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Abstract 

It has been established in many studies that genes interact in complex networks among 
themselves and with various environmental factors to cause diseases. In this article, we discuss 
how realistic statistical models for case-control genotype data can be developed using 
nonparametric Bayesian techniques founded on hierarchies of Dirichlet process based mixture 
models for studying such complex interaction structures. Suitable Bayesian hypothesis testing 
procedures need to be developed for uncovering the roles of genes, environment and their 
interactions in case-control studies. Empowered with an efficient TMCMC based parallelisable 
algorithm, application of our ideas to data simulated under five different setups of disease-
gene-environment association as well as a real, Myocardial Infarction (MI) dataset yielded 
interesting results that not only agrees with the existing works in this area, but also gives some 
novel insights into the genetic interactions underlying the disease.   

Keywords: Hierarchical Dirichlet process; Case-control study; Myocardial infarction; Parallel 
processing; Transformation based MCMC; Gene-gene and gene-environment interaction. 

1. Introduction  
 
Present day biomedical research is pointing towards the significance of interactions 

between genes and the environment in causing complex diseases. According to Hunter (2005), 
considering the contributions of genes and environment to a disease separately, ignoring their 
interactions, might lead to incorrect estimation of the disease proportion that is explained by 
these factors. The additive linear models or the logistic model based approaches, (see for 
example Ahn et al. (2013), Wen and Stephens (2014) and Liu, Ma and Amos (2015) resting on 
Fisher’s definition of interaction result in the inclusion of a large number of interaction terms 
even with a moderate number of genetic and environmental factors. The existing Bayesian 
techniques like BEAM, EpiBN study interaction by identifying the SNPs that influence the 
disease risk given particular allele combinations, ignoring the genes as functional units. In a 
nutshell, none of the existing methods, classical or Bayesian, attempts simultaneous modelling 
of the uncertainties associated with the genes as the functional units along with the interactions, 
both at SNP and gene level through unified statistical models.  

The fact that the genetic data may arise from a stratified population with an unknown 
number of subpopulations makes the problem all the more demanding. The Bayesian 
semiparametric model proposed by Bhattacharya and Bhattacharya (2020 a) takes care of the 
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above mentioned problems by proposing a model based on Dirichlet Processes (DP) and a 
hierarchical matrix-normal distribution, encapsulating the mechanism of dependence among 
genes under environmental effects with respect to genotype data arising out of a possibly 
stratified population.  

As the environmental variables may affect the gene-gene interactions of individuals 
differently, depending on the extent and type of their exposure to the environmental factors, in 
this article, we introduce a novel Bayesian nonparametric model for gene-gene and gene-
environment interactions for case-control genotype data that solves the issues detailed above. 
Our model represents the individual genotype data as finite mixtures based on Dirichlet 
processes as before, but instead of the hierarchical matrix normal distribution, we introduce a 
hierarchy of Dirichlet processes that create appropriate nonparametric dependence among the 
genes induced by the environment. We develop a novel and highly parallelisable Markov Chain 
Monte Carlo (MCMC) methodology that combines the efficiencies of modern parallel 
computing infrastructure, Gibbs steps, retrospective sampling methods, and Transformation 
based Markov Chain Monte Carlo (TMCMC). Application of our model and methods to five 
different simulation experiments for the validation purpose yielded quite encouraging results. 
Application to a real myocardial infarction (MI) case-control type dataset yielded results which 
broadly agree with the results reported in the literature, and also provided new and interesting 
insights into the mechanisms of 4 gene-gene and gene-environment interactions.  

The rest of our paper is structured as follows. We introduce our HDP-based Bayesian 
nonparametric gene-gene and gene-environment interaction model in Section 2, and in Section 
3 we extend the Bayesian hypothesis testing procedures proposed in Bhattacharya and 
Bhattacharya (2020 a) to learn about the roles of genes, environmental variables and their 
interactions in case-control studies, with respect to our current HDP model. In Section 4 we 
briefly discuss the results of application of our model and methodologies to 5 biologically 
realistic simulated data sets, the details of which are provided in section S-3 of the supplement 
in Bhattacharya and Bhattacharya (2020 b). In Section 5, we analyse the real MI dataset using 
our ideas, demonstrating quite interesting and insightful outcome. Finally, we summarize our 
work with concluding remarks in Section 6.  

 
2. Bayesian nonparametric model based on hierarchies of Dirichlet process for gene-
gene and gene-environment interactions 
 
2.1. Case-control genotype data 

 
For s = 1, 2 denoting the two chromosomes, let 𝑥!"#$% = 1 and 𝑥!"#$% = 0 indicate the 

presence and absence of the minor allele of the i-th individual belonging to the k-th group, for 
k = 0, 1, with k = 1 denoting case; at the r-th locus of j-th gene, where i = 1, . . . , 𝑁$; r = 1, . . 
. , 𝐿# and j = 1, . . . , J; let N = 𝑁& + 𝑁'. Let 𝐸" denote a set of environmental variables associated 
with the i-th individual. We now proceed to model this case-control genotype and the 
environmental data using our Bayesian semiparametric model, described in the next few 
sections. 

 
2.2. Mixture models based on Dirichlet processes 

 

Let 𝑥"#$%= (𝑥&"#$% 	, 𝑥'"#$%) and L = max (𝐿&, … , 𝐿(). We assume that for every triplet (i, 
j, k), 𝑋"#$ = (𝑥"#$&, …, 𝑥"#$)) have the mixture distribution 
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[𝑋"#$] = ∑ 𝜋*"#$∏ 𝑓(𝑥"#$%|𝑝*"#$%))
%+&

,
*+&                                                       (1) 

where 𝑓1. 3𝑝*"#$%4 is a Bernoulli mass function given by: 

𝑓1𝑥"#$%3𝑝*"#$%4 = 	𝑝*"#$%-
!
"#$%.-&"#$%(1 − 𝑝*"#$%)'/(-

!
"#$%.-&"#$%)            (2) 

In the above, M denotes the maximum number of mixture components and 𝑝*"#$% 
stands for the minor allele frequency at the r-th locus of the j-th gene for the i-th individual of 
the k-th case/control group.  

Allocation variables 𝑧"#$, with probability distribution 

[𝑧"#$ = 𝑚] = 𝜋*"#$,                                                                                                (3) 

for i = 1, . . . , 𝑁$ and m = 1, . . . , M, allow representation of (1) as 

[𝑋"#$|𝑧"#$] = ∏ 𝑓(𝑥"#$%|𝑝*"#$%))
%+&                                                                              (4) 

Following Majumdar et al. (2013), Bhattacharya and Bhattacharya (2018), we set 
𝜋*"#$ = 1/M, for m = 1, . . . , M, and for all (j, k). 

 
Letting 𝑝*"#$ = (𝑝*"#$&, … . , 𝑝*"#$)), we assume that 
 

𝑝&"#$, 𝑝'"#$,…, 𝑝,"#$ 𝑖𝑖𝑑~   𝐺"#$;                                                                            (5) 

 
𝐺"#$ ~ DP(𝛼2,"$, 𝐺4,#$)                                                                                         (6) 

 
where DP(𝛼2,"$, 𝐺4,#$) stands for Dirichlet process with expected probability measure 𝐺4,#$ 
having precision parameter 𝛼2,"$, with 

 
log(𝛼2,"$) = 𝜇2 + 𝛽2

5𝐸"$,                                                                                    (7) 

where 𝐸"$ is a d-dimensional vector of continuous environmental variable for the i-th individual 
in the k-th group, 𝛽2  is a d-dimensional vector of regression coefficients, and 𝜇2  is the intercept 
term. The model can be easily extended to include categorical environmental variables along 
with the continuous ones. 

2.3. Hierarchical Dirichlet processes to model the dependence between the genes and 
case-control status 
 
 We further assume that for k = 0, 1, 

 

𝐺4,#$ 	
𝑖𝑖𝑑
~ 	𝐷𝑃(𝛼2'$ , 𝐻$); j = 1,…, J,                                                                   (8) 

where log(𝛼2',$) = 𝜇2' + 𝛽2'
5𝐸$,                                                                    (9) 

 
with 𝐸$ =

&
6$
∑ 𝐸"$
6$
"+&                                                           (10) 
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We postulate the last level of hierarchy as 

𝐻$ 𝑖𝑖𝑑~  DP(𝛼7𝐻E); k = 0,1                (11) 

where log(𝛼7) = 𝜇7 + 𝛽7
5𝐸F,                                      (12) 

with 𝐸F = 	 8'.8!
'

                    (13) 

We specify the base probability measure 𝐻E as follows: for m = 1, . . . , M, i = 1, . . . , 
𝑁$, k = 0, 1, and r = 1, . . . , L, 

𝑝*"#$% 𝑖𝑖𝑑~  Beta (𝜈&, 𝜈'),                   (14) 

Under 𝐻E, where 𝜈&, 𝜈' > 0. 

Note that our model consists of one more level of hierarchy of Dirichlet processes than 
considered in the applications of Teh et al. (2006), who introduce hierarchical Dirichlet 
processes (HDP). For detailed discussion on the dependence structure induced by our hdp-
based model see Section 3 of Bhattacharya and Bhattacharya (2020 b). 

3. Detection of the roles of environment, genes and their interactions with respect to 
our hdp based model  

 
3.1.  Formulation of the tests and interpretation of their results 

To test if genes have any effect on case-control, we formulate the following hypotheses: 

𝐻4&: ℎ4# = ℎ&#; j = 1, . . . ,J,                   (15) 

versus  

𝐻&& : not 𝐻4&,                     (16) 

where ℎ4#(. ) = &
,
∑ ∏ 𝑓(. |𝑝*"'#$+4

%))#
%+&

,
*+&                               (17) 

    ℎ&#(. ) = &
,
∑ ∏ 𝑓(. |𝑝*"!#$+&

%))#
%+&

,
*+&                                     (18) 

In the above, for k = 0, 1, 𝑖9 is the index such that 𝑃,"$#$ =  {𝑝&"$#$ , 𝑝'"$#$ , … , 𝑝,"$#$} 
is an appropriate measure of central tendency (see Section 4.2.1 of Bhattacharya and 
Bhattacharya (2020 b)) of {𝑃,:#$=  {𝑝&:#$ , 𝑝':#$ , … , 𝑝,:#$}; i = 1, . . . , 𝑁$. 

3.1.1. Bayesian test for the significance of the environmental variables 
  
To check if the environmental variables are significant, we shall test the following: 

for l = 1, . . . , d,  

𝐻4';: 𝛽2; 	= 0 versus 𝐻&';: 𝛽2; ≠ 0,                   (19)  

𝐻4<;: 𝛽2'; 	= 0 versus 𝐻&';: 𝛽2'; ≠ 0,                   (20)  

and 𝐻4=;: 𝛽7; 	= 0 versus 𝐻&=;: 𝛽7; ≠ 0.                  (21)  
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3.1.2.  Bayesian test for significance of gene-gene interaction  
 

In order to test for gene-gene interaction, it is necessary to first reasonably define a 
measure of gene-gene interaction influenced by environmental variables. 

For our purpose, we first define 

𝑝*"#$ = 
∑ ?("#$%
)#
%*!

)#
                   (22) 

With the above definition, for subject i belonging to case-control group k, we consider 
the following covariance  

C(i, 𝑗&, 𝑗', k) = cov(logit(𝑝@"#!$"#!$), logit(𝑝@"#&$"#&$),               (23) 

as quantification of gene-gene dependence that accounts for population memberships of subject 
i with respect to genes 𝑗& and 𝑗', through 𝑧"#!$ and 𝑧"#&$. While implementing our model using 
our parallelised MCMC methodology, we simulate C(i, 𝑗&, 𝑗', k) at each iteration by generating 
{𝑝*"#$%: r = 1, . . . , 𝐿#} as many times as required from the respective full conditionals holding 
the remaining parameters fixed, and then compute the empirical covariance corresponding to 
(23) using the generated iid samples conditionally on the remaining parameters to approximate 
(23).  

Formulation of the Bayesian tests for gene-gene interactions  

To test for subject-wise gene-gene interaction, we consider the following tests:  

for i = 1, . . . , 𝑁$, k = 0, 1, and for𝑗&, 𝑗' ∈ {1, . . . , J},  

𝐻4A"#!#&$: C(i, 𝑗&, 𝑗', k) = 0 versus 𝐻&A"#!#&$: C(i, 𝑗&, 𝑗', k) ≠ 0.              (24) 

For some appropriate divergence measure, d, between two distributions, if 

 
𝑚𝑎𝑥

1 ≤ j ≤ J d(ℎ4#, ℎ&#), is significantly small with high posterior probability, then 𝐻4& is to be 
accepted. In case 𝐻4& is rejected, we go forward to perform various tests related to gene-gene 
and gene-environment interactions, enlisted in Sections 3.1.1. and 3.1.2. above. For 
interpretations and detailed discussion on the tests see Section 4.1.4 of Bhattacharya and 
Bhattacharya (2020 b). 

3.2.  Methodologies for implementing the Bayesian tests  

3.2.1.  Hypothesis testing based on clustering modes  

Here we exploit the concept of “central” clustering introduced by Mukhopadhyay et al. 
(2011). Briefly, central clustering may be interpreted as a suitable measure of central tendency 
of a set of clusterings.  

For k = 0, 1, let 𝑖$ denote the index of the central clusterings of 𝑃,"#$ = 
{𝑝&"#$ , 𝑝'"#$,…,	𝑝,"#$}, i = 1, . . . , 𝑁$. We then study the divergence between the two 
clusterings of 𝑃,"'#$+4 = {𝑝&"'#$+4, 𝑝'"'#$+4,…,	𝑝,"'#$+4}and 𝑃,"!#$+& = 
{𝑝&"!#$+&, 𝑝'"!#$+&,…,	𝑝,"!#$+&} , for j = 1, . . . , J.  
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Significantly large clustering distance between 𝑃,#$+4 and 𝑃,#$+&indicates rejection of	𝐻4, 
but insignificant clustering distance does not necessarily provide strong evidence in favour of 
the null. In this regard, Bhattacharya and Bhattacharya (2018) (see also Bhattacharya and 
Bhattacharya (2020 a)) argue that the Euclidean distance is an appropriate candidate to be 
tested for significance before arriving at the final conclusion. Briefly, we first compute the 
averages 𝑝*"#$ = ∑ 𝑝B:#$%/𝐿#

)#
%+& , then consider their logit transformations logit(𝑝*"#$) = log 

{𝑝*"#$/(1 − 𝑝*"#$)}. Then, we compute the Euclidean distance between the vectors  

logit(𝑃,"'#$+4) = {logit(𝑝&"'#$+4), logit(𝑝'"'#$+4),…, logit(𝑝C"'#$+4)} and 

logit(𝑃,"!#$+&) = {logit(𝑝&"!#$+&), logit(𝑝'"!#$+&),…, logit(𝑝C"!#$+&)} 

We denote the Euclidean distance associated with the j-th gene by 

𝑑8,# =	𝑑8,#(logit1𝑃,"'#$+44, logit(𝑃,"!#$+&)) 

and denote 
𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝐽  𝑑8,# by 𝑑∗8,#. 

3.2.2.   Formal Bayesian hypothesis testing procedure integrating the above 
developments 

In our problem, we need to test the following for reasonably small choices of ε’s: 

𝐻4,E∗: 𝑑∗ <	𝜀E∗  versus 𝐻&,E∗: 𝑑∗ ≥	𝜀E∗;                 (25) 

𝐻4,E∗,: 𝑑
∗
8 <	𝜀E∗,  versus 𝐻&,E∗,: 𝑑

∗
8 ≥	𝜀E∗,;                (26) 

For l = 1,2,...,d 

𝐻4,F-.: |𝛽2;| < 	 𝜀2; versus 𝐻&,F-.: |𝛽2;| ≥ 	 𝜀2;                (27) 

𝐻4,F-.: 3𝛽2'; 	3 < 	 𝜀2'; versus 𝐻&,F-'.	: 3𝛽2'; 	3 ≥ 	 𝜀2';                (28) 

𝐻4,F/.: |𝛽H;| < 	 𝜀7; versus 𝐻&,F0.: |𝛽H;| ≥ 	 𝜀7;                (29) 

and, for i = 1, . . . , 𝑁$, k = 0, 1, 𝑗&, 𝑗' ∈ {1, . . . , J}, 

𝐻4,I(:,#!,#&,9)	: |C(i, 𝑗&, 𝑗', k)	| < 	 𝜀I(:,#!,#&,9)	 versus 𝐻&,F1(3,#!,#&,5)	: 3𝛽I(:,#!,#&,9)	3 ≥ 	 𝜀I(:,#!,#&,9)	 
                      (30) 

If 𝐻4 is rejected in (25) or in (26), we could also test if the j-th gene is influential by testing, 
for j = 1, . . . , J, 𝐻4,EJ#:	𝑑]# <	𝜀EJ# versus 𝐻&,EJ#:	𝑑]# ≥	𝜀EJ#, where 𝑑]# = 𝑑](𝑃,"'#$+4, 𝑃,"!#$+&); 
we could also test 𝐻4,E,,#:	𝑑8,# <	𝜀E,,# versus 𝐻&,E,,#:	𝑑8,# ≥	𝜀E,,#. For the null model and 
choice of ε see Bhattacharya and Bhattacharya (2020 b). 

4. Simulation studies  
 
For simulation studies, we first generate realistic biological data for stratified 

population with known gene-environment interaction from the GENS2 software of Pinelli et 
al. (2012). To this data, we then apply our model and methodologies in an effort to detect gene-
environment interaction effects that are present in the data. We consider simulation studies 
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under 5 different true model set-ups: (a) presence of gene-gene and gene-environment 
interaction; (b) absence of genetic or gene-environmental interaction effect; (c) absence of 
genetic and gene-gene interaction effects but presence of environmental effect; (d) presence of 
genetic and gene-gene interaction effects but absence of environmental effect; and (e) 
independent and additive genetic and environmental effects.  

The details of our simulation experiments are provided in Section S-3 of the supplement 
of  Bhattacharya and Bhattacharya (2020 b). Here we briefly summarize the results of our 
experiments. In case (a), we correctly obtained clear significance of the influence of genetic 
effects. Also, 𝛽H; turned out to be very significant, demonstrating significant overall impact of 
the environmental variable on gene-gene interaction. The posteriors of the number of sub-
populations gave high probabilities to the correct number of sub populations in all the 5 
simulation experiments. Quite importantly, we demonstrate in cases (a), (d) and (e) where the 
genes are relevant, that our HDP model can detect disease predisposing loci (DPL) with more 
precision compared to the matrix-normal-inverse-Wishart model for gene-environment 
interactions proposed in Bhattacharya and Bhattacharya (2020A). In case (b) using our ideas 
in conjunction with significance testing in a simple logistic regression framework, we are 
correctly able to conclude that the genetic or gene-environmental effects are insignificant.  

5. Application of hdp based ideas to a real, case-control dataset on myocardial 
infarction  
 

We now consider application of our model and methods to a case-control dataset on 
early-onset of myocardial infarction (MI) from MI Gen study, obtained from the dbGaP 
database http://www.ncbi.nlm.nih.gov/gap.  

5.1. Data description 
 
The MI Gen data obtained from dbGaP consists of observations on presence/absence 

of minor alleles at 727478 SNP markers associated with 22 autosomes and the sex 
chromosomes of 2967 cases of early-onset myocardial infarction, 3075 age and sex matched 
controls. The average age at the time of MI was 41 years among the male cases and 47 years 
among the female cases. The data broadly represents a mixture of four sub-populations: 
Caucasian, Han Chinese, Japanese and Yoruban. Using the Ensembl human genome database 
(http://www.ensembl.org/) we could categorize 446765 markers out of 727478 with respect to 
37233 genes. As in Bhattacharya and Bhattacharya (2020 a) we considered 32 genes covering 
1251 loci, for 200 individuals. These 1251 loci include 33 SNPs that are believed to be 
associated with MI and also those that are believed to be associated with different 
cardiovascular end points like LDL cholesterol, smoking, blood pressure, body mass, etc. Other 
than the 33 SNPs, the remaining 1218 SNPs are not known to be associated with the disease 
(see Bhattacharya and Bhattacharya (2020 a)) for the details and the relevant references. 

5.2. Remarks on model implementation 
  
Our parallel MCMC algorithm detailed in Section S-2 of the supplement of 

Bhattacharya and Bhattacharya (2020 b), takes about 7 days to generate 30,000 iterations on 
our VMware consisting of 1 TB RAM, 60 double-threaded, 64-bit physical cores, each running 
at 2.5 GHz; 50 such cores were available to us. We discard the first 10, 000 iterations as burn-
in, using the subsequent 20,000 iterations for our Bayesian inference. Convergence is studied 
using informal convergence diagnostics such as trace plots. Some instances are provided in 
Section S-3 of the supplement of Bhattacharya and Bhattacharya (2020 b). 
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5.3.  Results of the real data analysis  

5.3.1.  Effect of the sex variable  

We obtain P(|𝛽2;| < 	 𝜀2; |Data) ≈ 0, P(3𝛽2'; 	3 < 	 𝜀2'; |Data) ≈ 0 and P(|𝛽H;| <
	𝜀7; |Data) ≈ 1. In other words, although 𝐸F (here E being the sex variable) is insignificant, both 
𝐸"$ and 𝐸$ are very significant. Thus, in this study, sex seems to play an important role in 
influencing gene-gene interaction. 

5.3.2.  Roles of individual genes  

With the clustering metric we obtained P(𝑑∗ <	𝜀E∗) ≈ 0.030 while that with the 
Euclidean distance we obtained P(𝑑∗8 <	𝜀E∗, |Data) ≈ 0.540. That is, the maximum of the 
gene-wise clustering metrics turns out to be significant, while the maximum of the gene-wise 
Euclidean metrics is seen to be insignificant. None of the individual genes turned out to be 
significant, for either the clustering metric or the Euclidean metric. The posterior probabilities 
of the null hypotheses (of no significant genetic influence) with respect to the clustering metric 
is shown in Figure 1. 

 

 

Figure 1: Posterior probability of no genetic effect with respect to clustering metric 

 

5.3.3.  Gene-gene interactions 

Figures 2(a) to 2 (d) show the typical gene-gene correlations representative of cases and 
controls in males and females. The colour intensities correspond to the absolute values of the 
correlations. Although the correlations are small in all the subjects, the tests of hypotheses 
reveal some interesting structures. Our tests indicate that for most of the subjects, at least one 
of the genes AP006216.10 and C6orf106 interact with every other gene. The subjects, for 
whom no significant genetic interactions involving AP006216.10 and C6orf106 were detected, 
turned out to be male cases, indicating that the lack of genetic interaction in these males might 
be associated with MI. On the other hand, the interactions of the genes AP006216.10 and 
C6orf106 with all the genes seemed to reduce the risk of the disease for the other subjects.  
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Thus, following this study, the gene-gene interactions need to be investigated further 
for their possible beneficial effect on the subjects against MI.  
 

 

Figure 2: Typical gene-gene posterior correlation plot for male cases and controls and 
female cases and controls 

 
5.3.4.  Posteriors of the number of sub-populations  

Figure 3 shows the posteriors of the number of sub-populations for the males and 
females associated with respectively. Observe that the posteriors are quite similar, with the 
mode at 3 and 4 components receiving the next highest probability. Thus, the 4 sub-
populations, irrespective of sex, are well supported by our model. 
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Figure 3: Typical posteriors of the number of components for males and females 

6. Summary and conclusion  
 
In this paper, we have proposed a novel Bayesian nonparametric gene-gene and gene-

environment interaction model based on hierarchies of Dirichlet processes. This model is a 
significant improvement over the existing work in this area, in the sense of much clear 
interpretability and accounting for subject-specific gene-gene interactions. We propose a novel 
parallel MCMC algorithm to implement our model (Sections S-1and S-2 of the supplementary 
material of Bhattacharya and Bhattacharya (2020 b)), that combines powerful technology with 
conditionally independent structures inherent within our HDP based model and efficient 
TMCMC methods. Applications of our ideas to biologically realistic datasets generated under 
5 different setups characterized by different combinations and structures associated with gene-
gene and gene environment interactions demonstrated encouraging performance of our model 
and methods. Our analysis of the real MI dataset yielded results that are broadly in agreement 
with the previous works on the same dataset. For example, in accordance with Bhattacharya 
and Bhattacharya (2020A) (see also Lucas et al. (2012)) we obtained strong impact of the sex 
variable, weak gene-gene correlations but no significant effect of the individual genes. But 
special mention must be reserved for our original finding that two genes, AP006216.10 and 
C6orf106, tend to fight the disease by their positive interaction with the remaining genes. 
Another interesting discovery that emerged from our analyses is that only in male cases all the 
gene-gene interactions were insignificant. These two findings seem to confirm the general 
belief that as compared to females, males are more vulnerable to heart attack.  
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