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Abstract
National surveys in the United States have become expensive with low response rates,

and there is an abundance of administrative data (non-probability samples). Government
agencies are now beginning to integrate these two sources of data to improve the quality
of official statistics. Our application is on agriculture, where the study variable is planted
acres and estimates early in the current year are much needed by the USDA’s National
Agricultural Statistics Service (NASS). A solution of this problem is important for economic,
policy and many other reasons. This is a very difficult problem to solve because there are
many challenges, including the poor quality of the available early survey data, that must
be overcome. We attempt to solve the problem by integrating the probability samples from
designed surveys and the non-probability samples, relatively much larger, which come from
‘administrative’ data or ‘historical’ data. Keeping in line with NASS’s preference, we use
Bayesian small area temporal models (a non-spatial model and a spatial model) to infer the
early state estimates of planted acres. The Bayesian Fay-Herriot model is manipulated to
link the data, and the Gibbs sampler, which is operationalized, is used to fit the two models.
We show that the spatio-temporal model provides higher quality state estimates than the
non-spatio-temporal model.

Key words: Conditional autoregressive (CAR) model; Data integration and data quality;
Fay-Herriot model; Gibbs sampler; Non-probability samples; Structural error models.
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1. Introduction

It is the objective of this paper to show how to estimate planted acres for states
early in the season in the United States. These estimates are based on historical data,
administrative data and survey data. Estimates of planted acres are so important that for
farmers and price analysts, almost every discussion of crop fundamentals begins with planted
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acres (e.g., Kansas Farm Bureau, 2020). It is our purpose to demonstrate how to integrate
these data sources with limited access to the actual survey data, which are confidential, and
instead we used published data. The key problem is to provide estimates of planted acres
in June of any year, when the quality of the actual survey data is poor, and one needs to
access other data, most of which are available to the public. We imagine that the current
year is 2021 and estimates of planted acres are required in June. The methodology is being
developed so that it can be used readily for June of any year just after the survey data are
available. However, it is not the purpose of this paper to present methodology or substantial
results from modeling real data; rather it is intended to show critical thinking on, and the
struggles in the original stages of, this project at the National Agricultural Statistics Service.

We have Farm Service Agency (FSA) data, which are administrative data. These are
voluntary to the farmers and are essentially a non-probability sample. In our models, we
integrate survey data and non-survey data in the “current year” (2021), collected in June,
and all available data over the past decade. We work at state level because county level
data are not available in June. We include all possible data sources. It is required that all
model estimates must cover (i.e., larger than) FSA planted acres. We also have final results
from the Agricultural Statistics Board (ASB). Both FSA and ASB values are historical data
(before 2021). FSA values are not available in June of the current year but ASB values are
available in March and June; see The National Agricultural Statistics Service (2021 a) for
prospective plantings in March and The National Agricultural Statistics Service (2021 b) for
acreage in June. We have analyzed planted acres (thousands of acres) for corn, which is our
focus, and a similar analysis can be done for other crops such as soybeans.

NASS conducts quarterly Agricultural Production Survey (APS) in an ongoing effort
to capture activities throughout the life cycle of the crop. These include planting intentions
(March), early estimates of planted acreage (June, with some intentions), and output activ-
ities for small grains crops (September) such as buckwheat, flax, oats and rye, and major
row crops (December) such as corn, soybeans, cotton, potato. The June Area Survey (JAS)
provides an under-coverage adjustment for the list-based samples obtained during the June,
September and December APS surveys.

According to Young and Chen (2022), “The NASS conducts more than a hundred
national surveys and produces more than 400 reports each year. An annual publication
calendar details the day and time each report is to be released, and the NASS has consistently
released its reports according to schedule more than 99% of the time.” The NASS acreage
and production reports are considered by many to be the “final word” because they are
Unbiased (they are not influenced by either buyers or sellers of commodities); Timely (data
are provided well in advance of when they will be available from other sources); Consistent
(the same statistically sound procedures are followed each time, building on a multi-year
data-base); and Transparent (NASS ensures that all participants have equal access to the
information). For further discussions of these notions, see, for example, Kansas Farm Bureau
(2020). The Research Development Division (RDD) at NASS is charged to ensure that all
procedures are current, and if not, they are revised and new methods are developed.

There are several reasons why early estimates of planted acres are needed in the
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United States.

1. June Acreage Report is a very important economic indicator in the United States and
the amount of planted acres affect prices later. It follows the well known demand and
supply principle in economics.

2. Stake holders and economists need high quality estimates, and it is incumbent on NASS
to provide these estimates. NASS is required by law (Agricultural Marketing Act of
1946 and the Census of Agriculture Act of 1997) to produce estimates for several key
crops as early as March. Markets are hungry for information.

3. Budgets are allocated to different programs around this time.

4. Many internal programs at NASS depend on quality estimates of planted acres (e.g.,
cash rental rates), so these numbers must be reported early.

5. Even before March, many farmers are, or are considering marketing portions of their
expected production.

6. To make the most informed decision, farmers, agribusinesses and even speculators
need as accurate a picture as possible as what market fundamentals are and how those
fundamentals are changing as the year progresses. USDA’s NASS provides objective
information to all market participants at the the same time at no cost.

Now, we give an idea of the order of magnitude of the APS and the JAS. March APS
has about 80,000 US farm operators, a survey of farmers conducted in the first two weeks of
March to get intentions, selected from a list of farmers that ensure that all operations had
a chance to be selected. Note that intentions are not binding, and the farmers could change
their minds, and this is a difficulty that is impossible to address in June. Like all NASS
surveys, data are collected by mail, internet, telephone, and personal interviews. June Crop
Acreage report, which includes two surveys, the APS, a survey of over 70,000 farmers, asking
the farmers how many acres they had planted and still intended to plant, and the JAS, which
includes over 11,000 individual (one square mile) segments, in which enumerators physically
inspect, to see what has been planted (and then ask the farmers what will be planted on
any unplanted tracts in the segment). This is a dual-frame survey and the two surveys are
combined to complete the June Crop Area estimates.

Every farmer participating in the USDA Farm Service Agency (FSA) programs,
such as marketing assistance loans or deficiency payments, must file an FSA-578 Report
of Acreage. However, the acreage report deadline is July 15 for FSA (not March or June),
and not every farmer gets it on time, and not every county office office gets the data inputted
immediately. Also, not every farmer participates in the FSA programs. Consequently, the
August FSA reports underestimates planted acres. Therefore, it is still an important con-
straint that must be incorporated into our model for the June estimates of planted acres; see
Office of the Chief Economist (2019). It turns that it is a difficult problem to incorporate the
constraint directly into the model, but this is not our purpose in this paper; see Nandram
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et al. (2021, 2023) and Chen, Nandram and Cruze (2022) of work already done at NASS,
where the constraints are placed directly into the models.

Next, we discuss the challenges that we must overcome to provide estimates of planted
acres with reasonable and satisfactory quality. It is pertinent to list the challenges here.

1. FSA current year values are not available in June. They become available later in
August.

2. The dual-frame (APS/JAS) model estimates must be larger than the FSA values.

3. State survey indications do not capture variation very well.

4. There are outlying states (some very large and some very small).

5. With the initialization of modernization and unification at NASS, we want to combine
administrative data (non-probability sample) with the surveys (APS/JAS). Historical
data (available) are incorporated as the non-probability sample; we have 10 years of
ABS/FSA data before the current year.

6. NASS wants model estimates for 48 US states (excluding Alaska and Hawaii). Typi-
cally data for corn may be available for all 48 states with missing survey data; soybeans
are available from fewer number of states, actually 29.

7. Weather variables (temperature and precipitation) are difficult to use, although they
are important. Current work at NASS is now trying to make use of the weather
variables.

8. Landsat satellite (imagery) data are of poor quality in June, and they are not useful;
in March there are only intentions.

9. Covariates must be incorporated as well; there are missing values here also.

10. Meeting the annual production schedule is difficult.

11. National Academy of Sciences, Engineering and Medicine (2017) recommended that
NASS use Bayesian Small Area models. These models are complicated, and Markov
chain Monte Carlo methods (ıe.g., Gibbs samplers) are needed to fit them.

A non-probability sample and a probability sample can be combined in several ways.
This depends on available data; see Rao (2020) for both design-based and model-based
approaches for making valid inferences by integrating data from surveys and other sources.
Also, Li, Chen and Wu (2020) presented double robustness with quasi-randomization via
propensity scores. Nandram, Choi and Liu (2021) and Nandram and Rao (2021, 2023)
provided Bayesian analyzes. But these can be carried out when survey weights are available
from the probability sample. In the current work, survey weights are already incorporated
into the survey indications for states, and combining the two samples need an alternative
approach. We use a measurement error model to combine the two samples; see Fuller (1987)
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and Berg et al. (2021). In our model, there is a linear relation between the FSA values and
the ASB values for the historical data (the non-probability sample), and this same relation
holds between the current year’s FSA values and the true value of planted acres. This
permits integration of the two data sources.

This paper has five sections including the current one, Section 1. In Section 2, we
describe the available data. In particular, we describe how to estimate the FSA values
before June of the current year, 2021. We also show how to impute the missing indications
and variances. In Section 3, we describe the temporal models, a non-spatial model and a
spatial model, which we use for comparison. We also describe the computations, and model
diagnostics. In Section 4, we present the data analysis of the public-used data. Section 5
has concluding remarks. Appendix A contains a short description on how to go down to the
level of Agricultural Statistics Districts (ASD) for further analysis. Appendix B has a brief
description of how to deal with clustering in the indications. Appendix C contains a list of
abbreviations used in the paper.

2. Available data and FSA values

In this section, we give a more detailed discussion of the data we must use to exemplify
the actual situation. We primarily study corn, but there are other crops of interest such as
soybeans, All wheat and All cotton; again see The National Agricultural Statistics Service
(2021 a) for prospective plantings in March and The National Agricultural Statistics Service
(2021 b) for acreage in June.

2.1. General data

We have Farm Service Agency (FSA) and Agricultural Statistics Board (ASB) his-
torical data for the past ten years before 2021, and these are not confidential. Our idea
is that the relation between the FSA values and the ASB values should be similar to the
relation between the FSA values and the true planted acres in the current year. This is
how the non-probability sample (FSA values and ASB data) are used. In March, there are
indications on planting intentions, approved by the ASB; the March ASB values are also
available for the past ten years. As stated, we have 10 years of FSA values before 2021, but
not in 2021, which we need. Note that ASB values are available to the public. We have
the Agricultural Production Survey (APS) and June Area Survey (JAS) dual frame survey
indications, but these are confidential, they are not available for the public use, and they are
not used in this paper. However, approved estimates are available in June for the public,
and these are the ones used in this paper for exploratory analysis. There is on-going work
on the actual data at NASS.

We also have five covariates, which are Percent farmland irrigated - x2, Population
density - x3, Value of cropland - x4, National commodity crop production index (NCCPI),
an index of soil quality, - x5, Number of farms - x6. These are publicly available. A simple
regression of June 2021 survey indications on the covariates gives an R2 ≈ 75%; x4 and x6
are significant; x2, x3, x5 and x4 ∗ x6 are not significant. Other variables such as weather
(temperature and precipitation) are currently being explored at NASS.
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In Figure 1, we show the maps of quintiles of the FSA values and the survey indications
of planted acres in the current year. We can see some differences (e.g., OK moves from 3 to
2, OH from 4 to 5, AL from 2 to 3).

2.2. Imputing missing data

We show how to impute the FSA values of the current year (2021). Then we show
how to impute missing indications and variances. The public use data on planted acres do
not come with estimated variances, which are needed in the Fay-Herriot model; see The
National Agricultural Statistics Service (2021 a, b).

2.2.1. Current year FSA values

We use T + 1 = 10 (i.e., T = 9) years of FSA values and March intentions (put out
by ASB) to predict the current year FSA values. We denote the ten years of historical data
by

(θ̂(f)
it , θ̂

(a)
it ), i = 1, . . . , ℓ, t = −T, . . . , 0.

Note that t = 1 is the current year, the year of interest. Then, we use simple linear regression,

θ̂
(f)
it = β0 + β1θ̂

(a)
it + ei, i = 1, . . . , ℓ, t = −T, . . . , 0.

We fit this model to get the following estimates of the regression coefficients. The 10 spec-
ulative states for corn gave β̂0 = −58.05, β̂1 = .978, R2 ≈ 1. Although it is not particularly
relevant, the 11 speculative states for soybeans gave β̂0 = 13.03, β̂1 = .986, R2 ≈ 1. There-
fore, the fits are pretty good for both corn and soybeans. However, there are some aberrations
for smaller states (38 for corn and 18 for soybeans). Finally, we predict the current year
FSA values from

θ̂1i ≡ θ̂
(f)
i1 = β̂0 + β̂1θ̂

(a)
i1 , i = 1, . . . , ℓ.

The θ̂1i will be used as part of the observed data in this paper or at NASS.

It is possible to improve this procedure using covariates such as precipitation and
temperature (under study at NASS).

2.2.2. Missing indications and variances

Fewer than 48 states are observed for corn and fewer than 29 states for soybeans; some
states are missing both indications and variances. We use the adjacent neighbors of a specific
state without indications and/or variances via an incidence matrix to impute the remaining
states for corn. The same can be done for soybeans (currently under experimentation at
NASS) and other crops such as All wheat and All cotton.

Let Ci denote the set of adjacent neighbors of the ith state, and let ni denote the
number of counties in the ith state. Then, if the ith state’s indication and/or variances are
missing, define

θ̂i =
∑

j∈Ci
nj θ̂j∑

j∈Ci
nj

and σ̂2
i =

 ∏
j∈Ci

(σ̂2
j )nj


1∑

j∈Ci
nj

,
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Figure 1: Quintiles of FSA values and survey indications of planted acres: The
quintiles for the FSA values (survey indications) are 74 (85), 293 (330), 597 (640),
3276 (3350), and for the FSA values (survey indications), the minimum and max-
imum values are 1.89 (2.00) and 12323 (13100).
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the weighted arithmetic mean and the weighted geometric mean for respectively the indica-
tions and variances. These are the ‘observed’ indications and variances corresponding to the
missing states in the public-used data.

Public-used ASB indications do not come with variances, but these are confidential
data available at NASS for the survey indications. Because of confidentiality, we cannot use
these data in this paper. Besides the variances are too small (optimistic) because of the large
amount of data that go into a state indication. When the state indications are obtained,
heterogeneity and clustering in the data are not taken into account. The data are weighted
(to reflect the survey design) from the operation (farm) level to state level.

Assuming that θ̂i is observed, we take

σ̂2
i = CV 2

i × θ̂2
i , i = 1, . . . , ℓ,

where CVi is the coefficient of variation and the θ̂i are the state indications. Here CVi is also
unknown, so we take

CVi = Uniform(.10, .50), i = 1, . . . , ℓ,

because a coefficient of variation of .30 is taken to be a threshold at most government agencies
in the United States. Here ℓ = 48 for corn and 29 for soybeans. This procedure is a bit
problematic because it penalizes some large states and some small states appear too good.

An alternative and slightly better procedure is to take CVi to be inversely proportion
to the number of counties, ni, in the ith state, and 1

ℓ

∑ℓ
i=1 CVi = .30, again a threshold for a

reliable estimate in US government agencies. This gives

CVi = max
.10, 0.30

1
ℓ

∑ℓ
i=1

1
ni

 , i = 1, . . . , ℓ,

where ni is the number of counties in the ith state, and for flexibility, the CVi can be kept
larger than 0.10 for speculative states. But we have not done so for this paper. It is another
difficult problem to specify the coefficient of variations, and clearly more data are needed.

As a summary, we present the data we want to analyze. The true values that we
want to estimate are denoted by θ = (θi, i = 1, . . . , ℓ), where ℓ denotes the number of states.
This will vary with different commodities, but as was stated we will deal only with planted
acres (thousands of acres) for corn. We denote the data by D, where

D = {θ̂
(f)
, θ̂

(a)
, θ̂1, θ̂2, σ̂

2
2}.

The (FSA, ASB) historical values are (θ̂(f)
ti , θ̂

(a)
ti ), t = −T, . . . , 0 ; the current year FSA

values are θ̂1i, obtained by imputation; the current year survey indications and variances
are (θ̂2i, σ̂

2
2i) in June, obtained from the APS and the JAS; and the covariates are xi, i =

1, . . . , ℓ, c = 6, including an intercept. We adapt the Fay-Herriot model, and a novel simpli-
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fication is to introduce the ratios,

κi = σ2
0/σ̂

2
i , i = 1, . . . , ℓ, σ2

0 = GM of σ̂2
i ,

where GM stands for geometric mean, and the κi are assumed known. We will introduce
two models, which use all the available data, and they are a non-spatio-temporal (NST)
model and spatio-temporal (ST) model; the θi are linked to the covariates, xi, via regression
with unknown coefficients. There are two additional features: First the models take care of
outliers, and second, the constraint, θi > θ̂i, i = 1, . . . , ℓ, is not part of the models, but it is
taken care of in the output analysis. This avoids model complications. For a single model,
Bayesian diagnostics are not appropriate if the constraint is included because they check
how close the predictive data are to the observed data.

3. Bayesian small area models

Small area models are appropriate because the indications from many small states
are not reliable. For survey data, there is only one data point for each state. There are
also supplemental data for ten years before the current year, and the FSA imputed value
for each state of the current year, 2021. In Section 3.1, we present the two models and we
briefly describe the computation. In Section 3.2, we present a diagnostic assessment of the
two models.

3.1. Models and computations

We first describe the non-spatial model. The spatial model is similar except with one
adjustment.

For the historical data, we assume

θ̂
(f)
ti | {θ̂(a)

ti , α0, α1, ψ1, σ
2} ind∼ Normal(α0 + α1θ̂

(a)
ti , ψ1σ

2), (1)

t = −T, . . . , 0, i = 1, . . . , ℓ, and for the current year’s FSA values, we assume

θ̂1i | {α0, α1, θi, σ
2} ind∼ Normal(α0 + α1θi, σ

2). (2)

For indications and variances, we assume

θ̂2i | {θi, zi = 0, p, σ2, ψ2}
ind∼ Normal(θi, ψ2

σ2

κi

),

θ̂2i | {θi, zi = 1, p, σ2, ψ2}
ind∼ Normal(θi,

σ2

κi

) (3)

zi | p ind∼ Bernoulli(p)

θi | {β, σ2, ρ} ind∼ Normal(x′
iβ,

ρ

1 − ρ
σ2), (4)
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and
π(α0, α1, p, ρ, ψ1, ψ2, β, σ

2) ∝ 1
σ2 Beta(

√
ℓ

2 ,

√
ℓ

2 ). (5)

The beta prior is used for stability, and it is motivated by minimum mean square error; see
Casella and Berger (2002, pg. 332) for example. The mixture model, used to accommodate
outliers and robustness to normality, is an extension of the Fay-Herriot model (Fay and
Herriot, 1979). Also, see Goyal, Datta and Mandal (2020) for a slightly different formulation
of the mixture model.

Because the parameters are weakly identified in the survey part of the model, there
is a need to specify bounds for α1 and α2, and we do so using an exploratory data analysis,
namely a0 < α1 < a1, b0 < α2 < b1. We also specify c0 < ρ < c1. We believe the relation
in (1) is tight so we assume 0 < ψ1 < 1. We also assume that 0 < ψ2 < 1 because outliers
should be more variable than non-outliers, and 0 < p < 1/2 because there should be fewer
outliers than non-outliers. These latter assumptions are natural, and all constraints are
incorporated into the model when it is fit using the Gibbs sampler. However, for simplicity,
the constraint, θi > θ̂1i, i = 1, . . . , ℓ, that the model estimates are larger than FSA values is
incorporated into the output analysis, not within the Gibbs sampler.

Note that the non-probability sample and the probability sample are linked by (2),
and (1) and (2) have the same regression coefficients.

For the spatial model, we use the conditional auto-regressive (CAR) model,

θ | {β, σ2, ρ} ind∼ Normal{Xβ, ρ

1 − ρ
σ2(R − ψ3W )−1}, X = (x′

i), (6)

where λ1, . . . , λℓ are eigenvalues of R−1W in increasing order (some negative and some pos-
itive). We simply replace (4) by (6) with an extra parameter, ψ3, beyond the less flexible
intrinsic (ψ3 = 1) CAR model (Janicki et al. 2022). A priori, we assume

π(α1, α2, p, ρ, ψ1, ψ2, ψ3, β, σ
2) ∝ 1

σ2 Beta(
√
ℓ

2 ,

√
ℓ

2 ), 0 < ψ1, ψ2 < 1, 1
λ1

< ψ3 <
1
λℓ

, (7)

replacing (5) by (7). The NST model and the ST model are discussed in great detail in
Nandram (2022), but this report is confidential. An earlier discussion is given by Berg et al.
(2021); many issues in that paper are addressed in the report. This is part of the general
measurement error model (e.g., Fuller, 1987).

Let Ω = (α1, α2, β, ψ1, ψ2) for the non-spatial model, Ω = (α1, α2, β, ψ1, ψ2, ψ3) for
the spatial model (ψ3 is not in the nonspatial model), and D = { ˆ

θ(f),
ˆ
θ(a), θ̂2, θ̂2, σ̂2} denote

the data. Then, using Bayes’ theorem, the joint posterior density is

π(Ω, z, p, β, θ, σ2 | D).

We state the following steps in the griddy Gibbs sampler.
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1. Integrate out θ to get
π(Ω, z, p, β, σ2 | D).

2. Draw (z, p) together (collapsing and blocking),

π(z, p | Ω, β, σ2, D) = π(z | p,Ω, β, σ2 | D)π(p | Ω, β, σ2 | D).

3. Draw (β, σ2) together (collapsing and blocking),

π(β, σ2 | Ω, z, p,D) = π(σ2 | Ω, z, p, d)π(β, | Ω, z, p, σ2, D).

4. Sample π(Ω | z, p, β, σ2, D).

5. Monitor convergence (Geweke test and effective sample size).

6. Sample the Rao-Blackwellized density, π(θ | Ω, z, p, β, σ2, D), in the output analysis
subject to constraints (model estimates must cover FSA values). These are truncated
univariate normal densities for non-spatial model and truncated multivariate normal
densities for spatial model.

Markov chain Monte Carlo methods (Gibbs sampler with some collapsing and block-
ing to improve convergence and better mixing) are used to fit the two models; see Liu (1994)
for collapsing and Tan and Hobert (2009) for blocking. In fact, we use the griddy Gibbs
sampler (Ritter and Tanner, 1992) in which some CPDs are sampled using the grid method.
The constraints are not included in the models to allow them to be as simple as possible,
rather they are performed in an output analysis. In the non-spatial model, this is straight
forward as we can sample from independent truncated normal densities, but in the spatial
model, we need to sample from truncated multivariate normal densities (Ridgeway 2016).
The constraint θi > θ̂i, i = 1, . . . , ℓ, in the output analysis.

In Table 1 we show the good performance of the Gibbs sampler under both models.
Specifically, the Geweke tests show that the Gibbs sampler is stationary with all p-values
being larger than .05 and the effective sample size (ESS) of each parameter is the nominal
value of 1000, except the one for ρ under the ST model, but this is still good. This shows
that the two Gibbs samplers are strongly mixing. Also, note that the computational times
are also operational at NASS; see the note to Table 1.

3.2. Model diagnostics

We use standard Bayesian diagnostics to check the goodness of fit of the two models.
We assess the more interesting mixture part of the model (i.e., the survey data).

We start by computing two simple diagnostic measures. Let PMi and PSDi, i =
1, . . . , ℓ, denote the posterior means and posterior standard deviations from the two models.
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Specifically, we have computed

ARES =

√√√√1
ℓ

ℓ∑
i=1

(θ̂2i − PMi)2, ASTD =

√√√√1
ℓ

ℓ∑
i=1

PSD2
i .

For the non-spatial (spatial) model, we have ARES = 2388 (2005) and ASTD = 366 (120),
showing the spatial model has performed much better than the non-spatial model in terms
of these two measures. It is very good for the spatial model that it provides estimates closer
to the direct estimates (indications) with smaller posterior standard deviations.

As a further check on the models, we have done a Bayesian cross-validation analysis
(i.e., delete one observation and predict it). The idea is the same for both models, but the
specific mathematical formulas are different for the non-spatial model and the spatial model.
Define

f(θ̂2i | θ̂(2i)) =
M∑

h=1
Wihf(θ̂2i | θ̂(2i),Ω(h)),Wih = {f(θ̂2i | Ω(h)}−1∑M

h=1{f(θ̂2i | Ω(h)}−1
, i = 1, . . . , ℓ.

The residuals are ri = θ̂2i − E(θ2i | θ̂(2i)), i = 1, . . . , ℓ. Then, a dispersion measure (DM,
Wang et al. 2011), which we have developed, is

DM1 = 1
ℓ

ℓ∑
i=1

|ri|,

and as this measure is not invariant to scale, we have now modified it to

DM2 = 1
ℓ

ℓ∑
i=1

|ri|
Std(θ2i | θ̂(2i))

.

We also counted the number, n0 of ri > 0, the number, n3, of |ri| ≥ 3 and the number,
n4, of |ri| ≥ 4. For the non-spatial (spatial) model, we got DM1 = 1144 (110), DM2 =
5.61 (0.91), n0 = 28 (22), n3 = 29 (13), n4 = 22 (8). The spatial model is much better than
the non-spatial model under these measures.

We have also calculated three standard Bayesian diagnostics with respect to the
survey indications, θ̂2i, which are the deviance information criterion (DIC), the Bayesian
predictive p-value (BPP) and the log-pseudo marginal likelihood (LPML). The DICs are
875 (803), the BPPs are .399 (.594) and the LPMLs are −417 (−419) for the non-spatial
(spatial) model. For the BPP and LPML there is basically no preference. However, the DIC
does show that the spatial model is significantly better than the non-spatial model.

Finally, we compute the average absolute relative deviation (AARD) and the square
root of the average squared relative deviation (RASRD), where we compare the posterior
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Table 1: Gibbs sampler diagnostics (p-values of Geweke test and effective sample
sizes)

Non-spatial Spatial

P-val ESS P-val ESS

β1 .80 1000 .67 1000
β2 .77 1000 .25 1000
β3 .29 1000 .63 1000
β4 .38 1000 .84 1000
β5 .48 1000 .66 1000
β6 .92 1000 .83 1000
σ2 .19 1000 .74 1000
α1 .21 1000 .60 1000
α2 .22 1000 .47 1000
p .75 1000 .06 1000
z .85 1000 .60 1000
ρ .44 1000 .97 884
ψ1 .18 1000 .63 1000
ψ2 .61 1000 .19 1000
ψ3 – – .09 1000

NOTE: For the non-spatial model, the Gibbs sampler is run 55, 000 times, with a “burn in” of
5, 000 and we pick every 50th one and this takes 3 minutes; for the spatial model, the Gibbs
sampler is run 75, 000 times, with a “burn in” of 15, 000 and we pick every 60th one and this takes
49 minutes. Here z is the number of outliers.

means of planted acres to last years ASB values as

AARD = 1
ℓ

ℓ∑
i=1

|PMi − ASBi|
ASBi

, RASRD =

√√√√1
ℓ

ℓ∑
i=1

{
PMi − ASBi

ASBi

}2
.

We expect the current year’s ASB values, which are unknown, to be similar to last year’s.
In Table 2 we show that the ST model does better than the NST model; the numbers under
the ST model are smaller than those under the NST model. Specifically, the spatio-temporal
(ST) model has smaller AARD and RASRD values than under the non-spatio-temporal
(NST) model with or without the constraints.
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Table 2: Average absolute (squared) relative deviation by model and constraint

Constraint AARD RASRD
NST ST NST ST

No 0.240 0.209 0.349 0.315
Yes 0.272 0.229 0.391 0.365

NOTE: NST: Non-spatio-temporal; ST: Spatio-Temporal

4. Data analysis

In this section, for corn we compare the NST model and the ST model under the
constraint that model planted acres must be larger than the FSA values. First, we look at
the important hyper-parameters to show their importance in the models. Second, we look
at the model estimates of the planted acres. In the summaries, we use posterior mean (PM),
posterior standard deviation (PSD), posterior coefficient of variation (PCV) and 95% highest
posterior density interval (HPDI) for the true state planted acres (i.e., θi, i = 1, . . . , ℓ). We
consider only corn with ℓ = 48 states. We also use maps and graphs to make more detailed
comparisons.

4.1. Posterior inference of hyper-parameters

We look at posterior inference of some of the nuisance parameters. For example, the
regression parameters contain important information; see Table 3.

Now, we discuss the results in Table 3. First, the Percent farmland irrigated has a
negative effect on planted acres. Most of the speculative states for corn, except Nebraska,
have little irrigation systems; California and the southern states have a lot of irrigation
systems but less corn production. The value of cropland has a positive effect on planted
acres, as it should. NCCPI has a positive effect on planted acres for corn. This must be true
because better soil should lead to higher planted acres. This is also a good showing for the
ST model, as under the NST model, while there is a large probability that β6 is positive,
the 95% HPDI contains 0. However, the Number of farms has a negative effect on planted
acres. One possible explanation is the following. As the number of farms go up, one would
expect smaller farms. In smaller farms, one would expect a larger variety of commodities,
not fully dominated by corn.

We note that σ2 is estimated very well under the ST model. It has a PCV of 2.21
under the NST model, but under the ST model, the PCV is 0.07, a huge improvement.
The 95% HPDI for α1 is (−23.68, 14.14) under the ST model, and it is good that α1 is not
significant. Also, the 95% HPDI for α2 is (.998, 1.009) under the ST model, and it is good
that one is in it. (This is not true for the NST model.) This is important because it shows
the power of the historical data. Here α1 and α2 are not identifiable in the models if there
were no historical data. Another important point is that ψ1 is closed to one in the ST model,
but not so close under the NST model. Finally, the features of p, z and ρ are almost the
same under both models. It is good that ρ and ψ3 are large under the ST model because it
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Table 3: Posterior summaries of hyper-parameters

Non-spatial Spatial
PM PSD PCV HPDI PM PSD PCV HPDI

β1 2556.49 438.95 0.17 (1750.30, 3336.09) 2483.14 299.13 0.12 (1868.99, 3044.76)
β2 -34.44 14.91 -0.43 (-60.13, -8.30) -21.42 8.37 -0.39 (-37.19, -6.19)
β3 0.56 0.49 0.89 (-0.38, 1.41) 0.01 0.36 19.63 (-0.71, 0.72)
β4 2771.19 207.03 0.07 (2346.28, 3120.29) 2932.2 105.1 0.04 (2730.42, 3148.56)
β5 3.24 3.48 1.07 (-3.45, 9.31) 6.27 2.12 0.34 (2.18, 10.31)
β6 -0.03 0.004 -0.15 (-0.03, -0.02) -0.03 0.002 -0.08 (-0.03, -0.02)
σ2 58233 128555 2.21 (16121, 167976) 30922 2269 0.07 (26396, 34931)
α1 3.55 1.19 0.34 (2.01, 5.86) -5.96 9.86 -1.66 (-23.68, 14.14)
α2 0.998 0 0 (0.997, 0.998) 1.002 0.004 0.004 (0.998, 1.009)
p 0.38 0.09 0.24 (0.19, 0.50) 0.38 0.09 0.25 (0.19, 0.50)
z 18.46 5.43 0.29 (8.00, 28.00) 18.38 5.54 0.3 (6.00, 27.00)
ρ 0.96 0.003 0.003 (0.95, 0.97) 0.96 0.002 0.003 (0.96, 0.97)
ψ1 0.51 0.28 0.57 (0.04, 0.98) 0.99 0.01 0.01 (0.97, 1.00)
ψ2 0.51 0.28 0.57 (0.02, 0.95) 0.68 0.22 0.32 (0.30, 1.00)
ψ3 – – – (–,–) 0.87 0.02 0.02 (0.83, 0.89)

NOTE: The five covariates are Percent farmland irrigated, Population density, Value of cropland,
National commodity crop production index (NCCPI) and Number of farms. Here z is the
number of outliers. (The bolded covariates are important.)

shows that the CAR model has a significant effect.

4.2. Posterior inference for planted acres

In this section we compare the NST model and the ST model when we make posterior
inference about planted acres under the constraint that the model planted acres are larger
than the FSA planted acres.

In Table 4 we present posterior inference for the first thirteen states (in the order of
state abbreviations), including small (e.g., AZ, CT, FL) and some large (e.g., IL, IN, IA)
corn producing states. Apart from rounding, the constraints are satisfied in all states. The
PMs are mostly similar and the PSDs under the spatial model are mostly smaller than those
under the non-spatial model. This makes the PCVs under the spatial model mostly smaller
than those under the non-spatial model, and therefore the 95% HPDIs are much shorter.
These PCVs are smaller than the corresponding ones for the ‘observed’ data. Specifically,
note that the gains in PCVs for CA, CO, FL and IL with unreliable data (larger CVp2).
There are similar patterns for the other states, which are too numerous to list. We will look
at all the states in greater detail using several plots (see below).

We now compare the spatial structure of the corn data under the constraint models.
We have used the quintiles of the posterior means; note that the quintiles are not the same
for the two sets of posterior means. In Figure 2, we show the map of the quintiles of planted
acres. We can see some changes in these maps (CA, ID move from 2 to 3; AZ, NM move
from 1 to 2; ND moves from 3 to 5; OH moves from 5 to 4, etc.). Otherwise, the two maps
are mostly similar; however, the quintiles can hide the details, so we will discuss this further.
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Figure 4 shows a plot of the posterior coefficients of variation (CVs) of the two models
versus those of the observed data for the 48 states. We can see all the points are below the
45o reference line, showing clearly that the two models provide improved reliability. We can
also see most of the points corresponding to the non-spatial model are closer to the reference
line than those from the spatial model, showing the estimates from the spatial model are
more reliable. Those points, where a star and a dot are close together, correspond to the
states with very large planted acres such as Iowa.

Figure 3 shows a plot of the posterior coefficients of variation (CVs) of the spatial
model versus those of the non-spatial model for the 48 states. We can see all the points,
except four (two very close), are below the 45o reference line; the points falling on the
reference line correspond to the states with large planted acres. This clearly shows that the
spatial model provides improved reliability over the non-spatial model.

For completeness, we also look at the plot of PMs (Figure 5) and PSDs (Figure 6)
for the spatial model versus the non-spatial model. For the PMs, it is really good that all of
the points, except five of them, are nearly on the 45o straight line through the origin. For
the PSDs, it is also good that all of the points, except eight of them (five very close), are
below the 45o straight line through the origin. There is one of them in which the PSD is
much lower under the ST model.

Integrating the (FSA, ASB) historical data into the models, which accommodate the
survey data, appear to be important. Estimating the unknown FSA values in June of the
current year is a reasonable thing to do. In general, the spatio-temporal (ST) model is
better than the non-spatio-temporal (NST) model. The ST model fits the data better than
the NST model. The constraint estimates from the ST model have smaller PCVs than those
from the NST model.

These results show that the ST model provides higher precision and is more reliable
than the NST model. Also the posterior means of the two models are very similar.

5. Concluding remarks

We have shown how to estimate planted acres for US states. This is on-going research
and there are rapid changes under way as NASS pursued early estimates of planted acres,
as early as June, and this is important for various reasons that we have discussed. As
modernization and unification are under way at NASS, data integration is an important
activity in this endeavor, and a lot of money and man power are put into it by NASS.
Specifically, we have pointed out the struggles to find suitable statistical procedures in the
initial stages. We have pointed out many challenges to get early estimates of planted acres
and how to overcome some of them. Because of confidentiality, we have not used the real
data in this paper, and the results presented may not be appropriate. As clearly described,
the real data also have shortcomings, yet this project is extremely important to NASS.

In this paper, we have shown how to integrate a non-probability sample (FSA values)
with a probability sample from a dual-frame survey (APS and JAS) to provide early estimates
of planted acres for corn. One difficulty encountered is that the model estimates must be
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Table 4: Posterior summaries for planted acres (thousands) under the constraint

State fp1 p2 sp2 CVp2 PM PSD PCV 95% HPDI
a. Non-spatial model
AL 293 350 75 0.21 376.96 53.45 0.14 (293.71, 478.25)
AZ 88 95 19 0.2 106.25 12.45 0.12 (87.98, 130.31)
AR 733 750 103 0.14 818.61 62.06 0.08 (733.64, 944.41)
CA 401 470 161 0.34 570.15 113.02 0.2 (401.17, 784.72)
CO 1418 1400 646 0.46 1579.68 149.38 0.1 (1418.42, 1879.06)
CT 22 26 5 0.18 27.84 3.5 0.13 (22.46, 34.41)
DE 166 175 50 0.29 206.17 30.3 0.15 (166.24, 264.16)
FL 78 100 48 0.48 127.1 34.25 0.27 (78.27, 194.12)
GA 420 460 69 0.15 487.03 46.2 0.1 (420.62, 578.79)
ID 342 400 107 0.27 455.68 72.49 0.16 (346.79, 585.72)
IL 10465 11200 3511 0.31 10484.83 27.88 0 (10464.58, 10542.13)
IN 4988 5400 772 0.14 5028.64 51.56 0.01 (4987.77, 5128.44)
IA 12323 13100 3404 0.26 12338.54 19.79 0 (12322.76, 12376.14)
b. Spatial Model
AL 293 350 75 0.21 355.51 34.51 0.1 (293.47, 417.46)
AZ 88 95 19 0.2 99.2 7.63 0.08 (87.99, 114.07)
AR 733 750 103 0.14 792.53 41.53 0.05 (733.44, 872.04)
CA 401 470 161 0.34 551.69 72.56 0.13 (405.20, 677.03)
CO 1418 1400 646 0.46 1480.8 41.02 0.03 (1420.05, 1538.34)
CT 22 26 5 0.18 26.35 2.12 0.08 (22.47, 30.22)
DE 166 175 50 0.29 188.37 16.05 0.09 (166.23, 217.93)
FL 78 100 48 0.48 110.13 19.61 0.18 (78.32, 144.76)
GA 420 460 69 0.15 462.48 26.63 0.06 (420.50, 511.14)
ID 342 400 107 0.27 406.32 40.33 0.1 (343.01, 480.69)
IL 10465 11200 3511 0.31 10519.4 32.92 0 (10464.97, 10572.29)
IN 4988 5400 772 0.14 5066.48 45.83 0.01 (4992.59, 5139.01)
IA 12323 13100 3404 0.26 12368.6 27.1 0 (12322.83, 12411.41)

NOTE: fp1 is FSA planted acres, p2 is survey indications, sp2 is survey variance and CVp2
is survey coefficient of variation. The constraint specifies the model estimates must be
larger than the FSA value.
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Figure 2: Quintiles of posterior means of planted acres from the two models
with constraint: The quintiles under the non-spatial (spatial) model are 101 (92),
377 (356), 730 (668) and 3346 (3623), and under the non-spatial (spatial) model,
the minimum and maximum values are 2.68 (2.32) and 12339 (12368).
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larger than FSA values, which are unknown in June. We have provided two models for these
data and we have demonstrated that the spatio-temporal model is a lot better than its non-
spatio-temporal counterpart. While important indirect covariates, as used in this paper, are
easily available, NASS has been pursuing more direct covariates such as temperature and
precipitation, ethanol production capacity, and many others.

One would need to go down to lower level of disaggregation to accommodate vari-
ability. At the state level, there are actually a large number of records that go into the
single number, thereby making variability relatively small because variance is generally in-
versely proportional to sample size. When survey indications are weighted up, there are no
considerations of heterogeneity such as clustering (e.g., counties) at intermediate levels, so
that variability at the state level can be small. Young and Chen (2022) wrote, “Modeling at
the state level is not always able to provide predictions of desired quality. Perhaps samples
that provide valid estimates at lower geospatial scale should be considered; this will require
major revisions in the current sample designs. Alternatively, if survey and non-survey data
are linked at the farm level, then modeling could be conducted at that level.”

It is now believed that modeling should be done at the level of Agricultural Statistics
Districts (ASD); several ASDs might form a state. There are no ASD level survey indications
and standard errors in June, so modeling is difficult to impossible at the ASD level; see
Appendix A for a method to get ASD data from state data. Only state level indications
and standard errors are available in June to NASS. We have been using the state level data
to project backwards to the ASDs and the number counties within each ASD is used as the
sample sizes (these are not presented) to get a rough idea of the indications and variances
at the ASD level. A non-spatial model similar to the one discussed here is fit to the ASD
level data, but now we need both an ASD level effect and a state level effect (so called
sub-area or two-fold model). This will provide better state level model estimates. However,
it is difficult to operationalize this model. At the ASD level, the NST model and the ST
model are discussed in great detail in Nandram (2023), but again this second report is
confidential. In addition, one may want to benchmark the states to the entire United States,
but this is not attempted here. See Nandram, Ericulescu and Cruze (2019) for recent work
on benchmarking.

A further problem of practical importance is the clustering of data at the state level,
ASD level or county level. Many projects at NASS operates at county level such as cash
rental rates and yield. The clustering does not have to be at geographical levels. For
example, it does not have to be the case that the counties within a state have to form a
cluster. Some counties in one state may be clustered with counties in another state. That is,
there are unseen clusters among the sampling units (e.g., counties), and these must be taken
into consideration to avoid understating variability and biased estimates. Currently, this is
on-going research activity in the Research and Development Division at NASS. Attempts are
being made to accommodate this research activity for planted acres using the stick-breaking
priors (Ishwaran and James, 2001); see Appendix B.
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APPENDIX A

How to get ASD level data from state level data?
We consider a simple change of support (COS) analysis and we assume (normality is

not required) that

θ̂ij
ind∼ Normal(θij, σ̂

2
ij), j = 1, . . . , ni, i = 1, . . . , ℓ,

where ni is the number of ASDs in the ith state (larger states have more ASDs). Let mij

denote the number of counties in the jth ASD. We do not know the θ̂ij and σ̂2
ij. However,

note that ∑ni
j=1 θ̂ij = θ̂i and ∑ni

j=1 σ̂
2
ij = σ̂2

i (assuming independence).
Specifically, we assume that θ̂ij ∝ mij, and this gives

θ̂ij =
{

mij∑ni
j=1 mij

}
θ̂i, j = 1, . . . , ni, i = 1, . . . , ℓ.

We also assume that σ̂2
ij ∝ mij

−1, and this gives

σ̂2
ij =

{
m−1

ij∑ni
j=1 m

−1
ij

}
σ̂2

i , j = 1, . . . , ni, i = 1, . . . , ℓ.

Both of these imputation procedures are reasonable because bigger states (i.e., planted acres
of corn) will have larger θ̂i and smaller σ̂2

i .
Historical data, FSA values and ASB estimates, are available at county level. How-

ever, FSA values for the current year in June are not available and a similar procedure can
be performed on the state values. Covariates can be used at the state level or jittered to get
ASD level covariates. NASS will need to put in a large effort to get the covariates at the
ASD level.
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APPENDIX B

Basic stick-breaking distribution

For planted acres, the stick-breaking distribution for state estimates, θ̂i, i = 1, . . . , ℓ,
is

f(θ̂i − θi | θi) =
ℓo∑

s=1
psNormal(zs, σ̂

2
i ), ℓo ≤ ℓ,

where, given the θi, the θ̂i − θi are independent and identically distributed, the ps are stick-
breaking weights, the zs are a random sample from a baseline distribution, and ℓo (unknown)
is the number of clusters; see Ishwaran and James (2001). Therefore, it is true that

f(θ̂i | θi) =
ℓo∑

s=1
psNormal(θi + zs, σ̂

2
i ), ℓo ≤ ℓ,

and, given the θi, the θ̂i are now independent, not identically distributed.
Introducing latent variables, this can be rewritten as

f(θ̂i, di) =
ℓo∏

s=1
[psNormal(θi + zs, σ̂

2
i )]I(di=s), ℓo ≤ ℓ,

where di maps the ith state into a cluster and I(di = s) is the indicator function.
Here the stick-breaking weights are

p1 = ν1, ps = νs

s−1∏
r=1

(1 − νr), s = 2, . . . , ℓo − 1, . . . , pℓo =
ℓo−1∏
s=1

(1 − νs),

and for the two-parameter Pitman-Yor process, we use the prior,

νs
ind∼ Beta{1 − δ1,

1 − δ2

δ2
+ (s− 1)δ1}, s = 1, . . . , ℓo, 0 < δ1, δ2 < 1.

As for the zs, we take

zs
ind∼ Normal{0, ρ

1 − ρ
σ2}, s = 1, . . . , ℓo, 0 < ρ < 1.

It is also possible to assume a stick-breaking prior on the θi.
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Figure 3: Plots of the CVs of the two models versus the CVs of the observed
data
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Figure 4: Plots of the CVs of the spatial model versus those of the non-spatial
model
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Figure 5: Plots of the PMs of the spatial model versus those of the non-spatial
model
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Figure 6: Plots of the PSDs of the spatial model versus those of the non-spatial
model
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APPENDIX C
A list of useful abbreviations

Abbreviations Meanings
USDA United States Department of Agriculture
NASS National Agricultural Statistics Service
FSA Farm Service Agency
RDD Research Development Division
ASB Agricultural Statistics Board
APS Agricultural Production Survey
JAS June Area Survey
ASD Agricultural Statistics District

NOTE: NASS and FSA are two of the agencies of USDA, and RDD is a division of NASS. APS
and JAS are the two surveys. All estimates are approved by the ASB before publication.


