the expectation is infinite. Indeed, we have

$$\frac{d}{ds}\mathbb{E}\left(s^{\tau_{L,M}}\right) = \frac{a}{(2\sqrt{q})^a} \left[\sqrt{\frac{1}{s} - 1 + 4q} - \sqrt{\frac{1}{s} - 1}\right]^{a-1} \times \frac{1}{2s^2} \left[\frac{1}{\sqrt{\frac{1}{s} - 1}} - \frac{1}{\sqrt{\frac{1}{s} - 1 + 4q}}\right]$$

So, when $s \uparrow 1$, the right hand side diverges to ∞ . Thus, $\mathbb{E}(\tau_{L,M}) = \infty$. Similarly we can also prove that $\mathbb{E}(\tau_{M,R}) = \infty$. We may also obtain the tail behaviour of the stopping time.

3. Collision time of three random walks : simulation

Before we go into the theoretical derivation, we carry out some simulation studies. Here we use a cutoff, to stop the process the process if the the simulation has not resulted in a value. Our cutoff is 10000000 and we have simulated for 10000000 times. We have also taken different values of a and b where a and b are both even positive integers. We have carried out the simulation using 3 different values of p, which are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{5}{7}$ respectively.

For $p = \frac{1}{2}$, y_1 is the observed mean of the first collision time of three random walks after simulating it 10000000 times, For $p = \frac{1}{3}$, y_2 is the observed mean of the first collision time of three random walks after simulating it 10000000 times, For $p = \frac{5}{7}$, y_3 is the observed mean of the first collision time of three random walks after simulating it 10000000 times. Now we will look at the scatter plots of (ab,y_1) , (ab,y_2) and (ab,y_3) and also we will find and plot regression lines of y_1 on ab, y_2 on ab and y_3 on ab. Here $S_0^{(L)}$, $S_0^{(M)}$ and $S_0^{(R)}$ are -a, 0 and +b respectively.

Simulation output

Table 1: Simulation of expected collision times

-a	+b	y_1	y_2	y_3	ab
-2	2	3.9987	4.4956	4.8801	4
-2	4	7.9961	9.0174	9.7983	8
-2	6	12.0102	13.4858	14.6516	12
-2	8	15.9895	17.9811	19.6139	16
-2	10	20.0246	22.5134	24.4733	20
-2	12	24.0198	27.0171	29.3998	24
-2	14	28.0139	31.4881	34.3256	28
-2	16	31.9907	35.9944	39.2114	32
-2	18	35.9821	40.4913	44.0897	36

+bab-a y_1 y_2 y_3 20 40.0912 15.9931 48.9771 19.5812 44.9591 17.5619 40 -2 -4 4 16

Table 1: Simulation of expected collision times

-Z	20	40.0912	44.9591	48.9771	40
-4	4	15.9931	17.5619	19.5812	16
-4	6	23.9978	27.0127	29.3665	24
-4	8	31.9914	36.0223	39.1997	32
-4	10	40.0297	45.0136	49.0315	40
-4	12	47.9956	53.9889	58.7969	48
-4	14	55.9992	62.9156	68.5899	56
-4	16	63.9958	71.9929	78.3878	64
-4	18	72.0154	81.0147	88.2156	72
-4	20	80.0083	90.0396	97.9089	80
-6	6	35.9841	40.5069	44.0989	36
-6	8	47.9892	53.9574	58.7899	48
-6	10	59.9946	67.4998	73.5017	60
-6	12	71.9839	80.9758	88.1898	72
-6	14	84.0629	94.5195	102.8761	84
-6	16	95.9779	108.0251	117.6112	96
-6	18	108.0022	121.5245	132.2893	108
-6	20	119.9141	134.9596	146.9674	120
-8	8	63.9951	72.0212	78.3894	64
-8	10	79.9917	90.0018	97.9825	80
-8	12	95.9679	107.9786	117.5997	96
-8	14	112.0091	125.9925	137.2119	112
-8	16	127.9899	143.9512	156.7898	128
-8	18	143.9769	161.9213	176.2996	144
-8	20	160.0998	179.9621	196.0176	160
-10	10	100.0518	112.5185	122.4886	100
-10	12	119.9371	135.0121	147.0259	120
-10	14	139.9145	157.4852	171.4966	140
-10	16	159.9159	179.9597	195.9979	160
-10	18	180.0263	202.5096	220.3999	180
-10	20	199.9564	224.9917	244.9732	200
-12	12	143.9768	161.9129	176.3993	144
-12	14	168.0459	189.0432	205.7915	168
-12	16	192.0091	216.0278	235.2112	192
-12	18	215.9316	242.9841	264.5889	216
-12	20	239.9089	269.9124	294.0113	240
-14	14	195.9989	220.5398	240.1376	196
-14	16	223.9388	251.9492	274.2998	224
-14	18	251.9164	283.4919	308.6779	252
-14	20	279.9936	315.0154	342.9547	280
-16	16	255.9989	287.9754	313.6291	256
-16	18	287.9669	324.0478	352.7959	288
-16	20	319.9799	359.9954	391.9286	320

-a	+b	y_1	y_2	y_3	ab
-18	18	323.9193	364.3991	396.8777	324
-18	20	359.9899	404.9145	441.1223	360
-20	20	399.9918	449.7982	489.8979	400

 Table 1: Simulation of expected collision times

The scatter plots of the above data is very instructive as they clearly bring out the relation between ab and the expected time of the first collision time τ_c .

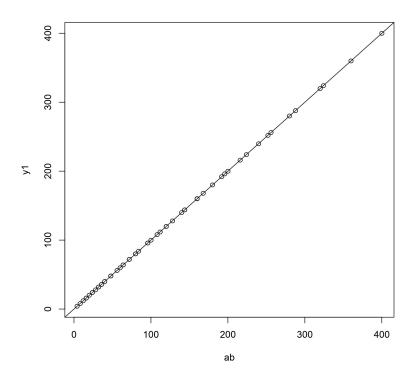


Figure 1: Scatter plot of (ab,y_1) and regression line of y_1 on ab

Statistics	Estimate	T statistics	P value
$Constant_1$	0.00727396818	0.8787564386	0.3835000647
$Slope_1$	0.9998608551	19192.1238453652	0
$Constant_2$	-0.0096277426	-0.6188423746	0.5386710900
$Slope_2$	1.1248997399	11488.2891168571	0
$Constant_3$	-0.0077084624	-0.9309990213	0.3560755895
$Slope_3$	1.2249623703	23506.6195548538	0

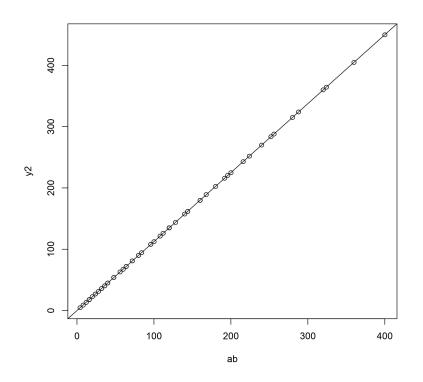


Figure 2: Scatter plot of (ab,y_2) and regression line of y_2 on ab

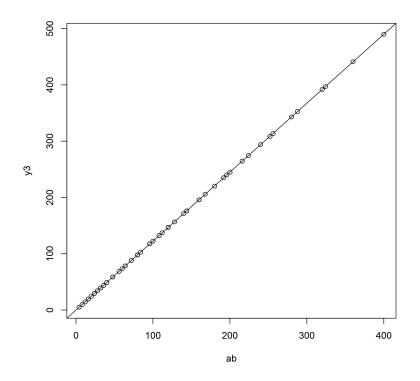


Figure 3: Scatter plot of (ab,y_3) and regression line of y_3 on ab

The regression lines on *ab* are for different values of *p*:

$$\widehat{y_1} = 0.00727396818 + 0.9998608551 \times ab$$

$$\widehat{y_2} = -0.0096277426 + 1.1248997399 \times ab$$

$$\widehat{y_3} = -0.0077084624 + 1.2249623703 \times ab.$$

The correlation coefficients are 0.9999999281, 0.99999997992, 0.9999999952 respectively. In each of the three cases the correlation coefficient is very close to +1, so here we can observe near perfect positive correlation.

The summary statistics of the above data, which from the above scatter plots is quite expected, clearly shows that there should be a linear relationship between the expected time and the product of the initial distances ab. In each of the three cases the estimate of the constant is very close to 0 and the estimate of the slope is very close to $(4p(1-p))^{-1}$. Also in each of the three cases the p-value of the intercept is greater than 0.05, so the intercept is not significant. From these observations we postulate that the expectation of τ_c should be $ab(4p(1-p))^{-1}$. In the next section we derive these theoretical results.

4. Theoretical results

We first note that we are working with random walks having steps size of ± 1 with the starting points are on even lattice. Therefore, these independent random walks do not cross each other before intersecting. So, we can write the first collision time of these three random walks τ_c as,

$$\tau_c = \min\{\tau_{L,M}, \tau_{M,R}\}.$$
(13)

As an immediate consequence of Theorem 1, we have

 $\tau_c < +\infty$ with probability 1.

Further from the above observation, it is easy to conclude that at τ_c either the pair of left random walk and the middle random walk collides or the pair of middle random walk and the right random walk collides. So, we can rephrase the definition of τ_c (see equation (2)) as follows:

$$\tau_{c} = \inf \left\{ n \ge 1 : (S_{n}^{(M)} - S_{n}^{(L)})(S_{n}^{(R)} - S_{n}^{(M)})(S_{n}^{(L)} - S_{n}^{(R)}) = 0 \right\}$$

$$= \inf \left\{ n \ge 1 : (S_{n}^{(M)} - S_{n}^{(L)})(S_{n}^{(R)} - S_{n}^{(M)}) = 0 \right\}$$

$$= \inf \left\{ n \ge 1 : X_{n}Y_{n} = 0 \right\}.$$
 (14)

We will use this identification to justify these results.

We will again use the martingale method. Let us define the filtration $\{\mathcal{F}_n : n \geq 0\}$, where .

$$\mathcal{F}_{n} = \sigma\left(I_{k}^{(L)}, I_{k}^{(M)}, I_{k}^{(R)} : k \le n\right) = \sigma\left(S_{k}^{(L)}, S_{k}^{(M)}, S_{k}^{(R)} : k \le n\right)$$

is the σ -algebra generated by the increment random variables of all the random walks. Also, this is same as the σ -algebra generated by the all the random walk up to time n. This is the natural filtration associated with all three random walks we are studying.

Proposition 2: The family $\{X_nY_n + 4np(1-p) : n \ge 0\}$ is an \mathcal{F}_n -martingale.

Proof: It is easy to see that random variable $X_n Y_n + 4np(1-p)$ is \mathcal{F}_n -adapted for any $n \ge 0$. Further, for any $n \ge 0$,

$$|X_n Y_n| \le (a+2n)(b+2n)$$

Thus, we have $\mathbb{E}\Big(|X_nY_n + 4np(1-p)|\Big) < \infty$ for all $n \ge 0$.

Now, we have

$$X_{n+1}Y_{n+1} + 4(n+1)p(1-p)$$

$$= \left(X_n + \left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\right) \left(Y_n + \left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right)\right) + 4(n+1)p(1-p)$$

$$= X_nY_n + X_n \left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right) + Y_n \left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)$$

$$+ \left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right) \left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right) + 4(n+1)p(1-p).$$

Thus, we have

$$(X_{n+1}Y_{n+1} + 4(n+1)p(1-p)) - (X_nY_n + 4np(1-p)) = X_n (I_{n+1}^{(R)} - I_{n+1}^{(M)}) + Y_n (I_{n+1}^{(M)} - I_{n+1}^{(L)}) + (I_{n+1}^{(M)} - I_{n+1}^{(L)}) (I_{n+1}^{(R)} - I_{n+1}^{(M)}) + 4p(1-p).$$

Note that X_n and Y_n are \mathcal{F}_n -measurable and the random variables $\left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right)$, $\left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)$ are independent of \mathcal{F}_n with expectation 0. Further, the random variables $I_{n+1}^{(L)}$, $I_{n+1}^{(M)}$ and $I_{n+1}^{(R)}$ are also independent of \mathcal{F}_n and are independent with expectation 2p-1 and variance 4p(1-p).

Now, we take conditional expectation with respect to \mathcal{F}_n . Observe that

- $\mathbb{E}\left[X_n\left(I_{n+1}^{(R)}-I_{n+1}^{(M)}\right) \mid \mathcal{F}_n\right] = X_n \mathbb{E}\left[\left(I_{n+1}^{(R)}-I_{n+1}^{(M)}\right) \mid \mathcal{F}_n\right] = X_n \mathbb{E}\left[\left(I_{n+1}^{(R)}-I_{n+1}^{(M)}\right)\right] = 0$ where we have used the fact that X_n is \mathcal{F}_n -measurable and the increments random variables are independent of \mathcal{F}_n .
- Similarly we have $\mathbb{E}\left[Y_n\left(I_{n+1}^{(M)}-I_{n+1}^{(L)}\right) \mid \mathcal{F}_n\right] = 0$.
- Finally, using the fact that the increments are independent of \mathcal{F}_n , we have

$$\begin{split} & \mathbb{E}\Big[\Big(I_{n+1}^{(M)} - I_{n+1}^{(L)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(M)}\Big) \mid \mathcal{F}_n\Big] \\ &= \mathbb{E}\Big[\Big(I_{n+1}^{(M)} - I_{n+1}^{(L)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(M)}\Big)\Big] \\ &= \mathbb{E}\Big[\Big((I_{n+1}^{(M)} - (2p-1)) - (I_{n+1}^{(L)} - (2p-1))\Big)\Big((I_{n+1}^{(R)} - (2p-1)) - (I_{n+1}^{(M)} - (2p-1))\Big)\Big] \\ &= -\mathbb{V}\mathrm{ar}\Big(I_{n+1}^{(M)}\Big) = -4p(1-p). \end{split}$$

Combing the above and the fact that $X_n Y_n$ is measurable with respect to \mathcal{F}_n , we now have

$$\mathbb{E}\Big(X_{n+1}Y_{n+1} + 4(n+1)p(1-p) \mid \mathcal{F}_n\Big) = X_nY_n + 4np(1-p).$$

This proves the proposition.

Next we proves another similar proposition.

Proposition 3: The family $\{X_n Y_n (X_n + Y_n) : n \ge 0\}$ is an \mathcal{F}_n -martingale.

Proof: The adaptedness of $X_n Y_n(X_n+Y_n)$ with respect \mathcal{F}_n is again straightforward. Further, it is also obvious that $|X_n Y_n(X_n+Y_n)| \le (a+2n)(b+2n)(a+b+4n)$ and hence $\mathbb{E}\Big(|X_n Y_n(X_n+Y_n)| \le (a+2n)(b+2n)(a+b+4n)$

 $|Y_n)|\Big) < \infty$ for any $n \ge 0$.

As in the earlier proposition, we have

$$\begin{split} X_{n+1}Y_{n+1}\left(X_{n+1}+Y_{n+1}\right) \\ &= \left(X_n + \left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\right)\left(Y_n + \left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right)\right)\left(X_n + Y_n + \left(I_{n+1}^{(R)} - I_{n+1}^{(L)}\right)\right) \\ &= X_nY_n\left(X_n + Y_n\right) + X_nY_n\left(I_{n+1}^{(R)} - I_{n+1}^{(L)}\right) + X_n\left(X_n + Y_n\right)\left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right) \\ &+ Y_n\left(X_n + Y_n\right)\left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right) + X_n\left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right)\left(I_{n+1}^{(R)} - I_{n+1}^{(L)}\right) \\ &+ Y_n\left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\left(I_{n+1}^{(R)} - I_{n+1}^{(L)}\right) + \left(X_n + Y_n\right)\left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right) \\ &\left(I_{n+1}^{(M)} - I_{n+1}^{(L)}\right)\left(I_{n+1}^{(R)} - I_{n+1}^{(M)}\right)\left(I_{n+1}^{(R)} - I_{n+1}^{(L)}\right). \end{split}$$

As in the previous proposition, we have X_n and Y_n are \mathcal{F}_n -measurable and the random variables $(I_{n+1}^{(R)} - I_{n+1}^{(M)}), (I_{n+1}^{(M)} - I_{n+1}^{(L)})$ and $(I_{n+1}^{(R)} - I_{n+1}^{(L)})$ are independent of \mathcal{F}_n with expectation 0. Thus, same arguments as above, apply to show that

•
$$\mathbb{E}\Big[X_nY_n\Big(I_{n+1}^{(R)}-I_{n+1}^{(L)}\Big) \mid \mathcal{F}_n\Big] = \mathbb{E}\Big[X_n(X_n+Y_n)\Big(I_{n+1}^{(R)}-I_{n+1}^{(M)}\Big) \mid \mathcal{F}_n\Big] = \Big[Y_n(X_n+Y_n)\Big(I_{n+1}^{(R)}-I_{n+1}^{(L)}\Big) \mid \mathcal{F}_n\Big] = 0.$$

• Same arguments as above, yield

$$(a) \quad \mathbb{E}\Big[X_n\Big(I_{n+1}^{(R)} - I_{n+1}^{(M)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(L)}\Big) \mid \mathcal{F}_n\Big] = X_n \mathbb{V}\mathrm{ar}\Big(I_{n+1}^{(R)}\Big) = 4p(1-p)X_n$$

$$(b) \quad \mathbb{E}\Big[Y_n\Big(I_{n+1}^{(M)} - I_{n+1}^{(L)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(L)}\Big) \mid \mathcal{F}_n\Big] = Y_n \mathbb{V}\mathrm{ar}\Big(I_{n+1}^{(L)}\Big) = 4p(1-p)Y_n$$

$$(c) \quad \mathbb{E}\Big[\Big(X_n + Y_n\Big)\Big(I_{n+1}^{(M)} - I_{n+1}^{(L)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(M)}\Big) \mid \mathcal{F}_n\Big] = -(X_n + Y_n)\mathbb{V}\mathrm{ar}\Big(I_{n+1}^{(M)}\Big)$$

$$= -4p(1-p)(X_n + Y_n).$$

• We also have

$$\begin{split} & \mathbb{E}\Big[\Big(I_{n+1}^{(M)} - I_{n+1}^{(L)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(M)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(L)}\Big) \mid \mathcal{F}_n\Big] \\ &= \mathbb{E}\Big[\Big(I_{n+1}^{(M)} - I_{n+1}^{(L)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(M)}\Big)\Big(I_{n+1}^{(R)} - I_{n+1}^{(L)}\Big)\Big] \\ &= \mathbb{E}\Big[\Big((I_{n+1}^{(M)} - (2p-1)) - (I_{n+1}^{(L)} - (2p-1))\Big)\Big)\Big((I_{n+1}^{(R)} - (2p-1)) - (I_{n+1}^{(M)} - (2p-1))\Big) \\ &\quad \times \Big((I_{n+1}^{(R)} - (2p-1)) - (I_{n+1}^{(L)} - (2p-1))\Big)\Big] = 0 \end{split}$$

by independence of the random variables and the fact that they have expectation 0.

Combining the above and the fact that $X_n Y_n (X_n + Y_n)$ is \mathcal{F}_n -measurable, we have

$$\mathbb{E}\Big(X_{n+1}Y_{n+1}\Big(X_{n+1}+Y_{n+1}\Big)\mid \mathcal{F}_n\Big)=X_nY_n\Big(X_n+Y_n\Big).$$

This completes the proof.

Now, we are in a position to state and prove our main result.

Theorem 2: We have

$$\mathbb{E}(\tau_c) = ab(4p(1-p))^{-1}.$$
(15)

Proof: We observe that, from equation (13), that

$$\{\tau_c = n\} = \{X_0 Y_0 > 0, X_1 Y_1 > 0, \dots, X_{n-1} Y_{n-1} > 0, X_n Y_n = 0\}$$

Clearly $\{\tau_c = n\} \in \mathcal{F}_n$, which implies that τ_c is also stopping time relative to $\{\mathcal{F}_n\}$.

By using Proposition 2, we get that, $\{X_{n \wedge \tau_c}Y_{n \wedge \tau_c} + 4p(1-p)(n \wedge \tau_c) : n \ge 0\}$ is a martingale and hence for any $n \ge 1$,

$$\mathbb{E}\left(X_{n\wedge\tau_c}Y_{n\wedge\tau_c} + 4p(1-p)\left(n\wedge\tau_c\right)\right)$$

= $\mathbb{E}\left(X_{0\wedge\tau_c}Y_{0\wedge\tau_c} + 4p(1-p)\left(0\wedge\tau_c\right)\right)$
= $\mathbb{E}\left(X_0Y_0\right) = ab$ (16)

since $\tau_c \geq 0$.

Now, we will take limit in equation (16) as $n \to \infty$. Since $\tau_c < \infty$ almost surely, $n \wedge \tau_c \uparrow \tau_c$ as $n \to \infty$. By MCT, we obtain

$$\mathbb{E}(n \wedge \tau_c) \to \mathbb{E}(\tau_c)$$

as $n \to \infty$.

To complete the proof we show that $\mathbb{E}(X_{n\wedge\tau_c}Y_{n\wedge\tau_c})\to 0$ as $n\to\infty$. Since $\tau_c<\infty$ almost surely, we have that

$$X_{n\wedge\tau_c}Y_{n\wedge\tau_c} \to X_{\tau_c}Y_{\tau_c} = 0 \tag{17}$$

as $n \to \infty$.

In order to show that the expected value also converges to 0, we will use Theorem 26.13 of Billingsley (1986). For this we require to show that the sequence of random variable $\{X_{n\wedge\tau_c}Y_{n\wedge\tau_c}: n \geq 0\}$ is an uniformly integrable family. A sufficient condition for a family of random variables to be uniformly integrable (see Billingsley (1986)) is given by

$$\sup_{n\geq 0} \mathbb{E}\left[\left(X_{n\wedge\tau_c}Y_{n\wedge\tau_c}\right)^{1+\epsilon}\right] < \infty$$

for some $\epsilon > 0$.

By using Proposition 3, we get that $\{X_{n\wedge\tau_c}Y_{n\wedge\tau_c}(X_{n\wedge\tau_c}+Y_{n\wedge\tau_c}):n\geq 0\}$ is also a martingale. Hence, for any $n\geq 1$,

$$\mathbb{E}\Big[X_{n\wedge\tau_c}Y_{n\wedge\tau_c}\Big(X_{n\wedge\tau_c}+Y_{n\wedge\tau_c}\Big)\Big]$$

= $\mathbb{E}\Big[X_{0\wedge\tau_c}Y_{0\wedge\tau_c}\Big(X_{0\wedge\tau_c}+Y_{0\wedge\tau_c}\Big)\Big]$
= $\mathbb{E}\Big[X_0Y_0\Big(X_0+Y_0\Big)\Big]$
= $ab(a+b).$

For non-negative $u, v \ge 0$, using AM-GM inequality, we have $(uv)^{3/2} \le \frac{1}{2}uv(u+v)$. Since $X_{n\wedge\tau_c}$ and $Y_{n\wedge\tau_c}$ are both non negative, we have, for any $n\ge 0$

$$\mathbb{E}\Big[\Big(X_{n\wedge\tau_c}Y_{n\wedge\tau_c}\Big)^{3/2}\Big] \le \frac{1}{2}\mathbb{E}\Big[X_{n\wedge\tau_c}Y_{n\wedge\tau_c}\Big(X_{n\wedge\tau_c}+Y_{n\wedge\tau_c}\Big)\Big] = \frac{1}{2}ab(a+b).$$

Therefore,

$$\sup_{n\geq 0} \mathbb{E}\left[\left(X_{n\wedge\tau_c}Y_{n\wedge\tau_c}\right)^{1+1/2}\right] \leq \frac{1}{2}ab(a+b) < \infty.$$

Hence, we conclude that $\{X_{n \wedge \tau_c} Y_{n \wedge \tau_c} : n \ge 0\}$ is an uniformly integrable family. Therefore, we have

$$\mathbb{E}\Big(X_{n\wedge\tau_c}Y_{n\wedge\tau_c}\Big)\to 0 \text{ as } n\to\infty.$$

This completes the proof of the Theorem.

Acknowledgements

Most of the work was completed when Arighna Dey was pursuing the M. Stat. degree from the Indian Statistical Institute and he wishes to the thank ISI for this opportunity. Kumarjit Saha wishes to thank the Ashoka University for the support. Anish Sarkar wishes to the Indian Statistical Institute for support and also the organizers of the conference for giving the an opportunity to present the work.

References

Billingsley, P. (1986). Probability and Measure. John Wiley and Sons.

Coupier, D., Saha, K., Sarkar, A., and Tran, V. C. (2020). Collision times of random walks and applications to the Brownian web. Genealogies of interacting particle systems, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, World Scientific ISBN - 978-981-120-608-5.

Spitzer, F. (1964). Principles of Random Walk. Van Nostrand.

Williams, D. (1991). Probability with Martingales. Cambridge University Press.

ANNEXURE

R code for simulation

```
Increment <-- function (uniform, p)
ł
    # uniform := uniform variable
   \# p := probability of increment of +1,
    \# output := the increment with probability distribution
    if (uniform \leq p)
    ł
        return (1)
    return (-1)
}
FindCollision <--function (
    startright,
    startmid,
    startleft,
    р,
    cutoff)
{
    # startright := starting position of right random walk
    # startmid := starting position of mid random walk
   # startleft := starting position of left random walk
   \# cutoff := the max length of random walk to be considered
   # output := First Collision time of 3 random walks
    # initialize starting positions
    rightpos = startright
```

```
midpos = startmid
    leftpos = startleft
    # set time for collision to cutoff + 1
    time = cutoff+1
    \# run the loop until cutoff time
    for (i in 1:cutoff)
    {
        # Get three uniforms
        uniforms = runif(3)
        # update the random walk positions
        rightpos = rightpos + Increment(uniforms[1], p)
        midpos = midpos + Increment(uniforms[2], p)
        leftpos = leftpos + Increment(uniforms[3], p)
        # Check for collision
        if ((rightpos - midpos)*(midpos-leftpos) == 0)
        {
            # Collision has happened
            \# set time to this collision time
            time = i
            \# stop the simulation
            break
        }
    }
    \# return the time
    return (time)
}
RW<-function (
    startright,
    startmid,
    startleft,
    р,
    cutoff,
    num)
{
    # output := mean of First Collision times of num repeatation
    W = rep (0, num)
    \# run loop for repeatations of times
    for (i in 1:num)
```