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Abstract 

A computer simulation is a computation that emulates the behaviour of some real or 

conceptual systems over time. We conduct experimentation with such models to understand 

the behaviour of a system. Simulation models are widely used in modern scientific research, 

education, industry and manufacturing, and public policy matters. These models tend to be 

extremely complex, often with many factors and sources of uncertainty. The complexity 

reflected in the system simulation models is characterized by the presence of entity elements 

that are dynamically created, asynchronous interactions between the entities, the use of shared 

resources, and connectivity between the entities. Conceptual modelling is a very relevant task 

in simulation modelling, but is often neglected by analysts. Simulation itself does not serve as 

an optimization technique. Computer experiment design principles differ from physical 

experiment design principles, and the three concepts of blocking, replication, and 

randomization are inessential or irrelevant to computer experiment design.  In this paper, a few 

ideas on how to develop discrete-event simulation models and perform designed experiments 

are discussed, which helps in better solutions for the analysts. The focus is on some recent 

developments in the field of simulations which include ideas of visual analytics, data farming, 

knowledge discovery, and robust design.  

 

Key words: Computer simulation; Conceptual modelling; Visual analytics; Knowledge 

discovery; Robust design. 

 

1.  Introduction  

 

Simulation involves building a model that mimics the behavior of a system, 

experimenting with the model to create observations of these behaviours, and attempting to 

comprehend, summarise, and/or generalise these behaviours. Simulation also entails testing 

and comparing various designs, as well as validating, explaining, and supporting simulation 

outcomes and research recommendations in many cases. Simulations can also be classified 

based on how they are implemented. The implementation methodologies for continuous system 

simulation, Monte Carlo simulation, discrete-event simulation (DES), hybrid simulation, and 

agent-based simulation are all different. 

 

Simulation has several advantages. Many integrated operations systems are subject to 

both variability and complexity (combinatorial and dynamic). Because it is difficult to 

anticipate the performance of systems that are subject to any one of variability, 

interconnectedness, or complexity, predicting the performance of operations systems that are 

potentially exposed to all three is extremely difficult, if not impossible.  
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Simulation models, on the other hand, can explicitly depict a system's unpredictability, 

interconnection, and complexity. As a result, a simulation can be used to anticipate system 

performance, evaluate various system designs, and assess the impact of different designs and 

policies on system performance. 

1.  Simulation allows researchers to investigate and experiment with the internal 

interactions of a complex system or a subsystem within one. 

2.  Informational, organisational, and environmental changes can be simulated, and the 

impact on the model's behavior can be determined. 

3.  Because simulation resembles what happens in an actual system or what is perceived 

for a system in the design stage, it appeals to clients instinctively. 

 

A simulation's output data should be identical to the outputs that may be recorded from 

the real system. Furthermore, theoretically solvable models can be used to create a simulation 

model of a system that does not rely on dubious assumptions (such as the same statistical 

distribution for every random variable). Simulation is frequently the technique of choice in 

problem-solving for these and other reasons.  Simulation models, unlike optimization models, 

are "run" rather than "solved." The model is run and the simulated behaviour is evaluated given 

a specific set of input and model variables. 

Computer simulation is applied in a large number of industrial systems that include  

 Manufacturing systems  

●  Public systems: health care, military, natural resources  

●  Transportation systems  

●  Construction systems  

●  Restaurant and entertainment systems  

●  Business process reengineering/management  

●  Food processing  

●  Computer system performance 

In a recent attempt, Discrete event simulation (DES) is used even to help livestock 

farmers, by simulating potential growth strategies and observing the impact in relation to 

existing farm processes (Gittins et al., 2020). To know more about a wide variety of application 

areas of simulations, readers may refer to any Winter Simulation Conference proceedings of 

recent years. 

 

In the following sections, some considerations required for effective simulation 

modelling are discussed. In section 2 few ideas of conceptual modelling, a largely forgotten 

area by many modellers are presented. Section 3 includes a few thoughts on simulation 

experimentations and some recent developments in this area. In section 4 few ideas of robust 

design relevant for simulations are discussed. 

 

2.  Conceptual Modelling, The Soft Operations Research Exercise 

 

Simulations involve a number of steps as summarised in figure 1 

1.  A conceptual model: a description of the model that is to be developed  
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2.   A computer model: the simulation model implemented on a computer  

3.  Improvements and/or understanding: derived from the results of the experimentation  

4.      An improvement in the real world: obtained from implementing the improvements 

and/or understanding gained 

 

Although effective conceptual modeling is vital, it is also the most difficult and least 

understood stage in the modeling process (Law, 2015). Conceptual modelling is a very relevant 

task in simulation modelling, but is often neglected by analysts. The author believes that many 

of statistical modelling tasks also require good conceptual modelling exercises, but largely this 

step is ignored. It can be treated as a soft operations research exercise and a good conceptual 

model significantly enhances the accuracy and acceptability of the computer model. It 

minimizes the likelihood of incomplete, unclear, inconsistent, and wrong requirements.  It helps 

build the credibility of the model and forms the basis for model verification and guides model 

validation. It helps experimentation by expressing the modeling objectives, and model inputs 

and outputs. 

  

Conceptual modelling consists of the following sub-activities (Robinson, 2011):  

•  Develop an understanding of the problem situation  

•  Determine the modelling objectives  

•       Design the conceptual model: inputs, outputs, and model content 

 

 

Figure 1:  Simulation model development process (Source: Robinson, 2014) 

For effective simulation, during conceptual modellers consideration should be given to 

 Subject matter experts   

 Organizing and structuring knowledge  

 Adoption of “soft” OR approaches (Rosenhead and Mingers, 2004) 

 Dimensions for determining the performance of a conceptual  

 Identifying, adapting, and developing modeling frameworks  
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 Model simplification methods  

 Model representation methods  

 Use of software engineering techniques 

 

A model should be created for a specific reason, and its validity should be determined in 

relation to that purpose. A constructed model should typically be a parsimonious model, which 

means it is as simple as feasible while yet accomplishing its goal. Furthermore, a model's 

accuracy (also known as model fidelity) should normally be limited to what is required to meet 

the model's function or purpose. If the goal of a model is to answer a range of questions, the 

model's validity must be assessed separately for each question. Soft operations 

research/problem structuring approaches have been used by OR practitioners for many years. 

When problem structuring approaches are used in combination with analytical approaches such 

as computer simulation, it is sensible to regard the two approaches as complementary(Pidd, 

2007). 

Model developers and users, decision-makers who use information derived from model 

results, and persons who are affected by model-based decisions are all interested in whether a 

model is valid. Strict verification and validations of conceptual models and computer models 

are essential to develop confidence in the customer’s mind. 

 

 

3.  Experimentation and Knowledge Discovery 

 

The focus of early experimental designs was mostly on physical experiments. 

Traditionally, simulation experts conduct experiments on the computer model for 

predetermined system specifications focusing on single model aspects and specific analysis 

questions.  Modellers compare multiple system configurations and choose the one which 

presents the best system performance. Computer experiment design principles differ from 

physical experiment design principles, and the three concepts of blocking, replication, and 

randomization are inessential or irrelevant to computer experiment design. The "space-filling 

property" is commonly used in deterministic computer models based on partial differential 

equations to cover the experimental region with design points. Such analysis are nowadays 

finding value even in stochastic discrete event simulations.  

 

Recent developments in big data analytics have also influenced experimentation and 

analysis of simulation. In the following subsections, some of these developments are presented. 

Subsection 3.2 discuss how big data concepts have a different flavor in simulations; 3.3 

discusses data farming; 3.4 describes briefly various tools used in the knowledge discovery 

process. 

 

3.1.  Experimentation: traditional simulation vs. knowledge discovery 

 

Traditionally, simulation studies make use of several runs on predetermined experimental 

scenarios. Recent developments in the “Knowledge Discovery” process as applied to 

simulations focus on the use of large sets of experimental data from simulations to find out 

hidden patterns for useful interpretations of the system. Table 1 below differentiates these 

approaches. Figure 2 shows a procedure for knowledge discovery (Feldkamp et al., 2015a) 

which make use of concepts of big data, data farming, data mining and visualisations.  
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Table 1: Traditional Simulation Vs Knowledge discovery 

Traditional Simulation Knowledge discovery 

 Project goals formulated beforehand 

 Simulation study is carried out by 

comparing predetermined scenarios 

that the user already had in mind 

before.  

 The target function has to be set up 

beforehand for optimization. 

 Analyst usually takes an educated 

guess which input parameters 

(factors) might be influential on the 

project scope.  

• Use a combination of data mining 

and visual analysis  

• Find hidden and potentially 

interesting 

• Knowledge generated outside of 

prior defined project scopes 

 

 

Figure 2: Knowledge discovery Process 

3.2.  Big data: the 3 (or more) V’s have a different flavor in simulation 

 

The term "Big Data" refers to a large amount of data that can't be stored or processed by 

conventional data storage or processing equipment. Big Data is generated on a massive scale, 

and it is being processed and analysed by many global corporations in order to unearth insights 

and enhance their businesses. Simulation experiments can generate a huge amount of data if 

the experiment considers a large number of factors and levels. This data can be considered as 

having the “V”(volume, velocity, veracity, etc) characteristics of conventional big data. 

However, we can find some subtle differences as shown in Table 2. 
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Table 2: Big data vs simulation data: The 3 (or more) V’s have a different flavor in 

simulation 

Big Data Characteristics Big Data in Simulation 

Analysts usually will not have any control over the 

data. Data may come from sources like 

information generated every second from social 

media, cell phones, cars, credit cards, M2M 

sensors, images, video, etc 

Velocity and volume are partially controlled 

by the analyst. Analyst determines how to 

run the simulation (e.g., on a single core or 

on a high-performance computing cluster), 

how much data to output (e.g., aggregate 

statistics at the end-of-run, batch statistics, or 

full time-series output) for each performance 

measure, and the number of performance 

measures to study.  

 

Data is not under the control of analysts and 

data may be Structured Data, Semi-

Structured Data, or Unstructured Data. Most 

big data contain lots of missing data, errors, 

and incompatible data formats 

The variety does not include many of the 

problems that we find with observational 

data (e.g., incompatible data formats, 

inconsistent data semantics). 

 

A large variety may be seen in big data Simulations can have a variety of types of 

inputs and responses 

 

3.3.  Data farming 

 

“A ‘data farming’ metaphor captures the notion of purposeful data generation from 

simulation models. Large-scale experiments let us grow the simulation output efficiently and 

effectively. We can use modern statistical and visual analytic methods to explore massive input 

spaces, uncover interesting features of complex simulation response surfaces, and explicitly 

identify cause-and-effect relationships”(Sanchez, 2018). Data can be grown in simulation 

experiments to extract many useful insights 

 

• Data farmers manipulate simulation models to advantage—but using large-scale 

designed experimentation.  

• This allows them to learn more about the simulation model’s behavior in a structured 

way. 

• they “grow” data from their models, but in a manner that facilitates identifying useful 

information. 

• The data sets are also better, in the sense they let us identify root cause-and-effect 

relationships between the simulation model input factors and the simulation output.  

 

3.4.  Visual analytics 

 

Results of simulation experiments can be shown visually by means number of charts. 

Proper selection of charts can reveal interesting patterns. Visual Analytics is a key technique 

of a knowledge discovery process for discrete event simulations.  

 

• In traditional simulation studies, techniques such as animation of process flow, time 

plots, and graphs of selected outputs are used for visually representations 

• In Visual Analytics, Data mining algorithms and visualization are used to build up 

knowledge and draw conclusions from it. 
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• This approach is advantageous because the human mind is able to identify patterns 

and relations in visual representations quickly. 

 

Feldkamp et al.(2015a, b) lists the following visual tools combined with data mining tools 

to extract patterns in simulation experiment data(see Table 3).  Few case studies on use of visual 

analytics in simulations in various application areas are found in recent literature. Table 4 lists 

some of them and the types of visual analytics representations used in such case studies. 

 

Table 3: Knowledge discovery tools used in simulations 

Visualization tools Data Mining methods 

 Box plots 

 Histograms 

 Measures of central tendency and 

variation 

 Distribution analysis 

 Scatter matrix and plots 

 Parallel coordinate plots 

 Spider charts 

 Multidimensional patterns 

 Linear regression 

 Logistic regression 

 Flowcharts 

 Heatmaps 

 Network graphs 

 

 Correlation tables 

 Association rules 

 Bayesian networks 

 Classification trees 

 

Table 4: Visualization tools and data mining methods for knowledge discovery in some 

recent literature 

No  Reference Author Tools used 

1 Using Simulation as a Knowledge 

Discovery Tool in An Adversary C2 

Network 

Ntuen et al, 

2009 

A hierarchical cluster tree 

2 Knowledge Discovery Based 

Simulation System in Construction 

Emad E, 2011 Fuzzy Clustering 

3 Knowledge Discovery In Simulation 

Data: A Case Study Of a Gold 

Mining Facility 

Feldkamp et 

al., 2016 

Correlation matrix of input 

and output parameters, 

Matrix scatter plot of 

selected parameters, 

Clustering, 

Linear regression model 

Radarplots 

3D Scatterplot 

4 Interactive Visual Analysis of Large 

Simulation Ensembles 

Matkovic et al, 

2015 

Scatterplot 

Histogram 

5 Visual Analytics of Manufacturing 

Simulation 

Data. 

Feldkamp et 

al,  2015a&b 

Correlation matrix of input 

and output parameters 

Matrix scatter plot of 

selected parameters 

Clustering 

Linear regression model 

Radarplots 

3D Scatterplot 
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6 Improving Navy Recruiting with 

Data Farming 

Hogarth  et al, 

2016 

Scatter plots  

Regression models 

Partition trees 

7 A data farming analysis of a 

simulation of Armstrong’s stochastic 

salvo model 

Kesler et al, 

2019 

Pairwise scatter plot 

Partition tree 

 

4.  Robust Design  

 

Robust design is a system optimization and enhancement approach based on the idea that 

a system shouldn't be judged solely on its average performance. A "good" system must be 

somewhat insensitive to uncontrollable causes of variation in the system's environment, in 

addition to demonstrating acceptable mean performance. The purpose of robust design is to 

help people make better decisions  

 

 •  it focuses the decision-making process on factors that are controllable in practice; 

 •  it identifies levels and consistency of performance based on those controllable factors; 

 •  robust configurations are more likely to yield better engineering implementations; 

 •  those real-world implementations have in many cases achieved greater reliability and 

performance at a lower cost. 

 

In the simulation context, robust design can be viewed from different perspectives as 

depicted in Table 5. This table shows a comparison of experiments on real systems vs computer 

simulation. Please note that sometimes analogous/physical models/prototypes are easier to 

experiment with and may draw better results. Because of the expense, effort, and dangers 

involved in making and observing changes in a real system, one view is that simulation is 

largely used as a surrogate for a real system; another view is that robust design is an inherent 

element of the simulation process.  

 

Table 5: Robust design - comparison of experiment with a real system vs simulation 

Robust Design: Experiment with a real 

system 

Robust Design: Experiment with a 

Simulation model 

Conduct experiments on the real system Simulation is largely used as a surrogate for 

a real system 

Expense, effort, and dangers involved in 

making and observing changes in a real 

system are considerable 

Initial development of models involves lots 

of time and effort to develop a valid and 

credible model. Lots of calibration efforts are 

required to fine-tune the model  

Changes in the system for experimentation 

are often difficult and risky 

Changes to the model and experimentation 

are relatively easy. 

A large number of inputs and factor levels 

may not be physically possible always 

Large number of input and factor levels can 

be studied with ease 

Running/completion of experiments can take 

long time and effort. Replication is difficult. 

Total time to perform an experiment is 

significantly less. Replication means we get 

multiple experimental units (runs or batches) 

to gain a sense of the magnitude of the 

variability associated with response and 

replications are easy in a simulation model. 
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Randomization is used to guard against 

hidden or uncontrollable sources of bias. 

Results from simulation experiments are 

perfectly repeatable, and randomization is 

not needed to guard against hidden or 

uncontrollable sources of bias. 

Homogeneous (i.e., constant) variance is 

commonly assumed for physical experiments 

Heterogeneous (i.e., non-constant) variance 

is pervasive in stochastic simulation. 

Consequently, we should not view response 

variability as merely a nuisance for 

estimating means or other output statistics, 

but as an important characteristic of the 

simulation’s behavior. 

Experiments on real system help system 

optimization and improvement process that 

springs from the view that a system should 

not be evaluated based on mean performance 

alone 

Robust design can be seen as a process of 

simulation optimization, where the “best” 

answer is not overly sensitive to small 

changes in the system inputs. Kleijnen 

(2017) calls this “robust optimization.” If 

robust configurations are identified, then the 

actual results are more likely to conform to 

the anticipated results after implementation. 

 

Accuracy and Precision: The predicted value of the distribution of outcomes in relation 

to some desired aim is referred to as accuracy. For example, if our goal is to determine an 

object's genuine weight, a scale that produces readings with a distribution that has the true 

weight as its anticipated value is considered an accurate scale, even if individual readings differ 

by a significant amount. The dispersion of the outcome distribution is referred to as precision. 

It is considered to be an accurate scale if the measurements are firmly grouped. Figure 3 

illustrates many possible combinations of accuracy and precision for somebody shooting at a 

target. Subplot (a) has shots with low precision because most points are spread from their center 

of mass.  Subplot (b) has high accuracy and precision—the center of mass is on-target, without 

much the spread. Subplot (c) is precise but not accurate. Many other possibilities are also there. 

 
Figure 3: accuracy vs precision 
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Sanchez and Sanchez (2020) illustrate robustness with a nice example to make it clear 

that robustness is not solely determined by either the accuracy or the precision of the outcomes 

relative to the target. Consider response distributions for alternate configurations as depicted 

in Figure 4. Because the mean response for A is perfectly on target, it is the most accurate. If 

we were looking for the most accurate system, A would be the best option. System B, on the 

other hand, is a close second in terms of mean and precision—due to its smaller variance, it is 

far more likely to produce results close to. Based on this example, we could even argue that the 

means do not justify the ends in terms of robustness. Both C and D have mean performance 

above the target value, but when accuracy is taken into account, option D is significantly more 

likely to be farther from the target. The conclusion here is that robustness is not solely 

determined by either the accuracy or the precision of the outcomes relative to the target. 

Tradeoffs may be necessary. 

 

 
Figure 4: comparison of the robustness of systems A, B, C, and D 

4.1.  Loss function  

 

Robust design analysis makes use of loss functions described by Taguchi. The quality 

loss function estimate costs associated when the product or process characteristics are shifted 

from the target value. Such functions help to assess the degree of risk associated with having 

outcomes that deviate significantly from the specified target. Risk should be non-negative, so 

loss functions are monotonically non-decreasing as the magnitude of deviations from the target 

increases. However, a loss function can be asymmetric about the target. 

 

One such loss function commonly used is the quadratic loss function as given below. 

  

where y is the observed outcome based on input x, T is the target value, and k is a scaling 

constant that is often used to adjust the loss to cost. When k is set to 1, it is referred to as scaled 

loss. 

 

We get configurations with low loss when responses are consistently (as measured by 

variance) close to the target. We accept a tradeoff for small expected deviations from the target 

with sufficient improvement in consistency of the outcomes, or vice-versa and the variance is 

non-homogeneous. 
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4.2.  Robust analysis and optimization with simulation metamodels 

 

Computer simulation models of proposed or existing real systems are frequently used to 

make design decisions. Because it is impractical to build several prototype versions of the real 

system, or because the cost or other constraints prevent experimenting with the real system, 

analysts use the simulation model as a surrogate. As these models can be fairly complicated, 

simpler approximations are frequently created; models of the model, or metamodels. (Kleijnen, 

2017). Simulation metamodels can take many forms like multiple regression, partition trees, 

and forests, or kriging. 

 

Quadratic loss function may be used to fit metamodels of loss directly or fit separate 

metamodels for the mean and the variability. We often find it convenient to fit the standard 

deviation as our measure of variability, since it is on the same scale as the mean, but other 

options such as variance or log(variance) are possible. Fitting separate metamodels help 

identify which factors, interactions, or non-linear terms are the key causal drivers of average 

performance and variability. Numerical examples are presented in Sanchez and Sanchez 

(2020). 

 

5.  Conclusion 

 

In this paper we discuss a number of issues related to simulations: how to develop 

discrete-event simulation models and perform designed experiments to identify significant 

variables, thus helping simulation optimization searches for optimal solutions. The focus is on 

some recent developments in the field of simulations which include ideas of visual analytics, 

data farming, knowledge discovery, and robust design.  

 

Concepts in robust design and analysis in the context of simulation demonstrate how 

robustness often changes our perspective when contrasted with simulation optimization 

approaches. Robust solutions can be designed to yield consistently good performance even in 

the face of uncertainty and uncontrollable factors by incorporating those aspects of the system 

into the problem formulation.  

 

The process of conceptual modelling is sometimes neglected by analysts and obviously, 

this can impact the credibility of the model.  The author feels that there should be more research 

connecting the field of statistical modelling with soft operations research and soft systems 

methodologies. Research on data science tools such as visualisations and data mining 

applications is sparse in simulation literature and is an open area that requires more research 

inputs. 
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