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Abstract
Financial markets represent a prototypical example of complex systems in which a

large number of heterogeneous agents are involved in mutual interactions (namely, trading
assets with each other) each having a specific goal (maximizing their own profit). However,
despite the unpredictability inherent in the individual components, the system as a whole
can exhibit universal features that are invariant across different markets, asset classes and
period of observation. One of the most prominent examples of such “stylized facts” is
the appearance of fat tails in distributions of price fluctuations, often referred to as the
inverse-cubic law. However, as such features have mostly been reported in studies using
low-resolution data, we look for them using high-frequency data of equities trading in the
National Stock Exchange of India, one of the world’s leading financial markets. We find that
the distribution of trade sizes (the number of stock units involved in a single transaction)
possess heavy tails, decaying as a power law with a characteristic exponent. Moreover,
the distribution is in general stationary for the market as a whole, even though those of
individual stocks may differ significantly from one period to the next. We also investigate
the distribution of waiting times between successive trades and find it to be decaying slower
than exponential in the case of individual stocks. We relate this to the frequent occurrences
in succession of transactions involving large returns (price changes). The correlation between
the intervals separating successive trades and the magnitude of price fluctuations that we
observe implies that the distributions of the waiting times and that of step lengths in the
walk executed by the price of a financial asset may not be completely independent. We also
find that the cumulative volatility of price movements increases linearly with time within
a trading day, but with deviation from linearity at the ends. This suggests that the non-
Gaussian character of the return distribution (reflected in the inverse cubic law) arises from
the significant volume of end-of-day trading.
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1. Introduction

Financial markets are one of the best known examples of complex systems which are
characterized by a large number of interacting components and exhibiting nonlinear dy-
namics that is inherently unpredictable (Sinha et al. (2010)). Even though deterministic
descriptions of the time evolution of individual components may not lead easily to an under-
standing of how an assembly of such components will behave, paradoxically the interactions
between many constituents may make it possible to obtain well-defined statistical properties
of the system as a whole, i.e., the market (Sinha et al. (2016)). Indeed, robust statistical fea-
tures have been reported for the trading dynamics of different stock markets, notable among
them being the so-called “inverse cubic law” describing the nature of the distributions of
fluctuations in stock prices (and market indices) in developed (Lux (1996)), as well as, de-
veloping economies (Pan & Sinha (2007) and Pan & Sinha (2008)). In general, distributions
having heavy tails have been reported for price fluctuations seen across many different asset
classes, including currency exchange rates (Chakraborty et al. (2018) and Chakraborty et
al. (2020)) and cryptocurrencies such as bitcoin (Dixit et al. (2015)).

Given the price pt of some stock at time t, price fluctuations are characterized in terms
of logarithmic returns or log-returns, viz.,

rt = ln pt − ln pt−∆t, (1)

where ∆t is the time interval separating the two prices (Figure 1). The variation in the
fluctuations of price of a stock is defined in terms of volatility, defined as the variance of
log-returns, viz.,

σ2
t = ⟨r2

t ⟩ − ⟨rt⟩2. (2)

If qi denotes the number of stocks traded in the i-th transaction (also referred to as the trade
size) then the volume of stocks V∆t traded over a time interval [t, t + ∆t] is defined as

Vt,∆t =
Nt,∆t∑
i=1

qi, (3)

where Nt,∆t is the number of trades that have occurred during the interval [t, t + ∆t]. The
above relation implies that quantities characterizing a trading event, viz., trade sizes, trading
volumes and number of trades are not independent of each other.

Most early studies of the empirical statistical properties of markets have used daily
(or end of day) trade data which does not take into consideration the dynamical behavior
of intra-day trading (Vijayraghavan & Sinha (2011)). In recent times, the availability of
high-frequency (HF) data containing information about every transaction taking place in
the market has made it possible to uncover the properties of financial markets at the highest
possible resolution (Dacorogna et al. (2001)). In general, empirical analysis using such
data can reveal features that are not possible to observe using data collected at temporal
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Figure 1: Schematic figure illustrating the time-evolution of price p(t) and its
fluctuation, measured as log-return r(t), of an asset. Price changes every time a
trade occurs, the time between two successive trades being denoted as τw.

resolutions of a single day. For example, the transactions in a stock market do not occur at
regularly spaced intervals, implying that the events defining transactions of an asset could
themselves be a stochastic process with a given distribution of waiting times τw, which are
defined as the duration between two successive transactions. Motivated by this, we have used
the HF equities trading data of the National Stock Exchange (NSE) of India (NSE (2020))
to uncover its principal statistical features. We focus on properties of the market as a whole,
as well as, that of individual stocks, e.g., the distribution of trade sizes, the distribution of
waiting times between two successive trades, as well as the relation between price fluctuations
and waiting times. Our study has implications for the current understanding of the dynamics
of a developing market, in particular, the intra-day behavior of trades and price movements,
as well as, in modeling such behavior using the tools of statistical physics. Our paper is
organized as follows. In Section 2, we briefly describe the data used in our analysis. The
results are described in Section 3, with successive subsections dealing with distributions of
trade sizes, waiting times, logarithmic returns and their inter-relations. We conclude with
an outline of the main findings in Section 4.

2. Description of the Data

In order to study the statistical properties of NSE, we use tick-by-tick HF data for the
month of December in each year during the period 1999 to 2012 (the reason for focusing
on a particular month is to enable comparison between the behavior seen in different years
without the confounding factor of intra-annual seasonal variations). Note that the HF data
comes with its own set of challenges, e.g., overwhelming data size, unevenly spaced time



188 R K SINGH AND SITABHRA SINHA [SPL. PROC.

series, etc. This is visible from a small sample of the data set for December 2003 shown
below:

20031201|MTNL|09:56:29|122.20|10
20031201|MTNL|09:56:29|122.25|50
20031201|MTNL|09:56:29|122.30|40
20031201|SATYAMCOMP|09:56:30|335.25|1000
20031201|SAIL|09:56:30|42.70|700
20031201|M&M|09:56:30|355.95|100
20031201|SATYAMCOMP|09:56:30|335.25|500
20031201|SATYAMCOMP|09:56:30|335.25|100
20031201|RAINCALCIN|09:56:30|25.40|500
20031201|VDOCONINTL|09:56:30|78.85|70

where the columns separated by “|” represent respectively the date, name of the company
whose equity is being traded, the time of the transaction, price per stock of the equity traded,
and the number of stocks that changed hands during the transaction (i.e., the trade size q).

It can be observed from the above sample that many transactions share the same time-
stamp. This is because the temporal resolution of recording the transactions is 1 second, so
that if two transactions occur within a duration of less than a second of each other, they will
have the same time-stamp. However, the ordering of transactions is reported in the correct
time-sorted order. For the purpose of the present analysis, we assume that the transactions
sharing the same time-stamp take place at the same instant. As the market is open for the
trading of common stocks only between 0950 hours and 1530 hours, the results reported here
are obtained by exclusively considering trades that took place between 0950 hours and 1530
hours on a given day.

In order to study the properties of individual stocks we choose four representative
stocks, viz., HDFCBANK (Finance sector), INFOSY S (Infotech sector), RELIANCE
(Energy sector) and SUNPHARMA (Pharmaceutical sector), as these belong to a few of
the most important industrial sectors in NSE in terms of market capitalization. We show in
Figure 2 the variation of price p(t), returns r(t) and trade size q(t) as a function of time for
RELIANCE for the first 30 minutes of trading on December 1, 2005 as a typical example
of the financial time series.

3. Results

3.1. Distribution of Trade Sizes

We report the cumulative probability distribution P (Q ≥ q) of the trade sizes q for
the entire market (i.e., aggregating over all equities traded) for the month of December for
years from 1999 to 2012 in Figure 3. We see that each of the distributions (corresponding
to every year between 1999-2012) when shown on a log-log graph has a substantial linear
portion, implying that the tails for the distribution of trade sizes calculated over the entire
market follows a power law.
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Figure 2: Representative time-series of RELIANCE stock for 30 minutes begin-
ning at 0950 hrs on December 1, 2005 showing (a) price p(t) of the stock, (b)
log-returns r(t), and (c) trade size q(t) as a function of time. Time is measured
in seconds, with the origin (0) set at 0950 hrs.
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Figure 3: Cumulative probability distribution P (Q ≤ q) of the trade sizes q for
NSE for the month of December for the years 1999 to 2012. Note the doubly
logarithmic axis of the graphs, which means that a linearly decaying tail implies
the existence of power-law decay of the distribution (the line represents a power-
law fit with exponent 1.6).

Figure 4 shows the distribution of trade sizes q for equities of the four representative
companies for the month of December in the years 2003, 2007 and 2010. It is evident from
the figure that the tails of the distributions of each of the stocks also exhibit power law
decay. Hence, the tails of the distribution of the trade sizes q are of the form:

P (Q ≥ q) ∼ q1−α, (4)

where α is the exponent characterizing the power law distribution. The maximum likelihood
estimates of the exponents (Clauset et al. (2009)) are shown in Figure 5. It is seen from
Figure 5(a) that α ≤ 3 for almost all periods for the entire market (except 2003). This
implies that for these distributions, moments other than the first do not exist. As this
property holds true for almost the entire period under consideration, we can say that the
distribution of trade sizes for the market is stationary, in the sense that it is Lévy stable with
second and higher moments diverging. However, this is not true for the case of individual
stocks, as seen from Figure 5 (b), where we see that the values taken by α for different stocks
vary between 2 and 4. In addition, values taken by α for a particular stock exhibit widely
different values depending on the period at which it is being observed, thus suggesting that
the statistical behavior of trading dynamics for individual equities is non-stationary.

3.2. Distributions of waiting times and price fluctuations

An important quantity associated with a given stock is its price p(t) at any given time t
and which generally fluctuates over time. A generic time-series representing price variations
of a given equity is shown in Figure 6. We see in panel (a) that the price p(t) at time
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Figure 4: Cumulative probability distribution of trade sizes q for the equities of
(a) HDFCBANK, (b) INFOSY S, (c) RELIANCE, and (d) SUNPHARMA. The
distributions are shown for the month of December for the years 2003 (black
squares), 2007 (red circles) and 2010 (blue triangles). As in the case of the
entire market, the distributions of trade sizes for individual equities also exhibit
a power law form.
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Figure 5: Maximum likelihood estimates of the exponents characterizing the
power law nature of the tail for the distribution of trade sizes for (a) the entire
market and (b) the equities of HDFCBANK (black squares), INFOSY S (red
circles), RELIANCE (blue triangles), and SUNPHARMA (maroon inverted tri-
angles), for the month of December for all years between 1999 to 2012. Note
that the data for INFOSY S was not available for the years 2011 and 2012. Bars
represent the error in estimating the exponents, obtained using bootstrap tech-
nique. The horizontal broken line indicates α = 3 which demarcates distributions
with Levy-stable nature from those that will eventually converge to a Gaussian.

t and at time t + τw can be same or different, where τw is the waiting time between the
two transactions. The tick-by-tick log-return associated with the successive price changes is
measured as

r(t) = ln p(t) − ln p(t − τw) (5)

and is shown in Figure 6 (b). The random walk nature of price changes is easily seen from
the figure, and the presence of irregular waiting times τw makes it an effectively continuous
time process. Characterizing the distribution of waiting times is of fundamental importance
in order to understand the price dynamics of a given asset. For that purpose, we show the
distribution of waiting times for RELIANCE for the month of December 2005 in Figure 7.

It can be seen that the distribution of waiting times P (τ > τw) cannot be fit by a single
exponential distribution having a characteristic period ⟨τw⟩. This implies that the system
has inherent long-range memory and that the occurrence of successive transactions are not
independent events. This becomes clear upon fitting the empirical distribution of waiting
times with a theoretical curve having the form of a sum of exponentials, viz.,

P (τ ≥ τw) =
∑

i

ai exp(−(τw/bi)). (6)
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Figure 6: A magnified view of the time series shown in Figure 2 indicating
that several transactions can share the same time stamp because the temporal
resolution of the recording is limited to 1 second. The waiting time τw between
two successive trades specifies an interval during which no transaction takes
place.
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Figure 7: Cumulative probability distribution of waiting times for successive
trades in RELIANCE stock for the month of December in 2005. The empirically
obtained distribution (circles) has been fitted with an exponential distribution
(solid curve) having the same mean waiting time ⟨τw⟩ ≈ 0.453. The inset shows a
fit with a theoretical distribution that is a sum of three exponentially decaying
curves ∑

i ai exp(−(τw/bi)) having different characteristic times τw/bi (i = 1, 2, 3).

Such theoretical distributions have been used earlier to describe systems having memory
(Goychuk (2009)). The values of the coefficients used to fit the data shown in Figure 7 are
a1 = 0.897, a2 = 0.1, a3 = 0.003; b1 = 1, b2 = 0.4, b3 = 0.2.

We also see from Figure 8 that the distribution of returns Pr(X ≥ x) has power law
decaying tails with exponent close to 3. This is in accordance with the well-known inverse
cubic law of price fluctuations reported for financial markets (Lux (1996), Gopikrishnan et
al. (1998) and Pan & Sinha (2007)).

3.3. Relation between price fluctuations and waiting times

The relation between price fluctuations and waiting times can be discerned from Fig-
ure 9 which shows a scatter plot of log-returns r measured for successive transactions against
the corresponding time-interval τw between them for a particular equity. It can be observed
from the diagram that transactions resulting in large price changes generally occur closer to
each other. To further quantify this observed behavior we look at the distribution of the
log-returns conditioned on waiting times, i.e., P (r|τw) in Figure 10. It is evident from the
distribution P (r|τw) that larger returns generally occur close to each other in time (Scalas
(2006)), thus suggesting that the waiting-times and returns may not be independent of each
other. This property is also observed for different stocks and for different years. This has
implications towards the modeling of price dynamics by continuous time random walks, as
market transactions may be better modeled by walks whose step lengths are not chosen
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Figure 8: Distribution of log-returns of RELIANCE (each return being measured
over an interval of 1 tick) for the month of December 2005.

Figure 9: Scatter plot of waiting times τw between successive trades and the
corresponding log-return r of RELIANCE shares for all transactions that took
place in December 2005.
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Figure 10: Conditional distribution P (r|τw) of log-returns r(t) conditioned on the
waiting times τw for successive trades in equities of RELIANCE that were carried
out in December 2005.

independently of the waiting time between successive steps, contrary to what is generally
assumed (Merton (1976) and Masoliver et al. (2000)).

In order to characterize the dynamics of intra-day trading we define the variance of
log-returns over an interval ∆t as:

σ2(t) = 1
N∆t(t) − 1

∑
i

(ri − ⟨ri⟩)2, (7)

where N∆t(t) is the number of trades occurring in the interval of length ∆t and ⟨ri⟩ is the
average return over the interval. We observe from Figure 11 that the variance over the
intervals is nearly independent of the length of the interval ∆t, and find that the scaled
cumulative variance σ2

c (t)∆t is independent of ∆t, as shown in Figure 12. In addition, we
also find that the cumulative variance grows linearly with time, thus implying that for the
major part of the day, price fluctuations of individual stocks are inherently Gaussian. We
can see, however, a perceptible deviation from linearity at the beginning of the trading day,
and more prominently towards its end. This suggests that the non-Gaussian nature of the
return distribution, as evident from the heavy tails characterized by the inverse cubic law,
is possibly an outcome of the significant volume of transactions that occur at either end of
a trading day.
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Figure 11: Intra-day volatility σ2(t) (measured by variance of the log-returns)
during a period ∆t shown as a function of time of day t for RELIANCE on
December 1, 2005, for different intervals ∆t.

4. Conclusions

In this paper we investigate the statistical behavior of financial markets which con-
stitute prototypical examples of complex systems having large number of components with
unpredictable dynamics. Despite such unpredictability, statistically regular properties for
the entire system can be observed as has indeed been reported for many different observ-
ables associated with market dynamics. Notable among such invariant features are the power
laws describing the tails in the distributions of asset price fluctuations, as well as, the dis-
tributions of trade sizes. However, most early studies reporting such features have used
low-resolution daily data, and thus do not take into account the information about intra-day
trading. Motivated by this, in this paper we have reported our preliminary analysis of the
high-frequency equities trading data obtained from the National Stock Exchange of India.
Such data provides information about market movements at the highest possible resolution
thereby revealing vital clues for understanding the underlying dynamics of this complex
system.

Using data for the month of December for all years between 1999-2012 we show that
gross statistical properties of the market as a whole are in general stationary, even though
those of its constituents, i.e., equities of individual companies, may not be. In particular, we
see that the distribution of trade sizes aggregated over all equities does not change its nature
over time, with the exponent characterizing the power law nature of the tails taking values
from the interval (2, 3), i.e., it is Lévy stable with second and higher moments diverging.
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Figure 12: Scaled cumulative variance of the log-returns for intra-day trading
σ2

c (t)∆t as a function of time of day t for RELIANCE on December 1, 2005. It
is observed that scaling by interval ∆t over which the variance is calculated, the
curves for cumulative variance σ2

c (t) for different choices of ∆t overlap.

However, for individual stocks, this distribution can differ significantly between one period
and another. We also find that waiting-times of transactions of individual stocks exhibit
non-exponential character, and are related to log-returns in that transactions involving larger
returns occur close to each other. This implies that the distribution of waiting times and step
lengths of the random walk executed by a financial asset are not independent of each other,
as has been assumed in many studies. We also find that cumulative volatility of returns
increases linearly with time within a day. This implies that for a major part of the day,
price fluctuations are Gaussian in nature. However, a significant deviation from linearity
is seen towards the ends, suggesting that the genesis of the heavy-tailed nature of return
distributions (reflected in the inverse cubic law) lies in the significant volume of trade that
occurs at the beginning and towards the end of a trading day.
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Dacorogna, M. M., Gençay, R., Müller, U. A., Olsen, R. B. and Pictet, O. V. (2001). An
Introduction to High-frequency Finance. Academic Press, San Diego.

Easwaran, S., Dixit, M. and Sinha, S. (2015). Bitcoin dynamics: The inverse square law of
price fluctuations and other stylized facts. In Econophysics and Data Driven Modelling
of Market Dynamics, Springer, Cham, 121–128.

Gopikrishnan, P., Meyer, M., Amaral, L. A. N. and Stanley, H. E. (1998). Inverse cubic
law for the distribution of stock price variations. European Physical Journal B, 3(2),
139–140.

Goychuk, I. (2009) Viscoelastic subdiffusion: From anomalous to normal. Physical Review
E, 80(4), 046125.

Lux, T. (1996). The stable Paretian hypothesis and the frequency of large returns: an
examination of major German stocks. Applied Financial Economics, 6(6), 463–475.
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