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Bayes’ Theorem

The idea of Bayes’ Theorem (1763) is very simple.

Let A be an event (i.e., A ⊂ S = sample space).
We know P (A) and P (Ac).

B is another event for which we know

P (B|A) =
P (B ∩A)

P (A)
=⇒ P (Bc|A) = 1− P (B|A)

P (B|Ac) =
P (B ∩Ac)

P (Ac)
=⇒ P (Bc|Ac) = 1− P (B|Ac)
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Bayes’ Rule

But we are interested in (P (A|B) which can be expressed as

P (A|B) =
P (A ∩B)

P (B)
=

P (A ∩B)

P (A ∩B) + P (Ac ∩B)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

: Bayes’ Theorem in simplest form (Bayes’ Rule)
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Application

A simple application:
A = A person truly has COVID
B = A person tests positive by a quick test

In the larger society we have a fairly good idea about
P (A) and P (Ac).
[For example, P (A) may be 5% or 20%]
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Application

The company making the quick test must submit to the government
two key pieces of info.

P (B|A) = P ( Tests positive | Has COVID )

= called the sensitivity of the quick test method

P (Bc|Ac) = P ( Tests negative | No COVID )

= called the specificity of the quick test method
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Note

A company marketing a quick test method obtains the sensitivity
and specificity values after a long research and development (R &
D) process in the Lab using the DNA / RNA analysis of the test
subjects’ body fluid.
Usually,

sensitivity ≥ 0.95

specificity ≥ 0.90
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Sensitivity and Specificity

A = A person has COVID = H0 (say)
B = Quick test confirms COVID = Retain H0

Sensitivity = P (B|A) = P (+|+)

= 1− P (Bc|A)

= 1− P (Tests Negative|Has COVID)

= 1− Probability of Type-I Error

Specificity = P (Bc|Ac) = P (−|−)
= 1− P (B|Ac)

= 1− P (Tests Positive|No COVID)

= 1− Probability of Type-II Error
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Sensitivity and Specificity

However, we want to know

P (A|B) = P (Has COVID|Tests Positive)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

If π = P (A) = proportion of people who truly have COVID,

P (A|B) =
π ∗ Sensitivity

π ∗ Sensitivity + (1− π)(1− Specificity)
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Sensitivity and Specificity

A = A person has COVID
B = Quick test confirms COVID

[Sensitivity = 0.95, Specificity = 0.90]

If π = 0.05 =⇒ P (A|B) = 0.3333 = 33.33%

[i.e., P (Ac|B) = 0.6667 = 66.67%]

If π = 0.20 =⇒ P (A|B) = 0.7037 = 70.37%

[i.e., P (Ac|B) = 0.2963 = 29.63%]

Even when π = 0.50 (i.e, every other person is infected),
P (A|B) ∼ 0.90.

[Moral of the story: Don’t Panic!]
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Bayesian Framework

In Bayes’ Theorem: A = True reality
B = What we see / perceive

We know −→ P (A) & P (Ac): Prior Information

and −→ P (B|A), P (B|Ac): Conditional information of what we see
given the reality (prior)

But we want to know

P (A|B) = P ( True reality | What we see )
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Conditional Information

Q. So, what does the Bayes’ Theorem or Rule say?
A. It is all about updating the prior probabilities when some
conditional information in terms of the happening of a special event is
known.
We know P (A), P (Ac), P (B|A), P (B|Ac)

We want to know P (A|B) and P (Ac|B)
NOTE: {A,Ac} is a partition of S
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Generalization

Generalization of the simplest form:

Suppose we have a general partition of S as

S = {A1 ∪A2 ∪ . . . }

such that Ai ∩Aj = ∅ for i ̸= j

NOTE: The partition may be finite / infinite

We know {P (Ai), i = 1, 2, 3, . . . } ←− prior probabilities

For a special even B, we know
{P (B|Ai), i = 1, 2, 3, . . . } ←− conditional probabilities
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Generalization

Then, we can express P (Ak|B) for any k (k = 1, 2, 3, . . . ) as

P (Ak|B) =
P (B|Ak)P (Ak)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·
−→ posterior probability

{A1, A2, A3, . . . } is a partition of S
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Another Application (US 2018 Health Insurance)

Age distribution of Americans in 2018

A1 = Age under 18 P (A1) = 22.8%

A2 = Age 18-64 P (A2) = 61.4%

A3 = Age above 64 P (A3) = 15.8%

B = event of not having health insurance

P (B|A1) = 5.1% P (B|A2) = 12.4% P (B|A3) = 1.1%

A person has been selected at random

P (Age above 64|No health insurance) = P (A3|B)

= 0.0194 = 1.94% ≈ 2%
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Classical Case

Now we expand the idea of Bayes’ Theorem in a classical statistical
set-up as follows:

θ = parameter

X = data

Ω = parameter space

f(x|θ), θ ∈ Ω : MODEL

In a non-Bayesian set-up we use the Likelihood principle to draw
inferences about θ or some τ(θ) (some known function of θ)
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Bayesian Case

In a Bayesian set-up,

we think that θ ∼ π(θ): prior distribution (to be known) −→ P (A)

and, X|θ ∼ f(x|θ): conditional distribution (similar to P (B|A))

θ = state of the nature = the true reality

X = what we see / perceive

After observing X = x, we want to know
the distribution of (θ|X = x) −→ Posterior Distribution
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Posterior Distribution

The posterior distribution, denoted by π(θ|x), is

π(θ|x) = f(x|θ)π(θ)∫
Ω

f(x|θ)π(θ)dθ

In Bayesian statistics, we use this posterior distribution to draw
inferences about θ.

∗ One may use the posterior mean, or
posterior median, or
posterior mode

to estimate θ.
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Bayesian Estimators

The most common Bayes’ estimator of θ is

the posterior mean =

∫
Ω

θ π(θ|x)dθ

=

∫
Ω

θf(x|θ)π(θ)dθ∫
Ω

f(x|θ)π(θ)dθ

= a function of x (data)

But the main criticism against Bayesian
statistics is- "How do we know the prior π(θ)?"
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Bayesian Estimators

But there are ways to get around this criticism.
NO INFORMATION ABOUT θ IS INFORMATION ITSELF
This has given rise to Bayesian statistics with non-informative priors
and
Emperical Bayes statistics

Let us take a simple example as follows:
5 tosses of a new coin: {T, T, T,H, T}, θ = P (H),

Estimate θ
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Bayesian Estimators

X =the number of H’s ∼ Bino(5, θ)

θ̂MLE = X/n −→ 1/5 with X = 1, n = 5.

In fact θ̂MLE can take the value
0 w.p. 0.03125
1 w.p. 0.03125
(assuming θ = 0.5)

but we know that θ ∈ (0, 1), possibly near 0.5.

In Bayesian statistics, we take a prior π(θ)
over Ω = (0, 1) as Beta(a, b) distribution.

The posterior distribution of θ|X = x is
Beta(x+ a, n− x+ b)

a, b −→ prior parameters = hyper parameters
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Bayesian Estimators

So, the posterior mean (the most common Bayes estimator)

−→ θ̂B =
x+ a

n+ a+ b
∈ (0, 1)

In the above example with n = 5 and X = 1,

θ̂B =
1 + a

5 + a+ b
But we do not know a and b.

If a = b = 1, =⇒ Beta(a, b) = Uniform(0, 1) distribution

=⇒ θ̂B = 2/7
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Bayesian Estimators

If a = b = 0.5 =⇒ Beta(0.5, 0.5) = Jeffreys prior
=⇒ θ̂B = 1.5/6 = 0.25

In the Emperical Bayes method, θ̂B = x+â
n+â+b̂

where â and b̂ are called Type-II maximum Likelihood estimators of a
and b found by maximizing the marginal distribution of X

m(x|a, b) =
∫ 1

0
f(x|θ)π(θ)dθ

=

∫ 1

0

{(
n

x

)
θx(1− θ)n−xθa−1(1− θ)b−1/B(a, b)

}
dθ

=

(
n

x

)
B(X + a, n− x+ b)/B(a, b),

w.r.t. a > 0 and b > 0
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Empirical Bayes estimator θ̂B

For x = 1 and n = 5, the marginal is maximized (via the Nelder-Mead
algorithm) at α = 297.357, β = 1173.786, giving m(x|a, b) = 0.111 and
θ̂B = x+â

n+â+b̂
= 298.357

1178.786 ≈ 0.253.
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Q. How do we know the prior π(θ)?
A. If we have some specific knowledge about the distribution of θ, then
make use of it (This is called Informative Prior).

However, if we don’t have any knowledge about the distribution of θ,
then that is also some knowledge, and this gives rise to the concept of
Noninformative Prior.

There is a lengthy discussion on prior selection presented in James O.
Berger’s book - ’Statistical Decision Theory & Bayesian Analysis’.
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A prior π(θ) is called a conjugate prior if the posterior distribution
π(θ|x) belongs to the same family as π(θ).

For example:

(i) X|θ ∼ Bino(n, θ)
θ ∼ π(θ) = Beta(a, b)
−→ Posterior: π(θ|x) = Beta(x+ a, n− x+ b)

(ii) X|θ ∼ N(θ, σ2)

θ ∼ π(θ) = N(µ, τ2)

−→ Posterior: π(θ|x) = N(η,
σ2τ2

σ2 + τ2
)

where η =

(
σ2

σ2 + τ2

)
µ+

(
τ2

σ2 + τ2

)
x
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A few words about noninformative prior

(i) Suppose θ is a location paramter, i.e., X|θ ∼ f(x|θ) = f(x− θ).
When we have no idea about the distribution of θ, then

Pπ(θ ∈ (a, b)) =Pπ(θ ∈ (a+ ϵ, b+ ϵ))∀a, b, ϵ

i.e.,
∫ b

a
π(θ)dθ =

∫ b+ϵ

a+ϵ
π(θ)dθ

i.e.,
∫ b

a
π(θ)dθ =

∫ b

a
π(θ − ϵ)dθ ∀a, b, ϵ

⇐⇒ π(θ) = π(θ − ϵ)∀ϵ ∈ Ω = R
⇐⇒ π(θ) = π(0) = constant

i,e, θ ∼ π(θ) = constant on Ω.

(ii) Similarly, if θ is a scale parameter, i.e.,
X|θ ∼ f(x|θ) = 1

θf(
x
θ ), θ > 0, then

θ ∼ π(θ) = (costant/θ)
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(iii) In general. for any parameter θ, we use Jeffreys’ noninformative
prior defined as

πJ(θ) =
√

I(θ), where

I(θ) = Fisher Information = E
(
{∇θ(ln)f(X|θ)}2

)
For a multidimensional parameter vector θ, we have

πJ(θ) = |I(θ)|
1
2

Note: A prior π(θ) may not have a finite integral, i.e., we may have∫
π(θ)dθ =∞, but what we need is that the posterior should be a

probability distribution in order to draw inferences.
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Today Bayesian Statistics is a highly developed area which is used in
every branch of science,

from agriculture to forestry
from sociology to psychology
from Data mining to AI,
just to name a few.
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Thanks!
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Session-II: Challenges in Bayesian Statistics:
From Gibbs Sampling to MCMC Algorithm
with Applications

Nabendu Pal
Department of Mathematics

University of Louisiana at Lafayette
Lafayette, Louisiana, USA
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Some remarks

The main challenge in Bayesian Statistics is the computations
Quite often we find ourselves with intractable marginal
distribution m(x) =

∫
Ω f(x|θ)π(θ)dθ, and / or posterior

distribution π(θ|x) = f(x|θ)π(θ)/m(x).
Several computational methods are available to deal with such
issues.
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Let us look at a simple problem where compuations are easy.

We are going to look at the recent Interstate Highway casualty figures
on I-10 over the Atchafalaya Basin.

Figure: Highway I-10

This Atchafalaya Basin bridge is a major bottleneck in the southern US
vital transportation link, and it often gets disrupted due to traffic
accidents. The highway patrol is always on edge about this issue.
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Figure: Atchafalaya Basin Bridge
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Figure: Traffic accident on the Atchafalaya Basin Bridge, photo by the
Louisiana State Police.

We are going to see the casualty figures per year from 2014 to 2021
(over 8 years).

Atchafalaya Basin bridge casualty per year
2014 2015 2016 2017 2018 2019 2020 2021
3 3 3 2 0 3 3 2
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Q. For any arbitrary year (after 2021), what is the predicted number of
casualties?

A. A classical statistical point of view dictates us to look at the average
x̄ = 2.25.
Hence a predicted value of ≈ 2.
A parametric approach would be to assume that
X = yearly casualty ∼Poisson(θ), θ > 0.
θ̂MLE = x̄ = 2.25

[Actually Poisson gives a good fit with Goodness of Fit (GoF)
p-value ≈ 19%.]
But, remember that the GoF Test itself is asymptotic and we have only
n = 8.
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In fact, for Poisson(2.25),
P (x = 0) = 0.1054
P (x = 1) = 0.2371
P (x = 2) = 0.2668
P (x = 3) = 0.2001
P (x = 4) = 0.1126

P (x = 2) = 0.2668 is the mode, so, (X̂future|past) = 2.

Or one can look at an approximate CI as [x̄± (constant ·
√
x̄)]

= [2.25± c(1.5)]
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The Bayesian viewpoint is different for prediction
Let the given data: X|θ ∼ f(x|θ) ["Model"]
Let θ ∼ π(θ) ["Prior"]
We get (θ|X = x) ∼ π(θ|x) ["Posterior"] = Updated info about θ
given X = x.
Interested in some future observation Y such that Y |θ ∼ g(y|θ)
So, we construct the distribution of Y given X = x as

h(y|x) =
∫
Ω
g(y|θ) · π(θ|x)dθ

We call h(y|x) as the predictive distribution of Y given X = x.

g(y|θ) · π(θ|x) is the mixing of the distribution of Y with the updated
information about θ after observing X = x.
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So, let us implement this predictive inference in the Bayesian set up.

X1, X2, . . . , Xn
iid∼ Poisson(θ), θ > 0

Sufficient statistic: X =
∑n

i=1Xi ∼ Poisson(nθ)

i.e., X|θ ∼ f(x|θ) = e−nθ (nθ)
x

x! , θ > 0.

Usual conjugate prior: πc(θ|α, β) = Gamma(α, β)
= 1

Γ(α)βα · e−θ/β · θα−1

Noninformative Jeffreys’ prior: πJ(θ) =
√

I(θ) ∝ θ−1/2

[Note, πc(θ|α, β) −→
α=1/2, β→∞

πJ(θ)]

Nabendu Pal (ULL) Basics of Bayesian Theory 39 / 60



Priors

Jeffreys’ πJ(θ):

Marginal of X ∼ mJ(x) = (nx/x!)Γ(x+ 1/2)n−(x+1/2)

Posterior: θ|x ∼ πJ(θ|x) = Gamma(α∗ = x+ 1/2, β∗ = 1/n)

Conjugate πc(θ|α, β):

Marginal of x ∼ mc(x|α, β) = (nx/x!)Γ(x+ α)(n+ 1/β)−(x+α)

Posterior: θ|x ∼ πc(θ|x, α, β) = Gamma(α∗ = x+ α, β∗ = 1/(n+ 1/β))
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If we use the conjugate Gamma(α, β) prior, then the question is - how
to choose the hyperparameters α, β?

In this situation, one can follow the Empirical Bayes’ approach to
estimate α & β from the data by maximizing the marginal

mc(x|α, β) = (nx/x!)Γ(x+ α)(n+ 1/β)−(x+α)

∝ m∗
c(x|α, β) (say)

Note: (nx/x!) is constant for the given data.
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Now, back to the prediction of a future observation:

Y |θ(= X(n+1)|θ) ∼ Poisson(θ) = e−θ θ
y

y!
= g(y|θ).

Predictive distribution of Y :
(i) Under πJ(θ) −→ hJ(y|x) =

∫∞
0 g(y|θ)πJ(θ|x)dθ

(ii) Under πc(θ|α, β) −→ hc(y|x, α, β) =
∫∞
0 g(y|θ)πc(θ|x, α, β)dθ

hJ(y|x) =
Γ(y + x+ 1/2)nx+1/2

Γ(x+ 1/2)y!(n+ 1)y+x+1/2

hc(y|x, α, β) =
Γ(y + x+ α)(n+ 1/β)x+α

Γ(x+ α)y!(n+ 1 + 1/β)y+x+α

[Note, hc(y|x, α, β) −→
α=1/2, β→∞

hJ(y|x)]

But, for the conjuigate prior case, we should use
α ≈ α̂ = . . . & β ≈ β̂ = . . .
which are obtained through the empirical Bayes approach.
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More on computations

In our application with a real dataset, we have seen the need to
maximize a distribution and / or finding a suitable expectation.
In a complex application, where the distribution (either marginal or
posterior) is complicated, we have to use approximation.

Think of approximating

E(G(W )) =

∫
G(w)p(w)dw <∞, where W ∼ p(w).

If we can generate iid Wi ∼ p(w), then

E(G(W )) ≃ 1

N

N∑
i=1

G(Wi). [Monte Carlo Method]
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The Monte-Carlo method depends on the Strong Law of Large
Numbers.

Strong Law of Large Numbers (SLLN):

V1, V2, . . . , VN iid ∼ q(v) (pdf / pmf) with finite mean µV . Then

n∑
i=1

Vi/N −→ µV almost surely as N −→∞
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Q. How do we generate Wi ∼ p(w) (known)?

A. For most of the common probability distributions, we have random
value generators
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Let F (·) be the cdf of the pdf/pmf p(w).
Define W ∗ = F (W ) where W ∼ p(w).
Then W ∗ ∼ Uniform(0, 1).

So, first generate W ∗, and then get W = F−1(W ∗).

Caution: This works fine as long as we have a tractable F so that we
can find F−1. Otherwise, it is not possible (or, difficult) to generate
W ∼ p(w).
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When it is difficult to generate "data" from p(w), we can follow
"importance sampling" as follows:

E(G(W )) =

∫
G(w)p(w)dw ≃ 1

N

N∑
1

G(Wi), Wi ∼ p(w)

=

∫
G(w)

p(w)

q(w)
q(w)dw,

where q(w) is an easier distribution to work with

=

∫
G∗

q(w)q(w)dw, G∗
q(w) = G(w)

p(w)

q(w)

≃ 1

N

N∑
i=1

G∗
q(Wi), Wi ∼ q(w)

Note: A major concern is the variance of (
∑N

1 G∗
q(Wi)/N) depending on q(·).
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Gibbs Sampling

Another way to deal with E(G(W )),W ∼ p(w), is through the
Gibbs sampler where we work through a pair (W,V ). We can generate
a sample from p(w) by sampling from the conditional distributions
p∗(w|v) and p∗∗(v|w) which are easier to deal with.

Gibbs sequence:

V ′
0 ,W

′
0, V

′
1 ,W

′
1, V

′
2 ,W

′
2, . . . , V

′
R,W

′
R, . . .

w′
j ∼ p∗(w|v′j), v′j+1 ∼ p∗ ∗ (v|w′

j)

[The initial value V ′
0 = v′0 is specified.]

Nabendu Pal (ULL) Basics of Bayesian Theory 48 / 60



Remarks:
Under fairly general conditions, as k →∞, the distribution of W ′

k

is approximately that of W .
This is a simple form of MCMC.
Starting with N different seed values of V ′

0 we can obtain N
different values of W ′

k (≈W ), thereby giving us an effective sample
of size N from p(w). [Often, k = 100 is good enough.]
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Gibbs example

We will model Atchafalaya Basin bridge casualty dataset (x=18, n=8)
with the Poisson distribution and the Jeffereys’ prior. The histogram
below shows 1000 samples generated from the posterior distribution
after convergence.
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Gibbs example

Below is the full trace of the Gibbs sampling procedure from the
posterior distribution.
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The functionality of an MCMC algorithm depends on the theory of
Ergodic Chain (a specialized form of a Markov Chain) which converges
to a stationary distribution.

Another MCMC method is the Metropolis Algorithm (and further
refined Metropolis-Hastings Algorithm).
Quite often, we know the structure of p(w) where W ∼ p(w), except
the normalizing constant (which may not be easy to obtain), i.e.,

p(w) ∝ h∗(w) [i.e., p(w) = ch∗(w)]

Knowing h∗(w) is good enough to simulate from p(w).
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Simulating from p(w)

Start with W = w0 = wcurrent

Generate W = wnew in the neighborhood of w0

W ∼ N(wcurrent, δ), δ = known

Look at the likelihood ratio Λ = p(wnew)
p(wcurrent)

= h∗(wnew)
h∗(wcurrent)

If Λ > 1, then update W = wnew = w1

If Λ < 1, then w1 = wnew w.p. Λ and w1 = w0 w.p. (1− Λ)

Use W = w1 = wcurrent

Repeat this a large number of times (say, k = 103 times) to
converge.
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So, to mimic a posterior distribution

π(θ|x) = f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

,

all we need is to look at

Λ =
π(θnew|x)

π(θcurrent|x)
=

f(x|θnew)π(θnew)

f(x|θcurrent)π(θcurrent)
;

and move from θcurrent to θnew w.p. min(1,Λ)
and stay at θcurrent w.p. {1-min(1,Λ)}.
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Metropolis-Hastings Algorithm generalizes the above by injecting an
extra asymmetric transition probability.

Look at
α∗ = min

{
1,

p(wnew)q(wcurrent|wnew)

p(wcurrent)q(wnew|wcurrent)

}
then go from wcurrent to wnew w.p α∗
and stay at wcurrent w.p. (1− α∗).
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Metropolis example

Using the same highway accident data and the initial value (θ = 1) as
for Gibbs, we generated the posterior with a Metropolis algorithm. The
histogram below shows the final 1000 draws from the posterior.
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Metropolis example
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A word of caution: MCMC Algorithms are like a blackbox. What really
goes on inside is beyond our control, but we just hope that it works.
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Thanks!
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