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Abstract 

The analysis of studies using large medical databases has gained popularity due to their 

ability to provide extensive and diverse samples. However, in the currently published literature, 

the selection of samples in such studies often relies on inclusion criteria based solely on the 

study's objectives, rather than utilizing formal sample size calculation techniques. Also, 

inferences are predominantly drawn based on p-values, which tend to be highly significant due 

to large samples but may lack clinical relevance. In this article, we explore the issue of 

statistically significant p-values but with limited clinical relevance when analyzing large 

databases. We propose the incorporation of effect sizes, a concept well-established in the 

literature, to supplement p-values in assessing the practical significance of research findings. 

To address the unique challenges of analyzing large samples using logistic regression, we 

present a novel effect size measure specifically tailored for this context. Moreover, we 

introduce conventions for interpreting effect sizes when analyzing large databases, thus 

providing researchers with a standardized approach for evaluating the magnitude of the 

observed associations. To validate the proposed effect size measure, we employ state-of-the-

art machine learning techniques on the same datasets and demonstrate its robustness and utility 

in large-scale medical studies. To illustrate the statistical challenges and the application of our 

novel effect size measure, we present a compelling case study utilizing breast cancer data from 

the National Cancer Database (NCDB). Our findings shed light on the potential pitfalls of 

relying solely on p-values in large database studies and highlight the significance of 

incorporating effect sizes to better understand the clinical implications of research results. By 

emphasizing the importance of effect sizes in addition to p-values, this study aims to improve 

the accuracy and clinical relevance of statistical analyses for large medical databases. 

Implementing our suggested approach can lead to more informative and meaningful insights, 

thereby contributing to the advancement of evidence-based medicine and patient care. 
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 1.   Introduction 

Most traditional statistical analysis methods, such as linear regression, t-test, ANOVA, 

etc., require the assumption of normality and randomized study sample selection. While 

conducting clinical research to test the safety and efficacy of new drugs, randomization is an 

essential component as well. Such studies require careful selection of a representative sample 

which is achieved using formal randomization techniques.  

A relatively new branch of study, often referred as Real-World Data (RWD) and Real 

World Evidence (RWE), involves analyzing databases maintained by various government and 

private institutions to discover new insights related to public health which were previously 

underutilized, Breckenridge et al. (2019). Since data collection is lengthy and expensive, 

readily available databases provide an excellent alternative to conducting research and help 

save time, cost, and resources and complement evidence obtained from randomized clinical 

studies. However, large databases (which may also be referred as ‘big data’) are repositories of 

majority of the actual observed cases; hence, these are not randomized. Being extremely large, 

normality assumption is unrealistic and often unmet for most of these databases. Hence, using 

traditional parametric tests for such databases tend to produce highly significant results which 

may have no clinical relevance. The traditional statistical tests run using these large databases 

tend to produce highly significant p-values and inferences based on p-values alone and could 

lead to misleading or incorrect conclusions. Several articles such as Sullivan and Feinn (2012) 

and Solla et al. (2018) explore the alternative of using effect sizes and provide criticism for the 

use of p-values alone talk about the use of effect sizes and confidence intervals in addition to 

using p-values. They note highly significant p-values with small effect sizes may be clinically 

irrelevant as suggested by Ranstam et al. (2012) that confidence interval is a better alternative 

to using p-values.  

Cohen (1988) and Cohen (1992) introduced the concept of effect sizes and defined it 

as the discrepancy between the null and the alternative hypotheses. He suggested formulae for 

effect sizes using normally distributed outcomes as well as proportions which were respectively 

popularized as Cohen’s d and Cohen’s h. A strength of the effect size measure is that it does 

not directly depend on the sample size and hence, is unaffected by large sample sizes. 

Consequently, for big data analysis involving large databases, effect size could be a better 

inferential measure than the traditional p-values. However, in the case of a logistic regression 

in which we are comparing effects of two treatments within two different categories of a 

variable, the Cohen’s h effect size cannot be used in the present form. 

In this paper, we argue that p-values alone can provide misleading results for extremely 

large sample sizes since p-value calculations depend on sample size. We compare the p-values 

obtained from an overall test and those obtained from individual tests as well as Bonferroni 

adjusted p-values. As an alternative to using p-values, we propose a modification/extension of 

Cohen’s h effect size estimator for logistic regression. We validate our results obtained using 

the new Cohen’s h measure using machine learning techniques such as Association Rule 

Mining (ARM) and Naïve Bayes classifier.  

The organization of the paper is described as follows. In Section 2, we introduce 

statistical formulation of the issue of obtaining highly significant p-values for large sample 

sizes. We formally introduce the concept of alpha adjustment for multiple comparisons and 

introduce the theory of Bonferroni method of multiplicity adjustment. Furthermore, we 
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introduce the theory of logistic regression, and we introduce the concept of effect size and 

explore the theory of different effect size measures. Lastly, we provide the theory for ARM 

and Naïve Bayes classifier. In Section 3, we describe our proposed modification/extension of 

Cohen’s h measure which can be applied to logistic regression analysis. In Section 4, we 

describe different statistical issues in the analysis of large databases using National Cancer 

Database (NCDB) as an example and present a literature review of articles published using 

NCDB. In Section 5, we present a case study using breast cancer data from NCDB to 

demonstrate the central issue of p-values addressed in this paper and how our proposed 

modified Cohen’s h effect size will lead to ‘meaningful statistical significance’ as opposed to 

clinically irrelevant statistical significance. We provide a strong support for our arguments by 

using ARM and Naïve Bayes classifier methods.  

2.  Statistical methods 

2.1. Wald test 

When analyzing data using statistical tests, p-values are often used to draw inferences. 

We will illustrate the effect of large sample size on p-values using the Wald test as established 

by Wald (1974). The traditional t-test statistic, binomial test statistic, Poisson test statistic etc. 

are special cases of the Wald test statistic. We will illustrate the dependence of the test statistic 

on the sample size using the simple case of Wald test for Bernoulli random variable. In the case 

of Bernoulli test as described by Klotz (1973), we observe independent binary responses, and 

we wish to draw inferences about the probability of an event in the population. 

Suppose we sample n individuals from a pre-specified population and the probability 

of occurrence of an event in this population is the same for an individual, say, p. 

 

Let Yi denote the occurrence of an event for each individual i. Here, we define Yi = 1 if 

an event occurs and Yi = 0, otherwise. Thus, the observed data would be given by Y1, Y2, …, 

Yn. 

 

The maximum likelihood estimate (MLE) of p is given by  

 

�̂� =
∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
       (1) 

 

Now, suppose we are testing the hypothesis 𝐻0: 𝑝 =  𝑝0 vs. 𝐻1: 𝑝 ≠  𝑝0. 

The Wald test statistic (W) is given by a difference in the MLE estimate of p and the 

hypothesized value, normalized by the MLE estimate of the standard deviation. 
 

Thus, we have  

𝑊 =  
(𝑝−𝑝0)2

𝑝(1−𝑝) 𝑛⁄
      (2) 

 

This test can be extended for the case of logistic regression to test the significance of 

regression coefficients. 

For 𝐸(𝑌𝑖) =  𝜋𝑖, we have 
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𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =  𝛽0 +  𝛽0𝑥𝑖1 + ⋯ +  𝛽𝑝𝑥𝑖𝑝 =  𝑥𝑖
′𝛽, where 𝑥𝑖 = (1, 𝑥𝑖1, … , 𝑥𝑖𝑝)

′
 and 𝛽 =

(𝛽0, 𝛽1, … , 𝛽𝑝)
′
. 

To test a single 𝛽 coefficient value, the Wald test statistic will be given by 

𝑍 =
�̂�𝑗−𝛽𝑗0

𝑠�̂�(�̂�)
 ~ 𝑁(0, 1)      (3) 

where 𝑠�̂�(�̂�) is calculated by taking the inverse of the estimated information matrix. 

From equation (2), we observe that W statistic depends on the sample size, n. Note as n 

becomes large in equation (2), i.e., as 𝑛 → ∞, 𝑊 → ∞. Similarly, for the case of logistic 

regression, using equation (3), as 𝑛 → ∞, 𝑍 → ∞. 

 

The p-value may be defined as the probability of observing a test statistic as extreme as 

the one observed if the null hypothesis were true. Alternatively, p-value is the observed risk of 

rejecting H0. For the Wald test, we have p-value, 𝑝′ = 𝑃(|𝑍| > |𝑇𝑜𝑏𝑠|), where Tobs is the 

observed value of the test statistic. 

Thus, using (3) and definition of 𝑝′, as 𝑍 → ∞, 𝑝′ → 0. 

As described above, increasing the sample size leads to a significant increase in the 

value of test statistics, resulting in a very low p-value. This is considered highly significant in 

statistical terms. However, it's important to note that simply increasing the sample size does 

not guarantee clinical relevance. In fact, using an infinitely large sample can lead to significant 

results even if there is no real clinical difference, as is often the case with studies that use large 

databases. Therefore, it is important to reconsider the use of p-values when analyzing large 

databases to ensure that clinical relevance is accurately assessed. Thus, p-values alone cannot 

provide reliable results when sample size becomes extremely large. In addition to the use of 

the Wald test statistic, multiple comparisons and multiplicity adjustment are discussed in the 

next section.  

2.2.      Multiple comparisons and multiplicity adjustment 

In exploratory analyses on large datasets, many hypotheses are evaluated. Sometimes 

when an experiment is conducted to answer a research question, multiple hypotheses may need 

to be tested, thereby requiring multiple comparisons to be performed. If all comparisons are 

simultaneously performed with an error rate of 0.05, the actual error rate gets inflated to a 

quantity equal to 0.05 times the number of hypothesis tests. This would reduce the reliability 

of the results and hence, we require an appropriate statistical inferential procedure to handle 

such a situation. Therefore, multiple comparison adjustments have been suggested in the 

literature which help in maintaining the allowable error rate at 5%. Consider a family of k 

independent null hypotheses being tested at level 𝛼. In this case, the family wise error rate 

(FWER) described by Ranstam et al. (2012) would be 1-(1- 𝛼)k. Some commonly used 

multiplicity adjustment techniques are Bonferroni test, Tukey test, and Scheffé test as shown 

by Lee and Lee (2018). The Bonferroni method offers a higher level of rigor compared to the 

Tukey test, which is more permissive toward Type I errors. It also provides more leniency 

compared to the highly conservative Scheffé's method as indicated by Lee and Lee (2018). For 

a detailed description of the Bonferroni method and its application in this study, please refer to 

the next section. 
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2.2.1.  Bonferroni test 

When working with a family of hypotheses and their corresponding p-values, the 

Bonferroni correction can be used to control the FWER. The FWER is the probability of 

incorrectly rejecting at least one true null hypothesis(𝐻𝑖). The Bonferroni correction involves 

rejecting the null hypothesis for each p-value that is less than or equal to alpha divided by the 

total number of hypotheses as described by Lee and Lee (2018). This approach effectively 

controls the FWER at a level of 𝛼. Boole's inequality as shown by Khrennikov (2008) provides 

proof that this control is achieved as follows:  

𝐹𝑊𝐸𝑅 =  𝛲 {⋃ (𝑝𝑖 ≤
𝛼

𝑚
)

𝑚0
𝑖=1 } ≤ ∑ {𝑃 (𝑝𝑖 ≤

𝛼

𝑚
)} = 𝑚0

𝛼

𝑚
≤ 𝛼

𝑚0
𝑖=1    (3) 

where m = total number of null hypotheses, 𝐻1, … . , 𝐻𝑚 are a family of hypotheses and 

𝑝1, … . , 𝑝𝑚 are corresponding p-values. 

This control method is very versatile and flexible, though conservative, as it doesn’t 

rely on any assumptions about the relationships between p-values or how many of the null 

hypotheses are actually true.  

2.3. Logistic regression 

There are different types of logistic regression, including simple, ordinal, and multiple 

versions of logistic and ordinal regression as described by McNulty (2021). Simple logistic 

regression is used when the outcome variable is binary, while ordinal regression is used when 

the outcome variable has multiple ordered categories. Multiple versions of logistic and ordinal 

regression are used depending on the complexity of the data and research question. When 

researchers conduct multiple statistical tests within these regression models, they may 

encounter multiple comparisons, which can lead to false positives. A logistic regression model, 

also known as the logit model, estimates the probability of occurrence of an event, such as 

treatment was beneficial or not, based on certain set of independent variables as described by 

McNulty (2021). In logistic regression, a logit transformation is performed on the odds, i.e., 

the probability of success divided by the probability of failure. The logistic function is written 

as follows 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) =  
1

1+𝑒−𝑝𝑖
 .     (4) 

The logistic regression model is written as follows. 

𝑙𝑛 (
𝑝𝑖

1−𝑝𝑖
) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘    (5) 

Here, 𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) = ln (
𝑝𝑖

1−𝑝𝑖
) is the dependent variable and 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘)𝑇 is the 

vector of independent variables. Generally, the maximum likelihood estimation (MLE) method 

is used to estimate the beta coefficients of the logistic model. 

2.4. Effect size 

Effect sizes represent quantitative measures of the relationships between variables. 

While the term "effect size" has historically been associated with various specific measures, it 

is now commonly used to denote any index indicating the relationship between variables. 
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Effect sizes serve as a means to convey the magnitude of the relationship observed between 

variables in a scientific study performed by Hedges et al. (2008). Effect size helps in 

quantifying the difference between the comparison groups as described by Grissom and Kim 

(2005). It gives an idea about the actual difference between groups and does not directly depend 

on the sample size. We describe some of the common effect size measures in the following 

subsections. 

2.4.1. Cohen’s d 

The effect size using Cohen’s d presented by Cohen (1988) and Cohen (1992) is 

calculated as follows: 

𝑑 =  
𝜇1−𝜇2

𝑠
       (6) 

Here, 𝜇1and 𝜇2 are the means of the two comparison groups and s is the pooled standard 

deviation. Cohen’s d is used for continuous outcomes and follows a general convention that d 

= 0.2 implies small effect, d = 0.5 implies medium effect and d = 0.8 implies large effect. 

2.4.2. Glass’s ∆ 

The effect size using Glass’s ∆ presented by Rosenthal et al. (1994) is calculated as 

follows. 

∆ =  
𝜇1−𝜇2

𝑠𝑐
      (7) 

Here, 𝜇1and 𝜇2 are the means of the two comparison groups and sc is the standard 

deviation of the control group. The same convention is followed for Glass’s ∆ effect size 

estimates as that for Cohen’s d described above with respect to interpretation based on cutoff 

values. 

2.4.3. Cohen’s h 

In case of categorical outcomes, Cohen’s d, or Glass’s ∆ cannot be used. In such cases, 

difference between proportions is tested instead of means presented by Cohen (1988) and 

Rosenthal et al. (1994).  

Suppose p1 and p2 represent two proportions. Cohen’s h effect size measure is 

represented by 

ℎ =  𝜑1 −  𝜑2       (8)  

where 𝜑𝑖 = 2 arcsin(√𝑝𝑖)      (9). 

The same convention is followed for Cohen’s h effect size estimates as that for Cohen’s 

d described above with respect to interpretation based on cutoff values as shown by Cohen 

(1988), Cohen (1992), Hedges et al. (2008) and Grissom and Kim (2005). 
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2.4.4. Odds ratio (OR) 

OR is used to assess degree of association between binary outcomes and is interpreted 

as follows as reported by Chinn (2000). OR = 1.5 indicates weak association, OR = 2 indicates 

medium association and OR = 3 indicates strong association. 

Consider the following 2x2 table.  

Table 1: 2×2 Contingency table 

 Event 

Exposure Yes No 

Yes a b 

No c d 

Odds ratio (𝑂𝑅) =  
𝑜𝑑𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑜𝑑𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛−𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑔𝑟𝑜𝑢𝑝
    (10) 

𝑂𝑅 =  
𝑎

𝑏
𝑐

𝑑

=  
𝑎𝑑

𝑏𝑐
      (11) 

2.5. Machine learning techniques 

Multiple Linear Regression (MLR) is a powerful statistical technique commonly used 

in large data set analyses. MLR aims to model the relationship between a dependent variable 

and multiple independent variables by estimating the best-fitting regression equation as 

described by Ayyadevara (2018). In scenarios where data sets are large and complex, MLR 

serves as a valuable tool to identify and quantify the effects of multiple predictors on the 

outcome of interest. By incorporating multiple independent variables simultaneously, MLR 

allows researchers to understand the collective influence of various factors on the dependent 

variable, enabling them to uncover complex patterns and associations within the data. Although 

there are multiple MLR models, the choice of MLR model depends on the nature of the data, 

the research question, and the assumptions underlying the analysis as described by Ayyadevara 

(2018). In this work, we use ARM and the Naïve Bayes Classifier within Multiple Linear 

Regression (MLR) to provide valuable insights and enhance the interpretability and statistical 

analysis of big datasets. 

2.5.1. Association rule mining (ARM) 

To discover interesting relations between variables in large databases, ARM can be 

used as denoted by Ayyadevara (2018). ARM is a rule-based machine learning approach. The 

main concept in ARM is to discover rules that govern how certain sets of variables relate to 

each other. To find the degree of these relations, different measures such as lift (L), support (S) 

and confidence (C) can be used as described below. 

In order to distinguish a trivial rule from a non-trivial rule, a measure used in ARM 

called the lift (L) can be calculated as follows as denoted by Geurts et al. (2003). 

L = 
𝑠(𝑋 ⇒ 𝑌)

𝑠(𝑋)∙𝑠(𝑌)
      (12) 

X is known as the antecedent of the rule and Y is known as the consequent. The 

numerator s(X⇒Y) measures the observed frequency of the items in X and Y occurring together 
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and the denominator s(X) • s(Y) measures the expected frequency of the items in X and Y 

occurring together under the assumption of conditional independence as denoted by Geurts et 

al. (2003). 

If L has a value greater than 1, we conclude that there is positive interdependence 

between X and Y. If the value of L is less than 1, we conclude that there is negative 

interdependence between X and Y. Lastly, if L = 1, X and Y are said to be conditionally 

independent. The greater the value of lift L, the stronger is the dependence between X and Y. 

Two other important parameters for the ARM are the support (S) and confidence (C) of 

a rule by means of which the algorithm to produce a set of rules describing the underlying 

patterns in the data. Support of a rule indicates the frequency with which a rule occurs in a 

dataset and confidence measures the reliability of an association rule as indicated by Geurts et 

al. (2003). Suppose we are studying the association of different predictor variables with 

different surgery types for breast cancer. 

Table 2: Interpretation of lift values 

Outcome Interpretation of lift (L) 

L < 1 Negative interdependence between X and Y 

L = 1 Conditional independence between X and Y 

L > 1 Positive interdependence between X and Y 

Then,  

S {X} = 
number of patients receiving surgery type X

total number of patients
 for a rule {X ⇒ Y}  (13) 

C {X ≥ Y} = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑠𝑢𝑟𝑔𝑒𝑟𝑦 𝑡𝑦𝑝𝑒 𝑋 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑌

total number of patients receiving surgery type X
 (14) 

2.5.2. Naïve Bayes classifier 

Naïve Bayes classifier is a machine learning algorithm based on Bayes’ theorem that 

follows a probabilistic approach for solving classification problems. In real-world scenarios, 

variables have some correlations and are not entirely independent. However, the algorithm is 

called ‘Naïve’ Bayes classifier because it assumes independence between predictor variables 

as described by Zhang (2016) and Ayyadevara (2018). 

The equation for Bayes’ theorem is given as 

P(A | B) = 
𝑃(𝐵 | 𝐴)∗ 𝑃 (𝐴)

𝑃(𝐵)
     (15) 

Here, P(A | B): Conditional probability of an event A, given the event B, 

P(A): Probability of event A 

P(B): Probability of event B 

P(B|A): Conditional probability of an event B, given the event A 

The equation (15) represents a case with a single predictor. However, in real-world 

scenarios, there are more than one predictor variables and for a classification problem, there 

are multiple output classes. Let us represent these classes as C1, C2, …, Ck and the predictor 

variables as x1, x2, …, xn. 
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The objective of a Naïve Bayes algorithm is to estimate the conditional probability that 

an event with a feature vector x1, x2, …, xn belongs to a particular class Ci. 

Given these conditions, the equation for Naïve Bayes’ classifier can be written as 

follows. 

P(Ci | x1, x2, …, xn) ∝ (∏ 𝑃(𝑥𝑗  | 𝐶𝑖)
𝑛
𝑗=1 ) ∙ 𝑃(𝐶𝑖) for 1 < i < k   (16) 

Two statistical measures, namely, misclassification and accuracy, can be calculated for 

the Naïve Bayes classifier, based on which the model performance can be evaluated. 

Misclassification is the percentage of times a classifier incorrectly classifies an item into a class 

or category. Accuracy is the percentage of times a classifier correctly classifies an item into a 

class or category. 

Other classification techniques include the Random Forest method that combines 

multiple decision trees to improve accuracy and reduce overfitting as explained by Ayyadevara 

2018. The Neural Networks classification approach uses deep learning models with multiple 

layers of interconnected nodes that could be used for complex classification tasks. Another 

classification technique is the K-Nearest Neighbors (KNN), a non-parametric method that 

assigns class labels based on the majority class of the k-nearest data points. While other 

classification methods like Random Forest, Neural Networks, and K-Nearest Neighbors also 

offer their respective advantages, we have chosen the Naïve Bayes Classifier for this study as 

shown by Zhang (2016) and Ayyadevara (2018). The decision to use this method is based on 

factors such as interpretability, computational efficiency, and the specific characteristics of the 

NCDB dataset and the research question. 

3.  Modification/Extension of Cohen’s h for logistic regression 

Consider the following notations for effect size calculation.  

Table 3: Variables and notations for effect size calculations 

  Outcome variable 

Variable 1 Total Category 1 Category 2 … Category n’ 

Category 1 n1 n11 n12  n1n’ 

Category 2 n2 n21 n22  n2n’ 

…      

Category n nn nn1 nn2  nnn’ 

Notations 

- nij: Number of patients in category i of variable 1 and category j of variable 2; i = 1, 2, 

…, n; j = 1, 2, …, n’.  

- ni: Total number of patients in ith category of variable 1.  

- pij: Prevalence for category i of variable 1 and category j of variable 2. We calculate pij 

as  

pij  = nij/ni 

Cohen’s h effect size for the ith category will be given by 

ℎ𝑖 =  𝜑𝑖1 −  𝜑𝑖2; i = 1, 2     (17) 

𝜑𝑖𝑗 = 2 𝑙𝑜𝑔𝑖𝑡(√𝑝𝑖𝑗); i = 1, 2; j = 1, 2   (18) 
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These are defined for comparing two categories within two variables. 

Here, instead of the traditional arcsin transformation used for Cohen’s h shown by 

Catarino et al. (2011), we use logit transformation described  by Collins et al. (1992). A logit 

transformation is more appropriate in the case of logistic regression. 

For our case we will calculate h1 and h2 corresponding to the two groups that we are 

comparing using equation (17). Then the effect size h is given by 

ℎ = ℎ1 − ℎ2     (19) 

Here, we are comparing the effect sizes for one category of predictor variable with 

another category of predictor variable based on different categories of outcome variable. Since 

we are comparing the two categories of a predictor variable, a difference of differences is 

proposed. This difference, h defined using equations (17), (18) and (19) is the novel effect size 

measure which would help in determining the meaningfully significant differences. 

The convention used for the interpretation of the effect sizes is described in the table 

below. For large sample sizes such as the NCDB database, effects show up quickly due to the 

large sample. Hence, the convention that we have suggested considers an effect of 

approximately 93% as a small effect, 99.3% as medium effect and 99.9% as large effect. We 

suggest using this convention owing to the large sample size and using the guidelines suggested 

by Cohen for determining small, medium and large effect sizes as detailed by Cohen (1988) 

and Cohen (1992).   

Thus, in the case of modified Cohen’s h – 1.5: small effect, 2.5: medium effect, 3: large 

effect (Table 4). 

In this paper, using a case study from the National Cancer Database (NCDB), we have 

presented how the proposed novel effect size measure above can be utilized to help in obtaining 

meaningfully significant results. In addition, we have also validated the novel effect size 

measure using machine learning techniques. 

Table 4: Convention for modified Cohen’s h 

 

Relative size Effect size Difference between the 

comparison groups 

 0.0 50% 

Small 1.5 93.3% 

Medium 2.5 99.3% 

Large 3 99.9% 

 5.5 100% 

The next section describes a brief literature review which is followed by the case study 

which demonstrates the statistical issues in the analysis of large databases, particularly 

expanding on p-values, and illustrates the use of the novel effect size measure. 

4.  Literature review 

In this section, we provide a short literature review that comprises of 15 research articles 

that were carefully selected using the flowchart presented in Figure 1. Our main objective was 
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to gain insights into the prevailing statistical issues surrounding sample selection, missing data 

imputation techniques, commonly used statistical methods and inference measures used. Our 

search revealed that a total of 3,331 articles were published between 2004 and 2014 using the 

NCDB, out of which 257 were focused on female breast cancer. To maintain uniformity, since 

the case study presented in this paper is focused on the association of surgery types with 

different demographic predictor variables, we only included articles that dealt with 

'mastectomy' and 'lumpectomy' surgeries. This led us to 22 articles, and after removing 

duplicates, we were left with 15 articles that were used for our literature review. 

4.1. Article search protocol 

In the current article, we have presented a case study to examine association of surgery 

types with different demographic predictor variables to demonstrate statistical issues while 

analyzing large databases using NCDB as an example. The three surgery types for this study 

included from the NCDB were ‘lumpectomy’, ‘mastectomy without reconstruction’ and 

‘mastectomy with reconstruction’. Hence, we designed the literature to identify and 

demonstrate statistical issues in the analysis of large medical databases. We identified articles 

published using female breast cancer data from NCDB and we performed keyword search using 

PubMed, MEDLINE (Web of Science), and Embase databases. We used the following 

keywords to search relevant articles: ‘NCDB’, ‘National Cancer Database’, ‘Breast Cancer’, 

‘surgery’, ‘mastectomy’, ‘lumpectomy’, and ‘female’ and narrowed down to 15 articles that 

were most relevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation for selection of articles 

4.2.  Literature review results 

Table 5 presents an overview of the research articles with respect to important statistical 

considerations. 

 

Peer-reviewed Research Articles Published using NCDB (n = 3,331) 

Peer-reviewed Research Articles Published using NCDB on Female 

Breast Cancer (n = 257) 

Peer-reviewed Research Articles Published using NCDB on Female 

Breast Cancer related to surgeries including ‘mastectomy’ and 

‘lumpectomy’ (n = 22) 

Final number of articles included after deleting the articles that 

overlap within databases (n = 15) 
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Table 5: General overview of research articles 

Article  

reference (Year) 
 

Details of the article 

Hotsinpiller et al. 

(2021) 

Objective 

Describe rates and predictors of positive 

margins for invasive breast cancers in the 

NCDB 

Sample Size 707,798 

Missing/Imputation None 

Statistical Methods 
Two-sided t-test; Chi-square test; 

Multivariable logistic regression 

Inference Measures Odds ratios with 95% CI; p-values 

Wrubel et al. 

(2021) 

Objective 
Compare BCT with mastectomy for treatment 

of early-stage breast cancer 

Sample Size 202,236 

Missing/Imputation None 

Statistical Methods 
Chi-square test; Kaplan-Meier analysis; Log-

rank test 

Inference Measures 
Kaplan-Meier survival curves; Overall survival 

(%); p-values 

Weiser et al. 

(2021) 

Objective 

Identify sub-groups of node-positive patients 

with low to intermediate RS who still benefit 

from adjuvant chemotherapy 

Sample Size 28,591 

Missing/Imputation None 

Statistical Methods 

t-test; Chi-square test; Multivariable logistic 

regression; Kaplan-Meier method; Log-rank 

test; Multivariable Cox proportional hazards 

model 

Inference Measures 

Hazard ratios with 95% CI; Odds ratios with 

95% CI; Kaplan-Meier survival curves; p-

values 

Lehrberg et al. 

(2021) 

Objective 

Evaluate the outcomes and predictors for 

patients receiving BCS treatment outside of the 

standard NCCN guidelines, compared with 

patients receiving standard MRM treatment 

Sample Size 10,610 

Missing/Imputation None 

Statistical Methods 

t-test; Chi-square test; Cochran-Armitage trend 

test; Multivariate Cox proportional hazards 

model 

Inference Measures Adjusted hazards ratios; p-values 

Pratt et al. (2021) 

Objective 

Examine the association between the time 

interval from time of diagnosis to completion 

of all acute breast cancer treatment modalities 

(surgery, chemotherapy, and radiation therapy) 

and survival 

Sample Size 50,720 

Missing/Imputation None 
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Article  

reference (Year) 
 

Details of the article 

Statistical Methods 

Univariate and multivariate Cox proportional 

hazards model; Log-rank test; Kaplan-Meier 

method; Chi-square test; Fisher’s exact test; 

Two-sample t-test 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; 5-year survival (%); p-values 

Lewis et al. (2019) 

Objective 

Determine the clinical characteristics, 

outcomes, and propensity for lymph node 

metastasis of patients with IMPC of the breast 

recorded in the NCDB  

Sample Size 2660 

Missing/Imputation None 

Statistical Methods 
Log-rank test; Cox proportional hazards 

model; Kaplan-Meier method 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

Mazor et al. 

(2019) 

Objective 
Assess patterns and outcomes of BCT for T3 

tumors 

Sample Size 37,268 

Missing/Imputation None 

Statistical Methods 

Sensitivity analysis; Chi-square test; Wilcoxon 

rank sum test; Multivariable logistic 

regression; Cochran-Armitage trend test; 

Spearman’s correlation; Kaplan-Meier 

method; Cox proportional hazards model 

Inference Measures 

Odds ratios with 95% CI; Hazard ratios with 

95% CI; Kaplan-Meier survival curves; p-

values 

Zhu et al. (2019) 

Objectives 

Study clinicopathological features, treatment 

patterns and prognosis of SCC; Investigate 

whether SCC (vs. IEDC) is associated with 

poor clinicopathological characteristics, 

different treatment patterns and worse survival; 

Perform exploratory analysis of the benefits of 

systematics therapy for SCC patients   

Sample Size 3,430  

Missing/Imputation None 

Statistical Methods 
Chi-square test; Kaplan-Meier analysis; Cox 

regression model 

 Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

Landercasper et al. 

(2019) 

Objective 

Determine if there were differences in the OS 

of matched breast cancer patients undergoing 

lumpectomy vs. mastectomy in the NCDB 

Sample Size 845,136 

Missing/Imputation None 
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Article  

reference (Year) 
 

Details of the article 

Statistical Methods 

Kaplan-Meier method; Propensity score 

matched analysis; Cox proportional hazards 

model; Subgroup analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

McClelland et al. 

(2019) 

Objective 

To assess trends in patterns of care and clinical 

outcomes to manage localized breast 

angiosarcoma 

Sample Size 826 

Missing/Imputation None 

Statistical Methods 

Chi-square test; Cochran-Armitage trend test; 

Univariate and multivariate logistic regression 

analysis; Univariate and adjusted Cox models; 

Survival analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; Forest plots; p-values 

Mills et al. (2018) 

Objective 

Utilize data from NCDB to complete 

investigation of the prognostic importance of 

histology within TMBC  

Sample Size 89,220 

Missing/Imputation None 

Statistical Methods 
Kaplan-Meier method; Log-rank test; 

Multivariate Cox proportional hazards model 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

Chiba et al. (2017) 

Objective 

Evaluate national trends in NET use in relation 

to conduct of Z1031 trial and impact of NET 

on the rates of BCS 

Sample Size 77,272 

Missing/Imputation None 

Statistical Methods 

Cochran-Armitage trend test; Chi-square test; 

Two-sample t-test; Multivariable logistic 

regression 

Inference Measures Odds ratios with 95% CI; p-values 

Landercasper et al. 

(2017 

Objective 
Investigate whether the receipt of NAC is 

associated with fewer reoperations 

Sample Size 71,627 

Missing/Imputation None 

Statistical Methods 

Cochran-Armitage trend test; Chi-square test; 

Multivariable logistic regression; Propensity 

score matching 

Inference Measures Odds ratios with 95% CI; Forest plots; p-values 

Rusthoven et al. 

(2016) 

Objective 

Evaluate the impact of PMRT and RNI for 

women with clinically node positive breast 

cancer treated with NAC 

Sample Size 15,315 

Missing/Imputation None 
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Article  

reference (Year) 
 

Details of the article 

Statistical Methods 

Kaplan-Meier method; Log-rank test; 

Multivariate Cox models; Propensity score 

matched analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; Forest plot; p-values  

Chen et al. (2015) 

Objective 
Compare efficacy of BCS with RT and 

mastectomy using NCDB. 

Sample Size 160,880 

Missing/Imputation None 

Statistical Methods 
Kaplan-Meier method; Cox regression; 

Propensity score analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

BCS= breast conserving surgery, RT= radiotherapy, CI= Confidence interval, PMRT= Postmastectomy radiotherapy, RNI= 

Regional nodal irradiation, NAC = Neoadjuvant chemotherapy, NET = Neoadjuvant endocrine therapy, IMPC= invasive 

micropapillary carcinoma, BCT= Breast conservation therapy, SCC= Squamous cell carcinoma, IDC= Infiltrating ductal 

carcinoma, RS= recurrence score assay, OS=overall survival, NCCN= National comprehensive cancer network, MRM= 

Modified radical mastectomy, TMBC= Triple negative breast cancer 

4.3.  Observations from the literature review 

After conducting a comprehensive literature review, we found that there is a 

commonality between the sample size selection techniques, missing value imputation methods, 

statistical methods, and inference measures used in published research studies. Table 5 

provides a helpful summary of these various approaches, which we organized according to the 

study objective and statistical considerations. Our analysis of this information yielded some 

interesting findings, which we will now discuss in more detail in next sections.  

4.3.1. Sample selection techniques 

Based on our analysis, appropriate sample size selection is a crucial aspect of statistical 

research. We have found that most of the studies that we reviewed worked with large sample 

sizes. In fact, we observed that the largest sample size among the 15 studies was an impressive 

707,798 as observed in Hotsinpiller et al. (2021) while the smallest sample size was just 826 

as observed in McClelland et al. (2019). 

Interestingly, we also found that none of the studies that we reviewed described any 

formal sample size calculation techniques used for sample selection. Instead, it appears that 

samples were selected primarily based on data availability and filtering based on the study 

objective. This means that convenience/purposive sampling was used, and analysis methods 

designed for randomized data were employed, which could lead to misleading results and 

conclusions. 

4.3.2.  Missing data imputation 

It is important to note that missing data can be a common occurrence, especially in large 

datasets like the NCDB. If missing data is simply deleted without any imputation, it can lead 

to a biased sample with biased results. Unfortunately, many of the studies such as Landercasper 

et al. (2017), Landercasper et al. (2019), Lewis et al. (2019), Mazor et al. (2019), McClelland 

et al. (2019), Zhu and Chen (2019), Lehrberg et al. (2021), Weiser et al. (2021), and Wrubel 



 R. LELE, A. SETH, S. PATEL, J. PAN, M. B. RAO AND S. N. RAI [SPL. PROC. 184 

et al. (2021) included in the literature review did not describe or perform any missing data 

imputation. Instead, they chose to perform a complete case analysis. However, it is worth 

noting that some studies, like Rusthoven et al. (2016), conducted a sensitivity analysis before 

and after excluding unknown variable values and still obtained similar results. Others, like 

Chiba et al. (2017), reported missing values in their table for tumor characteristics but did not 

mention whether these values were imputed or deleted before analysis. Lastly, Landercasper et 

al. (2019) pointed out that all but one of the studies they cited did not include any missing data 

imputation. 

4.3.3.  Statistical analysis methods 

The choice of analysis methods depends upon the study objective. However, every 

statistical technique involves certain assumptions and if these assumptions are not satisfied, the 

analysis may not result in reliable conclusions. This is a common issue with statistical analysis 

of the NCDB. For example, application of a common Cox proportional hazard model to non-

randomized studies (case-control and databases) results in unreliable estimate of hazard ratio 

(relative risk) due to heterogeneity, time-varying exposure, corelated risk factors, and 

confounding etc. as presented by Moolgavkar et al. (2018). 

From the studies included in the present literature review, we observed that the most 

common statistical analysis methods used were univariable as shown in Weiser et al. (2021) 

and multivariable logistic regression as used in Chiba et al. (2017), Landercasper et al. (2017), 

Mazor et al. (2019), McClelland et al. (2019), Hotsinpiller et al. (2021), and Weiser et al. 

(2021) and survival analysis as shown in Chen et al. (2015), Rusthoven et al. (2016), Mills et 

al. 2018, Landercasper et al. (2019), Lewis et al. (2019), Mazor et al. (2019), McClelland et 

al. (2019), Zhu and Chen (2019), Lehrberg et al. (2021), Pratt et al. (2021), Weiser et al. (2021), 

and Wrubel et al. (2021). Baseline characteristics are commonly compared using either a t-test 

(continuous variables) as indicated in Chiba et al. (2017), Hotsinpiller et al. (2021), Lehrberg 

et al. (2021), Pratt et al. (2021), and Weiser et al. (2021) or a chi-square test (categorical 

variables) as indicated in (Chiba et al. (2017), Landercasper et al. (2017), Mazor et al. (2019), 

McClelland et al. (2019), Zhu and Chen 2019, Hotsinpiller et al. (2021), Lehrberg et al. (2021), 

Pratt et al. (2021), Weiser et al. (2021), and Wrubel et al. (2021). Propensity score matching 

methods shown in Chen et al. (2015), Rusthoven et al. (2016), Landercasper et al. (2017), and 

Landercasper et al. (2019) and the Cochran-Armitage trend test as shown in Chiba et al. (2017), 

Landercasper et al. (2017), Mazor et al. (2019), McClelland et al. (2019), and Lehrberg et al. 

(2021) are also popular techniques for analyzing NCDB. 

4.3.4.  Inference measures 

Different statistical analysis methods involve different inference measures based on 

which we draw conclusions. The most common inference measures in the cancer studies are 

hazard ratio, odds ratio, Kaplan-Meier survival curve, and   the ubiquitous p-value which is 

used for making conclusions in most of the analysis procedures. 

In the articles included in the literature review as well, p-values were the most common 

statistical inference measure were used in Chen et al. (2015), Rusthoven et al. (2016), Chiba 

et al. (2017), Landercasper et al. (2017), Mills et al. 2018, Landercasper et al. (2019), Lewis 

et al. (2019), Mazor et al. (2019), McClelland et al. (2019), Zhu and Chen (2019), Hotsinpiller 

et al. (2021), Lehrberg et al. (2021), Pratt et al. (2021), Weiser et al. (2021), and Wrubel et al. 

(2021). Odds ratios was used in Chiba et al. (2017), Landercasper et al. (2019), Mazor et al. 

(2019), Hotsinpiller et al. (2021), and Weiser et al. (2021), hazard ratios was used in Chen et 

al. (2015), Rusthoven et al. (2016), Mills et al. 2018, Landercasper et al. (2019), Lewis et al. 
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(2019), Mazor et al. (2019), McClelland et al. (2019), Zhu and Chen (2019), Lehrberg et al. 

(2021), Pratt et al. (2021), and Weiser et al. (2021), and their 95% confidence intervals, 

Kaplan-Meier survival curves was shown in Chen et al. (2015), Rusthoven et al. (2016), Mills 

et al. 2018, Landercasper et al. (2019), Lewis et al. (2019), Mazor et al. (2019), McClelland et 

al. (2019), Zhu and Chen (2019), Pratt et al. (2021), Weiser et al. (2021), and Wrubel et al. 

(2021) were also a common choice. Some studies such as Rusthoven et al. (2016), 

Landercasper et al. (2017), and McClelland et al. (2019) used forest plots.  

4.3.5.  Statistical issues with large databases – Summary 

After conducting the literature review and carefully studying the published literature, 

we observed the following statistical issues with large databases. 

Based on our comprehensive literature review and analysis of large databases, we have 

identified several design and statistical analysis issues that need to be addressed. Firstly, 

databases such as NCDB have extremely large sample sizes, which can create challenges in 

analyzing the data effectively. Secondly, data from large databases are not randomized, and 

therefore include close to all observed cases, making it difficult to control for bias. There is 

also a risk of duplicate records if a patient gets treated at multiple facilities and gets included 

in the databases that many times they were treated at different locations, which could 

significantly confound the results. 

Another issue is that since databases such as NCDB are huge, the assumption of 

normality fails, which can impact the validity of parametric statistical analysis, most of which 

is built on the assumption of normality of data. Furthermore, due to extremely large sample 

size, analysis results in highly significant p-values, which may have no clinical relevance and 

could lead to false conclusions. Lastly, Simpson’s paradox is a concern when using the entire 

database, as we may get highly significant results that might get reversed if we use a smaller 

sample selected using formal sample size selection techniques as reported by Hernán et al. 

(2011), and Pearl (2022).  

5.  Case study 

5.1. Study design 

Using the general study considerations outlined previously and based on the most 

common statistical analysis methods, we designed a case study using female breast cancer data 

from the NCDB collected between 2004 and 2014. This case study was designed and presented 

to demonstrate statistical issues related to analyzing large databases using NCDB as an example 

and suggesting alternative inference techniques that could describe real-world scenarios better 

than the current methods. Additionally, using the case study, we demonstrate the effectiveness 

of the novel modified Cohen’s h effect size estimator. We also present category-wise 

comparisons which result in multiple p-values and show Bonferroni multiplicity adjustment 

fails to produce meaningful results as reported by Leon (2004). Note that the Bonferroni 

method is the most conservative method for adjusting for multiple comparisons. 

The objective of the case study was to examine whether there is an association between 

surgery types and different demographic predictor variables. The dependent and independent 

variables and their levels/categories is given in Table 6. 

The study used participants that satisfied certain inclusion and exclusion criteria based 

on the type of malignancy, diagnosis year, cancer stage, surgery type, etc. This outline has 
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been explained in detail in Figure 2. After choosing participants, we investigated the data for 

missingness. In the current design, we deleted the missing observations as the proportion of 

missing values was low (approximately 1%). Details about the analysis have been discussed 

in section.  

As described in Table 6, the dependent variable used in the case study was surgery type 

and the independent variables were age, race, insurance status, facility type, stage (of cancer) 

and great circle distance (distance between the medical facility and patient’s residence). 

Figure 2 presents the flowchart for selection of study participants. We included nine 

primary tumor sites as shown in Figure 2. The initial sample size was 2,445,870 for subjects 

who had tumors detected at the given primary sites. We, then, included patients who had a 

single malignant primary tumor, invasive or microinvasive breast cancer behavior, were 

diagnosed between 2004 and 2014, experienced breast cancer stages I, II or III and were female 

subjects. Later, we excluded the patients who did not undergo any surgery or had surgeries 

other than lumpectomy, mastectomy without reconstruction or mastectomy with 

reconstruction. The final sample size was 1,158,387 after applying all the inclusion and 

exclusion criteria. This is a large sample size that fits the definition of big data and hence, 

analysis using traditional approaches poses issues that need a robust solution. We will 

demonstrate the statistical issues and the effectiveness of our novel modified Cohen’s h effect 

size estimator in the following sections. 

Table 6: Dependent and independent variables for the case study 

 Variable Levels/Categories 

Dependent 

Variable 
Surgery Type 

1. Lumpectomy 

      2. Mastectomy without reconstruction 

      3. Mastectomy with reconstruction 

Independent 

Variables 

Age 

1. < 40 years 

2. 40 – 50 years 

3. 50 – 65 years 

4. > 65 years 

Race 

1. White, 

2. Black 

3. Others 

Insurance status 

1. Medicare + Other Govt. 

2. Private 

3. Medicaid 

4. Not insured 

Facility type 

1. Academic 

2. Community Cancer Center 

3. Comprehensive Community Center 

4. Integrated Network 

Stage (of cancer) 

1. Stage I 

2. Stage II 

3. Stage III 

Great Circle Distance 

(Distance from the medical 

facility and patient’s 

residence) 

1. < 50 miles 

2. 50 – 150 miles 

3. > 150 miles 
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5.2. Analysis plan 

The study sample was divided into three groups based on the surgery types, and baseline 

characteristics. Values were tabulated for each of the three groups with respect to the different 

categories of predictor variables (see Table 7). We compared the baseline characteristics of the 

study participants using chi-square test, and the results are presented in Table 7. 

To examine the association between surgery types and different predictor variables with 

multiple levels/categories for each, we applied multinomial multivariable logistic regression. 

We presented results along with odds ratios, their 95% confidence intervals (CI) and p-values 

in Table 9. In addition, we calculated the effect sizes using modified Cohen’s h and presented 

the results for comparison in Table 10. A schematic of the study design has been presented in 

Figure 3. 

 

Figure 2: Study flowchart 

Furthermore, we used ARM and NBC to understand the underlying associations and 

identify clinically relevant variables. Both ARM and NBC were used to validate the results 

obtained using our novel effect size estimator and to identify the important variables. This was 

especially important given the large and complex datasets we were working with. 

5.3. Methods 

A detailed protocol stating the study objectives, methods, analysis plan etc. was 

submitted for IRB approval in order to gain access to the data from NCDB for the present 

Include Primary Sites:    N = 2,445,870 

1. Nipple,  

2. Central Portion of Breast,  

3. Upper-inner quadrant of breast,  

4. Lower-inner quadrant of breast,  

5. Upper-outer quadrant of breast,  

6. Lower-outer quadrant of breast,  

7. Axillary tail of breast,  

8. Overlapping lesion of breast,  

9. Breast, NOS (Mammary Gland) 

 

Inclusion Criteria: 

1. Single malignant primary      N = 1,841,051 

2. Invasive or microinvasive breast cancer behavior   N = 1,486,760 

3. Diagnosed between 2004 and 2014    N = 1,339,935 

4. Analytic Stage Groups include Stages I, II and III  N = 1,210,315 

5. Sex = Female       N = 1,198,976 

Exclusion Criteria: 

1. Exclude Surgery Type = “None” & “Others”   N = 1,158,387 
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research. The protocol was approved by the University of Louisville and James Graham Brown 

Cancer Center Cancer Committee which is a CoC Accredited Cancer Center. After receiving 

the IRB approval (IRB Number: 20.0049, we submitted access request to NCDB, which was 

also approved and access to NCDB was then granted to the authors of this manuscript. IRB 

approval request at the University of Cincinnati is pending. This study falls under IRB 

exemption since it is a retrospective study that looks at and utilizes NCDB data for analyses 

but does not involve working with human subjects. 

5.4. Results 

This section presents and describes the results obtained from analyzing our 

retrospective study. Table 7 shows the frequency distribution of breast cancer patients' three 

most common surgery types. For analyzing these data, we deleted the missing observations and 

compared Lumpectomy vs. Mastectomy without reconstruction and Mastectomy with 

reconstruction using the complete cases available. We present an overall p-value along with p-

values for individual comparisons for each category of dependent variable. These p-values 

were then adjusted for multiple comparison using Bonferroni’s test and the results are presented 

in Table 8. Majority of the studies present an overall p-value without looking at individual level 

comparisons. Since logistic regression compares difference between surgery types within 

categories of predictor variables, it is useful to present individual level p-values to help direct 

comparison of results. 

 

 

Figure 3: Study design 

 

1. Lumpectomy 

2. Mastectomy without reconstruction 

3. Mastectomy with reconstruction 

Surgery Types 

Delete missing observations Missing values 

1. Multinomial multivariable logistic regression 

model 

2. Effect sizes using modified Cohen’s h  

3. Association rule mining (ARM) 

4. Naïve Bayes’ classifier (NBC) 

Analysis Model 

1. Odds ratios 

2. 95% confidence intervals for odds ratios 

3. p-values 

4. Effect sizes (using novel modified Cohen’s h) 

5. Lift, Support, and Confidence for ARM 

6. Misclassification and Accuracy for NBC 

7. Variable importance plot for each surgery type 

Results 
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5.4.1. Baseline characteristics 

Table 7 presents the baseline characteristics (lumpectomy (LT) vs. mastectomy without 

reconstruction (MTnR)/mastectomy with reconstruction (MTR)). It can be observed that p-

values for all the variables shown in Table 7 are <10-5 due to the large sample size and such a 

situation where almost all comparisons appear to be statistically significant, regardless of their 

practical importance or real-world significance. Therefore, we provide an alternative approach 

as presented in Table 8.  

Table 8 presents the raw p-values in addition to Bonferroni-adjusted p-values to aid in 

comparing logistic regression results with baseline characteristics results. 

 

Table 7: Baseline characteristics (lumpectomy (LT) vs. mastectomy without 

reconstruction (MTnR)/mastectomy with reconstruction (MTR)) 

 

Variable 

 

 

Total 

(N = 

1157322) 

Surgery type p-value 

LT 

(N = 692564) 

(59.84%) 

MTnR 

(N = 

325104) 

(28.09%) 

MTR 

(N = 139654) 

(12.07%) 

 

 Frequency (%)  

Age     < 10-5 

< 40 years 65404 

(5.65) 

23133 (3.34) 21327 

(6.56) 

20944 (15.00) -- 

40 – 50 years 217557 

(18.8) 

110796 

(15.99) 

57470 

(17.68) 

49291 (35.30) Ref 

50 – 65 years 483166 

(41.75) 

302250 

(43.64) 

123114 

(37.87) 

57802 (41.39) 9.9x10-5 

> 65 years 391195 

(33.80) 

256385 

(37.02) 

123193 

(37.89) 

11617 (8.32) 9.9x10-5 

Race     < 10-5 

White 971210 

(83.92) 

587089 

(84.77) 

265520 

(81.67) 

118601 (84.92) Ref 

Black 124883 

(10.79) 

71636 (10.34) 40003 

(12.30) 

13244 (9.48) 9.9x10-5 

Others 48959 

(4.23) 

26181 (3.78) 16482 

(5.07) 

6296 (4.51) 9.9x10-5 

Insurance 

Status 

    <  10-5 

Medicare + 

Other Govt 

399491 

(34.52) 

256126 

(36.98) 

127127 

(39.10) 

16238 (11.63) Ref 

Private 643302 

(55.59) 

378917 

(54.71) 

152246 

(46.83) 

112139 (80.30) 9.9x10-5 

Medicaid 70271 

(6.07) 

35047 (5.06) 27374 

(8.42) 

7850 (5.62) 9.9x10-5 

Not Insured 23876 

(2.06) 

11782 (1.70) 10169 

(3.13) 

1925 (1.38) 9.9x10-5 

Facility Type     < 10-5 

Academic 321773 

(27.80) 

196015 

(28.30) 

82863 

(25.49) 

42895 (30.72) Ref 
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Variable 

 

 

Total 

(N = 

1157322) 

Surgery type p-value 

LT 

(N = 692564) 

(59.84%) 

MTnR 

(N = 

325104) 

(28.09%) 

MTR 

(N = 139654) 

(12.07%) 

 

Community 

Cancer 

116406 

(10.06) 

72115 (10.41) 37621 

(11.57) 

6670 (4.78) 9.9x10-5 

Comprehensive 

Community 

532529 

(46.01) 

327628 

(47.31) 

151580 

(46.63) 

53321 (38.18) 9.9x10-5 

Integrated 

Network 

121210 

(10.47) 

73673 (10.64) 31713 

(9.75) 

15824 (11.33) 0.004 

Analytic Stage     < 10-5 

I 620662 

(53.63) 

456319 

(65.89) 

101909 

(31.35) 

62434 (44.71) Ref 

II 399934 

(34.56) 

204739 

(29.56) 

137980 

(42.44) 

57215 (40.97) 9.9x10-5 

III 136726 

(11.81) 

31506 (4.55) 85215 

(26.21) 

20005 (14.32) 9.9x10-5 

Great Circle 

Distance 

    < 10-5 

< 50 miles 1069529 

(92.41) 

646664 

(93.37) 

296028 

(91.06) 

126837 (90.82) Ref 

50 – 150 miles 61414 

(5.31) 

31426 (4.54) 20605 

(6.34) 

9383 (6.72) 9.9x10-5 

> 150 miles 16632 

(1.44) 

8656 (1.25) 5375 (1.65) 2601 (1.86) 9.9x10-5 

 

Table 8: Raw and Bonferroni-adjusted p-values for baseline characteristics 

Variable Raw p-value Bonferroni adjusted p-value 

Age   

40 – 50 years Ref 

50 – 65 years 9.9x10-5 20x10-5 

> 65 years 9.9x10-5 20x10-5 

Race   

White Ref  

Black 9.9x10-5 20x10-5 

Others 9.9x10-5 20x10-5 

Insurance Status   

Medicare + Other Govt Ref 

Private 9.9x10-5 30x10-5 

Medicaid 9.9x10-5 30x10-5 

Not Insured 9.9x10-5 30x10-5 

Facility Type   

Academic Ref  

Community Cancer 9.9x10-5 30x10-5 

Comprehensive Community 9.9x10-5 30x10-5 

Integrated Network 0.004 0.012 

Analytic Stage   
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Variable Raw p-value Bonferroni adjusted p-value 

I Ref  

II 9.9x10-5 20x10-5 

III 9.9x10-5 20x10-5 

Great Circle Distance   

< 50 miles Ref  

50 – 150 miles 9.9x10-5 20x10-5 

> 150 miles 9.9x10-5 20x10-5 

 

The variables that have three categories and two comparisons (age, race, analytical stage, and 

great circle distance) will be tested at a significance level of 0.05/2 = 0.025. The variables that 

have four categories and three comparisons (insurance status and facility type) will be tested at 

a significance level of 0.05/3 = 0.017. 

5.4.2.  Logistic regression: lumpectomy vs. mastectomy without reconstruction and 

mastectomy with reconstruction 

Table 9 presents the results of multinomial multivariable logistic regression using 

surgery types as the dependent variable and same predictor variables as those presented in the 

baseline characteristics table. 

Table 9: Multinomial multivariable logistic regression results 

 Multiple logistic regression 

Predictors Odds ratio 95% CI p-value 

LT vs. MTnR 

Age    

40 – 50 years (Ref) 1 NA NA 

50 – 65 years 0.85 (0.85, 0.87) < 10-5 

> 65 years 0.97 (0.95, 0.99) 0.0007 

Race    

White (Ref) 1 NA NA 

Black 1.05 (1.03, 1.07) < 10-5 

Others 1.41 (1.38, 1.45) < 10-5 

Insurance status    

Medicare + Other Govt (Ref) 1 NA NA 

Private 0.75 (0.74, 0.76) < 10-5 

Medicaid 1.17 (1.14, 1.19) < 10-5 

Not Insured 1.31 (1.27, 1.36) < 10-5 

Facility Type    

Academic (Ref) 1 NA NA 

Community Cancer 1.29 (1.27, 1.31) < 10-5 

Comprehensive Community 1.19 (1.17, 1.20) < 10-5 

Integrated Network 1.09 (1.07, 1.11) < 10-5 

Stage    

I (Ref) 1 NA NA 

II 3.05 (3.02, 3.08) < 10-5 

III 12.37 (12.18, 12.57) < 10-5 

Great Circle Distance    

< 50 miles (Ref) 1 NA NA 
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 Multiple logistic regression 

Predictors Odds ratio 95% CI p-value 

50 – 150 miles 1.48 (1.46, 1.52) < 10-5 

> 150 miles 1.22 (1.18, 1.28) < 10-5 

LT vs. MTR 

Age    

40 – 50 years (Ref) 1 NA NA 

50 – 65 years 0.45 (0.44, 0.46) < 10-5 

> 65 years 0.15 (0.14, 0.152) < 10-5 

Race    

White (Ref) 1 NA NA 

Black 0.73 (0.71, 0.75) < 10-5 

Others 0.92 (0.89, 0.95) < 10-5 

Insurance    

Medicare + Other Govt (Ref) 1 NA NA 

Private 1.49 (1.45, 1.52) < 10-5 

Medicaid 0.94 (0.90, 0.97) 0.0005 

Not Insured 0.67 (0.63, 0.71) < 10-5 

Facility Type    

Academic (Ref) NA NA NA 

Community Cancer  0.48 (0.47, 0.49) < 10-5 

Comprehensive Community 0.80 (0.78, 0.81) < 10-5 

Integrated Network 1.04 (1.02, 1.07) 0.0001 

Stage    

I NA NA NA 

II 1.83 (1.80, 1.85) < 10-5 

III 4.07 (3.98, 4.16) < 10-5 

Great Circle Distance    

< 50 miles (Ref) NA NA NA 

50 - 150 miles 1.43 (1.39, 1.47) < 10-5 

> 150 miles 1.43 (1.36, 1.50) < 10-5 

5.4.3. Effect size 

Table 10 presents the effect sizes using modified Cohen’s h estimator. These results 

will be compared with the p-values obtained using logistic regression to identify the important 

associated variables for surgery types that the two procedures predict. 

5.4.4.  Association rule mining  

Table 11 presented below shows the results obtained using the ARM procedure. Here, 

we present lift, support, and confidence for each of the associations obtained using this 

procedure. The ARM procedure was run to check associations between the surgery types and 

all the predictor variables. Conclusions were mainly drawn using lift values and support and 

confidence values were presented to demonstrate the strength of the lift values. 
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Table 10: Effect sizes using modified Cohen’s h 

Variable Effect size using modified Cohen’s h procedure 

 LT vs. MTnR LT vs. MTR 

Age   

40 – 50 years Ref 

50 – 65 years -0.91 -1.92 

> 65 years -0.69 -4.01 

Race   

White Ref 

Black 0.57 0.01 

Others 0.96 0.58 

Insurance Status   

Medicare + Other Govt Ref 

Private -0.23 2.48 

Medicaid 1.53 2.40 

Not Insured 1.81 1.97 

Facility Type   

Academic Ref 

Community Cancer 0.41 -1.28 

Comprehensive Community 0.16 -0.48 

Integrated Network 0.04 -0.02 

Analytic Stage   

I Ref 

II 3.22 2.28 

III 7.16 4.32 

Great Circle Distance   

< 50 miles Ref 

50 – 150 miles 1.09 1.06 

> 150 miles 0.94 1.04 

Table 11: Association rule mining – testing association between surgery types and 

predictor variables lift (L), support (S), and confidence (C) 

Association L S C 

Surgery types and Age 

Lumpectomy and age group ‘> 65 years’ 1.09 0.24 0.66 

Lumpectomy and age group ‘50 – 65 years’ 1.04 0.24 0.62 

Lumpectomy and age group ‘40 – 50 years’ 0.85 0.10 0.51 

Surgery types and Race 

Mastectomy with Reconstruction and White 1.01 0.10 0.86 

Lumpectomy and White 1.01 0.51 0.86 

Mastectomy without Reconstruction and White 0.97 0.23 0.82 

Surgery types and Insurance status 

Mastectomy with Reconstruction and Private 1.43 0.10 0.81 

Lumpectomy and Medicare + Other Govt. 1.07 0.22 0.64 

Lumpectomy and Private 0.98 0.33 0.59 

Surgery types and Facility type 

Lumpectomy and Comprehensive Community Cancer Program 1.03 0.28 0.62 

Lumpectomy and Academic/Research Program 1.02 0.17 0.61 
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Association L S C 

Lumpectomy and Integrated Network Cancer Program 1.02 0.06 0.10 

Lumpectomy and Community Cancer Program 0.88 0.08 0.52 

Surgery types and Stage of cancer 

Mastectomy with Reconstruction and Stage III 2.22 0.07 0.62 

Lumpectomy with Stage I 1.23 0.39 0.74 

Lumpectomy and Stage II 0.86 0.18 0.51 

Surgery types and Great circle distance 

Lumpectomy and < 50 miles 1.01 0.56 0.94 

Lumpectomy and > 150 miles 0.87 0.01 0.52 

Lumpectomy and 50 – 150 miles 0.86 0.03 0.51 

 

5.4.5.  Naïve Bayes classifier 

 

To validate the results obtained using modified effect sizes, we used Naïve Bayes 

classifier. To identify important variables using Naïve Bayes classifier, the measures used were 

misclassification and accuracy as described in Section 2.5.2. The variable with the least 

misclassification and highest accuracy was concluded to have highest association with the 

dependent variable, surgery type. Furthermore, for the Naïve Bayes classifier, we plotted a 

variable importance plot by surgery type. The variable importance plot is presented in Figure 

3. The variables highly associated with each surgery type is presented in the plot in the order 

of the strength of association. Each variable has an associated bar indicating the magnitude of 

its importance. 

 

Table 12: Naïve Bayes classifier – misclassification percentages along with accuracy 

 

Association of surgery types with Misclassification Accuracy 

Age 40.3% 59.7% 

Race 40.9% 59.1% 

Insurance Status 40.3% 59.7% 

Facility Type 40.04% 59.96% 

Stage 35.4% 64.6% 

Great Circle Distance 41.3% 58.7% 

5.5.  Interpretation 

5.5.1. Baseline characteristics 

Our selected study population had approximately 60% of the patients who received 

lumpectomy, 28% received mastectomy without reconstruction, 12% received mastectomy 

with reconstruction, and for around 1% of the subjects’ surgery information was missing. 

Table 7 shows that the age group of 50 – 65 years receives the maximum proportion of 

breast cancer surgery. Among this group, lumpectomy is the most common surgery type, 

followed by mastectomy with reconstruction. The study also revealed that 84% of the patients 

were white, and 11% were black. The most common surgery type for white patients was 

lumpectomy and mastectomy without reconstruction, and for black patients, it was also 

lumpectomy and mastectomy without reconstruction. Private insurance was the preferred 

choice of the majority of the patients, and within this group, mastectomy with reconstruction 

was the most common surgery type. The study also found that about 46% of the patients 
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received treatment at a comprehensive community center, and the maximum proportion of 

patients received lumpectomy. Among the patients with Stage I and Stage II breast cancer, 74% 

received lumpectomy and 51%, respectively, while most of the patients with Stage III received 

mastectomy without reconstruction (62%). The study also revealed that 92% of the patients 

lived within 50 miles of the facility where they received treatment, and within this group, 60% 

received lumpectomy followed by mastectomy without reconstruction (28%).  

 

Figure 4: Variable importance plot 
 

The chi-square tests run on the baseline characteristics reveal a highly significant 

association between the surgery types and all predictors, i.e., age, race, insurance status, facility 

type, analytic stage, and great circle distance. When we conducted pairwise comparisons using 

one of the categories as the reference category for each of the predictor variables, we obtained 

highly significant p-values for all the comparisons. Table 8 presents Bonferroni adjusted p-

values in addition to the raw p-values. The Bonferroni adjusted p-values are highly significant 

for all variables as well. From tables 7 and 8, we conclude that surgery type has a highly 

significant association with all the predictor variables included in the study. 

5.5.2.  Logistic regression – p-values and odds ratios  

It is interesting to note that Table 9 displays highly significant p-values (< 10-5) for all 

the variables. However, the odds ratios tell a different story. According to Sullivan and Feinn 

(2012) an odds ratio around 1.5 indicates a small difference, around 2 indicates a medium 

difference, and around 3 indicates a significant difference. Except for the stage of cancer, none 

LT 

MTnR MTR 
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of the other variables have an odds ratio of >1.5, and thus, based on p-values, it can be 

concluded that stage is the only variable with a significant difference.  

It should be noted that the statistical fallacy in this case is that the p-values are highly 

significant, with an odds ratio close to 1. This is demonstrated by the odds ratio of 0.97 and a 

p-value of 0.0007 for age group > 65 years vs. 40 – 50 years when comparing LT vs. MTnR. 

From the odds ratio, which is very close to 1, we would conclude that the age groups > 65 years 

and 40 – 50 years does not significantly differ from each other in terms of the surgery types. 

The 95% CI for this case is (0.95, 0.99) which almost cuts through the value of 1, thus hinting 

non-significant difference. This is a classic example of how p-values can be misleading, and 

concluding significant differences based on p-values alone would lead to misleading 

conclusions. 

5.5.3. Effect sizes 

In Table 10, the effect sizes calculated using modified Cohen's h formula are presented. 

To interpret the effect sizes, we use the cutoffs presented in Table 4 suggested by the authors 

of this paper. If the effect size is close to 1.5, it indicates a small effect, 2.5 indicates a medium 

effect, and 3 indicates a large effect. For a significant difference, we require a large effect size 

as it indicates a large underlying difference. 

 

From Table 10, we can see that for LT vs. MTnR, we obtained an effect size of 3.22 for 

Stage II vs. Stage I and an effect size of 7.16 for Stage III vs. Stage I using the novel modified 

Cohen’s h effect size. This means that patients with Stage II breast cancer have a significantly 

higher chance of receiving MTnR than LT when compared with patients who have Stage I 

breast cancer. A similar interpretation applies to Stage III vs. Stage I. For all other comparisons, 

we do not obtain a high effect size and thus, we may conclude that except stage of cancer, the 

other predictors do not have a significant association with surgery type. 

 

When comparing LT vs. MTR, a large effect size of -4.01 was obtained for age group 

> 65 years vs. 40 – 50 years. This indicates that the age group > 65 years has a significantly 

lower chance of receiving LT vs. MTR when compared with patients in the age group 40 – 50 

years. 

Similarly, we obtained a large effect size of 4.32 for comparing stage III vs. stage I 

breast cancer for LT vs. MTR. This also indicates that except age group and stage of cancer, 

none of the other predictors show a highly significant association with surgery types. 

 

Based on odds ratios and effect sizes, we find only one significant association, i.e., 

between surgery types and stage of cancer. Even though the p-values are highly significant for 

all comparisons, odds ratios and effect sizes do not support this result. Thus, using effect sizes 

in addition to p-values when analyzing large datasets may be a more statistically sound 

approach. 

 

5.5.4. Association rule mining 

 

We observe from Table 11 that the values for lift are either very close to 1 or just below 

1 for most associations except for the variable ‘stage’. Thus, we may say that the predictor 

variables age, race, insurance status, facility type, and great circle distance have a weak 

correlation with surgery types. There is, however, a strong association between stage of cancer 

and surgery types. From the lift value of 2.22, we may conclude that patients suffering from 

stage III breast cancer have a strong possibility of receiving mastectomy with reconstruction. 
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Also, patients suffering from stage I breast cancer have a slightly positive correlation with 

receiving lumpectomy which agrees with our conclusions from Table 7. The lift value for 

Mastectomy with reconstruction and private is 1.43 which is higher than 1. This implies a 

positive correlation between the two values with a confidence of 0.81. 
 

5.5.5. Naïve Bayes classifier 

 

Table 12 presents the results obtained using the Naïve Bayes classifier. The 

misclassification proportion is 35% for stage of cancer which is the lowest and the 

corresponding accuracy is 65% which is the highest. This indicates and supports all the 

previous results and arguments that the only significantly associated variable with surgery 

types is the stage of cancer. 

 

From the variable importance plot, we see that stage is the most important variable 

associated with the surgery types LT and MTnR and the second most important variable 

associated for surgery type MTR.  

 

From all the above results, we see that p-values indicate highly significant associations 

for surgery types with all the predictors. However, this statistical significance is not clinically 

relevant as indicated by the odds ratios that are close to 1. The modified effect sizes indicate a 

highly significant association between stage and surgery types and one of the age groups for 

LT vs. MTR comparison. The significant association between stage of cancer and surgery type 

is supported by ARM and NBC results as well. 

6.  Conclusion 

From our analysis, we observed that p-values alone can lead to misleading conclusions 

since they are very sensitive to sample sizes. As sample size increases, p-values tend to 

decrease and produce highly significant but clinically irrelevant results. Thus, an alternative to 

p-values when analyzing extremely large datasets is crucial. For this purpose, we explored 

effect sizes. However, to the best of our knowledge, effect size measures have not been 

suggested for the case of a logistic regression when we are comparing effects of two treatments 

within two different categories of a variable. To handle such a situation, we suggested an 

extension to Cohen’s h effect size measure and demonstrated its use with the help of a case 

study using NCDB as an example. We proved its utility using machine learning tools such as 

ARM and NBC. We suggest using this modified version of Cohen’s h for large databases when 

using logistic regression and comparing multiple treatments across different categories of 

predictor variables. 

7.  Discussion  

The study aimed to address critical gaps in the existing literature related to the analysis 

of large electronic health record (EHR) databases, sample selection methods for such 

databases, and the over-reliance on p-values for drawing clinical inferences. By doing so, it 

sought to provide valuable insights into the limitations of p-values in the context of large 

sample sizes and propose a novel effect size measure tailored for logistic regression. 

Furthermore, the study aimed to validate the effectiveness of the proposed effect size measure 

using machine learning techniques. 
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The first research question focused on the clinical relevance of p-values when dealing 

with sampling from large databases. It is well-known that large sample sizes can lead to 

statistically significant p-values, even when the observed effect sizes are trivial or lack clinical 

importance. The study's objective was to demonstrate this phenomenon when analyzing large 

medical databases, which is critical in guiding researchers to avoid misinterpreting significant 

p-values as clinically meaningful results. By highlighting the limitations of relying solely on 

p-values, the study encourages researchers to adopt a more comprehensive approach that 

includes effect sizes for a more nuanced interpretation of results. For large databases, in 

general, even if the large number of comparisons are subjected to the most stringent procedure 

of controlling Type I error i.e., Bonferroni adjustment, let alone less stringent procedures like 

Holm, Hochberg, Hommel, and Benjamini-Hochberg, will result in highly significant p-values. 

The second research question sought to explore the clinical relevance of effect sizes 

compared to p-values. Effect sizes provide a quantitative measure of the magnitude of an 

observed effect, indicating the practical importance of a finding. The study recognized the 

value of effect sizes in determining clinical significance, especially when dealing with large 

samples. By proposing a novel effect size measure specifically designed for logistic regression, 

the study aimed to overcome the limitations of p-values and offer a more meaningful and 

informative measure for interpreting results. 

The study's primary objective was to propose and validate a novel effect size measure 

for logistic regression using machine learning techniques. Machine learning methods, 

specifically, association rule mining and Naïve Bayes classifier served as complementary tools 

to corroborate the findings obtained from the effect size measure. The validation process aimed 

to strengthen the credibility of the proposed measure and ensure its applicability in real-world 

scenarios. 

The study's findings shed light on the importance of considering both p-values and 

effect sizes in data analysis. It emphasized that large sample sizes can lead to significant p-

values without necessarily indicating clinical relevance. The proposed novel effect size 

measure offered a valuable alternative for assessing practical significance, particularly in 

logistic regression models. The validation through machine learning techniques provided 

additional support for the effectiveness and reliability of the novel effect size measure. 

7.1. Baseline characteristics  

The baseline characteristics of the selected study population provided valuable insights 

into the distribution of breast cancer surgery types and the patient demographics. The majority 

of patients (approximately 60%) underwent lumpectomy, followed by 28% who received 

mastectomy without reconstruction and 12% who underwent mastectomy with reconstruction. 

While the proportion of missing surgery information was minimal (around 1%), it is essential 

for future studies to address and minimize missing data to ensure the completeness and 

accuracy of the analysis. 

One of the key findings of the study was the prominence of the age group between 50 

and 65 years, as it received the highest proportion of breast cancer surgeries. Within this age 

group, lumpectomy was the most common surgery type, followed by mastectomy with 

reconstruction. This observation aligns with the current clinical guidelines, which often 

recommend lumpectomy as a preferred option for early-stage breast cancer in older patients 

due to its less invasive nature and potential for better cosmetic outcomes Pusic et al. (1999).  
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It is essential to recognize the limitations of the study, including potential selection bias 

and generalizability. The study population may not be fully representative of the broader breast 

cancer patient population, particularly in settings with different healthcare systems or 

demographics. Researchers should consider such factors when interpreting and applying the 

study's findings to diverse patient populations.  

7.2. Logistics regression – odds ratio and p-value  

The findings from the logistic regression analysis revealed highly significant p-values 

(< 10-5) for all the variables under investigation. Such high significance levels might lead one 

to believe that all predictor variables have a strong impact on the outcome (surgery types). 

However, a closer examination of the odds ratios indicated that, except for the stage of cancer, 

none of the other variables demonstrated odds ratios greater than 1.5. This observation suggests 

that most of the predictor variables might not have a substantial effect on the choice of surgery 

types, except for the stage variable, which appears to be significantly associated with surgery 

types. 

One notable concern arising from the analysis is the occurrence of a statistical fallacy 

when highly significant p-values are accompanied by odds ratios close to 1. This implies that, 

despite the statistical significance, the observed effect sizes might be minimal or practically 

negligible. In the context of the study, this phenomenon is particularly evident in the 

comparison between age groups and surgery types received. Although the p-values suggest a 

significant association, the odds ratios close to 1 indicate that age groups may not play a 

substantial role in determining the choice of surgery. 

Relying solely on p-values to draw conclusions can be misleading, as highlighted by 

the findings. Focusing solely on the significance levels without considering the effect sizes 

might lead to incorrect interpretations of significant differences. It is essential to consider both 

the statistical significance and the practical significance (effect sizes) of the predictor variables 

to gain a comprehensive understanding of their impact on the outcome. 

To avoid this statistical fallacy and ensure a more meaningful interpretation of the 

results, researchers should adopt a more holistic approach that considers both p-values and 

effect sizes. By considering the magnitude and direction of the effect sizes, researchers can 

better understand the clinical relevance of the predictor variables in relation to the outcome of 

interest. 

Furthermore, the study underscores the importance of interpreting logistic regression 

results in the context of the research question and the clinical significance of the variables under 

investigation. While highly significant p-values are essential in identifying potential 

associations, they should not be the sole basis for decision-making or drawing conclusions. 

Instead, researchers should use them as a starting point to explore effect sizes and consider the 

practical implications of the findings. 

7.3. Effect sizes  

The analysis of effect sizes provided valuable insights into the magnitude and clinical 

relevance of the associations between predictor variables and surgery types in breast cancer 

patients. The effect sizes demonstrated that patients with Stage II and Stage III breast cancer 

had significantly higher chances of receiving mastectomy without reconstruction (MTnR) 



 R. LELE, A. SETH, S. PATEL, J. PAN, M. B. RAO AND S. N. RAI [SPL. PROC. 200 

compared to lumpectomy (LT) when compared to patients with Stage I breast cancer. The large 

effect sizes of 3.22 and 7.16 for Stage II and Stage III, respectively, indicated a substantial 

impact of cancer stage on the choice of surgery type. These findings align with clinical practice, 

as more advanced stages of cancer often require more extensive surgical interventions. 

However, apart from the stage of cancer, the analysis of effect sizes revealed that other 

predictor variables did not show a significant association with surgery types. Effect sizes not 

being high for these comparisons indicated that variables such as age group, race, insurance 

status, facility type, analytic stage, and great circle distance might not have a considerable 

impact on the choice of surgery type. It is crucial to consider these results when making 

treatment decisions and designing interventions, as they highlight the relative importance of 

different predictors in guiding surgical decisions for breast cancer patients. 

An interesting finding emerged when comparing lumpectomy (LT) vs. mastectomy 

with reconstruction (MTR) within different age groups. The effect size of -4.01 for the age 

group > 65 years indicated a significantly lower chance of receiving lumpectomy compared to 

patients in the age group 40-50 years. This observation suggests that age plays a critical role in 

determining the choice of surgical treatment, and older patients are more likely to undergo 

mastectomy with reconstruction. These insights can help inform patient counseling and shared 

decision-making, enabling healthcare providers to better tailor treatment plans based on age-

related preferences and concerns. 

Moreover, the discussion emphasizes the added value of incorporating effect sizes 

alongside p-values in analyzing large datasets. While p-values indicate statistical significance, 

they might not fully convey the practical relevance of the findings. In contrast, effect sizes 

provide a quantitative measure of the strength of the associations, allowing researchers to 

assess the clinical significance of the predictor variables. The finding that only the stage of 

cancer showed significant associations based on both odds ratios and effect sizes suggests that 

effect sizes serve as a more robust tool for identifying clinically relevant relationships. 

Using effect sizes in conjunction with p-values in the analysis of large datasets is 

suggested as a more statistically sound approach. By combining these measures, researchers 

can gain a more comprehensive understanding of the study results, identify meaningful 

associations, and avoid drawing conclusions based solely on statistical significance. This 

approach ensures that the reported findings have practical implications in clinical decision-

making and can guide evidence-based practices. 

The effect size measure proposed in this study was developed based on breast cancer 

data from the National Cancer Database (NCDB). To ensure its broader applicability, the 

robustness of this measure, along with the recommended conventions for interpretation, needs 

to be thoroughly investigated across various types of cancer and in diverse medical databases. 

Only through such comprehensive validation can the suggested novel effect size measure be 

established as a globally applicable and reliable metric for analyzing large medical datasets. 

7.4. Naïve Bayes classifier (NBC)  

The NBC results provide valuable insights into the relationship between predictor 

variables and surgery types in breast cancer patients. The findings show that the 

misclassification proportion for the stage of cancer is the lowest at 35%, and the corresponding 

accuracy is the highest at 65%. These results align with previous arguments that the stage of 
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cancer is the most influential variable associated with surgery types, indicating that patients' 

cancer stage significantly impacts the choice of surgical treatment. 

The variable importance plot further supports the importance of the stage of cancer in 

determining surgery types. The plot reveals that the stage variable is the most critical factor 

associated with lumpectomy (LT) and mastectomy without reconstruction (MTnR). 

Additionally, the stage variable is the second most important variable linked to mastectomy 

with reconstruction (MTR). These results emphasize the significance of cancer staging in 

guiding surgical decisions for breast cancer patients. 

Interestingly, the p-values indicate highly significant associations for surgery types 

with all predictor variables. However, the odds ratios are close to 1, suggesting that the 

observed statistical significance might not translate into substantial clinical relevance. This 

discrepancy between statistical significance and practical significance can lead to the statistical 

fallacy discussed earlier, where highly significant p-values might not provide meaningful 

insights into the impact of predictor variables on surgery types. This highlights the importance 

of using effect sizes, as demonstrated in the modified effect sizes, to assess the clinical 

relevance of the associations. 

The modified effect sizes demonstrate a highly significant association between the stage 

of cancer and surgery types, as well as one of the age groups in the comparison between LT 

and MTR. These effect sizes provide a more accurate and clinically meaningful measure of the 

associations, helping researchers understand the practical implications of the predictor 

variables in determining surgical choices for breast cancer patients. 

The consistency of the significant association between the stage of cancer and surgery 

types across the Naïve Bayes Classifier, ARM, and other methods reinforces the robustness of 

the findings. These complementary techniques lend additional support to the conclusion that 

the stage of cancer is the most critical predictor variable influencing surgery types. 

Overall, the study contributed to the growing body of literature on statistical analysis 

methods, offering insights into how to avoid misinterpretations and ensure more robust and 

clinically meaningful inferences. By addressing the gaps in the existing literature and proposing 

a novel effect size measure, this research provides valuable guidance to researchers, helping 

them make informed decisions and draw more accurate conclusions from large EHR databases. 
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