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Abstract
In recent years, we have developed a new Augmented Reality (AR) framework to

combine real data with computer-generated synthetic samples to “look under the hood”, as
it were, for gaining insights into rare, dynamic phenomena. Using data fusion and density
ratio model, AR allows us to estimate the tail probabilities of exceeding large thresholds that
are far beyond the limited range of observations in moderately sized data. Such thresholds
represent extreme events such as the drastic change in air pollution levels in Washington DC
caused by lockdown due to the COVID-19 pandemic in 2020, as modeled in this study.
Key words: Data fusion; Tail probabilities; Density ratio model; Synthetic data; Air pollu-
tion.

1. Introduction
In its February 4, 2017, edition, The Economist claimed that “Replacing the real world

with a virtual one is a neat trick. Combining the two could be more useful.” Combining real
data with synthetic data produces augmented reality (AR), which, we believe, opens up new
perspectives regarding statistical inference. Indeed, augmentation of observations of the real
world with virtual information is transforming engineering, healthcare and AI with emerging
powerful technologies such as robotics, Internet of Things, and more recently, Digital Twins
(Tao and Qi, 2019).

In a recent article, we advanced the notion of repeated AR in the estimation of very
small tail probabilities even from moderately sized samples (Kedem and Pyne, 2021). Our
approach, much like the bootstrap, is computationally intensive. However, unlike bootstrap,
we look repeatedly outside the sample. Synthesis of a given sample of real world observations
repeatedly with computer-generated data is based on repeated out of sample fusion (ROSF,
Kedem et al. 2019; Zhang, Pyne and Kedem, 2020). This strategy proves to be useful for
inference in various surveillance applications in which the available datasets usually have a
limited range of observations and a moderate size due to limited storage capacity.

In particular, we are interested to estimate the tail probability p of observations ex-
ceeding a given high threshold T . Our repeated AR approach is based on numerous data
fusions. We use an iterative method that can generate a large number of upper bounds Bi for
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p. Say, such a method is fast and probabilistic, and the upper bounds exceed p with a 95%
chance. Thus, many of these exceed p but many do not. Therefore, there are subsequences of
ordered upper bounds which approach p from above and from below. We showed how upper
bounds can be produced by repeated fusion of real data with computer-generated samples,
where the number of fusions is arbitrarily large, and where the support of the generated data
is large enough so that it ranges beyond T . Hence, using the connection between the real
and generated data, we have a computational approach to “peek” into the realm above T .

Notably, the repeated AR approach allows us to model many phenomena of sudden
yet significant change that are of great interest to researchers, e.g., for predicting stock
market crashes, disease outbreaks, and extreme climatic events. On January 12, 2021, it was
reported in the New York Times that “America’s greenhouse gas emissions from energy and
industry plummeted more than 10 percent in 2020, reaching their lowest levels in at least
three decades as the coronavirus pandemic slammed the brakes on the nation’s economy”.
It pointed out that “transportation, the nation’s largest source of greenhouse gases, saw
a 14.7 percent decline in emissions in 2020 as millions of people stopped driving to work”
due to lockdowns that were implemented in many states of the U.S. over the course of the
COVID-19 pandemic.

Nitrogen dioxide (NO2) is a gaseous pollutant emitted from the burning of fossil fu-
els at high temperatures primarily by vehicles, and thus, its level is a good indicator of
traffic volume at a given area over a given interval of time. According to the American
Lung Association, NO2 causes a range of harmful effects on the lungs, including increased
inflammation of the airways, worsened cough and wheezing, reduced lung function, increased
asthma attacks, and a greater likelihood of emergency department and hospital admissions.
The U.S. Environmental Protection Agency’s (EPA) National Ambient Air Quality Standard
(NAAQS), therefore, measures NO2 as an indicator for the NOX family of air pollutants.

Given the sharp reduction in traffic after stay-at-home orders were enforced in many
areas of the U.S., in this study, we are interested to model the resulting dynamics of air
pollution at a given area. At the capital Washington DC, the stay-at-home order came into
effect on April 1, 2020. To analyze the differences between the two periods, pre- and post-
order, of 3 months on each side, we resort to two methods. First, we test for similarity in
the levels of NO2 in the morning air in the two periods by using their respective probability
distributions. This is done by fusion of data from the two periods as described in a previous
study (Kedem et al., 2017). Second, we estimate the tail probability of NO2 level exceeding
T = 100 parts per billion (ppb) in each of the two periods. This is done by repeated fusion
of the data with computer generated samples (Kedem et al., 2019, Kedem and Pyne, 2020).

2. Data and Methods
2.1. Air Pollution Data

The NO2 emissions data were collected at four monitoring stations of the U.S. Environ-
mental Protection Agency (EPA) in Washington DC area, for the pre- and post-lockdown
periods of January-March and April-June, 2020. In this study, we focused on the morning
readings, i.e., the hourly surface levels of NO2 between 6 am and 9 am. For each period,
a random sample of size 200 was selected from the data collected at the locations with
the (latitude, longitude) coordinates of (38.895572, −76.958072), (38.921847,−77.013178),
(38.970092, −77.016715), and (38.89477, −76.953426). Thus, we obtained a NO2 sample of
size 200 from the first period (January 1–March 31), and another sample of size 200 from
the second period (April 1–June 30).
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2.2. Testing for equidistribution

Let X0 be a sample of NO2 observations of size 200 from January-March, following an
unknown probability density (pdf) g(x), x ∈ (0,∞) , and let G(x) denote the corresponding
unknown distribution function (CDF). Similarly, let X1 ∼ g1, G1 be a sample of size 200 from
the second period of April-June, following unknown pdf g1(x) and CDF G1(x), x ∈ (0,∞).
We assume the density ratio model (Qin and Zhang 1997, Lu 2007)

g1(x)
g(x) = exp(α1 + β′

1h(x)) (1)

where α1 is a scalar parameter, β1 is an 2 × 1 vector parameter, and h(x) = (x log x). We
now combine or fuse the two samples and estimate the parameters in (1) from the combined
sample of size of 400. Kernel density estimates of g, g1 are shown in Figure 1. From the fits in
Figure 1 (bottom panel), we see that the estimated g, g1 are very close to the corresponding
histograms, indicating that the choice of “gamma tilt” h(x) = (x log x) is sensible.

2.3. Estimation of tail probabilities

The basic idea here is to fuse each NO2 sample with numerous computer-generated
“synthetic” samples. This strategy is referred to as repeated out of sample fusion (ROSF in
Kedem et al., 2019) or repeated augmented reality (repeated AR in Kedem and Pyne, 2020).

If p = P (X > T ) is a tail probability to be estimated, we generate numerous upper
bounds B’s for p where most are above p but many are below p. If B(j) are the corresponding
order statistics, then there are B(j) which bound p from above and there are B(j) which bound
p from below, yet some B(j) fall in a small neighborhood of p. In this paper, we generated
10,000 such B’s. The problem is to find B(j) in a small neighborhood of p. This is addressed
by an iterative algorithm which produces subsequences of the B(j) sequence which converge
to a small neighborhood of p from above and from below as follows:

B(j1) < B(j2) < B(j3) < · · · < B(jn) < p < B(jm) < · · · < B(j3) < B(j2) < B(j1)

where B(jn) and B(jm) are very close to p.

We now have two relationships. For a sufficiently large number of fusions, say 10,000,
there are B(j) which approach p from above and from below, so that there is a B(j) closest
to p. This establishes a relationship between B(j) and p.

With N = 1000 (see the remark below), another relationship between B(j) and p is
obtained from the well known distribution of order statistics,

P (B(j) > p) =
j−1∑
k=0

(
N

k

)
[FB(p)]k[1− FB(p)]N−k (2)

where FB is the distribution of Bi (not B(j)), which can be computed since FB practically
coincides with the empirical distribution of B1, ..., B10,000.

The iterative algorithm consists of the following steps, starting from some j.
Step 1:
From (2) we can get the smallest pj such that

P (B(j) > pj) =
j−1∑
k=0

(
N

k

)
[FB(pj)]k[1− FB(pj)]N−k ≤ 0.95, (3)
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Step 2:
From Step 1 we get a j corresponding to the smallest pj. Use this j and go back to Step 1.

Convergence is reached when for some k. we get the same probability values pjk
. For

further details of the algorithm, see Kedem and Pyne (2020).
Remark: We get 10,000 upper bounds B1, ..., B10,000 from which FB is obtained. How-

ever, due to computational limitations, in (2) we use N = 1000.
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Figure 1: January-March (solid) vs. April-March (dashed) NO2 distributions

3. Results
The likelihood ratio test of equidistribution H0 : β1 = 0 gives a p-value of 0, indicating

that the behavior in the two periods is completely different. This is also seen graphically
from the plots of the two CDF’s in in Figure 1 (top panel). We see that Ĝ (solid line) is
shifted much to the right relative to Ĝ1 (dashed line), indicating a great reduction in NO2
levels in the second period of April-June relative to the first period of January-March.
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Indeed a 95% confidence interval for the NO2 mean in January-March is approximately
(14.14,17.24) whereas the same for April-June is approximately (9.11,10.69), again indicating
a great reduction in NO2 levels in latter period.

By setting the threshold T = 100, we estimated p = P (X > 100), the probability that
NO2 exceeds a level of T = 100, for the two different (pre- and post-shutdown) periods in
2020. Recall that X0 is a sample of size 200 from the period of January-March. Fusing X0
10,000 times with generated Uniform(0,180) samples, the algorithm after one iteration gave:

B(810) → 0.00016→ B(808) → 0.00016 = p̂ = 0.00016← B(809) ← 0.00016← B(813)

Thus, for the period of January-March 2020, we get p̂ = 0.00016.

Recall that X1 is a sample of size 200 from the period of April-June. Again, fusing X1
10,000 times with generated Uniform(0,180) samples, the algorithm gave after eight iterations
going down, and a single iteration going up:

B(500) → 6.2e− 07→ B(680) → 6.2e− 07 = p̂ = 6.2e− 07← B(690) · · · ← 2.5e− 05← B(900)

Thus for the period April-June 2020, we get p̂ = 0.00000062, which is much smaller than
p̂ = 0.00016 from January-March 2020, echoing the previous results that the NO2 levels had,
in comparison, decreased significantly during April-June 2020 in Washington DC.

4. Discussion
The COVID-19 pandemic has highlighted the need for systematic monitoring and rig-

orous modeling of dynamic phenomena that can exact a high toll in the form of human
suffering and rapid losses in various sectors such as breakdown of supply chains and reduced
mobility. Similar lessons are learnt from other areas including extreme climatic events and
sudden crashes in the markets. In public health, surveillance is conducted routinely to guard
against disease outbreaks and environmental exposures. In this study, we demonstrated
how the repeated AR approach could provide a computational framework for modeling the
dynamics of air pollution due to traffic emissions during a period of sudden, sharp change.

While estimation of small tail probabilities has long been a topic of research, many of
the commonly used methods rely on large number of observations, which makes them less
practical for modeling of dynamic phenomena. Methods such as peaks-over-threshold (POT)
require observations beyond a threshold, whereas block maxima (BM) require sufficient data
such that maxima from each block can be used for estimation. In comparison, both the
availability as well as the reliability of computer-generated samples that are representative
of real data are increasing with the development of new, powerful computational platforms,
e.g., generative adversarial networks (GANs), thus allowing for easier data augmentation.

In this study, we built our AR approach on a density ratio model that starts with a
common reference distribution for all sources of information, and then models the individual
distributions as distortions (e.g., gamma tilt) of that “baseline”. Further, we estimate very
small tail probabilities even from moderately sized samples. Fusing these repeatedly with
computer-generated synthetic data is particularly insightful when the data at hand falls
short of the high threshold of interest. Our iterative algorithm constructs a “B-sequence”
of bounds that contains a point whose ordinate is very close to the target tail probability,
as ensured by the Glivenko-Cantelli theorem. For further details as well as the strengths
and the limitations of the repeated AR approach, the reader is referred to Kedem and Pyne
(2020) and Kedem et al. (2021).

A limitation of the present study is that it does not explicitly account for the fact
that the level of NO2 typically shows a decrease with the advent of spring and summer as it
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dissociates in sunlight, and tends to collect less near the surface during that period. While
the shift in NO2 was much larger in 2020 compared to previous years, a multi-year extension
of our model would be more insightful. Since the primary aim of this study is to introduce
our AR computational framework, we plan to address this in our future work.
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