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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a technology for studying how our
brains respond to mental stimuli. It is interesting to note the potential developments of linear
models in the study of ‘design sequences’ employed for fMRI studies. At the design stage, one
is interested in developing a sequence of mental stimuli for collecting data in order to render
information about some ‘unknown’ yet ‘meaningful’ parameters under an assumed statistical
model. The simplest such model incorporates linear relation between ‘mean response’ and
the ‘parameters’ describing the effects of the stimuli, applied at regularly spaced time points
during the study period. In this paper, we introduce the linear model and discuss estimation
issues. In the process, we take up a study of relative performances of comparable design
sequences.

Key words: fMRI, Linear model; h-Parameters; Estimability; Information matrix; General-
ized variance; Average variance; Design issues.

1. Introduction

It is interesting to note that Statistics and Applications published, in as early as
2008, an article dealing with “event- related functional magnetic resonance imaging
. . . ”. In fMRI studies, the brain functions of the experimental subjects are captured through
response profiles at a number of instances. Each subject experiences onset of a stimulus at an
instant if the stimulus is ‘active’ [denoted by code ‘1’] at that instant; otherwise, the subject
is at ‘resting state’ [denoted by code ‘0’] at that instant. Each instant is defined as a compact
duration of ‘4 seconds’. At any instant, the brain voxel captures the cumulative effects of a
fixed (but unknown) parameter θ and other model parameters, known as h-parameters at the
current instant as well as at each of the immediate past ordered (K−1) instants - for some K
- whenever there has been an onset of active stimulus at any of these instances. The reader
familiar with the concept of ‘carry-over effects’ in the context of Repeated Measurement
Designs [RMDs] or Cross-Over Designs will find a similarity in the model description. [Vide
Shah and Sinha (1989)]. We will also mention about ‘circular models’ and for that we refer
to Kunert (1984).

An anonymous referee has aptly pointed out another related piece of work by Maus
et al. (2010).
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A more general scenario exhibits itself in terms of different stages of activation of the
brain stimuli, rather than just being ‘active’ - as coded by ‘1’ in the above. We refer to Kao
et al. (2008) for this and related considerations.

Below we introduce the linear (mean) model as has been described in the literature.
There is a ‘design sequence’ in the form of a collection of 1s and 0s of, say length n. We
denote it by Dn. As for example, for n = 8, the following describes an 8-point design:
D8 = [0, 1, 1, 0, 1, 1, 0, 1]. The implementation of the suggested design D8 is described below.
For any n, Dn is very much like D8. The linear model to be described below is developed
as a ’circular’ model - a well-known consideration in the context of RMDs or Cross-Over
Designs. Vide Kunert (1984) or Shah and Sinha (1989). To visualize a circular model, the
same sequence (describing D8) is used as a ’dummy’ sequence and this is described as follows:

< 0, 1, 1, 0, 1, 1, 0, 1 > → [0, 1, 1, 0, 1, 1, 0, 1]
Dummy Sequence followed by Data-generating Sequence

There are 8 data/time points and as such we observe y1 to y8 corresponding to the
8 time points in the data-generating sequence [0, 1, 1, 0, 1, 1, 0, 1] - going from left to right.
In the terminology of RMDs or Cross-Over Designs, for the first time point, the ‘direct
effect’ [denoted by h1] is to be captured along with the ’carry-over effects’ [h2, h3, ....] of the
preceding time points as described in the Dummy Sequence - from right to left. Althrough, at
each data point, only if the stimulus is active [denoted by 1], the corresponding h-parameter
will be present in the mean model. Moreover, for n data/time points, we can incorporate
at the most n ‘parameters’- including the fixed parameter θ. This implies that we can
incorporate in the model at the most (n − 1) h-parameters. Otherwise/estimability issues
creep in. In terms of K, it means that we assume - to start with - that K ≤ (n− 1).

We start with the following Table 1 describing the linear (mean) model underlying the
design D8. We assume K = 7. For clarity, we explain the derivation of the mean model for
y1. The co-efficients to be attached to the regression parameters i.e., h-parameters [h1 to h7]
in the expression for the mean model corresponding to y1 are: (0, 1, 0, 1, 1, 0). This is seen
as follows. In the data-generating sequence, extreme left-hand coefficient (0) is attached to
h1; then the coefficients in the dummy sequence are taken successively from right to left for
attachment to h2 to h7. There are 6 h-parameters (in addition to h1), and hence 6 of the
coefficients are selected in the order from right to left in the dummy sequence. That gives
the coefficients for h2 to h7 in the order (1, 0, 1, 1, 0, 1). Hence the mean model for y1 is given
by θ + h2 + h4 + h5 + h7. Likewise, for y2, the coefficients start from the second member
from the left of the data-generating sequence and proceeds along the left direction, cutting
across the dummy-sequence and covers a total of 7 coefficients. The coefficients are thus
(1, 0, 1, 0, 1, 1, 0). All these are displayed in Table 1. Note that in Table 1, the h-parameters
are listed in the reverse order.

Remark 1: It may be noted that the linear mean model developed above has similarity with
one in the set-up of ’biased spring balance weighing designs’. Vide Raghavarao (1971) or
Shah and Sinha (1989). It follows that θ-parameter represents the bias component in spring
balance weighing design context. The co-efficient matrix X = ((xij)) consists of 0s and 1s.
However, the X- matrix is shown in the reverse order. Multiplication by a permutation
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Table 1: Linear Model with positional carry-over effects in terms of h-parameters

S1. No. h7 h6 h5 h4 h3 h2 h1 y Mean Model
1 1 0 1 1 0 1 0 y1 θ + h2 + h4 + h5 + h7
2 0 1 1 0 1 0 1 y2 θ + h1 + h3 + h5 + h6
3 1 1 0 1 0 1 1 y3 θ + h1 + h2 + h4 + h6 + h7
4 1 0 1 0 1 1 0 y4 θ + h2 + h3 + h5 + h7
5 0 1 0 1 1 0 1 y5 θ +h1 + h3 + h4 + h6
6 1 0 1 1 0 1 1 y6 θ + h1 + h2 + h4 + h5 + h7
7 0 1 1 0 1 1 0 y7 θ +h2 + h3 + h5 + h6
8 1 1 0 1 1 0 1 y8 θ + h1 + h3 + h4 + h6 + h7

matrix P will bring it to the right/standard order. Finally, the linear model (Y,X(∗)β, σ2I)
is obtained as usual where X(∗) = (1,PX) and β=(θ, h1, h2, ...)’. It is assumed that the
errors are, as usual, uncorrelated with zero means and equal variances.

Remark 2: We must note that a ‘circular model’ has been explicitly used in Table 1. The
dummy - sequence is derived from the data - generating sequence on which the circular model
is built. Another implication is that the columns h1,h2, .... are circular in nature. That is, the
columns of the matrix X are circular in nature. For a non- circular design/model, the carry
- over effects are dependent on the nature of 1s and 0s - for each incoming unit/patient-at
the two ends of the design sequence.

At times, the number of h-parameters may be specified and it may happen that there
are K∗[< K] h-parameters in the model. In that case, the understanding is that the initial
set of K∗ h-parameters viz. h1, h2, . . . , hK∗ are important and the rest can be ignored from
the mean model. For K∗ = 4, the model expectations of successive responses corresponding
to the above design would be:

θ + h2 + h4, θ + h1 + h3, θ + h1 + h2 + h4, θ + h2 + h3, θ + h1 + h3 + h4,

θ + h1 + h2 + h4, θ + h2 + h3, θ + h1 + h3 + h4.

Note that the above design with n = 8 instances [for experimentation] generates more
number of observations when only K∗ = 4 h-parameters are assumed to be present. In such
a situation, we might curtail the experiment from D8 to D5 since there are 5 parameters,
including the common/fixed parameter θ. Use of D5 : [0, 1, 1, 0, 1] provides for the mean
model the expressions:

θ + h2 + h4, θ + h1 + h3, θ + h1 + h2 + h4, θ + h2 + h3, θ + h1 + h3 + h4.

On the other hand, use of Dalt.5 : [1, 1, 0, 1, 1] provides for the mean model the expressions:

θ + h1 + h2 + h3, θ + h1 + h2 + h3 + h4, θ + h2 + h3 + h4, θ + h1 + h3 + h4, θ + h1 + h2 + h4.

Note that in both the cases, we have taken due consideration of circular nature of
the sequence in working out the mean models. A natural question would be to search out
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the difference, if any, between the two D5 designs. Popular optimality criteria rest on the
computation of the ‘information matrix’ for the h-parameters - based on the Gauss-Markov
Model, assuming homoscedastic errors with mean 0 and variance σ2. Minimization of the
generalized variance [computed as reciprocal of the determinant of the information matrix]
is an acceptable criterion for choice of the best design. This is the so-called D-optimality
Criterion [Vide Shah and Sinha (1989)]. We will take up this comparative study in the next
section.

2. Linear Estimation of Model Parameters

Since the linear model involves a fixed parameter (θ), for a given number of observations
n, we can incorporate a maximal set of (n − 1) h-parameters. That is, we can develop the
full model with θ and additional (n − 1) h-parameters. Naturally, the response vector Y
of dimension n × 1 will come under the standard Gauss-Markov Linear Model mentioned
earlier. However, estimability of the h-parameters or of θ are not necessarily guaranteed for
all choices of the design sequence.

We have already introduced the ‘design matrix’ X(∗) = (1,PX) and the underlying pa-
rameters β=(θ, h1, h2, ...)’. For a given design Dn, when there are K[≤ (n−1)] h-parameters
viz., h1, h2, . . . , hK in the model, the h-parameters are all estimable iff Rank (X(∗)) = 1+K
where X(∗) is based on K column vectors corresponding to the K h-parameters, in addition
to the column vector 1. The ’if’ part is easy to see. On the other hand, if all the h-parameters
are estimable, θ is trivially so based on any single observation and hence the rank condition
is satisfied.

In the above example, for K = 7, it can be seen that the design D8 ensures estimability
of all the model parameters. Explicit expressions for the estimates of h-parameters are shown
below. For θ, expression for its estimator follows readily.

h1 : y6 − y1; h2 : −y1 − y2 + y6 + y7; h3 : −y1 − y2 − y3 + y6 + y7 + y8;

h4 : −y2−y3−y4+y6+y7+y8; h5 : −y3−y4−y5+y6+y7+y8; h6 : −y4−y5+y7+y8;h7 : −y5+y8.

This suggests that X(∗) is a full rank square matrix of order 8. Hence, all its column vectors
are linearly independent. Therefore, for all values of K∗, the number of non-negligible h-
parameters, the above design sequence D8 provides unbiased estimates for each one of them.
This holds for all 1 ≤ K∗ ≤ K = 7.

At this stage, we may as well resolve two more cases. For K∗ = 4, we may check
the acceptability of the two D5 design sequences listed above: D5 : [0, 1, 1, 0, 1] and Dalt.5 :
[1, 1, 0, 1, 1]. It turns out that both are acceptable from estimability point of view. It would
be interesting to make a comparison of their performances with respect to, say, D-optimality
criterion. Necessary computations are shown below.

I(β) = [(5, 3, 3, 3, 3), (3, 3, 1, 2, 2), (3, 1, 3, 1, 2), (3, 2, 1, 3, 1), (3, 2, 2, 1, 3)].

I(h) = [(6,−4, 1, 1), (−4, 6,−4, 1), (1,−4, 6,−4), (1, 1,−4, 6)], Det(I) = 125.
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Ialt(β) = [(5, 4, 4, 4, 4), (4, 4, 3, 3, 3), (4, 3, 4, 3, 3), (4, 3, 3, 4, 3), (4, 3, 3, 3, 4)].

Ialt(h) = [(4,−1,−1,−1), (−1, 4,−1,−1), (−1,−1, 4,−1), (−1,−1,−1, 4)], Det(Ialt) = 125.

It thus turns out that the two design sequences provide identical generalized variance
of the estimates of h-parameters. We will return to this comparison later again in Remark
3.

3. Choice of Dn for given n and K∗

In the context of fMRI study, assume that it is a priori known that, for some K∗, h1,h2,
. . ., hK∗ are the only h-parameters present in the mean model. Therefore, we need n ≥
(1 + K∗) design points and the choice of Dn must be such that the formation of X enables
one to ensure rank condition. For a chosen n, it is obvious that there are a large number
of design sequences of length n-comprising of 1s and 0s. This count is 2n. It is easy to
note that the two extreme sequences (1, 1, . . . , 1) and (0, 0, . . . , 0) are inadmissible. In other
words, no patient can be in resting phase or in active phase althrough the time duration of
the experiment for collection of data. Generally, a mixture of the two phases is called for.

Below we examine the status of a special “Design Sequence [DS]” of length n. Consider
the design sequence Dn: [1, 1, 0,. . . , 0, 0] which gives rise to [ 1, 1, 0, . . . , 0, 0] dummy
sequence followed by [ 1, 1, 0, . . . , 0, 0] data-gathering sequence.

Therefore, model expectations of the resulting responses ys are given by: [θ + h1, θ +
h1 + h2, θ + h2 + h3, . . . , θ + h(n−2) + h(n−1), θ + h(n−1)], assuming that there are (n − 1)
h-parameters in the model. It is interesting to note the following:

(i) For n = 4, K = 3, the joint information matrix is singular. (ii) For n = 5, K = 4,
the joint information matrix is non - singular. (iii) For n = 6, K = 5, the joint information
matrix is singular. (iv) For n = 7, K = 6, the joint information matrix is again non -
singular

It turns out that for all n (even) ≥ 4, K = (n − 1), the joint information matrix
is singular while for all n (odd) ≥ 5, K = (n − 1), the joint information matrix is non-
singular. Let us fix n = 8, K = 7 so that DS8 = [1,1, 0, 0, 0, 0, 0, 0] is not admissible.
What if we replace the extreme right- end code 0 by 1? We are asking about the status of
DS∗

8 = [1, 1, 0, 0, 0, 0, 0, 1]. It follows that the 8× 8 joint information matrix is given by

[(8, 3, 3, 3, 3, 3, 3, 3); (3, 3, 2, 1, 0, 0, 0, 1); (3, 1, 3, 2, 1, 0, 0, 0); . . . , (3, 1, 0, 0, 0, 1, 2, 3)].

and it is of full rank.

Therefore, it pays off to change exactly one code in the above.

For n odd, each member of the above series of design sequences provides estimates of
all the relevant h-parameters. For n = 7, K = 6, it follows that

V (ĥ2) = 2σ2, V (ĥ4) = 4σ2, V (ĥ6) = 6σ2,



44 BIKAS KUMAR SINHA [2020

while
V (ĥ1) = 6σ2, V (ĥ3) = 4σ2, V (ĥ5) = 2σ2.

Again, for n = 9, K = 8, we obtain

V (ĥ2) = 2σ2, V (ĥ4) = 4σ2, V (ĥ6) = 6σ2, V (ĥ8) = 8σ2,

while
V (ĥ1) = 8σ2, V (ĥ3) = 6σ2, V (ĥ5) = 4σ2, V (ĥ7) = 2σ2.

These expressions suggest general form of the variances of estimates of the h-parameters.
For specified (n,K), we can also work out the variance-covariance matrix of the estimates of
the h-parameters. For the choice n = 7, K = 6, we derive the form of the variance-covariance
matrix as given below.

[(6, 1, 4, 3, 2, 5), (−, 2, 0, 2, 0, 2), (−,−, 4, 1, 2, 3),

(−,−,−, 4, 0, 4), (−,−,−,−, 2, 1), (−,−,−,−,−, 6)].

4. Comparison of Design Sequences

When we address this problem for design sequences of the same length n, there are
effectively 2n − 2 such comparable sequences - barring the two extremes [all 0s and all 1’s].
Actual number of admissible sequences may be much smaller - depending on the number K
of non-negligible h-parameters. Anyway, such a comparison of two admissible sequences may
rest on, say the criterion of smaller average variance or smaller generalized variance of the
estimated h-parameters. Below we take up the case of a saturated model with n = 7, K = 6
and compare all available admissible design sequences. Note that we have already studied
one such admissible design sequence in the above. In this case there are 27−2 = 126 possible
design sequences of length 7 each-barring the two inadmissible extreme allocations (viz., all
1’s and all 0’s). These design sequences can be classified into distinct types as follows.

TypeI : (i) [1, 0, 0, 0, 0, 0, 0]; (ii) [1, 1, 0, 0, 0, 0, 0]; (iii) [1, 1, 1, 0, 0, 0, 0]; (iv) [1, 1, 1, 1, 0, 0, 0];

TypeI continued : (v) [1, 1, 1, 1, 1, 0, 0]; (vi) 1, 1, 1, 1, 1, 1, 0]
and all their cyclic permutations-covering 42 design sequences;

TypeII : (i) [1, 0, 1, 0, 0, 0, 0]; (ii) [1, 0, 0, 1, 0, 0, 0]

and all their cyclic permutations involving 2 non-consecutive 1’s-covering 14 design se-
quences;

TypeIII : (i) [1, 1, 0, 1, 0, 0, 0]− replicated twice; (ii) [1, 1, 0, 0, 1, 0, 0]; (iii) [1, 0, 1, 0, 1, 0, 0]

and all their cyclic permutations involving 3 non-consecutive 1’s-covering 28 design se-
quences;

TypeIV : (i) [1, 1, 1, 0, 1, 0, 0]− replicated twice; (ii) [1, 1, 0, 1, 1, 0, 0]; (iii) [1, 1, 0, 1, 0, 1, 0]
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and all their cyclic permutations involving 4 non-consecutive 1’s-covering 28 design se-
quences;

TypeV : (i) [1, 1, 1, 1, 0, 1, 0]; (ii) [1, 1, 1, 0, 1, 1, 0]

and all their cyclic permutations involving 5 non-consecutive 1’s-covering 14 design se-
quences.

Routine computations can be done to ascertain respective status of each of the de-
sign sequences listed above for any specified value of K-the number of non-negligible h-
parameters. Below we show the detailed analysis of the design sequences of Type I.

Table 2: Type I(i): Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 0 0 0 0 0 0 1 1
h1 1 0 0 0 0 0 -1 2
h2 0 1 0 0 0 0 -1 2
h3 0 0 1 0 0 0 -1 2
h4 0 0 0 1 0 0 -1 2
h5 0 0 0 0 1 0 -1 2
h6 0 0 0 0 0 1 -1 2

Table 3: Type I(ii) : Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 -1 1 -1 1 -1 1 7
h1 0 1 -1 1 -1 1 -1 6
h2 -1 1 0 0 0 0 0 2
h3 0 0 0 1 -1 1 -1 4
h4 -1 1 -1 1 0 0 0 4
h5 0 0 0 0 0 1 -1 2
h6 -1 1 -1 1 -1 1 0 6

Table 4: Type I(iii): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 -2 1 1 -2 1 13
h1 0 0 1 -1 0 1 -1 4
h2 -1 0 1 0 -1 1 0 4
h3 0 -1 1 0 0 0 0 2
h4 0 0 0 0 0 1 -1 2
h5 -1 0 1 -1 0 1 0 4
h6 0 -1 1 0 -1 1 0 4
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Table 5: Type I(iv): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ -1 -1 3 -1 -1 -1 3 23
h1 1 0 -1 1 0 0 -1 4
h2 0 1 -1 0 1 0 -1 4
h3 0 0 0 0 0 1 -1 2
h4 0 0 -1 1 0 0 0 2
h5 1 0 -1 0 1 0 -1 4
h6 0 1 -1 0 0 1 -1 4

Table 6: Type I(v): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ -2 3 -2 3 -2 -2 3 43
h1 0 0 1 -1 1 -1 0 4
h2 0 0 0 0 0 1 -1 2
h3 0 -1 1 -1 1 0 0 4
h4 1 -1 0 0 0 1 -1 4
h5 0 0 0 -1 1 0 0 2
h6 1 -1 1 -1 0 1 -1 6

Table 7: Type I(vi): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 1 1 1 -5 1 31
h1 0 0 0 0 0 1 -1 2
h2 -1 0 0 0 0 1 0 2
h3 0 -1 0 0 0 1 0 2
h4 0 0 -1 0 0 1 0 2
h5 0 0 0 -1 0 1 0 2
h6 0 0 0 0 -1 1 0 2

To summarize the performances of the above design sequences of Type I, we find that
in terms of average variance of the estimates of the h-parameters,

(i) = (vi) < (iii) = (iv) < (v) < (ii).
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Table 8: Type II(i): Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ -1 1 1 -1 -1 1 1 7
h1 1 -1 0 1 0 -1 0 4
h2 1 0 -1 1 1 -1 -1 6
h3 0 0 0 0 1 0 -1 2
h4 0 -1 0 1 0 0 0 2
h5 1 -1 -1 1 1 -1 0 6
h6 1 0 -1 0 1 0 -1 4

Table 9: Type II(ii): Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 1 -1 -1 -1 1 7
h1 0 0 0 1 0 0 -1 2
h2 -1 0 0 1 1 0 -1 4
h3 -1 -1 0 1 1 1 -1 6
h4 -1 -1 -1 1 1 1 0 6
h5 0 -1 -1 0 1 1 0 4
h6 0 0 -1 0 0 1 0 2

Table 10: Type III(i): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
2θ 2 -1 2 -1 -1 -1 2 4
2h1 0 1 -1 1 0 0 -1 1
2h2 -1 1 0 0 1 0 -1 1
2h3 -1 0 0 1 0 1 -1 1
2h4 -1 0 -1 1 1 0 0 1
2h5 0 0 -1 0 1 1 -1 1
2h6 -1 1 -1 0 0 1 0 1

We have completed computations of ĥs along with their variances for all the effectively
sixteen (16) competing design sequences. We may now display the totals of variances across
all competitors.

TypeI(i) 12; TypeI(ii) 24; TypeI(iii) 20; TypeI(iv) 20; TypeI(v) 22; TypeI(vi) 12

TypeII(i) 24; TypeII(ii) 24

TypeIII(i) 6; TypeIII(ii) 20; TypeIII(iii) 20

TypeIV (i) 6; TypeIV (ii) 20; TypeIV (iii) 20

TypeV (i) 24; TypeV (ii) 24
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Table 11: Type III(ii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 -2 1 -2 1 1 13
h1 0 0 1 -1 1 -1 0 4
h2 0 0 1 0 0 0 -1 2
h3 -1 0 1 0 1 -1 0 4
h4 0 -1 1 0 1 0 -1 4
h5 -1 0 0 0 1 0 0 2
h6 0 -1 1 -1 1 0 0 4

Table 12: Type III(iii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 1 1 -1 -1 1 13
h1 0 0 0 0 1 0 -1 2
h2 -1 0 0 0 1 1 -1 4
h3 -1 0 1 0 1 -1 0 4
h4 0 -1 -1 0 1 1 0 4
h5 0 0 -1 -1 1 1 0 4
h6 0 0 0 -1 0 1 0 2

Table 13: Type IV(i): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 -1 1 -1 -1 1 7

2h1 0 0 1 -1 1 0 -1 1
2h2 -1 0 1 0 0 1 -1 1
2h3 -1 -1 1 0 1 0 0 1
2h4 0 -1 0 0 1 1 -1 1
2h5 -1 0 0 -1 1 1 0 1
2h6 0 -1 1 -1 0 1 0 1

In conclusion, we find that the design sequences TypeIII (i) : [1, 1, 0, 1, 0, 0, 0] and
TypeIV (i) : [1, 1, 1, 0, 1, 0, 0] are, together with their cyclic permutations, most efficient
with respect to the average variance criterion. It is again readily observed that for both
these designs, pair- wise covariance terms of the estimates of the h-parameters are all equal
and it is the same for both. Therefore, as such, the two competing sequences are information-
equivalent !

Our task will not be complete unless we discuss one more pertinent observation in this
context. The above comparison may not be ‘fair’ since the design sequences are based on
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Table 14: Type IV(ii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 -1 3 -1 -1 -1 -1 23
h1 -1 1 -1 1 0 0 0 4
h2 -1 0 0 0 1 0 0 2
h3 -1 0 -1 1 0 1 0 4
h4 -1 0 -1 0 1 1 0 4
h5 0 0 -1 0 0 1 0 2
h6 -1 1 -1 0 0 0 1 4

Table 15: Type IV(iii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 -1 -1 -1 -1 -1 3 23
h1 0 1 0 0 0 0 -1 2
h2 -1 1 1 0 0 0 -1 4
h3 -1 0 1 1 0 0 -1 4
h4 -1 0 0 1 1 0 -1 4
h5 -1 0 0 0 1 1 -1 4
h6 -1 0 0 0 0 1 0 2

Table 16: Type V(i): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 3 -2 -2 3 -2 -2 43
h1 -1 0 1 0 -1 1 0 4
h2 -1 -1 1 1 -1 0 1 6
h3 0 -1 0 1 0 0 0 2
h4 -1 0 0 0 0 1 0 2
h5 -1 -1 1 0 -1 1 1 6
h6 0 -1 0 1 -1 0 1 4

unequal number of 1s. Note that every sequence comprises of 1s and 0s and the understand-
ing is that a 0-phase corresponds to ‘idle’ phase while a 1-phase is ‘active’. So the number
of active phases should also be considered while examining relative performances. We may
apply the usual concept of “Efficiency” and work out “Efficiency per active phase”. For a
single parameter, efficiency is directly related to and measured by [Fisher] Information. For
K = 6 h-parameters, we can compute the average variance of the estimates and multiply it
by the number of 1s and minimize this quantity. If we are guided by this consideration, we
find that the design sequence TypeIII (i) : [1, 1, 0, 1, 0, 0, 0] is the best of all! We can argue
that this is also the best with respect to generalized variance criterion as well.
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Table 17: Type V(ii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 3 -2 -2 -2 -2 3 43
h1 0 0 1 0 0 0 -1 2
h2 -1 0 1 1 0 0 -1 4
h3 -1 -1 1 1 1 0 -1 6
h4 -1 -1 0 1 1 1 -1 6
h5 -1 -1 0 0 -1 -1 0 4
h6 0 -1 0 0 0 1 0 2

Remark 3: At the end of Section 2, we had introduced two design sequences D5 and Dalt. 5
for the case of n = 5, K∗ = 4. We also observed that the two sequences possess the same
generalized variance. However, it can be seen that the alternative sequence provides smaller
average variance. Now we note that whereas in D5 the number of active phases used was
3, in the alternative design this number was 4. As in the above, we borrow the concept of
“Efficiency per observation” while this time we define the “Efficiency” as reciprocal of the
generalized variance, raised to the power 1/4 since there are 4 h-parameters. Otherwise,
we can also use the reciprocal of the average variance. Adjusting for the difference in the
number of active phases, we conclude that (i) D5 is better than Dalt. 5 under the generalized
variance criterion, while (ii) alternative sequence is better under average variance criterion.
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