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Abstract
This paper deals with the controllability and observability of the fuzzy matrix Lya-

punov discrete dynamical system. The considered fuzzy system is vectorised by using Kro-
necker product. The resulting vector system is converted to matrix Lyapunov difference
inclusion. For the considered fuzzy system, a symmetric controllability matrix is constructed
and derived fuzzy control. A sufficient condition for complete controllability of the fuzzy ma-
trix Lyapunov discrete dynamical system is established by fuzzy rule based approach. Center
average defuzzifier approach is used to establish the sufficient conditions for the complete
observability of the fuzzy matrix Lyapunov discrete dynamical system. A numerical example
is presented to illustrate the theories established, results proved and formulae derived.

Key words: Lyapunov systems; Fuzzy discrete dynamical systems; Fuzzy rule; Controllabil-
ity; Observability; Defuzzifier.

AMS Subject Classifications: 93B05, 93C55, 93C42, 93B07

1. Introduction

Real world systems represented by mathematical models require the knowledge of
exact parameter model values. Many mathematical models do exhibit some degree of uncer-
tainty because of the limitations in obtaining the exact values of the model parameters. This
will naturally inspire scientists and engineers to construct models with uncertain parameters
and uncertain initial conditions. This uncertainty cannot be ignored or neglected because
of its influence on the model predictions. One of the important ways of incorporating the
uncertainty or vagueness is by fuzzy dynamical modeling. The fundamental prerequisites for
the design process are the controllability and the observability. The controllability conditions
guarantee for the existence of control which will steer the state from the initial point to the

Corresponding Author: L.N.Charyulu Rompicharla
Email: narayanarompicharla@gmail.com
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desired final point. So these two metrics are mandatory to test the possibility and feasibil-
ity of achieving the design requirements for the system of consideration. A simple criteria
for the controllability and observability for the fuzzy dynamical systems similar to that of
deterministic dynamical systems cannot be found because of the vagueness and uncertainty
involved in the systems as well as initial condition. So the controllability and observability
in fuzzy sense are to be explored. In the fuzzy case, the controllability cannot be charac-
terized by finding a suitable control which can transfer the system from the initial state to
any desired final state in a finite time interval since finite number of options emerge because
coefficients, variables in the system and initial conditions are fuzzy, not deterministic. Cai
and Tang (2000), Ding and Kandel (2000a), Farinwata and Vachtsevanos (1993) have studied
the controllability of fuzzy systems.

Mastiani and Effati (2018) have investigated the controllability and the observability
property of two systems that one of them has fuzzy variables and the other one has fuzzy
coefficients and fuzzy variables(fully fuzzy system) by normalizing the fuzzy matrices. Gabr
(2015) studied impact of propagation of fuzziness in the coefficients of dynamical systems in
modeling, analysis, and design of automatic control systems. Difference equations describe
the observed evolution phenomena in a better manner when compared to that of differential
equations. Lyapunov matrix systems appear in determining the stability of the autonomous
systems by the second method of Lyapunov without finding the solution of the system
and also in the minimization of quadratic cost functionals in optimal control problems.
Matrix Lyapunov systems have extensive applications in control theory, digital computers,
optimal filters, population dynamics, differential games, power systems, signal processing and
boundary value problems. Putcha et al. (2012) established variation of parameters formula
for the matrix fuzzy dynamical systems and studied the controllability and observability of
the fuzzy discrete dynamical systems by the defuzzifier approach. Anand and Murty (2005),
Murty et al. (1997) studied the controllability and observability of the continuous and discrete
dynamical systems. It is very important to study the controllability and observability of the
mathematical models represented by fuzzy difference equations governing the ambiguity in
dynamics which is not probabilistic. In general the problem of steering an initial state of a
system to a desired final state in Rn become a problem of steering a fuzzy state to another
fuzzy-state in Es. Many of the physical applications may not have the exact information
about their deterministic dynamics which is prerequisite to construct a dynamical system.
The importance of control theory in mathematics and its occurrence in several problems
such as mechanics, electromagnetic theory, thermodynamics, and artificial satellites are well
known. In general, fuzzy systems are classified into 3 categories, (i) Pure fuzzy systems
(ii) T-S fuzzy systems, and (iii) Fuzzy logic systems, using fuzzifiers and defuzzifiers. In
this paper, we use fuzzy matrix Lyapunov discrete dynamical system to describe fuzzy logic
system and establish sufficient conditions for controllability and observability of first order
fuzzy matrix Lyapunov discrete dynamical system S1 modeled by

∆T (n) = A(n)T (n) + T (n)AT (n) + A(n)T (n)AT (n) + F (n)U(n), T (n0) = T0, n > 0 (1)

Y (n) = C(n)T (n) +D(n)U(n) (2)
where U(n) is an m×s fuzzy input matrix called fuzzy control and Y (n) is an r×s fuzzy out-
put matrix. Here T (n), A(n), F (n), C(n) and D(n) are matrices of order s×s, s×s, s×m, r×s
and r × m whose elements are continuous functions of n on J = [0, N ] ⊂ R(N > 0). Bar-
nett (1975) studied the problem of controllability and observability for a system of ordinary
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differential equations. Anand and Murty (2005) established necessary and sufficient condi-
tions for the controllability and observability of continuous matrix Lyapunov systems. Using
fuzzy control, a complex system can be decomposed into several subsystems according to
the expertise of human ability to understand the system and using the human control strat-
egy represented by a simple control law. The popular fuzzy controllers in the literature
are Mamdani fuzzy controllers and Takagi-Sugeno(TS) fuzzy controllers . The main differ-
ence between them is that the Mamdani fuzzy controllers use fuzzy sets whereas the (TS)
fuzzy controllers use linear functions, to represent the fuzzy rules. The accessibility and
the controllability properties of TS fuzzy logic control systems are studied by Biglarbegian
et al. (2012) by using differential geometric and Lie-algebraic techniques. Ding and Kandel
(2000b,a), established that the observability is a characteristic of the system to estimate the
range of the fuzzy initial state with to the knowledge of the fuzzy input and the fuzzy output
in a finite time interval for the fuzzy dynamical system with the fuzzy initial state. In the
works of Takagi and Sugeno (1985), Johansen et al. (2000), Sugeno (1999) a crisp analytical
function is used instead of a membership function in a fuzzy model. In recent years many
authors Alwadie et al. (2003); Ying (1999, 2006); Ding et al. (2003, 1999) are studying TS
fuzzy controllers, because of their ability to model real world problems. Anand and Murty
(2005); Murty et al. (1995) established conditions for the controllability and observability
of Liapunov type matrix difference system. Murty et al. (2008) presented criteria for the
existence and uniqueness of solution to Kronecker product initial value problem associated
with general first order matrix difference system. Murty et al. (2009) studied qualitative
properties of general first order matrix difference systems. We obtain a unique solution of
the system (1), when U(n) is a crisp continuous matrix. We use fuzzy matrix discrete system
to describe fuzzy logic system and extend some of the results of Ding and Kandel (2000a,b)
developed for continuous case to that of discrete case by vectorizing the fuzzy matrix discrete
system. We obtain sufficient conditions for controllability and observability of the system (1)
satisfying the initial condition. The fundamental results established in Murty et al. (1995),
Rompicharla et al. (2019, 2020) have in-fact motivated us to develop our results on fuzzy
matrix Lyapunov discrete dynamical systems.

The paper is organized as follows. Section 2 presents basic definitions and results
required to understand the paper. Section 3 is concerned with the formation of fuzzy ma-
trix Lyapunov discrete dynamical systems. Sufficient conditions for the controllability and
observability of fuzzy matrix Lyapunov discrete dynamical systems are presented in Section
4 and Section 5 respectively. Section 6 presents a numerical example.

2. Preliminaries

In this section basic definitions of Kronecker product, properties of vectorization,
α-level set, fundamental matrix solutions of homogeneous and non-homogeneous matrix
Lyapunov discrete dynamical systems and corresponding initial value problems are presented.
Let

(
N+

n0

)
= {n0, n0 ± 1, ..., n0 ± k, ...} where n0 is an integer number.

Let Pk

(
N+

n0

)s
denotes the family of all nonempty compact convex subsets of

(
N+

n0

)s×s
.

Define the addition and scalar multiplication in Pk

(
N+

n0

)s
as usual. R̊adström (1952) states

that Pk

(
N+

n0

)s
is a commutative semi group under addition, which satisfies the cancellation

law. Moreover, if α, β ∈ (N+
n0) and A,B ∈ Pk

(
N+

n0

)s
, then α(A+ B) = αA+ αB, α(βA) =
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(αβ)A, 1.A = A, and if α, β ≥ 0, then (α + β)A = αA + βA. The distance between A
and B is defined by Hausdroff metric d(A,B) = inf{ϵ : A ⊂ N(B, ϵ), B ⊂ N(A, ϵ)}, where
N(A, ϵ) = {x ∈

(
N+

n0

)s
: ∥x− y∥ < ϵ, for some y ∈ A}.

Definition 1: A set valued function F : J → Pk

(
N+

n0

)s
, where J = [0, N ] ⊂ R(N > 0) is

said to be measurable if it satisfies any one of the following equivalent conditions:

(1) for all u ∈ (N+
n0)s, n → dF (n)(u) = infv∈F (n) ∥ u− v ∥ is measurable,

(2) Gr F = {(t, u) ∈ J × (N+
n0)s : u ∈ F (n)} ∈ ∑ ×β(N+

n0)s, where ∑
, β(N+

n0)s are Borel σ
- field of J and (N+

n0)s, respectively (Graph measurability),

(3) there exists a sequence {fn(.)}n≥1 of measurable functions such that F (n) = {fn(.)}n≥1,
for all n ∈ J (Castaing’s representation).

We denote by S1
F the set of all selections of F (.) that belong to the Lebesgue Bochner space

L1
(N+

n0 )s(J), that is, S1
F =

{
f(.) ∈ L1

(N+
n0 )s(J) : f(n) ∈ F (n) almost every where (a.e)

}
. We

present the Aumann’s integral as follows:
�

J
F (t)dt =

{�
J
f(t)dt, f(.) ∈ S1

F

}
. We say that

F : J → Pk

(
N+

n0

)s
is integrably bounded if it is measurable and there exists a function

h : J → (N+
n0), h ∈ L1

(N+
n0 )s(J), such that ∥ u ∥≤ h(t), u ∈ F (t). We know that if F is a

closed valued measurable multifunction, then
�

J
F (t)dt is convex in (N+

n0)s. Furthermore, if
F is integrably bounded, then

�
J
F (t)dt is compact in (N+

n0)s.

Let Es = {u :
(
N+

n0

)s
→ [0, 1]/u satisfies the following };

(1) u is normal, that is, there exists an n0 ∈
(
N+

n0

)s×s
such that u(n0) = 1;

(2) u is fuzzy convex, that is, for x, y ∈
(
N+

n0

)s
and 0 ≤ λ ≤ 1, u(λx + (1 − λ)y) ≥

min[u(x), u(y)];

(3) u is upper semicontinuous;

(4) [u]0 = {x ∈
(
N+

n0

)s
/u(x) > 0} is compact.

For 0 < α ≤ 1, the 0 < α ≤ 1, the α- level set is denoted and defined by [u]α = {x ∈
(N+

n0 u(x) ≥ α}. Then, from (1) − (4) above, it follows that [u]α ∈ Pk(N+
n0) for all 0 ≤ α ≤ 1.

Define D : En × En → [0,∞] by D(u, v) = sup{d([u]α, [v]α)/α ∈ [0, 1]}, where d is the
Hausdroff metric defined in Pk

(
N+

n0

)s
. It is easy to show that D is a metric in Es and

using results of R̊adström (1952), we see that (Es, D) is a complete metric space, but not
locally compact. Moreover, the distance D verifies that D(u + w, v + w) = D(u, v), u, v ∈
Es, D(λu, λv) = |λ|D(u, v), u, v ∈ Es, λ ∈ R, D(u+w, v+z) ≤ D(u, v)+D(w, z), u, v, w, z ∈
Es. We note that (Es, D) is not a vector space. But it can be embedded isomorphically as
a cone in Banach space (R̊adström (1952)). Regarding fundamentals of differentiability
and integrability of fuzzy functions, we refer to Kaleva (1987) and Lakshmikantham and
Mohapatra (2003).
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Definition 2: Let A ∈ Cr×s(Rr×s) and B ∈ Cp×q(Rp×q). Then Kronecker product of

A and B is written as A⊗B and is defined as a partitioned matrix


a11B a12B ...a1sB
a21B a22B ...a2sB
... ... ...
ar1B ar2B arsB


which is an rp× sq matrix and is in Crp×sq(Rrp×sq).
The Kronecker product has the following properties.

(1) (A⊗B)∗ = A∗ ⊗B∗

(2) (A⊗B)−1 = A−1 ⊗B−1

(3) (A⊗B)(C ⊗D) = (AC ⊗BD).
This rule holds, provided the dimensions of the matrices are such that expressions are
defined.

(4) ||A⊗B || = ∥A∥ ∥B∥, where (∥A∥ = maxi,j |aij|)

(5) (A+B) ⊗ C = (A⊗ C) + (B ⊗ C).
Vectorization of matrix A is denoted by VEC (A) = Â and defined as follows.

Definition 3: Let A = [aij] ∈ Cr×s(Rr×s), we denote VEC(A) = Â = [A.1, A.2, ..., A.s]T
where A.j = [a1j, a2j, ..., arj]T , (1 ≤ j ≤ s), where X is a matrix of size s× s.
Vectorization has the following properties.
1. VEC (AXB) = (B∗ ⊗ A) VEC X.
2. If A and B are square matrices of order s, then
VEC (AX) = (Is ⊗ A) VEC X;
VEC (XB) = (B∗ ⊗ Is) VEC X.

Theorem 1: [Ralescu (1979); Murty and Kumar (2008)]
If u ∈ Es then

(1) [u]α ∈ Pk

(
N+

n0

)s×s
for all 0 ≤ α ≤ 1;

(2) [u]α2 ⊂ [u]α1 for all 0 ≤ α1 ≤ α2 ≤ 1;

(3) αk is non decreasing sequence converging to α > 0, then [u]α = ∩k≥1[u]αk . Conversely,
if {Aα : 0 ≤ α ≤ 1} is a family of subsets of

(
N+

n0

)s×s
satisfying (1) − (3), then there

exists a u ∈ Es such that [u]α = Aα for 0 < α ≤ 1 and [u]0 = U0≤α≤1Aα ⊂ A0.

Theorem 2: [Sundaranand Putcha (2014); Rompicharla et al. (2019)]
Let ϕ(n, 0) and ϕ∗(n, 0) be the fundamental matrix solutions of
∆T (n) = A(n)T (n) and ∆T (n) = T (n)AT (n).
Then the matrix ϕ(n, n0)Cϕ∗(n, n0) (where C is a constant square matrix of size s) be the
fundamental matrix for the system

∆T (n) = A(n)T (n) + T (n)AT (n) + A(n)T (n)AT (n), T (n0) = Is. (3)
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The matrix (ϕ∗(n, n0) ⊗ ϕ(n, n0)) is the fundamental matrix of

∆T̂ (n) = ((A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n)))T̂ (n), T̂ (n0) = T̂0 (4)

and the solution of (4) is T̂ (n) = (ϕ∗(n, 0) ⊗ ϕ(n, 0)T̂0.

Theorem 3: [Putcha and Prathyusha (2019)]
Let ϕ(n, n0)Cϕ∗(n, n0) be the fundamental matrix for the system (3). Then the unique
solution of the initial value problem

∆T̂ (n) = [(A(n)⊗A(n))+(A(n)⊗Is)+(Is ⊗A(n))]T̂ (n)+(Is ⊗F (n))Û(n), T̂ (n0) = T̂0 (5)

is given by

T̂ (n) = (ϕ∗(n, 0) ⊗ ϕ(n, 0))T̂0 +
n−1∑
j=0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))Û(j).

3. Inclusion approach to Fuzzy Matrix Lyapunov discrete dynamical system

This section presents a method of the conversion of fuzzy matrix Lyapunov discrete
dynamical system to a matrix Lyapunov difference inclusion. Thus the solution of a fuzzy
matrix Lyapunov discrete dynamical system can be expressed as the solution set of the
corresponding matrix Lyapunov difference inclusion.
Let ui(n) ∈ E1, n ∈ J, i = 1, 2, .., s2, and define

Û(n) = (u1(n), u2(n), ..., us2(n)) = u1(n) × u2(n) × ...× us2(n)
= {(uα

1 (n), uα
2 (n), ..., uα

s2(n) : α ∈ [0, 1]}
= {(ũ1(n), ũ2(n), ..., ũs2(n) : ũi(n) ∈ uα

i (n), α ∈ [0, 1]},
(6)

where uα
i (n) is the α-level set of ui(n). From the above definition of Û(n) and Theorem 1, it

can be easily seen that Û(n) ∈ Es2 . We now show that the following system S2 defined by

∆T̂ (n) = ((A(n)⊗A(n))+(A(n)⊗Is)+(Is ⊗A(n)))T̂ (n)+(Is ⊗F (n))Û(n), T̂ (0) = T̂0 (7)

and
Ŷ (n) = ((Is ⊗ C(n)))T̂ (n) + (Is ⊗D(n))Û(n) (8)

determines a fuzzy system by using the fuzzy control Û(n). Assume that Û(n) is continuous
in Es2 . Then the set Ûα = u1(n) × u2(n)×, ...,×us2(n) is a convex and compact set in(
N+

n0

)s2

. For any positive number N , consider the following inclusions

∆T̂ (n) ∈ [(A(n)⊗A(n))+(A(n)⊗Is)+(Is ⊗A(n))]T̂ (n)+(Is ⊗F (n))Ûα(n), n ∈ [0, N ], (9)

T̂ (n0) ∈ T̂0. (10)

Let T̂α be the solution of (9) satisfying (10)
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Lemma 1: [T̂ (n)]α ∈ Pk(N+
n0)s2 , for every 0 ≤ α ≤ 1, n ∈ [0, N ].

Proof: We can observe that T̂α is non empty since Ûα(n) has measurable selection.
By choosing

K = maxn∈[0,N ] ∥ ϕ(n, n0) ∥, L = maxn∈[0,N ] ∥ ϕ∗(n, n0)) ∥,

M = max{∥ u(n) ∥: u(n) ∈ Ûα(n), n ∈ [0, N ]},
T = maxn∈[0,N ] ∥ F (n) ∥, J = maxn∈[0,N ] ∥ Is ∥= 1.

If for any T̂ ∈ T̂α, there exists a control u(n) ∈ Ûα(n) such that

T̂ (n) = (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))U(j). (11)

By taking norm on both sides of the equation (11), we get

∥ T̂ (n) ∥≤ KL ∥ T̂0 ∥ +KLTMN.

Hence T̂α is bounded.
For any n1, n2 ∈ [0, N ], consider,

T̂ (n1) − T̂ (n2) = (ϕ∗(n, n1) ⊗ϕ(n, n1))T̂0 +
n1−1∑
j=n0

(ϕ∗(n1, j+ 1) ⊗ϕ(n1, j+ 1))(Is ⊗F (j))u(j)−

(ϕ∗(n, n2) ⊗ ϕ(n, n2))T̂0 −
n2−1∑
j=n0

(ϕ∗(n2, j + 1) ⊗ ϕ(n2, j + 1))(Is ⊗ F (j))u(j)

Therefore

∥ T̂ (n1) − T̂ (n2) ∥≤∥ (ϕ∗(n, n1) ⊗ ϕ(n, n1)) − (ϕ∗(n, n2) ⊗ ϕ(n, n2)) ∥∥ T̂0 ∥ +
n1−1∑

j=n2−1
∥ (ϕ∗(n1, j + 1) ⊗ ϕ(n1, j + 1))(Is ⊗ F (j))u(j) ∥ +

n2−1∑
j=n0

∥ [(ϕ∗(n1, j + 1) ⊗ ϕ(n1, j + 1)) − (ϕ∗(n2, j + 1) ⊗ ϕ(n2, j + 1))](Is ⊗ F (j))u(j) ∥

≤∥ (ϕ∗(n, n1) ⊗ ϕ(n, n1)) − (ϕ∗(n, n2) ⊗ ϕ(n, n2)) ∥∥ T̂0 ∥ +KLTM | n1 − n2 | +

MT
N−1∑
j=n0

∥ (ϕ∗(n1, j + 1) ⊗ ϕ(n1, j + 1) − (ϕ∗(n2, j + 1) ⊗ ϕ(n2, j + 1)) ∥ .

Since (ϕ∗(n, n0)) and (ϕ(n, n0)) are both uniformly continuous on [0, N ],
T̂ is equicontinous. Thus, T̂α is relatively compact.
Let T̂k ∈ T̂α and T̂k → T̂ . For each T̂k, there is a uk ∈ Ûα(n) such that

T̂k(n) = ((ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))Uk(j). (12)



8 CHARYULU R., SUNDARANAND PUTCHA AND DEEKSHITULU [Vol. 22, No. 1

Since uk ∈ Ûα(n) is closed, then there is a subsequence < uki
> of < uk > converging weakly

to u ∈ Ûα(n). From Mazur’s theorem Conway and Voglmeir (2016), there exists a sequence
of numbers λi > 0, Σλi = 1 such that Σλiuki

converges strongly to u. Thus from (12) we
have

ΣλiT̂Ki
(n) =

∑
λi((ϕ∗(n, n0)⊗ϕ(n, n0))T̂0+

n−1∑
j=n0

(ϕ∗(n, j+1)⊗ϕ(n, j+1))(Is⊗F (j))Σλiuki
(j).

(13)
As i → ∞ from equation (13) and Fatuou’s lemma, it follows that

T̂ (n) = (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
∑

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))u(j).

Thus T̂ (n) ∈ T̂α, and hence T̂α is closed.
Let T̂1, T̂2 ∈ T̂α, then there exists u1, u2 ∈ Ûα(n) such that

∆T̂1(n) = [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂1(n) + (Is ⊗ F (n))u1(n),

∆T̂2(n) = [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂2(n) + (Is ⊗ F (n))u2(n).
Let T̂ (n) = λT̂1(n) + (1 − λ)T̂2(n), 0 ≤ λ ≤ 1 then

∆T̂ (n)
= λ∆T̂1(n) + (1 − λ)∆T̂2(n)
= λ((A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n)))T̂1(n)

+ (Is ⊗ F (n))u1(n) + (1 − λ)(((A(n) ⊗ A(n)) + (A(n) ⊗ Is)
+ (Is ⊗ A(n)))T̂2(n) + (Is ⊗ F (n))u2(n)

= [(Is ⊗ A(n)) + (A(n) ⊗ Is) + (A(n) ⊗ A(n))][λT̂1(n)
+ (1 − λ)T̂2(n)] + (Is ⊗ F (n))[λu1(n) + (1 − λ)u2(n)]

Since Ûα(n) is convex, λu1(n) + (1 − λ)u2(n) ∈ Ûα(n), we have

∆T̂ (n) ∈ (Is ⊗ A(n) + A(n) ⊗ Is + A(n) ⊗ A(n))T̂ (n) + (Is ⊗ F (n))Ûα(n),

i.e.,T̂ ∈ T̂α. Thus T̂α is convex. Therefore T̂α is non empty, compact and convex in
C[[0, N ], (N+

n0)s2 ]. Thus, from Arzela-Ascoli theorem, it follows that [T̂ (n)]α is convex in
(N+

n0)s2 , for every n ∈ [0, N ]. Therefore [T̂ (n)]α ∈ Pk((N+
n0)s2) for every 0 ≤ α ≤ 1, n ∈

[0, N ].

Lemma 2: [T̂ (n)]α2 ⊂ [T̂ (n)]α1 , for all 0 ≤ α1 ≤ α2 ≤ 1.

Proof: Let 0 ≤ α1 ≤ α2 ≤ 1. Since Ûα2(n) is contained in Ûα1(n), it follows that

Ûα2(n) = uα2
1 (n) × uα2

2 (n) × ...× uα2
s2 (n) ⊂ uα1

1 (n) × uα1
2 (n) × ...× uα1

s2 (n) = Ûα1(n)
and also the following inclusions:

∆T̂ (n) ∈ [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂ (n) + (Is ⊗ F (n))Ûα2(n)
⊂ [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂ (n) + (Is ⊗ F (n))Ûα1(n)

(14)
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Consider the following inclusions:

∆T̂ (n) ∈ [(A(n)⊗A(n))+(A(n)⊗Is)+(Is⊗A(n))]T̂ (n)+(Is⊗F (n))Ûα2(n), n ∈ [0, N ] (15)

∆T̂ (n) ∈ [(A(n)⊗A(n))+(A(n)⊗Is)+(Is⊗A(n))]T̂ (n)+(Is⊗F (n))Ûα1(n), n ∈ [0, N ] (16)

Let T̂α2 and T̂α1 be the solution sets of (15) and (16) respectively. Clearly the solution of
(15) satisfies the following inclusion:

T̂ (n) ∈ (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))S1
Ûα2 (j+1)

⊂ (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))S1
Ûα1 (j+1). (17)

Thus T̂α2 ⊂ T̂α1 . And hence T̂α2(n) ⊂ T̂α1(n)

Lemma 3: If < αk > is nondecreasing sequence converging to α > 0 then
T̂α(n) = ∩k⩾1T̂

αk(n).

Proof: Let
Ûαk(n) = uαk

1 × uαk
2 ×, ...,×uαk

s2 , Û
α(n) = uα

1 × uα
2 ×, ..., uα

s2

and consider the inclusions

∆T̂ (n) ∈ [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂ (n) + (Is ⊗ F (n))Ûαk(n) (18)

∆T̂ (n) ∈ [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂ (n) + (Is ⊗ F (n))Ûα(n) (19)

Let T̂αk and T̂α be the solution sets of 18 and 19 respectively. Since ui(n) is a fuzzy set and
from Theorem 1, we have

uα
i = ∩k≥1u

αk
i , (20)

we consider

Ûα(n) = uα
1 × uα

2 ×, ...,×uα
s2 = ∩k≥1u

αk
1 × ∩k≥1u

αk
2 ×, ...,∩k≥1u

αk

s2 = ∩k≥1Û
αk(n) (21)

and then S1
Ûα(n)

= S1
∩k⩾1Ûαk (n)

.
Therefore

∆T̂ (n) ∈ [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂ (n) + (Is ⊗ F (n))Ûα(n)

= [(A(n) ⊗ A(n)) + (A(n) ⊗ Is) + (Is ⊗ A(n))]T̂ (n) + (Is ⊗ F (n)) ∩k≥1 Û
αk(n)

⊂ [(A(n) ⊗A(n)) + (A(n) ⊗ Is) + (Is ⊗A(n))]T̂ (n) + (Is ⊗F (n))Ûαk(n), k = 1, 2, 3, ... (22)

Thus we have T̂α ⊂ T̂αk , k = 1, 2, 3..., which implies that

T̂α ⊂ ∩k≥1T̂
αk . (23)
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Let T̂ be the solution set of the inclusion (18) for k ≥ 1. Then

T̂ (n) ∈ (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))S1
Ûαk

(n). (24)

It follows that

T̂ (n) ∈ (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 + ∩k≥1

n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))S1
Ûαk(n)

⊂ (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))SI
∩k≥1Ûαk

= (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))S1
Ûαk

.

This implies that T̂ ∈ T̂α. Therefore,

∩k≥1T̂
αk ⊂ T̂α. (25)

From (23) and (25), we have T̂α = ∩k≥1T̂
αk and hence, T̂α(n) = ∩k≥1T̂

αk(n).

The following theorem establishes the equivalence of fuzzy matrix Lyapunov discrete dy-
namical system with that of matrix Lyapunov difference inclusion and presents the solution
set.

Theorem 4: The system (7) and (8) is a fuzzy matrix Lyapunov discrete dynamical system,
and it can be expressed as

∆T̂ (n) = [(A(n) ⊗A(n)) + (A(n) ⊗ Is) + (Is ⊗A(n))]T̂ (n) + (Is ⊗F (n))Û(n), T̂ (n0) = {T̂0};
(26)

Ŷ (n) = (Is ⊗ C(n))T̂ (n) + (Is ⊗D(n))Û(n). (27)
The solution set of fuzzy matrix Lyapunov discrete dynamical system (26) and (27) is given
by

T̂ (n) ∈ (ϕ∗(n, n0) ⊗ ϕ(n, n0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))Û(j). (28)

Proof: Proof follows from the Lemmas 1,2,3 and Theorem 1 since there exists T̂ (n) ∈ Es2

on [0, N ] such that T̂α(n) is a solution set to the difference inclusions (9) and (10).

The following corollary is the input characterization of the solution set of the initial value
problem associated with the non homogeneous matrix Lyapunov discrete dynamical sys-
tem.corollary

Corollary 1: If the input is in the form Û(n) = ũ1(n) × ũ2(n) × ... × ũi(n) × ... × ũs2(n)
where ũk(n) ∈ R1, k ̸= i are crisp numbers, then the ith component of the solution set of (5)
is a fuzzy set in E1.
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The following definitions fuzzy controllability, fuzzy observability, α-level sets and
product of fuzzy matrix with α-level sets are essential for exploring the controllability and
observability of the fuzzy matrix Lyapunov discrete dynamical system.

Definition 4: The fuzzy system given by equations (26)-(27) is said to be completely con-
trollable if for any initial state T̂ (n0) = T̂0 and any given final state T̂f there exists a finite
time n1 > 0 and a control Û(n), 0 ≤ n ≤ n1 such that T̂ (n1) = T̂f .

Definition 5: The fuzzy system given by equations (26)-(27) is said to be completely observ-
able over the interval [0, N ] if the knowledge of rule base of input Û and output Ŷ over [0, N ]
suffices to determine a rule base of initial state T̂0 . Let ul

i, y
l
i, i = 1, 2, .., s2, l = 1, 2, ...,m,

be fuzzy sets in El. We assume that the rule base for the input and output is given by

Rl : If ũ1(n) is in ul
1(n), ũ2(n) is in ul

2(n), ..., ũs2(n) is in ul
s2(n),

Then ỹ1(n) is in yl
1(n), ỹ2(n) is in yl

2(n), ..., ỹs2(n) is in yl
s2(n), l = 1, 2, ...,m (29)

and the output can be expressed as a function of input by the equation

Ŷ (n) = (Is ⊗ C(n))T̂ (n) + (Is ⊗D(n))Û(n).

Definition 6: Let x, y ∈ Es2 and x = x1 × x2 × ... × xs2 and y = y1 × y2 × ... × ys2 ,
xi, yi ∈ E1, i = 1, 2, ..., s2.

If y = z+x, then z = y−x which is defined by [z]α = [y−x]α = [y]α−[x]α =

 [y1]α − [x1]α
...

[ys2 ]α − [xs2 ]α


If y = w − x, then w = y + x which is defined by

[w]α = [y + x]α = [y]α + [x]α =

 [y1]α + [x1]α
...

[ys2 ]α + [xs2 ]α

.

Definition 7: Let C =


c11 c12 ... c1s2

c21 c22 ... c2s2

... ... ... ...
cs21 cs22 ... cs2s2

 be an s2 × s2 matrix, p = p1 × p2 × ...× ps2 ,

let pi ∈ E1, i = 1, 2, ..., s2, be a fuzzy set in Es2 , and let [pi]α be α- level sets of pi, define the
product Cp of C and p as

[Cp]α = C[p]α =


c11 c12 ... c1s2

c21 c22 ... c2s2

... ... ... ...
cs21 cs22 ... cs2s2




[p1]α
[p2]α
...

[ps2 ]α

 =


c11[p1]α + ...+ c1s2 [ps2 ]α
c21[p1]α + ...+ c2s2 [ps2 ]α

...
cs21[p1]α + ...+ cs2s2 [ps2 ]α


4. Controllability of Fuzzy Matrix Lyapunov discrete dynamical system

A sufficient condition for controllability of fuzzy matrix Lyapunov discrete dynami-
cal system is derived by fuzzy rule based approach via corresponding Lyapunov difference
inclusion.

Theorem 5: The fuzzy system (26)-(27) is completely controllable if the s2 × s2 symmetric
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controllable matrix

W (n0, N) =
N−1∑
j=n0

[(ϕ∗(N, j+1)⊗ϕ(N, j+1))(Is⊗F (j))(Is⊗F (j))∗(ϕ∗(N, j+1)⊗ϕ(N, j+1))∗]

(30)
(Where ∗ represents the conjugate transpose) is nonsingular. Furthermore, the fuzzy control
Û(n) which transfers the state of the system from T̂ (0) = T̂0 to a fuzzy state

T̂ (N) = T̂f = (tf1 , tf2 , ..., tfs2 ) (31)

can be modified by the following fuzzy rule base:

R : IF t̃1 is in tf1 , tf2 , ..., t̃fs2 is in tfs2 THEN ũ1 is in u1...ũs2 is in us2 (32)

where
(ũ1(n), ũ2(n), ..., ũs2(n)) =

1
N

(Is ⊗ F (n))−1(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1)))−1

× (t̃1(N), t̃2(N), ..., tfi
, .., t̃s2(N))

− (Is ⊗ F (n))∗(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))∗

W−1(n0, N)(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂ (0), i = 1, 2, .., s2.

Proof: Suppose that the symmetric controllability matrix W (n0, N) is nonsingular.
Therefore W−1(n0, N) exists. By multiplying equation (30) on both sides by
W−1(n0, N)(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0, we get

(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0 =
N−1∑
j=0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))

×(Is ⊗ F (j))∗(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1)∗)W−1(0, N)(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0. (33)
Now our problem is to find the control Û(n) such that

T̂ (N) = T̂f = (ϕ∗(N,N0)⊗ϕ(N,N0))T̂0+
N−1∑
j=n0

(ϕ∗(N, j+1)⊗ϕ(N, j+1))(Is⊗F (j))Û(j). (34)

Since T̂ is fuzzy and Û(n) must be fuzzy, otherwise the left side of equation (34) cannot be
equal to the crisp right side. Now T̂f can be written as

T̂f = 1
N

N−1∑
j=n0

T̂f = 1
N

N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))

× (Is ⊗ F (j))−1(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))−1T̂f .

(35)

From (34) and (35) we have

1
N

N−1∑
j=n0

(ϕ∗(N, j+ 1) ⊗ϕ(N, j+ 1))(Is ⊗F (j)) × (Is ⊗F (j))−1(ϕ∗(N, j+ 1) ⊗ϕ(N, j+ 1))−1T̂f
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= (ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0 +
N−1∑
j=0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))Û(j). (36)

From (33) and (35) it follows that

1
N

N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))(Is ⊗ F (j))−1

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))−1T̂f =
N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))

(Is ⊗ F (j))∗(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))∗ ×W−1(n0, N)(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0

+
N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))Û(j) (37)

i.e.,

N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))Û(j) =
N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))

(Is ⊗ F (j)){ 1
N

(Is ⊗ F (j))−1(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))−1T̂f−

(Is ⊗ F (j))∗(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))∗W−1(n0, N)(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0}. (38)

Now Û(N) can be expressed as

Û(N) = 1
N

(Is ⊗ F (n))−1(ϕ∗(N, n+ 1) ⊗ ϕ(N, n+ 1))−1T̂f −

(Is ⊗ F (n))∗(ϕ∗(N, n+ 1) ⊗ ϕ(N, n+ 1))∗ ×W−1(n0, N)(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0}. (39)
Now we have the following two possible cases for (39)

Case(i)
When T̂ (N) = T̂f = (t̃1(N), t̃2(N), ..., t̃s2(N)) is a crisp point, equation (39) gives corre-
sponding control Û(n) and is given by Û(n) = (ũ1, ũ2, ..., ũs2).

Case(ii)
When T̂ (N) = (t̃1(N), t̃2(N), ..., tfi

, ..., t̃s2(N)), equation (39) gives the corresponding control
Û(n) and is given by Û(n) = (ũ1, ũ2, ..., ui, ..., ũs2) in which the component of Û(n) is a fuzzy
set in E1.
Clearly ũi(n) is in ui(n), µtfi

(t̃i(N)) gives the grade of the membership of t̃i(N) in tfi
.

Hence fuzzy rule base for the control Û given by equations (31) and (32) follows.

Note: The converse of the above theorem need not be true. Since fuzzy rule base cannot
imply the non singularity of the controllability matrix W (n0, N) given by (30). It follows
that the condition in the above theorem is only sufficient condition but not necessary.
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5. Observability of Fuzzy Matrix Lyapunov discrete dynamical system

A sufficient condition for observability of fuzzy matrix Lyapunov discrete dynamical
system is constructed by center average defuzzifier approach via corresponding Lyapunov
difference inclusion.

Theorem 6: Assume that the fuzzy rule base (29) holds, then the fuzzy system (26)-(27)
is completely observable over the interval [0, N ] and (Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0)) is
nonsingular. Furthermore, if

T̂0 = (t̃10, t̃20, ..., t̃s
2

0 ) (40)

then one has the following rule base for the initial value T̂0,

Rl : If ũ1(N) ∈ ul
1(N), ..., ũs2(N) ∈ ul

s2(N) and ỹ1(N) ∈ yl
1(N), ..., ỹs2(N) ∈ yl

s2(N)

Then t̃10 is in tl0(1), ..., t̃s2

0 (n) is in tl0(S2), l = 1, 2, ..,m. (41)
where

tl0(i) = [(IS ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0))]−1{V l
i (N) − (IS ⊗D(N))Û(N)−

(Is ⊗ C(N))
N−1∑
j=n0

(ϕ∗(N, j + 1) ⊗ ϕ(N, j + 1))(Is ⊗ F (j))H l
i(j)}, (42)

T̂0 = ((Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0))−1{ỹ(N) − (Is ⊗D(N))Ũ(N)−

(Is ⊗ C(N)) ×
N−1∑
j=n0

(Is ⊗ ϕ(N − j − 1))(Is ⊗ F (j))Ũ(j), (43)

H l
i(n) = ũ1(n) × ũ2(n)×, ..., ul

i(n)...× ũs2(n), (44)
V l

i (n) = ỹ1(n) × ỹ2(n)×, ..., yl
i(n)...× ỹs2(n), i = 1, 2, .., s2; l = 1, 2, ..,m. (45)

Proof: Consider the case when l = 1. Let

ũ(n) = (ũ1(n), ũ2(n), ..., ũs2(n)), (46)

ỹ(n) = (ỹ1(n), ỹ2(n), ..., ỹs2(n)) (47)
Let µu1

i (n)(ũi(n)) be the grade of the membership of ũi(n) in u1
i (n), and let µy1

i (n)(ỹi(n))
be the grade of membership of ỹi(n) in y1

i (n). Since (Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0)) is
nonsingular and from (28) we have

T̂0 = [(Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0))]−1{ỹ(N) − (Is ⊗D(N))ũ(N)−

(Is ⊗ C(N))
N−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))ũ(j)} (48)

When the input and output are both fuzzy sets it follows from equation 8 that

(Is ⊗ C(N))T̂ (n) = Ŷ (n) − (Is ⊗D(N))ũ(N) (49)
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is a fuzzy set. From equation (28), we get

(Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0 +
N−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))Û(j)

= Ŷ (n) − ((Is ⊗D(N)))Û(n). (50)
Using Definition 6, it follows that

(Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0 = {Ŷ (n) − (Is ⊗D(N))Û(n)−

(Is ⊗ C(N))}
N−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))Û(j). (51)

Since (Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0)) is nonsingular, we have

T̂0 = [(Is ⊗ C(N))(ϕ∗(N,N0) ⊗ ϕ(N,N0)]−1{Ŷ (N) − ((Is ⊗D(N))Û(N))−

(Is ⊗ C(N)) ×
N−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))Û(j)} (52)

Now, the initial value T̂0 should be a fuzzy set but not a crisp value. The following assump-
tions will enable us to determine each component of T̂0

H1
i (n) = ũ1(n) × ui(n+ 1) × ...× ũs2(n)

V 1
i (n) = ỹ1(n) × yi(n+ 1) × ...× ỹs2(n) where i = 1, 2, ..., s2 (53)

From the Corollary 3, we know that the ith component of the set

(ϕ∗(N,N0) ⊗ ϕ(N,N0))T̂0 +
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))H1
i (n) (54)

is a fuzzy set in E1. From the fact that the product of a square matrix of size s2 and column
vector whose elements are α- level sets defined on fuzzy set in Es2 is again a fuzzy set in
Es2 , it follows that the product

(Is ⊗ C(N)) ×
n−1∑
j=n0

(ϕ∗(n, j + 1) ⊗ ϕ(n, j + 1))(Is ⊗ F (j))H1
i (n) (55)

is a fuzzy set in Es2 . Hence T̂o is a fuzzy set in Es2 and the ith component of it denoted by
t10(i) is a fuzzy set in E1. The grade of membership of t̃i0 in t10(i) is defined by
µt1

0(i)(t̃i0) = min{µu1
i (n)(ũi(n)), µy1

i
(n)(ỹi(n))}. Now the initial value is determined by us-

ing the equations (41) to (45). In general, computation of tl0(i) is very difficult, but to
solve the real value problem the following approximation is chosen. Now we take the point
(t̃i0, µtl

0
(i)(t̃0

i)) and the zero level set [tl0(i)]0 to determine a triangle as the new fuzzy set
tl0(i). We can use the centre average defuzzifier

t̃i0 =
∑m

l=1 (t̃i0)lµtl
0(i)(t̃i0)l∑m

l=1 µtl
0(i)(t̃i0)l

(56)

to determine the initial value T̂0 = (t̃10, t̃20, ..., t̃s
2

0 ). To obtain more accurate value for the
initial state, more rule bases may be provided.
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6. Numerical example

In this section, a numerical example which verify and validate the established condi-
tions of controllability and observability of fuzzy matrix Lyapunov discrete dynamical system
is presented. Consider the fuzzy matrix Lyapunov discrete dynamical system (27) satisfying

(28) with A(n) =
[
1 0
0 −2

]
, F (n) =

[
2n 0
0 3n

]
, C(n) =

[
0 1
1 0

]
and D(n) =

[
0 0
0 0

]
, N = 2,

T (0) =
[
1 1
1 1

]
. Let the final state t̂f = (tf1 , tf2 , tf3 , tf4) in E4, where [T̂f ]α =

([tf1 ]α, [tf2 ]α, [tf3 ]α, [tf4 ]α)T = [[α − 1, 1 − α], [α − 1, 1 − α], [0.1(α − 1), 0.1(1 − α)], [0.1(α −
1), 0.1(1 − α)]]T . Choose the points t̃f1 = 0.5, t̃f2 = 0.25, t̃f3 = 0.05, and t̃f4 = 0.025, which
are in tf1 , tf2 , tf3 , and tf4 whose membership function values are 0.5, 0.75, 0.5 and 0.75 re-
spectively. The fundamental matrix of homogeneous discrete dynamical system ∆T (n) =

A(n)T (n) is given by ϕ(n, n0) =
[
1n−n0 0

0 (−2)n−n0

]
. The 22 × 22 symmetric controllable

matrix W (0, 2) obtained by equation (30) of Theorem 5 we get W (0, 2) =


5 0 0 0
0 13 0 0
0 0 5 0
0 0 0 13

 is

nonsingular. Thus from Theorem 5 the α- level fuzzy control Û(n) is computed by

Ûα(n) =


(2)−n−1[α− 1, 1 − α]

3−n(−2)n[α− 1, 1 − α]
(2)−n−1[0.1(α− 1), 0.1(1 − α)]

3−n(−2)n[0.1(α− 1), 0.1(1 − α)]

 -


(2)n0.2

(0.304)3n(−2)−n+1

(0.8)2n

(1.1216)3n(−2)−n+1

.

The α- level sets of fuzzy input Û(n) and fuzzy output Ŷ (n) by Rule Base 1 are denoted by
[Û (1)]α, [Ŷ (1)]α and are given by
Rule Base 1:

[Û (1)]α =


[0,−0.75(α− 1)]

[0.75(α− 1) + 1, 1]
[0,−0.5(α− 1)]

[0.5(α− 1) + 1, 1]

 [Ŷ (1)]α =


[0,−2(α + 1)]
[0.5α + 2.5, 3]

[0,−1.5(α− 1)]
[0.5(α− 1) + 3, 3]


The α- level sets of fuzzy input Û(n) and fuzzy output Ŷ (n) by Rule Base 2 are denoted by
[Û (2)]α, [Ŷ (21)]α and are given by.
Rule Base 2:

[Û (2)]α =


[0,−0.8(α− 1)]
[0.8α + 0.2, 1]

[0,−0.5(α− 1)]
[0.5α + 0.5, 1]

 [Ŷ (2)]α =


[0,−1.5(α− 1)]

[α + 1, 2]
[0,−2.5(α− 1)]

[(2α+ 1), 3]

 .
From Rule Base 1, select

ũ1 = (ũ1, ũ2, ũ3, ũ4) = (0.5, 0.85, 0.4, 0.75)

the values of the membership function of ũ1, ũ2, ũ3 and ũ4 are 1
3 , 0.8, 0.2, and 1

2 , respectively.
Also

ỹ1 = (ỹ1, ỹ2, ỹ3, ỹ4) = (1, 2.8, 0.5, 2.9)
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the values of the membership function of the output ỹ1, ỹ2, ỹ3, and ỹ4, are 1
2 , 0.6,

2
3 and 0.8

respectively.
From Rule Base 2, we select

ũ2 = (ũ1, ũ2, ũ3, ũ4) = (0.5, 0.8, 0.25, 0.75),
the values of the membership function of ũ1, ũ2, ũ3 and ũ4 respectively are 1

3 , 0.8, 0.2 and 1
2

respectively. Also
ỹ2 = (ỹ1, ỹ2, ỹ3, ỹ4) = (1, 1.75, 2, 1.5)

the values of the membership function of ỹ1, ỹ2, ỹ3, and ỹ4 are 1
3 ,

3
4 , 0.2 and 0.25 respectively.

From Rule Base 1 and equation (43) we have T̂0 =


[1.3]

[0.0375]
[1.7]

[−0.0625]

. From Rule Base 1 and

equation 42 we have t10(1) =


[2.8; 2.2.5α + 0.55]

[−0.2125; −0.5α− 0.7125]
[2.9]

[−1.1875]

. When α = 0, we observed that

t̃10 = 1.3 belong to the interval [2.8, 0.55]. We choose its function in t10 as
µt1

0
(1) = min{µu1

1
(ũ1(n)), µy1

1
(n)(ỹ1(n))} = min(1

3 ,
1
2) = 1

3 .

t10(2) =


[0.5α + 1; 1.5]

[0.1875(1 − α); 0]
[2.9]

[−1.175]

. When α = 0 we observed that t̃20 = 0.0375 belong to the inter-

val [0.1875; 0]. We choose its membership grade in t10(2) as µt1
0(2)t̃

1
0 = min(0.8, 0.6) = 0.6.

t10(3) =


[1.3]

[0.0375]
[2.9]

[−13125,−0.375α− 1.5625]

. When α = 0, we observed that t̃30 = 1.7 belong to

the interval [2.9; 0]. We choose its membership grade in t10(3) as µt1
0
(3)t̃10 = min(0.2, 2

3) = 0.2.

t10(4) =


[1.3]

[0.0375]
[0.5α + 2.5; 3]

[−0.875α− 0.75; −1.625]

. When α = 0, we observed that t̃40 = −0.0625 belong

to the interval [−0.75,−1.625]. We choose its membership grade in t10(4) as µt1
0
(4)t̃10 =

min(1
2 , 0.8) = 1

2 .

Similarly for Rule Base 2 using equation (43) we get T̂0 =


[0.95]

[−0.125]
[0.75]

[0.3125]

.

By using Rule Base 2 and equation (42) we get

t20(1) =


[1.75; 2.4α− 0.25]

[−0.2; −0.375α + 0.05]
[1.5]

[−0.8125]

 , µt
2
0(1)t̃20 = min(3

8 ,
1
3) = 1

3 ,
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t20(2) =


[α− 0.5; 0.5]
[0.2 − 0.2α; 0]

[1.5]
[−0.2]

, µt
2
0(2)t̃20 = min(3

4 ,
3
4) = 3

4 ,

t20(3) =


[0.25]
[0.05]
[1.5]

[−1.3125; −0.625α− 0.6875]

 , µt2
0
(3)t̃20 = min(1

2 , 0.2) = 0.2,

t20(4) =


[0.25]
[0.5]

[2α + 1; 3]
[−0.875α− 0.375; −1.25]

 , µt
2
0(4)t̃20 = min(1

2 , 0.25) = 0.25.

By using the center average defuzzifier given by equation (56) the initial value T̂0 = (t̃10, t̃20, t̃30, t̃40)
is given by

t̃10 =
[1.3 × 1

3 + (0.95) × 1
3 ]

1
3 + 1

3
= 2.55142, t̃20 = [0.0375 × (0.6) + (−0.125) × 0.75]

0.6 + 0.75 = −0.0527,

t̃30 = [1.7×(0.2)+(0.75)×(0.2)]
0.2+0.2 = 1.225, t̃40 = [−0.0625×(0.5)+(0.3125)×(0.25)]

0.5+0.25 = 0.0625.
By considering more rule bases the accuracy of the initial state can be improved.

7. Conclusion

In this paper, by visualizing fuzzy matrix Lyapunov discrete dynamical system as a
Lyapunov difference inclusion, sufficient conditions for the controllability and observability of
the fuzzy matrix Lyapunov discrete dynamical system are constructed by following the fuzzy
rule base. We have constructed the rule base for the initial value without the knowledge
of the solution of the system. This approach is new for the Lyapunov discrete dynamical
systems. The constructed example clearly demonstrates the established results.
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Abstract
This paper presents improved population mean estimators using auxiliary variable in

Stratified Ranked Set Sampling. We have derived the expressions for bias and mean square
errors up to the first order of approximation and shown that the proposed estimators under
optimum conditions are more efficient than other estimators taken in this paper. In an
attempt to verify the efficiencies of proposed estimators, theoretical results are supported by
empirical study and simulation study for which we have considered two populations.
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1. Introduction

In theory of sampling it is evident that suitable use of auxiliary information improves
the efficiency of the estimator. These auxiliary information may be used either at the design
phase or the estimation phase or at both phases. Cochran (1940) was the first to introduce a
ratio estimator of Population Mean using auxiliary information. Shabbir and Gupta (2007),
Koyuncu and Kadilar (2009) and Chaudhary et al. (2009) have considered the problem of
estimating population mean taking into consideration information on auxiliary variable.

When population is heterogenous stratified random sampling (SSRS) is used for better
accuracy. Several authors like Kadilar and Cingi (2003), Shabbir and Gupta (2006) and Haq
and Shabbir (2013) have proposed estimators in stratified random sampling using information
on a single auxiliary variable. Singh and Kumar (2012) have proposed improved estimators
of population mean using two auxiliary variables in stratified random sampling. Recently,
Muneer et al. (2020) have proposed family of chain exponential estimators in SSRS.

Ranked set sampling (RSS) is an improved sampling method over Simple Random Set
Sampling (SRS). McIntyre (1952) was the first to explain RSS for estimating the population
means. Takahasi and Wakimoto (1968) gave the necessary mathematical theory of RSS.
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Samawi and Muttlak (1996) suggested ratio estimators of population mean in RSS and
showed that the RSS estimators gave improved results over their SRS counterparts. Shiva
(2006) compared RSS with SRS for estimation of the unknown mean of study variable and the
ratio of study variable to auxiliary variable. He concluded that RSS gives a better estimate
for both the mean and the ratio. Singh et al. (2014) suggested a general procedure for
estimating the population mean using RSS. Bouza (2014) and Bouza et al. (2018) provided
a review of RSS, its modification, and its application.

Stratified ranked set sampling (SRSS) was first introduced by Samawi (1996) for
increasing the efficiency of estimator of population mean. Samawi and Siam (2003) have
proposed the combined and the separate ratio estimators in SRSS.

2. Sampling methodology

In ranked set sampling (RSS), we rank randomly selected units from the population
merely by observation or prior experience after which only a few of these sampled units
are measured. In RSS, k independent random sets each of size k are selected from the
population and each unit in the set is being selected with equal probability. The members
of each random set are ranked with respect to the characteristic of the auxiliary variable.
Then the smallest unit is selected from the first ordered set and the second smallest unit
is selected from the second ordered set. By this way, this procedure is continued until the
largest rank is chosen from the kth set. This cycle may be repeated r times, so rk (=n) units
have been measured during this process.

SRSS takes the following steps.

• Step 1: Select k2
h bivariate sample units randomly from the hth stratum of the popula-

tion.

• Step 2: Arrange these selected units randomly into kh sets, each of size kh.

• Step 3: The procedure of ranked set sampling (RSS) is then applied, on each of the
sets to obtain the kh sets of ranked set sample units. Here ranking is done with respect
to the auxiliary variable Xh.

• Step 4: Repeat the above steps r times for each stratum to get the desired sample of
size nh = khr.

Consider a finite population U = (U1, U2, ..., UN) based on N identifiable units with
a study variable Y and auxiliary variables X associated with each unit Ui, i = 1,2,...,N of
the population. Let the population be divided into L disjoint strata with stratum h based
on Nh, h = 1,2,...,L units.

Let (Yh[1]j, Xh(1)j), (Yh[2]j, Xh(2)j), ..., (Yh[kh]j, Xh(kh)j) be the stratified ranked set sam-
ple for jth, j=1,2,...,r cycle in hth stratum.

Let y[SRSS] = ∑L
h=1 Whyh[rss] and x[SRSS] = ∑L

h=1 Whxh[rss]

respectively be the stratified ranked set sample means corresponding to the population
means
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Y = ∑L
h=1 WhY h and X = ∑L

h=1 WhXh

of variables Y and X, where Wh = Nh

N
is the weight in stratum h.

Let yh[rss] = ∑kh
i=1

∑r
j=1

Yh[i]j
khr

and xh[rss] = ∑kh
i=1

∑r
j=1

Xh(i)j

khr

be the stratified ranked set sample means corresponding to the population means

Y h = ∑Nh
j=1

Yh[i]j
Nh

and Xh = ∑Nh
j=1

Xh(i)j

Nh

of variables Y and X in stratum h.

Let s2
yh = 1

nh−1
∑L

h=1 (Yh[i] − yh[rss])
2, s2

xh = 1
nh−1

∑L
h=1 (Xh(i) − xh[rss])2 and

sxyh = 1
nh−1

∑L
h=1 (Yh[i] − yh[rss])(Xh(i) − xh[rss])

respectively be the sample variances and covariances corresponding to the population
variances and covariances.

S2
yh = 1

Nh−1
∑L

h=1 (Yh[i] − Y h)2, S2
xh = 1

Nh−1
∑L

h=1 (Xh(i) − Xh)2

and Sxyh = 1
Nh−1

∑L
h=1 (Yh[i] − Y h)(Xh(i) − Xh) in the stratum h.

Let Cyh and Cxh respectively be the population coefficient of variation of variables Y
and X.

3. Existing estimators

The conventional separate estimator of the population mean Y under SRSS is given
by

ts =
L∑

h=1
Whyh[rss] (1)

The variance of the estimator ts is given by

V ar(ts) =
L∑

h=1
W 2

h Y
2
hU20h (2)

The classical separate ratio estimator of the population mean Y under SRSS is defined
as

ts
r =

L∑
h=1

Whyh[rss]
X

xh[rss]
(3)

The Mean Squared Error (MSE) of the estimator tc
r is given by

MSE(ts
r) =

L∑
h=1

W 2
h Y

2
h[U20h + U02h − 2U11h] (4)

The classical separate regression estimator of the population mean Y under SRSS is
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given as

ts
lr =

L∑
h=1

Whyh[rss] + β(X − xh[rss]) (5)

The Mean Squared Error (MSE) of the estimator tc
lr is given by

MSE(ts
lr) =

L∑
h=1

W 2
h [Y 2

hU20h + β2
hX

2
hU02h − 2βhY hXhU11h] (6)

where βh is the regression coefficient of Yh on Xh.

4. Proposed estimators

Motivated by Bhushan et al. (2020), we suggest some estimators of the population
mean Y using SRSS as

ts
p1 =

L∑
h=1

Whyh[rss] exp
(

α1h

(
xh[rss]

Xh

− 1
))

(7)

ts
p2 =

L∑
h=1

Whyh[rss] exp
(

α2h log xh[rss]

Xh

)
(8)

where α1h and α2h are constants such that MSE of the estimators is minimum.

The biases of the proposed estimators are

Bias(ts
p1) =

L∑
h=1

WhY h

(
α2

1h

2 U02h + α1hU11h

)
(9)

Bias(ts
p2) =

L∑
h=1

WhY h

(
(α2

2h − α2h)
2 U02h + α2hU11h

)
(10)

The mean square errors of the proposed estimators are

MSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

1hU02h + 2α1hU11h

)
(11)

MSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

2hU02h + 2α2hU11h

)
(12)

The minimum mean square errors at the optimum values are

MinMSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(13)

MinMSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(14)

Outline of the derivations are given in Appendix
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5. Some other proposed estimators

We propose modified estimators of population mean by Y under SRSS as

ts
p3 =

L∑
h=1

Wh[(1 + w1h)yh[rss] + w2h(Xh − xh[rss])]
Xh

xh[rss]
(15)

ts
p4 =

L∑
h=1

Wh[(1 + w3h)yh[rss] + w4h(Xh − xh[rss])] exp
(

Xh − xh[rss]

Xh + xh[rss]

)
(16)

ts
p5 =

L∑
h=1

Wh

[
w5hyh[rss] + w6h exp

(
Xh − xh[rss]

Xh + xh[rss]

)(
1 + log

xh[rss]

Xh

)]
(17)

ts
p6 =

L∑
h=1

Wh

[
w7hyh[rss] + w8h

(
Xh

xh[rss]

)
exp

(
Xh − xh[rss]

Xh + xh[rss]

)]
(18)

The biases of the proposed estimators are

bias(ts
p3) =

L∑
h=1

Wh[Y hw1h + Y h(U02h + w1hU02h + w2hδU02h − U11 − w1hU11h)] (19)

bias(ts
p4) =

L∑
h=1

Wh

[
Y hw3h + Y h

(3
8U02h + 3

8w3hU02h + 1
2w4hδhU02h − 1

2U11h − 1
2w3hU11h

)]
(20)

Bias(ts
p5) =

L∑
h=1

Wh

[
(w5h − 1)Y h + w6h

(
1 − 5

8U02h

)]
(21)

Bias(ts
p6) =

L∑
h=1

Wh

[
(w7h − 1)Y h + w8h

(
1 + 15

8 U02h

)]
(22)

The mean square errors of the proposed estimators are

MSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h(A1h + w2

1hB1h + w2
2hC1h + 2w1hD1h − 2w2hE1h − 2w1hw2hF1h) (23)

MSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h(A2h + w2

3hB2h + w2
4hC2h + 2w3hD2h − 2w4hE2h − 2w3hw4hF2h) (24)

The minimum mean square errors at the optimum values are

MinMSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h

(
A1h + C1hD2

1h + B1hE2
1h − 2D1hE1hF1h

F 2
1h − B1hC1h

)
(25)

MinMSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h

(
A2h + C2hD2

2h + B2hE2
2h − 2D2hE2hF2h

F 2
2h − B2hC2h

)
(26)

Outline of the derivations are given in Appendix
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5.1. Case 1: Sum of weights is unity (w5 + w6 = 1 and w7 + w8 = 1)

The mean square errors of the proposed estimators are

MSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

6hU02h − 2w6hV11h) (27)

MSE(tc
p6) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

8hU02h − 2w8hU11h) (28)

The minimum mean square errors at the optimum values are

MinMSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(29)

MinMSE(ts
p6) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(30)

Outline of the derivations are given in Appendix

5.2. Case 2: Sum of weights is flexible (w5 + w6 ̸= 1 and w7 + w8 ̸= 1)

The mean square errors of the proposed estimators are

MSE(ts
p5) =

L∑
h=1

W 2
h [C3h + w2

5hA3h + w2
6hB3h − 2w5hC3h − 2w6hD3h + 2w5hw6hE3h] (31)

MSE(ts
p6) =

L∑
h=1

W 2
h [C4h + w2

7hA4h + w2
8hB4h − 2w7hC4h − 2w8hD4h + 2w7hw8hE4h] (32)

The minimum mean square errors at the optimum values are

MinMSE(ts
p5) =

L∑
h=1

W 2
h

[
C3h + B3hC2

3h + A3hD2
3h − 2C3hD3hE3h

E2
3h − A3hB3h

]
(33)

MinMSE(ts
p6) =

L∑
h=1

W 2
h

[
C4h + B4hC2

4h + A4hD2
4h − 2C4hD4hE4h

E2
4h − A4hB4h

]
(34)

Outline of the derivations are given in Appendix

6. Empirical study

In this section, we compare the performance of the proposed estimators with the
other estimators considered in this paper. For comparison, we have taken a stratified pop-
ulation with 3 strata of sizes 20, 30, 17 respectively from the Singh (2003) (page no. 1119
(Appendix)). Where y is production (study variable) in metric tons and x is area (auxiliary
variable) in hectares. For the above population, the parameters are given as below: For total
population, N=67, Y =72247.6, X=26438
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Table 1

Stratum 1 Stratum 2 Stratum 3
N1=20 N2=30 N3=17
n1=12 n2=18 n3=9

W1=0.29851 W2=0.44776 W3=0.25373
X1=6801.25 X2=11025.3 X3=82464.1
Y 1=17511.7 Y 2=18937.4 Y 3=377960.5

S2
x1=175539558 S2

x2=595679198.4 S2
x3=20255478994

S2
y1=1366895911 S2

y2=2421559069 S2
y3=687956456787

Sy1x1=489224338 Sy2x2=1174423304 Sy3x3=46735680920
Cx1=1.94804 Cx2=2.21368 Cx3=1.72586

D2
yh1[i]=0.322701311 D2

yh2[i]= 0.284750439 D2
yh3[i]= 0.352112122

D2
xh1[i]=0.277106302 D2

xh2[i]= 0.191404888 D2
xh3[i]= 0.201142044

Dyxh1[i]=0.298636371 Dyxh2[i]= 0.227030958 Dyxh3[i]= 0.01248969
R1=2.57477 R2=1.71763 R3=4.58333

From this population we took ranked set samples of sizes k1=4 , k2=6 and k3=3 from
the stratum 1st , 2nd and 3rd respectively. Further each ranked set sample from each stratum
were repeated with number of cycles r=3. Hence sample size of stratifird ranked set sample
is equivalent to nh = khr.

Table 2: The MSE and PRE of the estimators

Estimators MSE Bias PRE
ts 1759632517 0.0000 100.0000
ts
r 1204001473 17677.2090 146.1400

ts
lr 11702271788 0.0000 150.3600

ts
p1 11702271788 -2020.0767 150.3600

ts
p2 11702271788 321.8933 150.3600

ts
p3 811711525 -18442.3400 216.7800

ts
p4 545563651 -27933.6290 281.5500

ts
p5 425689034 11761.6920 413.3600

ts
p6 315596791 -8835.3558 557.5500

The formula for Percent Relative Efficiency (PRE) is
PRE (estimators) = MSE(ts)

MSE(estimator) × 100

From Table 2, it is observed that

• The estimators ts
p1 and ts

p2 are almost equally efficient estimators as separate linear
regression estimators under SRSS as these estimators show the MSE almost equal to
the MSE of the combined linear regression estimator (ts

lr). These two estimators ts
p1

and ts
p2 are more efficient estimators than that the other competitive estimators.

• ts
p3 ,ts

p4 , ts
p5 and ts

p6 are more efficient than other estimators used in this paper. It is
observed that ts

p3 ,ts
p4 , ts

p5 and ts
p6 are more efficient than convention, ratio estimator

and linear regression estimator under SRSS.
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• From Table 2, we can conclude that the proposed estimators perform better than
existing estimators as our proposed estimators have greater PRE.

7. Simulation study

To generalize the results of the numerical study, we have conducted simulation study
over two hypothetically generated normal populations. The simulation procedure is ex-
plained in the following points:

• We generated bivariate random observations of size N=600 units from a bivariate
normal distribution with parameters µy =20, σy =15, and µx=15, σx=10 and possibly
chosen values of ρyx= 0.6, 0.7, 0.8, 0.9.

• Similarly, generate the population-2 with the parameters µy =120, σy =25, and µx=100,
σx=20 .

• The population generated above is divided into 3 equal strata and a stratified ranked
set sample of size 12 units with number of cycles 4 and set size 3 is drawn from each
stratum.

• Compute the required statistics.

• Iterate the above steps 10,000 times to calculate the MSE and PRE of various combined
estimators using the following expression.

MSE(T ) = 1
10000

10000∑
i=1

(Ti − Y )2 (35)

PRE = V ar(tc)
MSE(T ) × 100 (36)

The MSE and PRE of the separate estimators are calculated using (35) and (36) and
the results are reported for various values of correlation coefficients in Table 3.

Table 3 also shows that our proposed estimators perform better than the existing
estimators. The MSE of the estimators decreases when the correlation and sample size
increases for the population 1 and 2.

8. Conclusions

In this article we have proposed estimators for the population mean in stratified
Ranked set sampling using the information of auxiliary variable. The expressions for Bias
and MSE of the suggested estimators have been derived up to the first order of approxima-
tion. Empirical approach and simulation study for comparing the efficiency of the proposed
estimators with other estimators have been used. The results have been shown the Tables
2 and 3. The Tables show that the proposed estimators turn out to be more efficient as
compared to the other estimators for both populations. The proposed estimators are found
to be rather improved in terms of lesser MSE and greater PRE as compared to the existing
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Table 3: The MSE and PRE of the estimators

ρyx Estimators Population1 Population2
MSE Bias PRE MSE Bias PRE

0.9 ts 0.007284 0.000000 100.000000 0.066100 0.000000 100.000000
ts
r 0.006384 -0.000207 114.095495 0.043496 0.002922 151.969606

ts
lr 0.004961 0.000000 146.827826 0.042869 0.000000 154.189069

ts
p1 0.004945 -0.000239 147.285914 0.042656 -0.001315 154.960149

ts
p2 0.004943 -0.000279 147.352653 0.042767 -0.002903 154.558070

ts
p3 0.003387 -0.000311 215.050896 0.034651 -0.001423 190.761305

ts
p4 0.003339 0.000190 218.094473 0.024678 0.001060 267.848401

ts
p5 0.003245 -0.000178 224.414416 0.020015 -0.001060 330.255808

ts
p6 0.003090 -0.000426 235.710841 0.019309 -0.002208 342.320400

0.8 ts 0.006984 0.000000 100.000000 0.090219 0.000000 100.000000
ts
r 0.006809 0.000672 102.560246 0.070926 0.001426 127.201411

ts
lr 0.004670 0.000000 149.540410 0.059455 0.000000 151.741804

ts
p1 0.004634 -0.000181 150.699420 0.059354 -0.004426 152.000269

ts
p2 0.004687 -0.000102 148.992987 0.059456 0.004611 151.739251

ts
p3 0.004174 -0.000314 167.327264 0.043999 -0.008287 205.046909

ts
p4 0.003587 0.000145 194.697844 0.030173 0.001628 299.004742

ts
p5 0.002991 -0.000314 233.454669 0.026272 -0.001067 343.397088

ts
p6 0.002657 -0.000537 262.768911 0.024469 -0.002098 368.707344

0.7 ts 0.009693 0.000000 100.000000 0.074859 0.000000 100.000000
ts
r 0.006455 0.000136 150.158004 0.061038 0.002001 122.642758

ts
lr 0.005928 0.000000 163.507324 0.058294 0.000000 128.416597

ts
p1 0.005934 -0.000124 163.345039 0.058345 0.002856 128.303578

ts
p2 0.005976 0.000362 162.191669 0.058568 0.001072 127.814362

ts
p3 0.005562 -0.000330 174.267715 0.040771 -0.007203 183.608732

ts
p4 0.005109 0.000123 189.710173 0.038156 0.001765 196.189650

ts
p5 0.003267 -0.000429 296.645336 0.036670 -0.001165 204.142055

ts
p6 0.002752 -0.000625 352.113929 0.020043 -0.002084 373.482308

0.6 ts 0.008782 0.000000 100.000000 0.091577 0.000000 100.000000
ts
r 0.008134 0.000191 107.954650 0.086847 0.002652 105.447165

ts
lr 0.007273 0.000000 120.745030 0.078933 0.000000 116.018800

ts
p1 0.007145 -0.000832 122.898593 0.078557 0.001270 116.573953

ts
p2 0.007108 0.000521 123.537736 0.078345 0.001939 116.889576

ts
p3 0.005597 -0.000356 156.880083 0.030133 -0.004797 303.904598

ts
p4 0.003695 0.000945 237.630218 0.023471 0.002048 390.162195

ts
p5 0.002241 -0.000552 391.795672 0.016980 -0.009593 539.310974

ts
p6 0.001342 -0.000719 654.023741 0.013250 -0.001763 691.136804

estimators in both real and simulated data sets. It is also observed from the simulation that
the MSE of the proposed estimators decreases as the values of the correlation coefficient in-
crease whereas the PRE of the suggested estimators increases as the values of the correlation
coefficients increase. Based on our empirical study and simulation study, we can conclude
that our proposed estimators can be preferred over the other estimators taken in this paper
in several real situations.
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APPENDIX

This section consider the proof of the Theorems of Section 4 & 5.
To derive the MSE of the proposed estimators, the following notations will be used through-
out the paper.

yh[srss] = Yh(1 + ϵ0h)

xh[srss] = Xh(1 + ϵ1h)

such that E(ϵ0h)= E(ϵ1h)= 0

E(ϵ2
0h) = (ηhC2

yh − D2
yh[i]) = U20h

E(ϵ2
1h) = (ηhC2

xh − D2
xh[i]) = U02h

E(ϵ0hϵ1h) = (ηhCxyh − Dxyh[i]) = U11h

where ηh = 1
khr

, Cxh = Sxh

X
,Cyh = Syh

Y
, D2

xh[i] = 1
k2

h
rX

2
∑kh

i=1 (Xh(i) − Xh)2 ,

D2
yh[i] = 1

k2
h

rY
2
∑kh

i=1 (Y h(i) − Y h)2 and Dxyh[i] = 1
k2

h
rY X

∑kh
i=1 (Y h(i) − Y h)(Xh(i) − Xh)

where Y h[i] and Xh(i) are the means of the ith is ranked set and are given by

Y h[i] = 1
r

r∑
j=1

Yh[i]j, Xh(i) = 1
r

r∑
j=1

Xh(i)j

Now, consider the estimator

ts
p1 =

L∑
h=1

Whyh[rss] exp
(

α1h

(
xh[rss]

Xh

− 1
))

Using the above notations we have

ts
p1 =

L∑
h=1

WhY h(1 + ϵ0h) exp
(

α1h

(
Xh(1 + ϵ1)

Xh

− 1
))

(37)

The bias of the estimator ts
p1 is given by

Bias(ts
p1) =

L∑
h=1

WhY h

(
α2

1h

2 U02h + α1hU11h

)
(38)
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The MSE of the estimator ts
p1 is given by

MSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

1hU02h + 2α1hU11h

)
(39)

To find out the minimum MSE for ts
p1, we partially differentiate equation (39) w.r.t. α1h and

equating to zero we get
α∗

1h = −U11h

U02h

(40)

Putting the optimum value of α1h in the equation (39), we get a minimum MSE of ts
p1 as

MinMSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(41)

Similarly, we can obtain the optimum values of constants and minimum MSEs of other
proposed estimators which are given as

ts
p2 =

L∑
h=1

WhY h(1 + ϵ0h) exp
(

α2h log Xh(1 + ϵ1h)
Xh

)
(42)

The bias of the estimator ts
p2 is given by

Bias(ts
p2) =

L∑
h=1

WhY h

(
(α2

2h − α2h)
2 U02h + α2hU11h

)
(43)

The MSE of the estimator ts
p2 is given by

MSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

2hU02h + 2α2hU11h

)
(44)

To find out the minimum MSE for ts
p2, we partially differentiate equation (44) w.r.t. α2h and

equating to zero we get
α∗

2h = −U11h

U02h

(45)

Putting the optimum value of α2h in the equation (44), we get a minimum MSE of ts
p2 as

MinMSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(46)

ts
p3 =

L∑
h=1

Wh[(1 + w1h)Y h(1 + ϵ0h) + w2hϵ1h](1 − ϵ1h + ϵ2
1h) (47)

ts
p3 − Y =

L∑
h=1

WhY h[(ϵ0h + w1h + ϵ0hw1h − ϵ1h − ϵ1hw1h − ϵ0hϵ1h − ϵ0hϵ1hw1h + ϵ2
1h + w1hϵ2

1h)

− w2hδ(ϵ1h − ϵ2
1h)] (48)
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The bias of the estimator ts
p3 is given by

Bias(ts
p3) =

L∑
h=1

Wh[Y hw1h + Y h(U02h + w1hU02h + w2hδU02h − U11 − w1hU11h)] (49)

The MSE of the estimator ts
p3 is given by

MSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h[U20h + U02h − 2U11h + w2

1h(1 + U20h + 3U02h − 4U11h) + w2
2hδ2

hU02h

+ 2w1h(U20h + 2U02h − 3U11h) − 2w2hδ(U11h − U02h) − 2w1hw2hδ(U11h − 2U02h)] (50)

MSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h(A1h + w2

1hB1h + w2
2hC1h + 2w1hD1h − 2w2hE1h − 2w1hw2hF1h) (51)

where
A1h = U20h + U02h − 2U11h

B1h = 1 + U20h + 3U02h − 4U11h

C1h = δ2U02h, δh = Xh

Y h

D1h = U20h + 2U02h − 3U11h

E1h = δh(U02h − U11h)
F1h = δh(U02h − 2U11h)

To find out the minimum MSE for ts
p3, we partially differentiate equation (51) w.r.t. w1h

and w2h and equating to zero we get

w∗
1h = C1hD1h − E1hF1h

F 2
1h − B1hC1h

(52)

w∗
2h = D1hF1h − B1hC1h

F 2
1h − B1hC1h

(53)

Putting the optimum values of w1h and w2h in the equation (51), we get a minimum MSE
of ts

p3 as

MinMSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h

(
A1h + C1hD2

1h + B1hE2
1h − 2D1hE1hF1h

F 2
1h − B1hC1h

)
(54)

ts
p4 =

L∑
h=1

Wh[(1 + w3h)Y h(1 + ϵ0h) + w4hϵ1h]
(

1 − 3
2ϵ1h + 15

8 ϵ2
1h

)
(55)

ts
p4−Y =

L∑
h=1

WhY h[(ϵ0h+W3h+ϵ0hw3h−1
2ϵ1h−1

2ϵ1hw3h−1
2ϵ0hϵ1h−1

2ϵ0hϵ1hw3h+3
8ϵ2

1h+3
8w3hϵ2

1)

− w4hδh(ϵ1h − ϵ2
1h)] (56)
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The bias of the estimator ts
p4 is given by

Bias(ts
p4) =

L∑
h=1

Wh

[
Y hw3h + Y h

(3
8U02h + 3

8w3hU02h + 1
2w4hδhU02h − 1

2U11h − 1
2w3hU11h

)]
(57)

The MSE of the estimator ts
p4 is given by

MSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h(U20h + 1

4U02h −U11 +w2
3h(1+U20h +U02h −2U11h)+w2

4hδ2
hU02h +2w3h

(U20h + 5
4U02h − 3

2U11h) − 2w4hδh(U11h − 1
2U02h) − 2w3hw4hδ(U11h − U02h)) (58)

MSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h(A2h + w2

3hB2h + w2
4hC2h + 2w3hD2h − 2w4hE2h − 2w3hw4hF2h) (59)

where
A2h = U20h + 1

4U02h − U11h

B2h = 1 + U20h + U02h − 2U11h

C2h = δ2U02h, δh = Xh

Y h

D2h = U20h + 5
4U02h − 3

2U11h

E2h = δ
(

U02h − 1
2U11h

)
F2h = δ(U02h − U11h)

To find out the minimum MSE for ts
p4, we partially differentiate equation (59) w.r.t. w3h

and w4h and equating to zero we get

w∗
3h = C2hD2h − E2hF2h

F 2
2h − B2hC2h

(60)

w∗
4h = D2hF2h − B2hC2h

F 2
2h − B2hC2h

(61)

Putting the optimum values of w3h and w4h in the equation (59), we get a minimum MSE
of ts

p4 as

MinMSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h

(
A2h + C2hD2

2h + B2hE2
2h − 2D2hE2hF2h

F 2
2h − B2hC2h

)
(62)

ts
p5 =

L∑
h=1

Wh

[
w5hY h(1 + ϵ0h) + w6h exp

( −ϵ1h

2 + ϵ1h

)
(1 + log(1 + ϵ1h))

]
(63)

ts
p5 − Y =

L∑
h=1

Wh

[
(w5h − 1)Y h + w5hY hϵ0h + w6h

(
1 + ϵ1h

2 − 5
8ϵ2

1h

)]
(64)
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Bias(ts
p5) =

L∑
h=1

Wh

[
(w5h − 1)Y h + w6h

(
1 − 5

8U02h

)]
(65)

ts
p6 =

L∑
h=1

Wh

[
w7hY h(1 + ϵ0h) + w8h exp

( −ϵ1h

2 + ϵ1h

)
(1 + ϵ1h)−1

]
(66)

ts
p6 − Y =

L∑
h=1

Wh

[
(w7h − 1)Y h + w7hY hϵ0h + w8h

(
1 − 3

2ϵ1h − 15
8 ϵ2

1h

)]
(67)

Bias(ts
p6) =

L∑
h=1

Wh

[
(w7h − 1)Y h + w8h

(
1 + 15

8 U02h

)]
(68)

CASE 1: SUM OF WEIGHTS IS UNITY (w5 + w6 = 1 and w7 + w8 = 1)

The MSE of the estimator ts
p5 is given by

MSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

6hU02h − 2w6hV11h) (69)

To find out the minimum MSE for ts
p5 , we partially differentiate equation (69) w.r.t. w6h,

and equating to zero we get
w∗

6h = V11h

V02h

(70)

Putting the optimum value of w6h in the equation (69), we get a minimum MSE of ts
p5 as

MinMSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(71)

The MSE of the estimator ts
p6 is given by

MSE(tc
p6) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

8hU02h − 2w8hU11h) (72)

To find out the minimum MSE for ts
p6 , we partially differentiate equation (72) w.r.t. w8h,

and equating to zero we get
w∗

8h = U11h

U02h

(73)

Putting the optimum value of w8h in the equation (72), we get a minimum MSE of ts
p6 as

MinMSE(ts
p6) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(74)

CASE 2: SUM OF WEIGHTS IS FLEXIBLE (w5 + w6 ̸= 1 and w7 + w8 ̸= 1)

ts
p5 − Y =

L∑
h=1

Wh

[
(w5h − 1)Y h + w5hY hϵ0h + w6h

(
1 + ϵ1h

2 − 5
8ϵ2

1h

)]
(75)
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Squaring on both sides we get

(ts
p5 − Y )2 =

L∑
h=1

W 2
h

[
Y

2
h + Y

2
hw2

5h(1 + ϵ2
0h) + w2

6h(1 − ϵ2
1h) − 2w5hY

2
h − 2w6hY h

(
1 − 5

8ϵ2
1h

)
+ 2w5hw6h

(
1 − 5

8ϵ2
1h + 1

2ϵ0hϵ1h

)]
(76)

Taking expectations on both sides we get

MSE(ts
p5) =

L∑
h=1

W 2
h

[
Y

2
h +Y

2
hw2

5h(1+U20h)+w2
6h(1−U02h)−2w5hY

2
h −2w6hY h

(
1− 5

8U02h

)
+ 2w5hw6h

(
1 − 5

8U02h + 1
2U11h

)]
(77)

MSE(ts
p5) =

L∑
h=1

W 2
h [C3h + w2

5hA3h + w2
6hB3h − 2w5hC3h − 2w6hD3h + 2w5hw6hE3h] (78)

where
A3h = Y

2
h(1 + U20h)

B3h = 1 − U02h

C3h = Y
2
h

D3h = Y h

(
1 − 5

8U02h

)
E3h = Y h

(
1 − 5

8U02h + 1
2U11h

)
To find out the minimum MSE for the estimator ts

p5 , we partially differentiate equation (78)
w.r.t. w5h and w6h and equating to zero we get

w∗
5h = B3hC3h − D3hE3h

A3hB3h − E2
3h

(79)

w∗
6h = A3hD3h − C3hE3h

A3hB3h − E2
3h

(80)

Putting the optimum values of w5h and w6h in the equation (78), we get a minimum MSE
of ts

p5 as

MinMSE(ts
p5) =

L∑
h=1

W 2
h

[
C3h + B3hC2

3h + A3hD2
3h − 2C3hD3hE3h

E2
3h − A3hB3h

]
(81)

tc
p6 − Y =

L∑
h=1

Wh

[
(w7h − 1)Y h + w7hY hϵ0h + w8h

(
1 − 3

2ϵ1h + 15
8 ϵ2

1h

)]
(82)

Squaring on both sides we get
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(ts
p6 − Y )2 =

L∑
h=1

W 2
h

[
Y

2
h + Y

2
hw2

7h(1 + ϵ2
0h) + w2

8h(1 + 6ϵ2
1h) − 2w7hY

2
h − 2w8hY h

(
1 − 15

8 ϵ2
1h

)
+ 2w7hw8h

(
1 + 15

8 ϵ2
1h − 3

2ϵ0hϵ1h

)]
(83)

Taking expectations on both sides we get

MSE(ts
p6) =

L∑
h=1

W 2
h

[
Y

2
h+Y

2
hw2

7h(1+U20h)+w2
8h(1+6U02h)−2w7hY

2
h−2w8hY h

(
1+ 15

8 U02h

)
+ 2w7hw8h

(
1 + 15

8 U02h − 3
2U11h

)]
(84)

MSE(ts
p6) =

L∑
h=1

W 2
h [C4h + w2

7hA4h + w2
8hB4h − 2w7hC4h − 2w8hD4h + 2w7hw8hE4h] (85)

where
A4h = Y

2
h(1 + U20h)

B4h = 1 + 6U02h

C4h = Y
2
h

D4h = Y h

(
1 + 15

8 U02h

)

E4h = Y h

(
1 + 15

8 U02h − 3
2U11h

)
To find out the minimum MSE for the estimator ts

p6, we partially differentiate equation (85)
w.r.t. w7h and w8h and equating to zero we get

w∗
7h = B4hC4h − D4hE4h

A4hB4h − E2
4h

(86)

w∗
8h = A4hD4h − C4hE4h

A4hB4h − E2
4h

(87)

Putting the optimum values of w7h and w8h in the equation (85), we get a minimum MSE
of ts

p6 as

MinMSE(ts
p6) =

L∑
h=1

W 2
h

[
C4h + B4hC2

4h + A4hD2
4h − 2C4hD4hE4h

E2
4h − A4hB4h

]
(88)
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Abstract

This study is concerned with estimating the scale parameter and the reversed hazard
rate of the Inverse Rayleigh distribution based on left censoring, one of the most noticeable
distributions in lifetime studies. Even though different estimation methods are employed,
each method suffers from its problems such as complexity of calculations, high risk, etc.
Results derived under squared error, entropy, and precautionary loss functions. E-Bayesian
and H-Bayesian estimations are obtained based on different priors of the hyper parameters
to investigate the influence on these estimations. We investigated the asymptotic behaviors
of E-Bayesian estimates and relations among them. Finally, a comparison among the Bayes,
H-Bayes, and E-Bayes estimates in different sample sizes made using real and the simulated
data. Numerical study shows that the newly presented method is more efficient than previous
methods and is also easy to operate.

Key words: Inverse Rayleigh distribution; Left censoring; Bayesian estimation; E-Bayesian
estimation; H-Bayesian estimation.

AMS Subject Classifications: 62F15; 62N05

1. Introduction

Several authors used Inverse Rayleigh (IR) distribution to model applications in the
area of reliability. Voda (1972) used this distribution to model the lifetimes of several experi-
mental units. Several works related to inference using complete samples based on parameters
of inverse Rayleigh (IR) distribution are available in the literature. El-Helbawy and Abd-El-
Monem (2005) developed Bayes estimators for the parameters of the IR distribution using
different loss functions. For more works related to inference using IR distribution, one can
refer to Soliman et al. (2010), Dey (2012), Feroze and Aslam (2012) and Shawky and Badr
(2012). In the context of reliability and survival analysis, censoring is unavoidable, and there
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are different censoring schemes available. One of the practical censoring schemes is the left
censoring, and it occurs when we cannot identify the exact time the event occurred.

Considering the advantage of using the E-Bayesian estimation method recently, many
papers are published in the literature using this approach. Han (2009) proposed the E-
Bayesian estimate of the failure rate of exponential distribution using type-1 censoring.
E-Bayesian estimates of Burr type XII distribution parameters using type-2 censoring had
proposed by Jaheen and Okasha (2011). Okasha and Wang (2016) derived E-Bayesian es-
timators of the geometric distribution parameters when samples are available only in the
form of records. Kızılaslan (2017) discusses the E-Bayesian estimation of the proportional
hazard rate model. E-bayesian and hierarchical bayesian estimates of the power function dis-
tribution parameters had proposed by Abdul-Sathar and Athirakrishnan (2019). This paper
aims to propose E-Bayesian and H-Bayesian estimates of the inverse Rayleigh distribution
parameters when left-censored data are available. We additionally provide estimates of the
reversed hazard rate using three different loss functions. The asymptotic performance of the
proposed estimators for different priors is also studied.

The organization of the rest of the works is as follows. We discuss Bayesian estimation
of the scale parameter and reversed hazard rate of the IR distribution using left-censored
data in Section 2. In Section 3, we discuss the H-Bayesian estimation of the scale parameter
and the reversed hazard rate. E-Bayesian estimators of the scale parameter and reversed
hazard rate are discussed in Section 4. The properties exhibited by all these estimators
discusses in Section 5. The estimator’s performance using simulated and real data sets
discuss respectively in Sections 6 and 7. Finally, concluding remarks about the proposed
study are given in Section 8.

2. Bayesian estimation

In this section, we derive the Bayesian estimators of the parameter λ of IR distribution
using left-censored data under the squared error loss function (SELF), the entropy loss
function (ELF), and the precautionary loss function (PLF). The pdf, cdf, and reversed
hazard rate of the one-parameter IR distribution are respectively given by

f(x; λ) = 2λ

x3 e
−λ

x2 , x > 0, λ > 0, (1)

F (x; λ) = e
−λ

x2 , x > 0, λ > 0, (2)

and
¯h(t) = 2λ

t3 , t > 0. (3)

Let X = X(r+1), ..., X(n) be the last (n − r) order statistics using a random sample of size n
from IR distribution. Likelihood function in this context is given as

L(X(r+1), ..., X(n)|λ) ∝ λn−re−λτ(ir) , (4)
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where τ(ir) = rx−2
(r+1) +∑n

i=r+1 x−2
(i) . The prior for the parameter λ assumes Gamma distribu-

tion with density function

π(λ|a, b) = ba

Γ(a)λa−1e−bλ, λ > 0, a, b > 0,

where a and b are the hyper parameters. Here we only consider the case of a = 1, then the
density function π(λ|a, b) reduces to

π(λ|b) = be−bλ, b > 0. (5)

Hence the posterior distribution using (4) and (5) simplifies to

f(r|λ) = (τ(ir) + b)n−r+1

Γ(n − r + 1) λ(n−r)e−λ(τ(ir)+b), λ > 0 (6)

Now we derive the Bayes estimators of λ and reversed hazard rate of left censored IR distri-
bution under three different loss functions.
Using SELF, the Bayes estimators of λ and reversed hazard rate simplify to

λ̂B1 = E(λ|x) = n − r + 1
τ(ir) + b

, (7)

ˆh(t)B1 = E

(
2λ

t3

∣∣∣∣∣x
)

= 2(n − r + 1)
t3(τ(ir) + b) . (8)

The Bayes estimators of λ and reversed hazard rate using ELF simplifies to

λ̂B2 =
[
E
( 1

λ

∣∣∣∣x)]−1
= n − r

τ(ir) + b
. (9)

ˆh(t)B2 =
E

(2λ

t3

)−1
∣∣∣∣∣∣x
−1

= 2(n − r)
t3(τ(ir) + b) . (10)

The Bayes estimators of λ and reversed hazard rate using PLF simplifies to

λ̂B3 =
√

E(λ2| x) =

√√√√(n − r + 1)(n − r + 2)
(τ(ir) + b)2 . (11)

ˆh(t)B3 =

√√√√√E

(2λ

t3

)2
∣∣∣∣∣∣x
 = 2

t3

√√√√(n − r + 1)(n − r + 2)
(τ(ir) + b)2 . (12)

3. Hierarchical Bayesian estimation

Lindley and Smith (1972) first introduced the idea of hierarchical prior distribution.
For the parameter λ, the hierarchical prior density function is defined as

π(λ) =
� c

0
π(λ|b)π(b)db.
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Hierarchical Bayesian (H-Bayesian) estimation of λ is obtained based on three different
distributions of the hyper parameter b. The influence of the different prior distributions
on the H-Bayesian estimation of λ is studied by using these distributions. The following
distributions of b may be used

π1(b) = 2(c − b)
c2 , 0 < b < c, (13)

π2(b) = 1
c
, 0 < b < c, (14)

π3(b) = 2b

c2 , 0 < b < c, (15)

3.1. Hierarchical Bayesian estimation of λ

For π1(b), the hierarchical prior density function simplifies to

π4(λ) = 2
c2

� c

0
b(c − b)e−bλdb, λ > 0. (16)

Using Bayesian theorem, the hierarchical posterior density for λ can be defined as

H1(λ|x) = π4(λ)L(r|λ)� ∞
0 π4(λ)L(r|λ)dλ

=
� c

0 b(c − b)λn−re−λ(τ(ir)+2b)(τ(ir) + b)n−r+1db� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)n−r+1 (τ(ir) + b)n−r+1db

. (17)

The H-Bayesian estimators of λ under SELF is given as

λ̂HS1 =

� c

0 b(c − b) Γ(n−r+2)
(τ(ir)+2b)(n−r+2) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

, (18)

Similarly, the H-Bayesian estimators of λ under ELF and PLF are given respectively as

λ̂HE1 =

� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r)
(τ(ir)+2b)(n−r) (τ(ir) + b)(n−r+1)db

, (19)

and

λ̂HP 1 =

√√√√√√
� c

0 b(c − b) Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

, (20)

For π2(b), the hierarchical prior density function simplifies to

π5(λ) = 1
c

� c

0
be−bλdb, λ > 0. (21)



2024] E-BAYESIAN ESTIMATION OF INVERSE-RAYLEIGH DISTRIBUTION 43

Using Bayesian theorem, the hierarchical posterior density for λ can be defined as

H2(λ|x) = π5(λ)L(r|λ)� ∞
0 π5(λ)L(r|λ)dλ

=
� c

0 bλn−re−λ(τ(ir)+2b)(τ(ir) + b)n−r+1db� c

0 b Γ(n−r+1)
(τ(ir)+2b)n−r+1 (τ(ir) + b)n−r+1db

. (22)

The H-Bayesian estimator of λ under SELF is given as

λ̂HS2 =

� c

0 b Γ(n−r+2)
(τ(ir)+2b)(n−r+2) (τ(ir) + b)(n−r+1)db� c

0 b Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

, (23)

Similarly, the H-Bayesian estimators of λ under ELF and PLF are given respectively as

λ̂HE2 =

� c

0 b Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db� c

0 b Γ(n−r)
(τ(ir)+2b)(n−r) (τ(ir) + b)(n−r+1)db

, (24)

and

λ̂HP 2 =

√√√√√√
� c

0 b Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

, (25)

For π3(b), the hierarchical prior density function simplifies to

π6(λ) = 2
c2

� c

0
b2e−bλdb, λ > 0. (26)

Using Bayesian theorem, the hierarchical posterior density for λ can be defined as

H3(λ|x) = π6(λ)L(r|λ)� ∞
0 π6(λ)L(r|λ)dλ

=
� c

0 b2λn−re−λ(τ(ir)+2b)(τ(ir) + b)n−r+1db� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)n−r+1 (τ(ir) + b)n−r+1db

. (27)

The H-Bayesian estimator of λ under SELF is given as

λ̂HS3 = E(λ|x) =

� c

0 b2 Γ(n−r+2)
(τ(ir)+2b)(n−r+2) (τ(ir) + b)(n−r+1)db� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (28)

Similarly, the H-Bayesian estimators of λ under ELF and PLF are given respectively as

λ̂HE3 =
[
E
(
λ−1|x

)]−1
=

� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db� c

0 b2 Γ(n−r)
(τ(ir)+2b)(n−r) (τ(ir) + b)(n−r+1)db

, (29)

and

λ̂HP 3 =
√

E(λ2|x) =

√√√√√√
� c

0 b2 Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (30)
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3.2. Hierarchical Bayesian estimation of reversed hazard rate

Based on SELF, ELF and PLF, the H-Bayesian estimators of the reversed hazard
rate is computed for the three different distributions of the hyperparameter b given by (13),
(14) and (15). For π1(b), the H-Bayesian estimator of the reversed hazard rate is obtained
from (17). Under SELF, the H-Bayesian estimator of reversed hazard rate is given as

ˆh(t)HS1 =
2
t3

� c

0 b(c − b) Γ(n−r+2)
(τ(ir)+2b)(n−r+2) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (31)

The H-Bayesian estimators of reversed hazard rate under ELF and PLF are given as

ˆh(t)HE1 =
2
t3

� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r)
(τ(ir)+2b)(n−r) (τ(ir) + b)(n−r+1)db

. (32)

and

ˆh(t)HP 1 = 2
t3

√√√√√√
� c

0 b(c − b) Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (33)

For π2(b), the H-Bayesian estimator of the reversed hazard rate is obtained from (22). Under
SELF, the H-Bayesian estimator of reversed hazard rate is given as

ˆh(t)HS2 =
2
t3

� c

0 b Γ(n−r+2)
(τ(ir)+2b)(n−r+2) (τ(ir) + b)(n−r+1)db� c

0 b Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (34)

The H-Bayesian estimators of reversed hazard rate under ELF and PLF are given as

ˆh(t)HE2 =
2
t3

� c

0 b Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db� c

0 b Γ(n−r)
(τ(ir)+2b)(n−r) (τ(ir) + b)(n−r+1)db

. (35)

and

ˆh(t)HP 2 = 2
t3

√√√√√√
� c

0 b Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (36)

For π3(b), the H-Bayesian estimator of the reversed hazard rate is obtained from (27). Under
SELF, the H-Bayesian estimator of reversed hazard rate is given as

ˆh(t)HS3 =
2
t3

� c

0 b2 Γ(n−r+2)
(τ(ir)+2b)(n−r+2) (τ(ir) + b)(n−r+1)db� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (37)

The H-Bayesian estimators of reversed hazard rate under ELF and PLF are given as

ˆh(t)HE3 =
2
t3

� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db� c

0 b2 Γ(n−r)
(τ(ir)+2b)(n−r) (τ(ir) + b)(n−r+1)db

. (38)
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and

ˆh(t)HP 3 = 2
t3

√√√√√√
� c

0 b2 Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b2 Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

. (39)

4. E-Bayesian estimation

According to Han (1997) the E-Bayesian estimate of λ is defined as

λ̂E =
�

b

λ̂B(b)π(b)db. (40)

where λ̂B(b) is the Bayesian estimator of λ with prior density π(b). From (40), we can see
that E-Bayesian estimation is the expectation of Bayesian estimator of the parameters for
the hyper parameter. E-Bayesian estimation based on three different prior distributions of
the hyper parameter (13), (14) and (15) are used to investigate the influence of different
prior distributions on the E-Bayesian estimation of λ and reversed hazard rate.

4.1. E-Bayesian estimation for λ

Based on SELF, ELF and PLF, the E-Bayesian estimators of λ is computed for the
three different distributions of the hyperparameter b given by (13), (14) and (15). For π1(b),
the E-Bayesian estimate of λ under SELF is obtained from (7) and (13) as

λ̂ES1 =
� c

0
λ̂B1(b)π1(b)db = 2(n − r + 1)

c2

{
(τ(ir) + c) ln

(
τ(ir) + c

τ(ir)

)
− c

}
. (41)

Similarly, the E-Bayesian estimates of λ under ELF and PLF are computed from (9), (11)
and (13) and are given respectively, by

λ̂EE1 = 2(n − r)
c2

{
(τ(ir) + c) ln

(
τ(ir) + c

τ(ir)

)
− c

}
, (42)

and

λ̂EP 1 = 2
√

(n − r + 1)(n − r + 2)
c

{
(τ(ir) + c) ln

(
τ(ir) + c

τ(ir)

)
− c

}
. (43)

For π2(b), the E-Bayesian estimate of λ under SELF is obtained from (7) and (14) as

λ̂ES2 = n − r + 1
c

ln
(

τ(ir) + c

τ(ir)

)
, (44)

Similarly, the E-Bayesian estimates of λ under ELF and PLF are computed from (9), (11)
and (14) and are given respectively, by

λ̂EE2 = n − r

c
ln
(

τ(ir) + c

τ(ir)

)
, (45)
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and

λ̂EP 2 =
√

(n − r + 1)(n − r + 2)
c

ln
(

τ(ir) + c

τ(ir)

)
, (46)

For π3(b), the E-Bayesian estimate of λ under SELF is obtained from (7) and (15) as

λ̂ES3 = 2(n − r + 1)
c2

{
c − τ(ir) ln

(
τ(ir) + c

τ(ir)

)}
, (47)

Similarly, the E-Bayesian estimates of λ under ELF and PLF are computed from (9), (11)
and (14) and are given respectively, by

λ̂EE3 = 2(n − r)
c2

{
c − τ(ir) ln

(
τ(ir) + c

τ(ir)

)}
, (48)

and

λ̂EP 3 = 2
√

(n − r + 1)(n − r + 2)
c

{
c − τ(ir) ln

(
τ(ir) + c

τ(ir)

)}
. (49)

4.2. E-Bayesian estimation for reversed hazard rate

Based on SELF, ELF and PLF, the E-Bayesian estimators of reversed hazard rate is
computed for the three different distributions of the hyperparameter b given by (13), (14)
and (15). For π1(b), the E-Bayesian estimate of reversed hazard rate under SELF is obtained
from (8) and (13) as

ˆh(t)ES1 = 4(n − r + 1)
c2t3

{
(τ(ir) + c) ln

(
τ(ir) + c

τ(ir)

)
− c

}
. (50)

Similarly, the E-Bayesian estimates of reversed hazrd rate under ELF and PLF are computed
from (10), (12) and (13) and are given respectively, by

ˆh(t)EE1 = 4(n − r)
c2t3

{
(τ(ir) + c) ln

(
τ(ir) + c

τ(ir)

)
− c

}
, (51)

and
ˆh(t)EP 1 = 4

t3

√
(n − r + 1)(n − r + 2)

c

{
(τ(ir) + c) ln

(
τ(ir) + c

τ(ir)

)
− c

}
. (52)

For π2(b), the E-Bayesian estimate of reversed hazard rate under SELF is obtained from (8)
and (14) as

ˆh(t)ES2 = 2(n − r + 1)
ct3 ln

(
τ(ir) + c

τ(ir)

)
. (53)

Similarly, the E-Bayesian estimates of reversed hazard rate under ELF and PLF are com-
puted from (10), (12) and (14) and are given respectively, by

ˆh(t)EE2 = 2(n − r)
ct3 ln

(
τ(ir) + c

τ(ir)

)
, (54)
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and
ˆh(t)EP 2 = 2

t3

√
(n − r + 1)(n − r + 2)

c
ln
(

τ(ir) + c

τ(ir)

)
. (55)

For π3(b), the E-Bayesian estimate of reversed hazard rate under SELF is obtained from (8)
and (15) as

ˆh(t)ES3 = 4(n − r + 1)
c2t3

{
c − τ(ir) ln

(
τ(ir) + c

τ(ir)

)}
. (56)

Similarly, the E-Bayesian estimates of reversed hazard rate under ELF and PLF are com-
puted from (10), (12) and (15) and are given respectively, by

ˆh(t)EE3 = 4(n − r)
c2t3

{
c − τ(ir) ln

(
τ(ir) + c

τ(ir)

)}
, (57)

and
ˆh(t)EP 3 = 4

t3

√
(n − r + 1)(n − r + 2)

c

{
c − τ(ir) ln

(
τ(ir) + c

τ(ir)

)}
. (58)

5. Properties

In this section, we discussed the important properties of E-Bayesian estimators in-
cluding the relation of this estimators with the hierarchical Bayesian estimators. In the
following theorem, we gives the relationship of E-Bayes estimators of λ under different loss
functions.

Theorem 1: The relationship of E-Bayes estimators of λ using respectively the SELF, ELF
and PLF are given as

i) λ̂EEi < λ̂ESi < λ̂EP i, i = 1, 2, 3

ii) limτ(ir)→∞ λ̂ESi = limτ(ir)→∞ λ̂EEi = limτ(ir)→∞ λ̂EP i = 0.

Proof:

i) The relationship λ̂EE1 < λ̂ES1 < λ̂EP 1 is a particular case of λ̂EEi < λ̂ESi < λ̂EP i and
it is same as

n − r < n − r + 1 <
√

(n − r + 1)(n − r + 2). (59)
We use the concept of mathematical induction for proving the relation. For n=1, we
have 1 − r < (2 − r) <

√
(2 − r)(3 − r). Hence the result is true for n=1. Squaring

the above equation, we get

(n − r)2 < (n − r + 1)2 < (n − r + 1)(n − r + 2). (60)

Now assume that the result hold for n=k. That is

(k − r)2 < (k − r + 1)2 < (k − r + 1)(k − r + 2). (61)
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Now, we prove the result for n=k+1, so we have
((k + 1) + r + 1)((k + 1) + r + 2) = (k − r + 2)(k − r + 3)

= (k − r + 1)(k − r + 2)
+2(k − r + 2). (62)

Using (33), we get
(k − r)2 + 2(k − r + 2) < (k − r + 1)2 + 2(k − r + 2)

< (k − r + 1)(k − r + 2) + 2(k − r + 2). (63)
we have

(k − r)2 + 2(k − r + 2) = ((k + 1) − r)2 + 3 > ((k + 1) − r)2. (64)
Also, we have

(k − r + 1)2 + 2(k − r + 2) = ((k + 1) − r + 1)2 + 1 > ((k + 1) − r + 1)2. (65)
Using (33) to (36) ,we have

((k + 1) − r)2 < ((k + 1) − r + 1)2 < ((k + 1) − r + 1)((k + 1) − r + 2). (66)
Hence the result.

ii) From the derivation of λ̂ES1 , we have

λ̂ES1 = 2(n − r + 1)
c2

� c

0

c − b

τ(ir) + b
db.

Using the generalized mean value theorem, we can find atleast one number b1 ∈ (0, c)
such that

λ̂ES1 = 2(n − r + 1)
c2

1
τ(ir) + b1

� c

0
(c − b)db.

Taking the limit as τ(ir) → ∞
lim

τ(ir)→∞
λ̂ES1 = 0. (67)

Using the generalized mean value theorem, we can find atleast one number b2 ∈ (0, c)
such that

λ̂EE1 = 2(n − r)
c2

1
τ(ir) + b2

� c

0
(c − b)db.

Taking the limit as τ(ir) → ∞
lim

τ(ir)→∞
λ̂EE1 = 0. (68)

Using the generalized mean value theorem, we can find atleast one number b3 ∈ (0, c)
such that, we have

λ̂EP 1 =
2
√

(n − r + 2)(n − r + 1)
c2(τ(ir) + b3)

� c

0
(c − b)db.

Taking the limit as τ(ir) → ∞
lim

τ(ir)→∞
λ̂EP 1 = 0. (69)
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Using (38) to (40), we have the proof. From the above theorem, we can see that, E-Bayesian
estimators for λ are different for different loss functions. It can also be noted that the
estimators are asymptotically equal or close to each other when τ(ir) is sufficiently large. The
rest of the proof is same as the above. In the following theorem we provide the relationship
of E-Bayes estimators of reversed hazard rate for different loss functions. The proof is similar
to the above theorem and hence omitted.

Theorem 2: The relationship of E-Bayes estimators of reversed hazard rate using respec-
tively the SELF, ELF and PLF are given as

i) ˆh(t)EE1 < ˆh(t)ES1 < ˆh(t)EP 1

ii) limτ(ir)→∞
ˆh(t)ES1 = limτ(ir)→∞

ˆh(t)EE1 = limτ(ir)→∞
ˆh(t)EP 1 = 0.

In the following theorem, we gives the relationship between E-Bayes and hierarchical
Bayes estimators of λ under the same loss function.

Theorem 3: The relation between E-Bayes and hierarchical Bayes estimators of λ for SELF,
ELF and PLF are respectively given as

i) limτ(ir)−→ß∞ λ̂ESi = limτ(ir)−→ß∞ λ̂HSi = 0, i = 1, 2, 3.

ii) limτ(ir)−→ß∞ λ̂EEi = limτ(ir)−→ß∞ λ̂HEi = 0, i = 1, 2, 3.

iii) limτ(ir)−→ß∞ λ̂EP i = limτ(ir)−→ß∞ λ̂HP i = 0, i = 1, 2, 3.

Proof:

i) Under SELF, from the above theorem, using (22), we get

lim
τ(ir)→∞

λ̂ES1 = 0. (70)

Using the result Γ(n + r + 2) = (n + r + 1)Γ(n + r + 1) and by using the generalized
mean value theorem, we can find atleast one number b4 ∈ (0, c)

� c

0
b(c − b)(τ(ir) + b)(n−r+1) (n − r + 1)Γ(n − r + 1)

(τ(ir) + 2b)(τ(ir) + 2b)(n−r+1) db =

n − r + 1
(τ(ir) + 2b4)

� c

0
b(c − b)(τ(ir) + b)(n−r+1) Γ(n − r + 1)

(τ(ir) + 2b)(n−r+1) db.

∴ λ̂HS1 =

� c

0 b(c − b)(τ(ir) + b)(n−r+1) Γ(n−r+2)
(τ(ir)+2b)(n−r+2) db� c

0 b(c − b)(τ(ir) + b)(n−r+1) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) db

= n − r + 1
(τ(ir) + 2b4)

(71)
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Taking limit as τ(ir) → ∞
lim

τ(ir)→∞
λ̂HS1 = 0. (72)

Hence using (41) and (43), we have

lim
τ(ir)→∞

λ̂ES1 = lim
τ(ir)→∞

λ̂HS1 = 0. (73)

ii) Under ELF, from the above theorem, using (22), we get

lim
τ(ir)→∞

λ̂EE1 = 0. (74)

Using the result Γ(n − r + 1) = (n − r)Γ(n − r) and by sing the generalized mean value
theorem, we can find atleast one number b5 ∈ (0, c) such that

� c

0
b(c − b)(τ(ir) + b)(n−r+1) (n − r)Γ(n − r)

(τ(ir) + 2b)(τ(ir) + 2b)(n−r) db =

(n − r)
(τ(ir) + 2b5)

� c

0
b(c − b)(τ(ir) + b)(n−r+1) Γ(n − r)

(τ(ir) + 2b)(n−r) db. (75)

Using (18) we have

λ̂HE1 =

� c

0 b(c − b)(τ(ir) + b)(n−r+1) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) db� c

0 b(c − b)(τ(ir) + b)(n−r+1) Γ(n−r)
(τ(ir)+2b)(n−r) db

= (n − r)
(τ(ir) + 2b5)

. (76)

Taking limit as τ(ir) → ∞
lim

τ(ir)→∞
λ̂HE1 = 0. (77)

Hence using (45) and (47), we have

lim
τ(ir)→∞

λ̂EE1 = lim
τ(ir)→∞

λ̂HE1 = 0. (78)

iii) Under PLF, from the above theorem, using (22), we get

lim
τ(ir)→∞

λ̂EP 1 = 0. (79)

Using the result Γ(n + a + 2) = (n + a + 1)Γ(n + a + 1) and by using the generalized
mean value theorem, we can find atleast one number b6 ∈ (0, c) such that

� c

0
b(c − b) Γ(n − r + 3)

(τ(ir) + 2b)(n−r+3) (τ(ir) + b)(n−r+1)db =
� c

0
b(c − b) Γ(n − r + 3)

(τ(ir) + 2b)(n−r+3) (τ(ir) + b)(n−r+1)db. (80)
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Using (20) we have

λ̂HP 1 =

√√√√√√
� c

0 b(c − b) Γ(n−r+3)
(τ(ir)+2b)(n−r+3) (τ(ir) + b)(n−r+1)db� c

0 b(c − b) Γ(n−r+1)
(τ(ir)+2b)(n−r+1) (τ(ir) + b)(n−r+1)db

=

√
(n − r + 2)(n − r + 1)

(τ(ir) + 2b6)
. (81)

Taking limit as τ(ir) → ∞
lim

τ(ir)→∞
λ̂HP 1 = 0. (82)

Hence using (49) and (51), we have

lim
τ(ir)→∞

λ̂EP 1 = lim
τ(ir)→∞

λ̂HP 1 = 0. (83)

The rest of the proof can be proved in the similar way and omitted. In the following
theorem, we gives the relationship between E-Bayes and hierarchical Bayes estimators of
reversed hazard rate under the same loss function. The proof is similar to the above theorem
and hence omitted.

Theorem 4: The relation between E-Bayes and hierarchical Bayes estimators of reversed
hazard rate for SELF, ELF and PLF are respectively given as

i) limτ(ir)−→ß∞
ˆh(t)ESi = limτ(ir)−→ß∞

ˆh(t)HSi = 0, i = 1, 2, 3.

ii) limτ(ir)−→ß∞
ˆh(t)EEi = limτ(ir)−→ß∞

ˆh(t)HEi = 0, i = 1, 2, 3.

iii) limτ(ir)−→ß∞
ˆh(t)EP i = limτ(ir)−→ß∞

ˆh(t)HP i = 0, i = 1, 2, 3.

6. Monte Carlo Simulation

In this section, we inspect the performance of the proposed estimators using a simu-
lation study. We use the following steps for performing the study.

Step 1: Generate samples of sizes n=500,1000 and 1500 from the inverse Rayleigh distribu-
tion with pdf (1) for λ = 13.

Step 2: Fix the value of c = 1.

Step 3: For computing the Bayesian estimators, use (7), (8), (9), (10), (11) and (12), for
E-Bayesian estimators, use (40), (41), (42), (43), (44), (45), (46), (47) and (48) and
for calculating hierarchical Bayesian estimators, use (70), (75) and (80).

Step 4: Repeat steps 1-3, 10000 times and compute the MSE.
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Table 1: MSE for Bayesian, E-Bayesian and H-Bayesian estimates of λ for sim-
ulated data

n = 500 n = 1000 n = 1500 CP ACI
r = 50 r = 100 r = 150 r = 100 r = 200 r = 300 r = 200 r = 300 r = 400

λ̂B1 0.6168 0.4591 0.4501 0.2479 0.2384 0.1945 0.1653 0.1473 0.1414 92.3 % (11.5621, 13.7678)
λ̂B2 0.5334 0.4832 0.4403 0.2521 0.2431 0.1991 0.1701 0.1500 0.1439 94.3 % (11.4505, 13.8129)
λ̂B3 0.4918 0.4543 0.4260 0.2459 0.2363 0.1924 0.1631 0.1460 0.1403 99.1 % (11.0848, 14.2832)
λ̂ES1 0.3851 0.3791 0.3727 0.2376 0.2113 0.1752 0.1378 0.1338 0.1312 90.6 % (11.8765, 14.0324)
λ̂ES2 0.3970 0.3844 0.3758 0.2365 0.2082 0.1771 0.1428 0.1358 0.1321 95.8 % (11.5952, 14.1703)
λ̂ES3 0.4212 0.4036 0.3822 0.2378 0.2084 0.1810 0.1491 0.1387 0.1342 95.3 % (11.5601, 14.0589)
λ̂EE1 0.3912 0.3788 0.3782 0.2374 0.2100 0.1762 0.1402 0.1348 0.1317 98.2 % (11.4222, 14.4218)
λ̂EE2 0.4088 0.3940 0.3794 0.2374 0.2085 0.1791 0.1458 0.1372 0.1331 97.4 % (11.4457, 14.2521)
λ̂EE3 0.4387 0.4167 0.3903 0.2399 0.2102 0.1839 0.1527 0.1406 0.1357 98.7 % (11.2301, 14.3229)
λ̂EP 1 0.3830 0.3804 0.3702 0.2379 0.2121 0.1748 0.1367 0.1333 0.1310 93.1 % (11.8072, 14.1385)
λ̂EP 2 0.3920 0.3802 0.3747 0.2362 0.2083 0.1763 0.1414 0.1351 0.1317 96.9 % (11.5367, 14.2634)
λ̂EP 3 0.4135 0.3977 0.3789 0.2370 0.2078 0.1798 0.1474 0.1379 0.1335 94.5 % (11.6169, 14.0357)
λ̂HS1 0.6005 0.4286 0.4392 0.3148 0.2663 0.1816 0.1879 0.1819 0.1651 90.1 % (11.7812, 13.9065)
λ̂HS2 0.6861 0.4473 0.4210 0.3345 0.2789 0.1912 0.1983 0.1904 0.1734 96.3 % (11.4715, 14.1431)
λ̂HS3 0.6861 0.4473 0.4310 0.3345 0.2789 0.1912 0.1992 0.1940 0.1743 96.0 % (11.4920, 14.1226)
λ̂HE1 0.5910 0.4334 0.4138 0.2987 0.2568 0.2044 0.1770 0.1752 0.1704 96.1 % (11.6000, 14.3119)
λ̂HE2 0.4987 0.4332 0.4138 0.2855 0.2503 0.1945 0.1756 0.1703 0.1686 98.9 % (11.2829, 14.6215)
λ̂HE3 0.5535 0.4331 0.4139 0.2929 0.2537 0.2002 0.1743 0.1725 0.1658 90.9 % (11.8395, 14.0574)
λ̂HP 1 0.6668 0.4322 0.4173 0.3299 0.2759 0.1890 0.1968 0.1914 0.1723 90.7 % (11.7994, 13.9757)
λ̂HP 2 0.6200 0.4330 0.4187 0.2794 0.2505 0.1885 0.1760 0.1741 0.1739 94.9 % (11.6174, 14.1429)
λ̂HP 3 0.5110 0.4339 0.4202 0.2863 0.2502 0.1955 0.1710 0.1673 0.1604 94.1 % (11.6524, 14.0932)

Step 5: For creating the credible intervals, we first order λ1, λ2, ..., λN as λ(1) < λ(2) <
... < λ(N) and h1, h2, ..., hN as h(1) < h(2) < ... < h(N). The 100(1 − γ) sym-
metric credible intervals of λ and reversed hazard rate are obtained respectively as
(λ(Nγ/2), λ(N(1−γ/2))) and (h(Nγ/2), h(N(1−γ/2))).

The MSE, average credible intervals (ACI) and coverage probabilities (CP) of the
estimators computed using the simulated data are reported in Tables 1 and 2.

From Tables 1 and 2, we have the following conclusions.

• For a fixed value of n and r the MSE is less for E-Bayesian estimators as compared to
Bayesian and Hierarchical Bayesian estimators.

• The performance of the proposed estimators are better than Bayesian and Hierarchical
Bayesian estimators in terms of MSE.

7. Real data set

To study the performance of the estimators derived in this article, for real life sit-
uations, we considered the real data set reported by Ma and Gui (2020) representing 23
deep-groove ball bearing failure times. We fit inverse Rayleigh distribution to the data and
the corresponding p-value and test statistic value for the Kolmogorov-Smirnov test are 0.6942
and 0.1415 respectively. Using MLE we estimated λ̂ = 0.2244. Using the bootstrapping con-
cept, we computed the MSE, average credible interval (ACI) and coverage probability (CP)
of the estimators and are given in Tables 3 and 4.
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Table 2: MSE for Bayesian, E-Bayesian H-Bayesian estimates of ˆh(t) for simu-
lated data

n = 500 n = 1000 n = 1500 CP ACI
r = 50 r = 100 r = 150 r = 100 r = 200 r = 300 r = 200 r = 300 r = 400

ĥB1 0.0152 0.0038 0.0011 0.0059 0.0018 0.0006 0.0022 0.0008 0.0006 92.1 % (0.6645, 2.0725)
ĥB2 0.0157 0.0039 0.0012 0.0060 0.0018 0.0006 0.0023 0.0008 0.0006 97.5 % (0.6519, 2.1202)
ĥB3 0.0150 0.0037 0.0010 0.0058 0.0018 0.0006 0.0022 0.0008 0.0005 96.8 % (0.6577, 2.1129)
ĥES1 0.0125 0.0031 0.0005 0.0053 0.0016 0.0004 0.0019 0.0007 0.0004 99.0 % (0.6636, 2.2009)
ĥES2 0.0130 0.0032 0.0006 0.0054 0.0016 0.0004 0.0020 0.0007 0.0004 91.4 % (0.6783, 2.0970)
ĥES3 0.0135 0.0033 0.0007 0.0055 0.0017 0.0005 0.0021 0.0007 0.0005 94.1 % (0.6701, 2.1060)
ĥEE1 0.0127 0.0031 0.0005 0.0053 0.0016 0.0004 0.0020 0.0007 0.0004 95.8 % (0.6737, 2.1367)
ĥEE2 0.0132 0.0032 0.0006 0.0054 0.0016 0.0005 0.0020 0.0007 0.0005 97.2 % (0.6657, 2.1447)
ĥEE3 0.0139 0.0034 0.0008 0.0056 0.0017 0.0005 0.0021 0.0007 0.0005 92.4 % (0.6707, 2.0890)
ĥEP 1 0.0125 0.0031 0.0005 0.0053 0.0016 0.0004 0.0019 0.0007 0.0004 98.4 % (0.6683, 2.1850)
ĥEP 2 0.0128 0.0032 0.0006 0.0054 0.0016 0.0004 0.0020 0.0007 0.0004 97.4 % (0.6680, 2.1550)
ĥEP 3 0.0134 0.0033 0.0007 0.0055 0.0017 0.0005 0.0020 0.0007 0.0005 99.3 % (0.6532, 2.1964)
ĥHS1 0.0110 0.0035 0.0020 0.0072 0.0021 0.0009 0.0032 0.0011 0.0007 95.3 % (1.6906, 2.0910)
ĥHS2 0.0113 0.0040 0.0024 0.0076 0.0023 0.0008 0.0034 0.0012 0.0008 95.9 % (1.6799, 2.0910)
ĥHS3 0.0106 0.0043 0.0028 0.0080 0.0024 0.0007 0.0037 0.0013 0.0009 94.1 % (1.7096, 2.0915)
ĥHE1 0.0104 0.0035 0.0016 0.0069 0.0020 0.0008 0.0031 0.0010 0.0008 95.6 % (1.7032, 2.1112)
ĥHE2 0.0104 0.0037 0.0013 0.0066 0.0019 0.0007 0.0028 0.0009 0.0007 98.0 % (1.6711, 2.1423)
ĥHE3 0.0104 0.0042 0.0015 0.0068 0.0020 0.0009 0.0030 0.0010 0.0008 92.7 % (1.7246, 2.0876)
ĥHP 1 0.0107 0.0041 0.0023 0.0075 0.0023 0.0008 0.0034 0.0012 0.0008 99.7 % (1.5973, 2.1971)
ĥHP 2 0.0107 0.0037 0.0009 0.0064 0.0019 0.0006 0.0026 0.0010 0.0007 97.7 % (1.6665, 2.1258)
ĥHP 3 0.0108 0.0037 0.0013 0.0067 0.0019 0.0008 0.0029 0.0009 0.0008 98.4 % (1.6518, 2.1383)

It can also be noted that the estimators are satisfying the inequalities mentioned in
Theorems 1 and 2. From the Tables, we can conclude that E-Bayesian estimators perform
better than Bayesian and H-Bayesian estimators in terms of MSE.

8. Conclusion

The Bayesian, E-Bayesian and H-Bayesian techniques are used for estimating the
parameter and reversed hazard rate of the inverse Rayleigh distribution based on left censor-
ing. A real data and the Monte Carlo simulation are used for computing the estimates and
the comparisons of these estimation methods are also carried out.Using E-Bayesian method
we can see that the complex integrals involved in the calculation of hierarchical estimation
methods are reduced to some extent. One of the important finding of the study is the close
dependency of the proposed method with existing method and are established in Theorems
3 and 4. Another finding of the present study is the superiority of the proposed estimators
with existing estimators. We also study the effect of various loss functions theoretically and
are presented in Theorems 1 and 2. Important concluding remarks from our study are listed
below:

1. Results showed that the MSE of the estimates decreases as the sample size increases.

2. The MSE of the E-Bayesian estimates of λ is less than the MSE of the Bayesian and
H-Bayesian estimates, so E-Bayesian estimators perform better than the other two
existing estimation methods.

3. The MSE of Bayesian, H-Bayesian and E-Bayesian estimates decrease when r increases.
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Table 3: Comparison of MSE of the proposed estimators of λ with Bayesian
estimates for real data

n = 23
r = 2 r = 4 r = 8 r = 12 CP ACI

λ̂B1 0.0106 0.0083 0.0054 0.0052 97.4 % (0.0839, 0.4024)
λ̂B2 0.0115 0.0082 0.0048 0.0047 98.8 % (0.0606, 0.4036)
λ̂B3 0.0103 0.0084 0.0059 0.0056 95.9 % (0.0992, 0.3980)
λ̂ES1 0.0106 0.0085 0.0057 0.0054 93.0 % (0.1134, 0.3768)
λ̂ES2 0.0106 0.0084 0.0056 0.0054 96.0 % (0.0959, 0.3933)
λ̂ES3 0.0106 0.0084 0.0055 0.0053 98.8 % (0.0630, 0.4252)
λ̂EE1 0.0115 0.0084 0.0049 0.0049 95.1 % (0.0974, 0.3705)
λ̂EE2 0.0115 0.0083 0.0049 0.0048 97.2 % (0.0816, 0.3853)
λ̂EE3 0.0115 0.0083 0.0049 0.0048 96.9 % (0.0845, 0.3815)
λ̂EP 1 0.0104 0.0087 0.0062 0.0058 97.8 % (0.0804, 0.4208)
λ̂EP 2 0.0103 0.0086 0.0061 0.0057 98.9 % (0.0619, 0.4383)
λ̂EP 3 0.0103 0.0086 0.0060 0.0057 97.5 % (0.0844, 0.4148)
λ̂HS1 0.0106 0.0082 0.0053 0.0052 91.8 % (0.1188, 0.3663)
λ̂HS2 0.0106 0.0081 0.0053 0.0051 92.4 % (0.1163, 0.3677)
λ̂HS3 0.0106 0.0081 0.0053 0.0051 98.3 % (0.0729, 0.4110)
λ̂HE1 0.0115 0.0085 0.0050 0.0050 91.6 % (0.1140, 0.3558)
λ̂HE2 0.0115 0.0083 0.0049 0.0048 99.8 % (0.0202, 0.4460)
λ̂HE3 0.0115 0.0083 0.0048 0.0047 93.7% (0.1051, 0.3602)
λ̂HP 1 0.0102 0.0083 0.0057 0.0054 91.3 % (0.1234, 0.3714)
λ̂HP 2 0.0104 0.0087 0.0061 0.0058 98.7 % (0.0661, 0.4347)
λ̂HP 3 0.0103 0.0085 0.0060 0.0056 96.7 % (0.0925, 0.4059)

4. The MSE of E-Bayesian estimates under ELF is less than the MSE of E-Bayesian
estimates under SELF and PLF, so E-Bayesian estimators under ELF perform better
than the E-Bayesian estimator SELF and PLF.

5. We can conclude that the E-Bayesian estimators perform better than Bayesian and
H-Bayesian estimators in terms of MSE.
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Table 4: Comparison of MSE of the proposed estimators of ¯h(t) with Bayesian
estimates for real data

n = 23
r = 2 r = 4 r = 8 r = 12 CP ACI

ĥB1 60.6478 46.0936 42.6285 41.8922 91.9 % (-10.9944, 19.0189)
ĥB2 55.1956 41.6762 37.7979 36.1012 98.4 % (-15.9456, 23.6054)
ĥB3 63.4686 48.3812 45.1682 44.9786 95.9 % (-13.8673, 22.0723)
ĥES1 61.5741 46.7373 43.315 42.7344 99.0 % (-18.2402, 26.3238)
ĥES2 61.3408 46.5753 43.1418 42.5214 98.8 % (-17.6651, 25.7339)
ĥES3 61.1081 46.4137 42.9692 42.3093 99.3 % (-19.234, 27.2879)
ĥEE1 56.0256 42.2482 38.3836 36.7883 91.1 % (-10.185, 17.9011)
ĥEE2 55.8165 42.1042 38.2359 36.6144 97.1 % (-14.1523, 21.8543)
ĥEE3 55.6081 41.9606 38.0886 36.4414 95.0 % (-12.2928, 19.9807)
ĥEP 1 64.4444 49.062 45.9071 45.9024 92.8 % (-11.7803, 20.0455)
ĥEP 2 64.1986 48.8906 45.7207 45.6688 99.4 % (-20.1433, 28.3934)
ĥEP 3 63.9536 48.7197 45.5350 45.4362 90.9 % (-10.7881, 19.0231)
ĥHS1 60.3752 45.9039 42.4273 41.6472 99.9 % (-24.2466, 32.2537)
ĥHS2 60.105 45.7157 42.228 41.4053 96.1 % (-13.6962, 21.6858)
ĥHS3 59.8369 45.5289 42.0308 41.1667 97.0 % (-14.5804, 22.5527)
ĥHE1 56.448 42.539 38.6829 37.1418 98.4 % (-16.0768, 23.8213)
ĥHE2 55.6528 41.9915 38.1201 36.478 97.7 % (-14.8781, 22.569)
ĥHE3 55.4419 41.8461 37.9714 36.3037 99.7 % (-20.5672, 28.2438)
ĥHP 1 62.8967 47.9816 44.7371 44.4445 92.7 % (-11.6261, 19.7953)
ĥHP 2 64.3447 48.9925 45.8313 45.8067 98.0 % (-16.4345, 24.6936)
ĥHP 3 63.7582 48.5834 45.3870 45.251 95.6 % (-13.6303, 21.8532)
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Abstract
This paper proposes a target oriented online path planning algorithm which is ca-

pable of navigating a mobile robot autonomously in unknown environments. The proposed
technique called Free Configuation Eigenspace (FCE) finds collision free path from laser
sensor data by computing its eigenvectors. The paper describes an online 2D simulation
method of FCE with static obstacles and start and goal positions. The proposed method
is benchmarked aginst the well known online path planner Vector Field Histogram (VFH).
In this 2D simulation, the robot model used is a differential drive robot and it is assumed
that the robot is equipped with a laser scanner. Simulation experiments are done with start
and goal positions on simulated 2D maps in MATLAB with different obstacle courses. The
respective trajectories for different start and goal positions were generated on the map and
path lengths analyzed

Key words: Online path planning; Online obstacle avoidance; Eigenspace; Eigenvector.

1. Introduction

An autonomous robot’s ability to plan its motion in real-time has become a crucial
part of modern intelligent robotics. Applications of path planning in online environments
include the mining industry, planet exploration, reconnaissance, etc. This is also known
as local path planning. Online path planning deals with the assessment of the dynamic
conditions of the environment and identifying the positional relationships among various
elements in the environment. In online navigation, the robot can autonomously decide its
motion using equipped sensors such as laser sensors, ultrasonic range finders, sharp infrared
range sensors, vision (camera) sensors, etc.

Pioneering work in online obstacle avoidance and path planning was initiated by
Khatib (1986), konown as Artificialal Potential Fields method (APF) and is popular in
mobile robotics. The idea of (APF) comes from the concept of the potential field in physics,
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which regards the movement of objects as the result of two kinds of forces. The robot is
subjected to attractive forces from the target and repulsive forces from the obstacle. Under
the action of the two forces, the robot moves toward the target point due to the resultant
force and during the moving process, it can effectively avoid the obstacles and reach the
target. Bug algorithms by Lumelsky and Stepanov (1987) are also used for online path
planning which uses two-dimensional scenes filled with unknown obstacles. Bug algorithm
assumes the robot as a point operating in the plane with a contact sensor or range sensor
to detect obstacles. Bug algorithm uses a straightforward path planning approach to move
towards the goal unless an obstacle is encountered, in which case it circumnavigates the
obstacle until motion towards the goal is once again allowable. Another online planner in
literature is the Dynamic Windows Approach (DWA), by Fox et al. (1997). This approach
is derived directly from the motion dynamics of the robot and is therefore particularly well
suited for robots operating at high speed. The dynamic window contains the feasible linear
and angular velocities taking into consideration the acceleration capability of the robot.The
collision cone concept based online path planning was proposed by Chakravarthy and Ghose
(1998). The collision cone can be used to predict the possibility of collisions between two
objects and to design collision avoidance strategies. In this method, a collision of a robot
can be averted if the relative velocity of a robot with respect to a particular obstacle falls
exterior to the collision cone.

One of the widely used sensor-based online path planning algorithms is Vector Field
Histogram (VFH) by Borenstein et al. (1991). In VFH, a polar histogram is generated at
every discrete point step to represent the polar density of the obstacles around the robot.
The robot’s steering direction is chosen based on the least polar density and closeness to
the current steering direction. The VFH algorithm is fast, very robust, and insensitive to
misreadings, allowing continuous and fast motion of the mobile robot without stopping for
obstacles. But the VFH-controlled robot may get ”trapped” in dead-end situations (as is the
case with other local path planners). When trapped, mobile robots usually exhibit ”cyclic
behavior”. Another limitation of this technique is that the polar histogram must be regularly
generated for every time step. Hence in narrow hallways, the robot may move in an oscillatory
fashion. Also, this method is suited for environments with sparse moving obstacles. Ulrich
and Borenstein (1998) proposed a method known as VFH+ that introduces some of the
parameters tuning to accommodate the robot’s width, also.

This paper is organized as follows: first it describes the materials and methods used
for this study followed by the 2D simulation method of VFH with static obstacles and start
and goal positions. Then it describes the proposed Free Configuration Technique(FCE)
path planner proposed by us Zaheer et al. (2022). Detailed simulation results are included
in section 4 and followed by result analysis and conclusion.

2. Materials and methodology

This section describes the materials and methods used for this study. The robot
model used here is a differential drive robot and the sensor used is a laser sensor. In this 2D
simulation, it is assumed that a vehicle is equipped with a scanning laser range sensor with
a field of view of 240°. Also, vehicle location is known and only kinematic motion of the
vehicle is considered. The simulation experiments are done with Start and Goal positions
on simulated 2D maps with different obstacle courses. The performance analysis is done
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for different scenarios: namely Scenario-I with 3 separate obstacles with and L-shaped
wall obstacle and Scenario-II and III with differently shaped obstacles. The respective
trajectories for different Start and Goal positions were plotted on the map and path lengths
analyzed.

2.1. Differential drive kinematics

A differential drive robot consists of 2 drive wheels mounted on a common axis,
and each wheel can independently be driven either forward or backward. For the robot
to perform direction change in it’s translational motion, the velocity of each wheel may
be varied appropriately. The robot actually performs rotatory motion about a point along
the common left and right wheel axis which is known as the ICC (Instantaneous Center of
Curvature) as seen in Figure 1. Hence by varying the velocities of the two wheels, we can
vary the trajectories that the robot take

Figure 1: Differential drive kinematics
Since the rate of rotation ω about the ICC must be the same for both wheels, we can

write the following equations:

ω(R + l

2) = V R (1)

ω(R − l

2) = V L (2)

where l is the distance between the wheels, VR and VL are the right and left wheel velocities
along the ground respectively, and R is the signed distance from the ICC to the midpoint
between the wheels. At any instance in time we can solve for R and ω:

R = l(V L + V R)
2(V R − V L) (3)



60 Z. SHYBA, T.P. IMTHIAS, T. GULREZ AND Z. ZOHEB [Vol. 22 , No. 1

ω = V R − V L

l
(4)

In Figure 2, the velocity of the robot can be represented as a pair of vectors, v⃗ and ω⃗,
where v⃗ represents the linear velocity (forwards and backwards) of the robot and ω⃗ represents
the angular velocity of the robot. Given angular veocities of the right and left wheels ωR and
ωL respectively, the linear and angular velocities of the differential drive robot are represented
as shown in Equations 5 and 6.

Figure 2: Physical configuration of the robot

v = rR

2 ωR + rL

2 ωL (5)

ω = rR

l
ωR − rL

l
ωL (6)

where rR and rL are the wheel radii of the left and right wheels, respectively, and l is the
width of the wheelbase as shown in Figure 2. The robot in the global coordinate frame is
represented in Figure 3. The equations of motion are shown in Equation 7.
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Figure 3: Robot’s kinematics in global frame

ẋ
ẏ
θ̇

 =

v cosθ
v sinθ

ω

 (7)

Suppose, at the initial time T0 the pose is [x0, y0, θ0]; the pose at time t is [x(t), y(t), θ(t)];
to find the pose at time T, we will have to integrate the variables at the pose t + ∆t from
within the limit T0 to T which is added to the initial pose coordinates [x0, y0, θ0], as follows:

x(T ) =
� T

T0

v(t) cos(θ(t))dt + x0 (8)

y(T ) =
� T

T0

v(t) sin(θ(t))dt + y0 (9)

θ(T ) =
� T

T0

ω(t)dt + θ0 (10)

2.2. Principal component analysis (PCA)

PCA is a way of identifying patterns in data and expressing the data in such a way as
to highlight their similarities and differences. Since patterns can be hard to find in data of
high dimension, PCA helps us to identify patterns in data based on the correlation between
features. It aims to find the directions of maximum variance in high-dimensional data and
projects it onto a new subspace with equal or fewer dimensions than the original one.

In our case, with a laser range sensor, individual range measurements can be con-
sidered as an independent dimension. With such an approach, a range scanner with a 10

resolution and a 2400 field view generates 240 observations which are called as point cloud



62 Z. SHYBA, T.P. IMTHIAS, T. GULREZ AND Z. ZOHEB [Vol. 22 , No. 1

sensor data. Analysis of the point cloud data from such a scanner will show that adjacent
range measurements are highly correlated. Thus, it is possible to use principal component
analysis to determine a linear subspace with a minimum number of dimensions for repre-
senting an environment using a range sensor.

PCA finds Principal Components (PCs) that are linear combinations of the original
variables ranked in terms of the variability in the data given by the variances. The corre-
sponding orthogonal directions are given by the eigenvectors of the covariance matrix (C) of
the data. The steps involved in PCA analysis are as follows :

• Standardize the dataset
• Compute the covariance matrix of the dataset.
• Perform eigen decomposition on the covariance matrix.
• Order the eigenvectors in decreasing order based on the magnitude of their correspond-

ing eigenvalues.

Let S be the 2D point cloud data,where, Sj = (xj, yj); (Sj ∈ S ∈ R2) and S̄ is the mean of
k no of sensor data points as given below.

To perform the PCA transformation, we have to compute the covariance matrix C of
point cloud data set S using the below equation:

C2x2 = 1
K

k∑
j=1

(Sj − S̄)(Sj − S̄)T ; S̄ = 1
K

k∑
j=1

Sj (11)

To perform transformation we have to solve the eigenvalue Equation 12

CV = λV (12)

Solving the Equation 12 , we can get the eigenvalues λ, where λ1 ≥ λ2 and eigenvec-
tors V [V1, V2].

These eigenvectors are called Principal Components (PCs). By applying a proper
technique we can identify the pattern in 2D point cloud range data. In our case, the obstacle
area or free area identification can be performed with this PCA technique .

3. Vector field histogram (VFH)

VFH method is executed in three main steps that are: Two dimensional cartesian his-
togram grid, Polar histogram sector and candidate valley selection. To begin with, on-board
sensors such as ultrasonic sensor or laser rangefinder are used for mapping obstacles into
histogram grid. In this step, the two-dimensional cartesian histogram grid is continuously
updated in with range data sampled by the on-board range sensors as shown in Figure 4a.

At the second step, a one-dimensional polar histogram is constructed around the
robot’s momentary location by dividing the polar histogram into angular sectors of suitable
width as shown in Figure 4b. At the third step the output of the VFH algorithm, which
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(a) Cratesian histogram (b) Polar histogram
Figure 4: Algorithm steps - I and II

(a) Polar obstacle density of wide valley (b) POD with narrow valley
Figure 5: VFH Algorithm steps - III

is the reference value for the new steering direction of the robot. The optimal direction
is selected in each candidate valley such that every sector density is less than a suitable
threshold value. The algorithm measures the size of the selected valley. Hence, two types
of valleys are distinguished, namely, wide and narrow ones.A valley is considered wide if the
no of consecutive polar sectors (S) are greater than 18 nos (Smax=18).

The sector nearest to target is denoted as kn and the far border sector is denoted
as kf and is defined as kf = kn + Smax. The desired steering direction is then defined by
θ = (kn+kf)

2 and is closer to the goal or target directions as shown in Figure 5a.

In the second case, a narrow valley between closely spaced obstacles (shown in Pink),
are shown in Figure 5b. Here the far border kf is less than Smax . However, the direction
of travel is again chosen as θ = (kn+kf)

2 and the robot maintains a course centered between
obstacles as shown in Figure 5b.

3.1. VFH 2D simulation

In this section, we have done 2D Simulation of VFH algorithm in MATLAB. The
scenario-I is an exact replica of the simulation done in the original paper by Borenstein et
al. (1991). This scenario-I is shown in Figure 6b which contains three obstacles denoted as
A,B,C with a L shaped wall.
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(a) VFH simulation flow chart (b) Original VFH simulation scenario
Figure 6: VFH 2D Simulation

Figure 7: VFH Path: Start[10,10] , Goal[25,35]

The flow chart of VFH’s 2D simulation is shown in below Figure 6a. 2D simulation is
carried out for the VFH algorithm using MATLAB. The robot is assumed to be of circular
shape of radius 0.025m and moving at a speed of 0.8 m/s. The Start position is at [10,10]
and the Goal position is at [25,35] with a map scale 1 unit = 0.1m. The simulated robot
trajectory is shown in Figure 7 and its path length is recorded in Table 1.
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4. Free configuration eigenspace (FCE) formulation

The FCE method uses a two-stage sensor data reduction technique and three levels
of sensor data representation :

• The first level represents the detailed description of the robot’s environment. In this
level, the two-dimensional cartesian map (world model) is created.

• At the second level, the high dimensional sensor space is reduced to a low-dimensional
Eigenspace around the momentary location of the robot by computing Principle Com-
ponents of sensor data. These PCs provides a spatial interpretation of the environment
in terms of its variance of the sensor data.

• The third level of data representation is the output of the FCE algorithm, which selects
the PC direction which is closest to the goal direction

4.1. Proposed FCE goal reaching algorithm

A 2D online pathplanning algorithm has been formulated with static obstacles using
FCE philosophy by Zaheer et al.(2014). The below sections describe the algorithm formula-
tion and implementation of FCE’s 2D Trajectory generation with Start and Goal positions
for a robot A. The flow chart of 2D simulation is shown in Figure 8.

The flowchart has the followings steps:
• The algorithm starts by computing the distance and the angle from the Start to Goal

positions.
• If the goal is not reached, then the sensor cartesian data is acquired from the map’s

obstacle positions.
• The two PCs of sensor data are computed by applying PCA
• From the two PCs, the PC direction closer to the goal position is found.
• Then the velocity components of the new PC angle is calculated
• The new position is computed from the current position and the velocity components.
• The new position is added to robot path array .
• Finally, the robot traverses the generated path.

4.2. FCE’s 2D simulation algorithm

Algorithm 1 FCE - Eigen vector trajectory
Input:

RobotA Start Position: PosA[ ]
RobotA Goal Position : GoalA[ ]
Scan Data: S[ ]
Initialize Simulation parameters :(v = 0.8m/s, rA = 0.025m, t = 1s, P = 1, N = 100)

Output: Path[ ] Path from Start to Goal
1: Compute distance (D) and angle between from Start to Goal(angA)
2: Path[P, 1] = PosA(1)
3: Path[P, 2] = PosA(2)
4: if (D≥0) and(D < 2.5) then
5: GoalReached=1
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Figure 8: FCE 2D simulation flow chart

6: else
7: GoalReached=0
8: end if
9: while (GoalReached==0) do

10: repeat
11: S=Get Cartetian Coordiante of Scan data
12: [ PC ] = eig (covariance (S));
13: DirPC1 = atan2(PC(2, 1), PC(1, 1))
14: DirPC2 = atan2(PC(2, 2), PC(1, 2))
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15: newangleA=[DirPC1,DirPC2]
16: angleFuture=findFutureAngle(newangleA, angA);
17: angA=angleFuture
18: V = [vcos(angA), vsin(angA)]
19: newX = PosA(1) + V (1) ∗ t
20: newY = PosA(2) + V (2) ∗ t
21: PosA = [newX, newY ]
22: P = P + 1
23: Path[P, 1] = PosA(1)
24: Path[P, 2] = PosA(2)
25: until (GoalReached==1) or (P==N)
26: end while
27: Plot the Path Points with robot A as circular shape

Algorithm 2 : Function: findFutureAngle()
Input: newangleA, angA
Output:angleFuture

1: X1 = cos(newangleA(1)) − cos(angA)
2: Y 1 = sin(newangleA(1)) − sin(angA)
3: Point1 = sqrt(X12 + Y 12)
4: X2 = cos(newangleA(2)) − cos(angA)
5: Y 2 = sin(newangleA(2)) − sin(angA)
6: Point2 = sqrt(X22 + Y 22)
7: if ( Point1¡Point2 ) then
8: angleFuture=newangleA(1)
9: else

10: angleFuture=newangleA(2)
11: end if
12: Return (angleFuture)

In this simulation, the robot is assumed to be of circular shape with radius 0.025m
and moving at a speed of 0.8 m/s. The simulation assumes that the robot is equipped with
range sensor. The simulation starts with the input of initial Start position as (PosA) and
the final Goal position as (GoalA). The initial step is to compute the distance (D) and the
angle between the Start and the Goal Position (angA). If the distance value is greater than
zero, then the obstacle free position which is more close to the Goal position has to be found
from scan data. With FCE, this is achieved by computing the eigenvectors of the covariance
matrix of the sensor cartesian data. This will give two PCs as shown in Figure 9. From
these two PC’s, the next suitable direction (angleFuture) to move towards the Goal with
out hitting obstacles is identified by computing the distance between the new PCs direction
point and the initial angle point (angA) and then selecting the minimum distance point
among them as given in algorithm 2. Once the closest direction to the Goal is selected, the
next step is to find the velocity components and the next position of the robot to move on.
The next waypoint is computed by differential drive robot’s kinematic equations and the
values will be stored in the path array, which will give the obstacle free path from Start to
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Figure 9: FCE cartesian map with eigenvectors

Figure 10: FCE result of scenario-I : Start[10,10], Goal[25,35 ]
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Goal. Once the path is generated, the simulated robot trajectory can be plotted, assuming
robot to be circular in shape.

The simulation scenario here is also the same as in the case of VFH described in the
above section (Scenario-I) with Start [10,10] and Goal [25,35]. The FCE simulation result
is shown in Figure 10 and the map scale is taken as 1 unit = 0.1m. Since the eigenspace
generates only two PCs, the robot trajectory comprises of straight line segments as compared
to the curved trajectory of VFH. This is shown in Figure 10 and the path length is recorded
in Table 1.

5. Result analysis

Trajectory analysis of VFH and FCE technique was carried out by creating different
obstacle configurations with different Start and Goal positions and the path lengths generated
by each algorithm are computed. The analysis is done in two scenarios; Scenario-I, scenario-
II and scenario-III having different Start and Goal locations. Then the VFH and FCE
trajectory are plotted as shown in Figures 11, 12, 13 and 14 and the path lengths are
recorded in Table 1. From the table it’s can conclude that the VFH performance is better
in terms of path length but have lots of abrupt change in directions. The FCE has straight
line trajectory and shows some oscillations at some segments, as well.

(a) Start[10,10],Goal[30,20] (b) Start[10,10], Goal[30,20]
Figure 11: Scenario -I

As shown in Figure 11 for Scenario-I with Start[10,10] and Goal[30,20], the path
generated by both VFH and FCE are in the same direction but the VFH path length is
shorter than FCE. Also, it is seen that the both trajectories are colliding with obstacle C.

As shown in Figure 12 for Scenario-I with Start[12,10] and Goal[25,50], the path
generated by both VFH and FCE are in different coordinates but the VFH path length is
shorter than FCE path length as seen in Table 1.
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(a) Start[12,10],Goal[25,50] (b) Start[12,10], Goal[25,50]
Figure 12: Scenario -I

(a) Start[10,10],Goal[30,20] (b) Start[10,10], Goal[30,20]
Figure 13: Scenario -II

(a) Start[10,10],Goal[40,30] (b) Start[10,10], Goal[40,30]
Figure 14: Scenario -III

As shown in Figure 14 for Scenario-III which has more clutterd obastacles with
Start[10,10] and Goal[40,30], VFH method robot is getting “trapped” in this Senario. When
trapped, mobile robots exhibit “cyclic behavior”, which is evident in Figure 14. But FCE
method finds a path from start to goal as we can see in the Figure 14.



2024] EIGENSPACE BASED ONLINE PATH PLANNER FOR AMR 71

Table 1: 2D Simulation results

Technique Scenario Start Goal Path length(m)
VFH Scenario -I [10,10] [25,35] 3.52000
FCE Scenario -I [10,10] [25,35] 3.84000
VFH Scenario -I [10,10] [30,20] 2.40000
FCE Scenario -I [10,10] [30,20] 2.88000
VFH Scenario -I [12,10] [25,50] 4.88000
FCE Scenario -I [12,10] [25,50] 5.04000
VFH Scenario -II [10,10] [30,30] 3.44000
FCE Scenario -II [10,10] [30,30] 11.28000
VFH Scenario -III [10,10] [30,30] 0.14000
FCE Scenario -III [10,10] [30,30] 4.64000

6. Conclusion

Performance analysis with FCE and VFH for different scenrios shows that VFH gives
the shortest path but have many changes in directions. But in the case of FCE, trajectory
segments are almost straight lines but show some ocilllations in certain situations. The result
analysis shows that the VFH perfomance is better in environments with unclutterd static
obstacles. For exploring future scope, this research can be extended to path planning with
dynamic obstacles.
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Abstract
An index is constructed by a mathematical model representing multi-dimensional vari-

ables into a single value. Multi-dimensional variables are often correlated with each other
which is referred as the problem of multicollinearity. Most of the present indices except prin-
cipal component analysis (PCA) based method do not consider the effect of multicollinearity
among the variables. For survey data, even though the PCA based indices are able to tackle
the problem of multicollinearity but do not use survey weights and auxiliary information
which leads to erroneous ranking of the survey units like households, districts, states, etc.
Therefore, the present study proposes some new methods of index construction which are
capable to incorporate the survey weights and auxiliary information available in the complex
survey data as well as removes the effect of multicollinearity among variables.
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1. Introduction

Indicators are helpful in recognizing patterns and attracting consideration regarding
specific issues. A composite indicator is framed when singular indicators are assembled into
a single index on the premise of a basic model. Composite indicators/index are much similar
to mathematical or computational models which should ideally measure multi-dimensional
concepts, which can’t be caught by a single indicator alone, e.g., intensity, industrialization,
etc.

An index is a single measure to rank the units based on the multi-dimensional con-
cepts which are presented in form of multivariable. Indices are quite useful to measure
multi-dimensional concepts, which can’t be caught by a single indicator alone like to sum-
marize complex (elusive) or multi-dimensional processes into a single figure to benchmark
the performance of countries, states, districts, etc. for policy formulation. The primary
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role of index is to simplify otherwise complicated comparisons. Niti Aayog, Government
of India develops composite indices like water management index, district hospital index,
export preparedness index, India innovation index, multidimensional poverty index, school
education quality index, SDG Index, state energy index and state health index. A compre-
hensive survey of different indicators of economic and social well-being has been provided by
Sharpe (1999). The quantification of development efforts affected in various socio-economic
fields was studied by constructing composite index of development based on information on
fourteen important indicators by Narain et al., (1991). The economic growth of China using
social indicators has been estimated by Klein and Ozmucur (2003). Potential agro-forestry
areas using Objective Analytic Hierarchy Process was identified by Ahmad et al., (2003).
Economic development in Karnataka, hilly states and Jammu and Kashmir was evaluated
by Narain et al., (2003, 2004, 2005). Livelihood index for different agro-climatic zones of
India was developed by Rai et al., (2008). The food insecurity in urban India was reported
by developing the food insecurity index by Athreya et al., (2010). The Human Development
Index (HDI) developed by United Nations Development Programme is the geometric mean
of the three-dimension indices i.e., Health, Education and Income (Human Development
Report, 2016).

Therefore, in most of the situations, composite index are based on simple or weighted
average method which does not consider the effect of multicollinearity among the indicator
variables that are used for index construction. PCA based index accounts for the effect of
multicollinearity among the indicator variables through the eigen values and eigen vectors
derived from the variance-covariance matrix using maximum likelihood or ordinary least
squares methods of estimation. Dahal (2007) developed soil quality index by using PCA in
which all those principal components (PCs) for which the eigen value is greater than one
are retained. Agricultural development index was developed by Kumar (2008) using the
principal component technique. Medical expenditure panel survey from 1996 to 2011 was
used to develop principal component-based index by Chao and Wu (2017). Water poverty
index was developed by Senna et al., (2019) using PCA.

However, the above PCA based index methods are based on the assumption that
sample elements, on which the indicator variables are measured, are independent and iden-
tically distributed. This assumption of independence holds good if the data are collected
through simple random sampling with replacement. However, it does not hold good for other
sampling designs where the inclusion probability and survey weight are attached with each
sampling unit and hence the above PCA based index methods lacks representativeness of the
population when the data is collected with complex survey design. Now a day, most of the
survey designs are complex in nature involving stratification, unequal probabilities of selec-
tion, clustering, multi-stages, multi-phases and auxiliary information. In case of large-scale
surveys, stratified multistage sampling design is widely used where the units in a stratum are
relatively homogenous which violates the assumption of independence of sample elements.
Any deviation from independence assumption leads to erroneous estimation of variance co-
variance matrix which in turn leads to erroneous estimation of eigenvalues and eigenvectors,
and thereby resulting in poor PCA based index. Therefore, in case of complex survey data
there is a need to develop PCA based index using survey weights to tackle the problem of
representativeness of population and auxiliary information which leads to development of
efficient indices.
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2. Methodology

2.1. Estimators of variance-covariance matrix

Let us consider a finite population U = (1, 2, . . . , k, . . . , N) of size N units having l
subpopulations/blocks/states such that the hth subpopulation has Nh units and ∑l

h=1 Nh =
N , (h = 1, 2, . . . , l). Let s be a probabilistic sample of size n drawn from this population
such that ∑l

h=1 nh = n where nh is the number of units belongs to the hth sub-population
with assumption that nh ̸= 0 and dhi denotes the survey weight associated with ith unit
of the sample in hth subpopulation such that ∑l

h=1
∑nh

i=1 dhi = 1. Let y = (y1,y2,..., yq)′

and x = (x1,x2,..., xq)′ be the p and q set of standardised indicators and auxiliary variables
respectively. Let, yhi = (yhi1,yhi2,..., yhip)′ and xhi = (xhi1,xhi2,..., xhip)′ be values of the
variables y and x corresponding to ith sample unit of hth sub-population where, h = 1, 2, . . . , l
and i = 1, 2, . . . , nh. The ordinary least squares estimator of variance-covariance matrix, Σyy

is given as

∑̂
yy

= Vyys = (n − 1)−1 ∑
h

∑
i
(yhi − ȳs) (yhi − ȳs)T (1)

where, ȳs = ∑
h

∑
i yhi/n.

Following Skinner et al.,(1986) and Smith & Holmes (1989), the survey-weighted esti-
mator of ∑

yy is given by

∑̂
yyw

= V∗
yys =

∑
h

∑
i
dhiyhiyT

hi − y∗
sy∗T

s (2)

where, ȳ∗
s = ∑

h

∑
i dhiyhi, and in the presence of auxiliary information x, unweighted

regression estimator is given by

∑̂
yyr

= Vyys + byx(
∑
xx

− Vxxs)bT
yx (3)

where,
byx = VxysV−1

xxs,

Vxxs = (n − 1)−1 ∑
h

∑
i
(xhi − x̄s) (xhi − x̄s)T ,

Vxys = (n − 1)−1 ∑
h

∑
i
(xhi − x̄s) (yhi − ȳs)T .

In the case of survey data with auxiliary information, following Skinner et al., (1986)
and Smith & Holmes (1989), survey-weighted regression estimator is given by

∑̂
yywr

= V∗
yys + byxw(

∑
xx

− V∗
xxs)bT

yxw (4)

where,
byxw = V∗

xysV∗−1
xxs ,
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V∗
xxs =

∑
h

∑
i
dhixhixT

hi − x̄∗
sx̄∗T

s ,

V∗
xys =

∑
h

∑
i
dhixhiyT

hi − x̄∗
sȳ∗T

s .

2.2. Methodology of proposed indices

Let us assume that Σ̂yy is a real positive definite matrix. Let, the non-zero eigenvalues
of Σ̂yy are λ1 > λ2 > λ3 . . . > λp and the corresponding eigen vectors are γ1, γ2, γ3, . . . , γp.
For distinct λj’s (j = 1, 2, 3, . . . , p), an orthogonal matrix of order pxp can be formed as

Γ = [γ1,γ2,γ3,..., γp] , (5)

such that, Σ̂yy = ΓAΓT , where A = diag (λ1,λ2,λ3, . . . , λp) = ΓT Σ̂yyΓ. Now let us consider
an orthogonal transformation of y such that

P = ΓT y (6)

where PC1, PC2, . . . , PCp are the p components of P and are called as PCs. The
composite index corresponding to ith sample unit of hth sub-population is given as

Chi =
∑p

j=1 λjPChij∑p
j=1 λj

(7)

where the PChij’s are principal component scores of jth variable corresponding to the
ith sample unit of hth sub-population ∀ h = 1, 2, . . . , l; i = 1, 2, . . . , nh; j = 1, 2, . . . , p. The
average of Chi’s within hth sub-population gives the composite index value for hth sub-
population as

Ch =
∑nh

i=1 Chi

/
nh. (8)

The composite index values of sub-populations are re-scaled by using the following
formula as

CIh = Ch − min(Ch)
max(Ch) − min(Ch) . (9)

The ranking of l sub-populations is done based on the re-scaled composite index values
(CIh) . All the composite index values (CIh) lie between 0 and 1, where one denotes the
highest rank and zero denotes the lowest rank.

The existing PCA based index uses the non-zero eigenvalues derived from the ordinary
least squares estimator of variance-covariance matrix, Σ̂yy. Here, indices are proposed based
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on survey weighted estimator, unweighted regression estimator and survey weighted regres-
sion estimator of variance-covariance matrix. The index that uses the non-zero eigenvalues
derived from the survey weighted estimator of variance-covariance matrix, Σ̂yyw is referred
as the survey weighted PCA based index and it is used when the data are collected through
complex survey designs in which the inclusion probability for all the units is not same. The
index developed based on the non-zero eigenvalues derived from unweighted regression esti-
mator of variance-covariance matrix, Σ̂yyr is referred as the unweighted regression PCA based
index and it is useful when auxiliary information is available in the data. One more index
has been developed that uses the non-zero eigenvalues derived from survey weighted regres-
sion estimator of variance-covariance matrix, Σ̂yywr and is referred as the survey-weighted
regression PCA based index. This index is particularly useful when there is the presence of
auxiliary information under complex survey designs.

3. Empirical evaluations

This Section summarizes the simulation studies conducted to evaluate the empirical
performance of the developed indices. Two types of simulation studies, namely design based
simulation and model-based simulation are considered. In case of design-based simulation,
real survey dataset is used as a finite population. From this fixed population, repeated
random samples are drawn. In the case of model-based simulation, at each simulation run
a synthetic population data is first generated under the model and then a sample is drawn
from this simulated population, and process is repeated several times. In the simulation
studies, the following indices are considered

i) Unweighted PCA based index (denoted as PCA Index),

ii) Survey weighted PCA based index (denoted as SW-PCA Index),

iii) Unweighted regression PCA based index (denoted as REG-PCA Index), and

iv) Survey weighted regression PCA based index (denoted as SW-REG-PCA Index).

3.1. Design-based simulation

The household consumer expenditure survey data of NSS 68th round is used for design
based simulation study. The data of five states namely, Jammu and Kashmir, Orissa, Kerala,
Sikkim and Jharkhand, and one union territory, i.e., Andaman and Nicobar Islands have
been considered for the study. The survey data of these five states and one union territory
are considered as independent populations and then samples (10 % of the population) are
drawn from each of these populations. The primary units of the survey are households.
Therefore, within a state, sample size is allocated among the districts using proportional
allocation and then from each of the districts, households are selected by simple random
sampling without replacement (SRSWOR). Here, the variables considered are Cereals (Z1),
Pulses and pulse products (Z2), Milk and milk products (Z3), Salt and sugar (Z4), Edible oil
(Z5), Egg, Fish and meat (Z6), Vegetables (Z7), Fruits (fresh) (Z8), Spices (Z9), Beverages
(Z10), Served processed food (Z11) and Packaged processed food (Z12). Following Smith
and Holmes (1989), a new variable is created by summing up all the twelve variables which
is considered as auxiliary variable.
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The composite index values are computed for each households using different methods
of index construction and the average of composite index values of all the households within
a district is taken as the index value for that district. The index values computed for each of
the districts within a state are compared with the composite index value of districts based
on the population variance covariance matrix. The Monte Carlo simulation was run S=5000
times. Simulation studies are carried out in R software. The developed indices are evaluated
by percentage relative root mean squared error (RRMSE), defined by

RRMSE(
⌢

θ) =

√√√√√√1
s

S∑
s=1

 k∑
i=1

 ⌢

θsi − θi

θi

2 ∗ 100 (10)

where,
⌢

θsi is the sample index value for ith district at sth simulation run and θi is
the population index value for ith district. The values of the percentage relative root mean
square error of different indices are reported in Table 1.

Table 1: Percentage relative root mean square error (RRMSE %) of different
indices considered in the design-based simulation

State PCA
Index

SW-PCA
Index

REG-PCA
Index

SW-REG-PCA
Index

Jammu & Kashmir 1242.00 879.14 1230.95 863.70
Orissa 363.18 362.21 357.90 352.35
Kerala 228.27 227.91 222.10 223.26
Andaman & Nicobar Islands 208.97 207.47 206.27 205.00
Sikkim 126.49 125.59 121.51 118.10
Jharkhand 466.21 452.80 432.25 424.95

From Table 1, it is clear that the proposed indices perform better than the unweighted
PCA based index in terms of RRMSE. Among the proposed indices, SW-REG-PCA Index
performs best followed by REG-PCA Index and SW-PCA Index. Since SW-REG-PCA
Index utilises the auxiliary information as well as survey weights available through survey
design, therefore, it performs best. However, for the state of Jammu & Kashmir, SW-PCA
Index performs better than the REG-PCA Index. The Table 1 indicates that the proposed
methodologies of indices development are efficient in comparison to the existing PCA based
index method for complex survey designs.

3.2. Model based simulation

In model-based simulation, the methodology given by Smith & Holmes (1989) were
followed where they have assumed the design variable Z as a sum of other variables. Thus,
Z is a continuous variable to form population design groups such as strata to investigate the
performance of different estimators of population variance covariance matrix for complex sur-
vey design. In this simulation study, an artificial population is generated using multivariate
normal distribution X =

(
YT , Z

)T
having mean vector ux and variance covariance matrix∑

xx satisfying the linearity and homoscedasticity assumptions. The vector Y comprises of
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twelve variables and Z is the design variable which is the sum of all the twelve variables.
The mean vector ux and variance-covariance matrix ∑

xx are estimated from the NSS 68th

round household consumption expenditure survey data on the twelve set of variables, i.e.,
Cereals (Z1), Pulses and pulse products (Z2), Milk and milk products (Z3), Salt and sugar
(Z4), Edible oil (Z5), Egg, Fish and meat (Z6), Vegetables (Z7), Fruits (fresh) (Z8), Spices
(Z9), Beverages (Z10), Served processed food (Z11) and Packaged processed food (Z12). A
finite population of one lakh units is generated at each simulation run. Then the population
is stratified into five strata, each having equal number of units based on the ordered z-values
of the design variable Z.

Table 2: Mean of variables considered for population data generation

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12
807.93 213.31 721.86 127.64 65.13 166.69 120.73 70.09 58.70 49.10 97.85 56.63

Table 3: Variance-covariance matrix of variables considered for population data
generation

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12
Y1 263931 34252 76232 19551 11007 26131 19112 6828 6776 6280 3673 7081
Y2 34252 22964 41505 9415 4393 4090 4918 3003 2995 2189 1594 2829
Y3 76232 41505 620633 54028 14295 8103 18088 16563 8402 11975 10450 15495
Y4 19551 9415 54028 14862 3476 2290 3434 1884 1883 1560 896 1835
Y5 11007 4393 14295 3476 3891 3192 2433 973 1508 982 555 1601
Y6 26131 4090 8103 2290 3192 28266 4843 3285 2466 2187 3389 2588
Y7 19112 4918 18088 3434 2433 4843 6531 1726 1520 1361 924 1772
Y8 6828 3003 16563 1884 973 3285 1726 4607 887 1316 1763 1731
Y9 6776 2995 8402 1883 1508 2466 1520 887 1852 717 733 890

Y10 6280 2189 11975 1560 982 2187 1361 1316 717 2733 1582 1184
Y11 3673 1594 10450 896 555 3389 924 1763 733 1582 101389 2261
Y12 7081 2829 15495 1835 1601 2588 1772 1731 890 1184 2261 6203

Samples of size 2000 are selected from this population using SRSWOR within each
stratum and allocated sample sizes in the strata are provided in Table 4.

Table 4: Allocation of sample size in the strata

Stratum 1 2 3 4 5
Sample size 600 300 200 300 600

Then the various indices are computed using this sample data. The Monte Carlo
simulation was run S=5000 times. Simulation studies are carried out in R software. The
developed indices are evaluated by the criterion of percentage relative root mean squared
error (RRMSE, %), defined by

RRMSE(
⌢

θ) =

√√√√√√1
s

S∑
s=1

 k∑
i=1

 ⌢

θsi − θsi

θsi

2 ∗ 100 (11)
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where,
⌢

θsi and θsi are the sample and population index values of ith strata at sth

simulation run.

Table 5: Percentage relative root mean squared error (RRMSE, %) of different
indices considered in model-based simulation

Indices % RRMSE

Unweighted PCA based index 22.84

Survey weighted PCA based index 19.46

Unweighted regression PCA based index 19.20

Survey weighted regression PCA based index 19.03

Table 5 reports the performance of all the proposed indices obtained from the simulation
study. From Table 5, it is clear that the SW-REG-PCA Index, which utilises the auxiliary
information as well as survey weights, performs best followed by REG-PCA Index and SW-
PCA Index. Therefore, all the developed indices performs better than the existing PCA
based Index in terms of the criterion of RRMSE, %.

From the empirical evaluations in section 3, it is inferred that when sample is selected
through complex survey design in which there is unequal selection probabilities of sample
units, the indices that incorporate survey weights perform better in comparison to the tra-
ditional PCA based index method which is incapable to incorporate the survey weights.
The proposed REG-PCA Index which is capable to incorporate the auxiliary information
performs better than the traditional PCA based index method which does not utilize the
auxiliary information even when it is available.

4. Conclusions

Most of the large-scale surveys conducted by different Government agencies, NGOs,
research organisations and private firms use complex survey designs which involve unequal
probabilities of selection, stratification, clustering, multistage, multiphase, nonresponse and
other post stratification adjustments. Ignoring these aspects of complex survey data while
constructing indices may lead to biased estimates and greater standard errors which leads to
erroneous ranking of the survey units under consideration. Thus, it may result in erroneous
inferences. Therefore, in the present study, different indices are developed which are capable
to incorporate the survey weights and auxiliary information available in the complex sur-
vey data as well as removes the effect of multicollinearity among the index variables. The
improved performance of the developed indices in comparison to the existing PCA based
index have been demonstrated through simulation studies using both real and artificially
generated data. Therefore, the developed indices will give better inferences in the case of
complex survey data.
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Abstract
Consider an mth order Markov chain {Xj : j ≥ −m + 1} taking values in {0, 1}. We

set Ri = 0 for i = 0, −1, . . . , −l + 1. A l-look-back run of length k starting at i, Ri is defined
inductively as a run of 1’s starting at i, provided that no l-look-back run of length k occurs,
starting at time i − 1, i − 2, . . . , i − l, i.e., Ri = ∏i−l

j=i−1(1 − Rj)
∏i+k−1

j=i Xj. We study the
conditional distribution of the number of runs of length exactly k1, till the r-th occurrence
of the l-look-back run of length k where k1 ≤ k − 1 and obtain the explicit expression of it’s
probability generating function. We establish that the number of runs can be written as sum
of r independent random variables with the first term having a slightly different distribution.
We further establish the strong law of large numbers for the number of runs of length exactly
k1.

Key words: Runs; Markov chain; Stopping time; Probability generating function; Strong
Markov property: Strong law of large numbers.

AMS Subject Classifications: 60C05, 60E05, 60F05

1. Introduction

Theory of distributions of runs has been studied, since Feller (1968) introduced runs
as an example of a renewal event. In recent years, this field has received a lot of interest
among researchers. Many powerful techniques such as Markov embedding technique, method
of conditional p.g.f.s etc. have been developed which enabled us to study new features of the
distributions of various run statistics. For a more detailed discussion on the run statistics
and its application, we refer the readers to Balakrishnan and Koutras [2002].

We consider an m-th order homogeneous {0, 1}-valued Markov chain. Further, we
assume that the initial condition {X0 = x0, X−1 = x1, . . . , X−m+1 = xm−1} is given to
us. The state 1 can be thought as success in an experiment while 0 as failure. A run
of length k is a consecutive occurrence of k successes. Anuradha (2022) introduced the
l-look-back counting scheme for runs. In this scheme a run is counted starting at time i,
if Xi = Xi+1 = · · · = Xi+k−1 = 1, and no runs can be counted till the time point i + l.
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The next counting of run can start only from the time point i + l + 1. This mechanism is
repeated every time a run is counted. In other words, if a run is counted starting at time
i, there are k-consecutive successes from the time point i and no runs of length k has been
counted which had the starting time as i − 1, i − 2, . . . , i − l. Such a run will be referred as a
l-look-back run of length k. Clearly, if l = 0, this counting of run matches exactly with the
number of overlapping runs of length k, while if we set l = k − 1, this counting results in the
number of non-overlapping runs of length k. Aki and Hirano (2000) also defined a counting
scheme which they referred as µ-overlapping counting. It should be noted that both these
concepts match if we set l = k − µ − 1.

The following example illustrates the practical usage of the l-look-back counting
scheme for runs of length k. Consider an experiment of a drug administration where obser-
vations are taken every hour for the presence or absence (success or failure) of a particular
symptom, say, fever exceeding a specified temperature. If we observe the presence of the
symptom for k-successive time points, a drug has to be administered; however, as is the case
with most drugs, once the drug is administered, we have to wait for l-hours for the next
administration of the drug. But the process of the observation for the presence or absence
of the symptom is continued as ever. In such a case, the number of administrations of the
drug until time point n, is the number of l-look-back runs of length k up to time n.

Aki and Hirano (1994) studied the marginal distributions of failures, successes and
success-runs of length less than k until the first occurrence of consecutive k successes where
the underlying random variables are either i.i.d. or homogeneous Markov chain or binary
sequence of order k. Aki and Hirano (1995) derived the joint distributions of failures, suc-
cesses and success-runs for the same set-up. Hirano et. al. (1997) obtained the distributions
of number of success-runs of a specific length for various counting schemes (e.g. runs of
length k1, overlapping runs of length k1, non-overlapping runs of length k1 etc.) until the
first occurrence of the success-run of length k for a m-th order homogeneous Markov chain
where m ≤ k1 < k. Uchida (1998) studied the joint distributions of the waiting time and
the number of outcomes such as failures, successes and success-runs of length less than k

for various counting schemes of runs for an mth order homogeneous Markov chain. Chad-
jiconstantindis and Koutras (2001) also obtained the distribution of number of failures and
successes in a waiting time problem.

In this paper, we study the distribution of runs of successes of exact length. A run
of length exactly k can be described as an occurrence of a failure, followed by k consecutive
successes, followed by another failure. The literature on runs of exact length is rather
limited. This is indeed a difficult problem, specially when the underlying distribution of
random variables has a dependent structure.

In recent years, the runs of exact length has found usage in very important areas.
We site one such example here. The study of random sequences constitutes an important
part of cryptography specially in the areas of challenge and response authentication systems,
generation of digital signatures, and zero-knowledge protocols. Many protocols in cryptog-
raphy depend on the assumption that the resulting ciphertext from a cipher (cryptographic
algorithm) should appear to be as random as possible. Various tests are used for testing
the randomness of such ciphertexts, which in turn help in deciding whether a given protocol
leaks information or not. Doganaksoy et. al. (2015) developed three statistical randomness
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tests based on runs of exact length and named them as runs of length one, runs of length
two, and runs of length three tests respectively and showed that they work better than the
traditional tests. However, the main challenge in the wider application of their work was
that the distribution of the resulting statistic is not tractable when the (exact) length of run
is large. In fact they could use only lengths 1, 2 and 3. Hence there is an imperative need
to study the distribution, or at least find good approximation of the distribution, of runs of
exact length for larger values of length, specially when the underlying random variables are
not i.i.d. but have some dependent structure.

Since the study of the exact distribution of runs of exact length is complicated, it
is prudent to find a simpler structure embedded in this set up. We study the conditional
distribution of the number of runs of length exactly k1, until a specified stopping time,
namely the rth occurrence of the l-look-back run of length k where k1 < k. The study
of distributions of runs until a stopping time brings out many salient features of various
run statistic and establishes new connection between various discrete distributions. Indeed,
our results exhibit an independence structure in the number of runs until the stopping time
where we may explicitly write the distribution in terms of simpler random variables following
Bernoulli and geometric distributions. (see Corollary 1 for details).

The novelty of our method lies in translating our problem into a first order homo-
geneous Markov chain. Indeed, we define a new first order Markov chain taking values in
a finite set in such a way that the states of the new chain combines the last k1 states of
the previous chain (refer to the third section for exact definition). Further, the states of the
original m-th order Markov chain may be recovered from the states of the newly defined
Markov chain. This allows us to translate the problem in terms of the new Markov chain.
For a simple Markov chain, the powerful results such as the strong Markov property can
now be used to derive a recurrence relation between the probabilities. We now employ the
method of conditional probability generating functions. We use this basic relation involving
the probabilities to obtain a recurrence relation involving probability generating functions.
This, in turn, provides a simple linear equation involving the generating function of the
probability generating functions which can be solved to obtain its expression.

The explicit expression of the probability generating function implies that the dis-
tribution of the number of runs of length exactly k1 until the stopping time has a renewal
structure. Hence the number of runs until the stopping time splits into sum of independent
random variables, which may be interpreted as arrival times in a renewal process. Further,
we have shown that the arrival times are identical except the first arrival time. In other
words, it admits a delayed renewal structure. We are also able to identify the arrival times
through geometric and Bernoulli random variables. Thus we are able to approximate the
number of runs of length exactly k1 through simpler random variables.

We may apply our results to obtain an approximation of the number of runs of length
exactly k1 until time n in the following way: we choose some k > k1 and find the number of
non-overlapping runs of length k, i.e., number of (k−1)-look-back runs of length k, until time
n, say r. Clearly the total number of runs of length exactly k1 until time n lies between the
number of runs of length exactly k1 until the rth and (r + 1)th occurrence of non-overlapping
runs of length k respectively. Now we use our main result to compute the distribution of
the number of runs of length exactly k1 until this rth as well as (r + 1)th occurrences of
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non-overlapping runs of length k. For large values of n, this works quite well. We use the
Markov inequality and this method of approximation effectively to derive the strong law of
large numbers (see Theorem 2) for the number of runs of length exactly k1. We hope that
the methods of approximation can, in future, be extended to obtain a central limit theorem
as well as the law of iterated logarithm for the same.

In the next section, we give the important definitions and state the main Theorem
and Corollary related to the distribution of the number of runs of length exactly k1 until a
stopping time, where k1 < k. Section 3 is devoted towards formalizing the underlying set
up for deriving the results. In Section 4, we prove the main theorem, while in Section 5, we
prove the strong law for the number of runs.

2. Definitions and statement of results

Let X−m+1, X−m+2, . . . , X0, X1, . . . be a sequence of stationary m-order {0, 1} valued
Markov chain. It is assumed that the states of X−m+1, X−m+2, . . . , X0 are known, i.e., we
are given the initial condition {X0 = x0, X−1 = x1, . . . , X−m+1 = xm−1}.

To make things formal, for any i ≥ 0, define Ci = {0, 1, . . . , 2i − 1}. It is clear that
Ci and {0, 1}i can be identified easily by the mapping x = (x0, x1, . . . , xi−1) −→ ∑i−1

j=0 2jxj.
Since, {Xn : n ≥ −m + 1} is mth order Markov chain, we have, for any n ≥ 0,

px = P(Xn+1 = 1|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) (1)

where x = ∑m−1
j=0 2jxj ∈ Cm. Consequently, we have qx = P(Xn+1 = 0|Xn = x0, Xn−1 =

x1, . . . , Xn−m+1 = xm−1) = 1 − px. We assume that 0 < px < 1 for all x ∈ Ci. One particular
case will be of importance in our study, when {Xn = 1, Xn−1 = 1, . . . , Xn−m+1 = 1}. In our
notation, this condition will become x = ∑m−1

j=0 2j1 = 2m − 1. Thus, using (1), for all n ≥ 0,
we have

p2m−1 = P(Xn+1 = 1|Xn = 1, Xn−1 = 1, . . . , Xn−m+1 = 1) = 1 − q2m−1.

Definition 1: (l-look-back run) Fix two integers k ≥ 1 and 1 ≤ l ≤ k − 1. We set
Ri(k, l) = 0 for i = 0, −1, . . . , −l + 1 and for any i ≥ 1, define inductively,

Ri(k, l) =
i−1∏

j=i−l

(1 − Rj(k, l))
i+k−1∏

j=i

Xj. (2)

If Ri(k, l) = 1, we say that an l-look-back run of length k has been recorded which started at
time i.

It should be noted that for an l-look-back run to start at the time point i, we need
to look back at the preceding l many time points, i.e., i − 1 to i − l, none of which can be
the starting point of an l-look-back run of length k.

Next we define the stopping times where the r-th occurrence of l-look-back run of
length k is completed.
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Definition 2: For r ≥ 1, the stopping time τr(k, l) be the (random) time point at which
the r-th occurrence of l-look-back run of length k is completed. In other words,

τr(k, l) = k − 1 + inf{n :
n∑

i=1
Ri(k, l) = r}. (3)

Now we define the runs of length exactly k.

Definition 3: When k(≥ 1) consecutive successes, either occur at the beginning of the
sequence or end of the sequence or bordered on both sides by failures, contribute towards
the counting of a run then we call it run of length exactly k.Note that when there are more
than k consecutive successes then it is not counted as run of length exactly k.

We may represent this mathematically as follows:

ϵi(k) =


∏k

j=1 Xj(1 − Xk+1) if i = 1
(1 − Xi−1)

∏i+k−1
j=i Xj(1 − Xi+k) if 1 < i < n − k + 1

(1 − Xn−k) ∏n
j=n−k+1 Xj if i = n − k + 1.

Note here that ϵi(k) = 1 if and only if a run of length exactly k starts at time point
i. Now, we define the total number of runs of length exactly k by

Nn(k) =
n∑

i=1
ϵi(k). (4)

In this paper, we study the number of runs of length exactly k till the stopping time
τr(k, l) (see Definition (2)). Fix any constant k1 ≤ k. For each r ≥ 1, we define the random
variable

Nr(= Nr(k1)) := Nτr(k,l)(k1) =
τr(k,l)∑

i=1
Ri(k1) (5)

as the number of runs of length exactly k1 until the stopping time τr(k, l).

Before we proceed, we present an example to facilitate the understanding. Consider
the following sequence of 0’s and 1’s of length 20

11010111011111011101.

For k = 3 and l = 1, it should be noted that, R6(3, 1) = R10(3, 1) = R12(3, 1) = R16(3, 1) = 1,
while for other values of i, Ri(3, 1) = 0. Thus, τ1(3, 1) = 8, τ2(3, 1) = 12, τ3(3, 1) = 14 and
τ4(3, 1) = 18. For k1 = 2, the number of runs of length exactly k1 are given by N1 = N2 =
N3 = N4 = 1 respectively.

Let us define the probability generating function of Nr, i.e.,

ζr(s; k1) :=
∞∑

n=0
P(Nr = n)sn. (6)
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Theorem 1: For any initial condition x ∈ Ci, k2 = k − k1 > 0 and k1 ≥ m, the probability
generating function of Nr is given by

ζr(s; k1) =
[ (

p2m−1
)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

][(
p2m−1

)l+1

+

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

(
1 −

(
p2m−1

)l+1
)]r−1

.

Theorem 1 provides a useful representation of Nr in terms of Bernoulli and geometric
random variables when k2 > 0. Let us set,

pE =

(
p2m−1

)k2

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

=

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2
. (7)

Corollary 1: Let {Gi : i = 1, . . . , r} and {Bi : i = 1, . . . , r} be two independent sets of ran-
dom variables with each Gi having a geometric distribution (taking values in {0, 1, . . . , }) with
parameter pE and each Bi having a Bernoulli distribution with parameter

(
1 −

(
p2m−1

)l+1
)

,
then we have

Nr
d= G1 +

r∑
i=2

GiBi. (8)

Indeed, it is easy to see that the probability generating function of Gi, for i ≥ 1, is
given by (

p2m−1
)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

and the probability generating function of Bi, for i ≥ 1, is given by(
p2m−1

)l+1
+ s

(
1 −

(
p2m−1

)l+1
)

.

Therefore, the probability generating function of GiBi is given by

(
p2m−1

)l+1
+

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

(
1 −

(
p2m−1

)l+1
)

. (9)

From the independence of Gi and Bi for i ≥ 1, the corollary easily follows.

When k2 = 0, i.e., k = k1, we can obtain the the probability generating function, but
it is difficult to identify the exact distribution (see Section 4).

The delayed renewal structure of the number of runs of exact length until the stopping
time, observed in equation (8), can be used for approximating the original distribution when
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the number of trials are large. Indeed we may obtain a strong law for the number of runs of
exact length using this.

Let us set k = k1 + 1 and l = k − 1 = k1. Then, the expectation of G1B1 can be
easily computed from the expression of the probability generating function in (9). Indeed,
it is given by

µ1 = q2m−1

p2m−1

(
1 −

(
p2m−1

)k1+1
)

. (10)

We will further define a constant µ. Let S be the first time when k successive heads
have occurred given the initial condition of k successive heads. In section 5, We will show
that S is finite with probability 1. Further, its expectation is also finite. We denote

µ = E(S). (11)

Theorem 2: For any initial condition x ∈ Ci and k1 ≥ m, we have

1
n

Nn(k1) → µ1

µ

as n → ∞ with probability 1.

3. Formal set-up

In this section, we outline the basic set up which will be used in the subsequent section
to establish the results. Let us define two functions f0, f1 : Ck1 → Ck1 by

f1(x) = 2x + 1 (mod 2k1) and f0(x) = 2x (mod 2k1).

Further define a projection θm : Ck1 → Cm by θm(x) = x (mod 2m). Now, set X−m =
X−m−1 = · · · = X−k1+1 = 0. Define a sequence of random variables {Yn : n ≥ 0} as follows:

Yn =
k1−1∑
j=0

2jXn−j.

Since Xi ∈ {0, 1} for all i, Yn assumes values in the set Ck1 . Further, the random variables
Xn’s are stationary and forms a mth order Markov chain, hence we have that {Yn : n ≥ 0}
is a homogeneous Markov chain with transition matrix given by

P(Yn+1 = y|Yn = x) =


pθm(x) if y = f1(x)
1 − pθm(x) if y = f0(x)
0 otherwise.

It should be noted that Yn is even if and only if Xn = 0. This motivates us to define
the function κ : Ck1 → {0, 1} by

κ(x) =
{

1 if x is odd
0 if x is even.
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Therefore, κ(Yn) = 1 if and only if Xn = 1. Hence, the definition of l-look-back run can be
described in terms of Yn’s as

Ri(k, l) =
i−1∏

j=i−l

(1 − Rj(k, l))
i+k−1∏

j=i

κ(Yj).

Let us fix any initial condition x ∈ Cm. We denote the probability measure governing
the distribution of {Yn : n ≥ 1} with Y0 = x ∈ Ck by Px. Since we have set X−m = X−m−1 =
· · · = X−k+1 = 0, we have Y0 = x.

In order to obtain the recurrence relation for the probabilities, we will condition the
process after the first occurrence of the run of length k1. Therefore, we consider the stopping
time T when the first occurrence of a run of length k1 ends, i.e., when we observe k1 successes
consecutively for the first time. More precisely, define

T := inf{i ≥ k1 :
i∏

j=i−k1+1
Xj = 1}. (12)

We would like to translate the above definition in terms of Yi’s. It must be the case that
when T occurs, last k1 trials have resulted in success, which may be described by κ(Yj) = 1
for j = i − k1 + 1 to i. Therefore, YT must equal 2k1 − 1. Since this is the first occurrence
and this has not happened earlier. So, T can be better described as

T = inf{i ≥ k1 : Yi = 2k1 − 1}, (13)
i.e., the first visit of the chain to the state 2k1 − 1 after time k1 − 1. Now, we note that
{Yn : n ≥ 0} is a Markov chain with finite state space. Further, since 0 < pu < 1 for
u ∈ Cm, this is an irreducible chain; hence, it is positive recurrent. So we must have
Px(T < ∞) = 1. We observe that when the first occurrence of k consecutive successes
happens, then k1 consecutive successes must have occured previously since k1 ≤ k. Therefore,
we have Px(T < τ1(k, l)) = 1.

4. Number of runs of exact length until stopping time

First we establish the basic recurrence relation which is central to our result. Define
the probability g(x)

r (n) by
g(x)

r (n) := Px(Nr = n) (14)
for n ∈ Z. We note that since Nr ≥ 0, Px(Nr = n) = 0 for n < 0. Our first task is to show
that g(x)

r (n) is independent of x.

Theorem 3: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, we have

g
(x)
1 (n) = q2m−1g

(2m−2)
1 (n − 1) +

k2−1∑
t=1

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n)

+
(
p2m−1

)k2In(0) (15)

where Iu1(u2) is the indicator function defined by

Iu1(u2) =
{

1 if u1 = u2

0 otherwise.
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Proof: When k2 = k − k1 > 0 and r = 1, we have

g
(x)
1 (n) = Px(N1 = n) = Px(N1 = n, YT +1 = 2k1 − 2)

+
k2−1∑
t=1

Px(N1 = n, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

+ Px(N1 = n, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1). (16)

We simplify the terms in the summation first. For any 1 ≤ t ≤ k2 − 1, we have,

Px(N1 = n, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(N1 = n | YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
× Px(YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2). (17)

The second term in (17) can be written as

Px(YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(YT +t+1 = 2k1 − 2 | YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1)

×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1).

Now, for any 1 ≤ j ≤ t, T + j − 1 is also a stopping time. We denote by FT +j−1,
the σ-algebra generated by the process Yn up to the stopping time T + j − 1, and by
F(T +j−1)+, the σ-algebra generated by the process after the stopping time T + j −1. Clearly,
{YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1} ∈ FT +j−1 and {YT +j = 2k1 − 1} ∈ F(T +j−1)+. Thus,
using the strong Markov property, we can write

Px(YT +j = 2k1 − 1 | YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)
= PYT +j−1(YT +j = 2k1 − 1) = P2k1 −1(Y1 = 2k1 − 1) = p2m−1. (18)

A similar argument shows that

Px(YT +t+1 = 2k1 − 2 | YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1) = q2m−1. (19)

For the first term in (17), we note that T + t + 1 is also a stopping time and {YT +1 =
2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2} ∈ FT +t+1. Since YT = 2k1 − 1, we must
have either XT −k1 = 0 and XT −j = 1 for j = 0, 1, . . . , k1 − 1 or T = k1. Further, since
YT +j = 2k1 −1 for j = 1, . . . , t and YT +t+1 = 2k1 −2, we also have XT +j = 1 for j = 0, 1, . . . , t
and XT +t+1 = 0. Therefore, we have a sequence of 1′s of length k1 + t with t > 0 which
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contributes to 0 runs of length exactly k1 and since there are no runs of length k1 before
T , by the very definition of T , we have that the number of runs of length exactly k1 up to
time T + t + 1 is 0. Since t ≤ k2 − 1, we have that T + t + 1 < τ1(k, l). Let us define
Y ′

i = Yi+T +t+1 for i ≥ 0. Now, using the strong Markov property, we have that {Y ′
i : i ≥ 0}

is a homogeneous Markov chain with same transition matrix as that of {Yi : i ≥ 0} with
Y ′

0 = 2k1 − 2. Now, define τ ′
1(k, l) as the stopping time for the process {Y ′

i : i ≥ 0}. From
the above discussion, we have that τ1(k, l) = T + t + 1 + τ ′

1(k, l). Further, if we define, N ′
1

as the number runs of length exactly k1 up to time τ ′
1(k, l) for the process {Y ′

i : i ≥ 0}, we
must have that N ′

1 = n. Therefore, we have,

Px(N1 = n | YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= P(2m−2)(N ′

1 = n) = g
(2m−2)
1 (n). (20)

Now, the first term in (16) can be written as

Px(N1 = n, YT +1 = 2k1 − 2)
= Px(N1 = n | YT +1 = 2k1 − 2, YT = 2k1 − 1)Px(YT +1 = 2k1 − 2 | YT = 2k1 − 1)
= q2m−1Px(N1 = n | YT +1 = 2k1 − 2, YT = 2k1 − 1). (21)

The arguments leading to equation (20) can now be repeated to conclude that

Px(N1 = n | YT +1 = 2k1 − 2, YT = 2k1 − 1) = P(2m−2)(N1 = n − 1) = g
(2m−2)
1 (n − 1). (22)

Using the equivalent characterisation of T (see equation (13)) we note that YT =
2k1 − 1 with probability 1. Hence, for the last term in (16) becomes

Px(N1 = n, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)
= Px(N1 = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)

=
k2∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)

× Px(N1 = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)

=
(
p2m−1

)k2Px(N1(k1) = n | YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1).

Note that given {YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1}, we have τ1(k, l) =
T + k2. Therefore, N1 = n if and only if n = 0. In other words, Px(N1 = n | YT +1 =
2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1) = In(0) where I is the indicator function as
defined in the statement of the Theorem.

Thus combining the above expression with the equations (16) - (22), we have

g
(x)
1 (n) = q2m−1g

(2m−2)
1 (n − 1) +

k2−1∑
t=1

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n) +

(
p2m−1

)k2In(0).

This completes the proof.
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We note that the right hand side of (15) does not involve the initial condition x ∈ Cm.
Therefore g

(x)
1 (n) must be independent of x. So, we will drop x and denote the above

probability by g1(n), i.e.,
g1(n) = Px(N1 = n).

Hence, we may rewrite the equation (15) as follows: for any k2 = k − k1 > 0, x ∈ Ck1 and
any n ≥ 0,

g1(n) = q2m−1g1(n − 1) +
k2−1∑
t=1

q2m−1
(
p2m−1

)t
g1(n) +

(
p2m−1

)k2In(0). (23)

Now, the equation (23) can be easily solved.

Corollary 2: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, we have

g1(n) =
[

q2m−1

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

]n
(
p2m−1

)k2

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

. (24)

Indeed, for n = 0, we have

g1(0) =

(
p2m−1

)k2

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

=

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2
. (25)

For n ≥ 1, inductively we have

g1(n) = g1(n − 1) q2m−1

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

=
[

q2m−1

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

]n

g1(0)

which proves the corollary.

We observe that N1 follows a geometric distribution with parameter pE where pE is
given in (7). The generating function of N1 is given by

ζ1(s; k1) = pE

1 − (1 − pE)s =

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s
. (26)

For r ≥ 2, we can also derive a similar recurrence relation.

Theorem 4: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, r ≥ 2, we have

g(x)
r (n) = q2m−1g

(2m−2)
r (n − 1) +

k2−1∑
t=1

q2m−1
(
p2m−1

)t
g(2m−2)

r (n)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
g

(2m−2)
r−1−j1(n) +

(
p2m−1

)k2+(r−1)(l+1)
In(0). (27)

where I is the indicator function as defined earlier.
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The proof is very similar to the proof of Theorem 3. Again, conditioning on the
process when T occurs, we obtain for k2 > 0, as in Theorem 3,

g(x)
r (n) = Px(Nr = n, YT +1 = 2k1 − 2)

+
k2−1∑
t=1

Px(Nr = n, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

+
k2+(r−1)(l+1)−1∑

t=k2

Px(Nr = n, YT +1 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
+ Px(Nr = n, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +k2+(r−1)(l+1)−1 = 2k1 − 1, YT +k2+(r−1)(l+1) = 2k1 − 1).

The above expression is similar to the expression given in (16) obtained in Theorem
3. Hence following the similar calculations, we get the required result in Theorem 4.

The recurrence relation in (27) cannot be solved directly. However, we may easily
check that g(x)

r (·) is independent of x. We have shown that g(x)
r (·) is independent of x for

r = 1. By induction, assume that g(x)
r (·) is independent of x ∈ Cm. Clearly, from the relation

(27), we have that g
(x)
r+1(·) can be expressed as weighted sums of g

(x)
i (·) for i = 1, 2, . . . , r and

other terms which do not involve x. Since the right hand side of the above relation does not
involve any x ∈ Cm, the left hand side, i.e., g

(x)
r+1(·) must be independent of x. Therefore,

from now on, we will drop the superscript x from the notation and denote it by gr(·).

The equation in (27) may now be simplified. Transferring terms containing gr(n) in
the right hand side to the left hand side, we have the following result.

Lemma 1: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, r ≥ 1,
g(x)

r (n) = Px(Nr = n) is independent of x. For r ≥ 2, it satisfies the recurrence relation
(

1 −
k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

gr(n)

= q2m−1gr(n − 1) +
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1)
gr−1−j(n)

+
(
p2m−1

)k2+(r−1)(l+1)
In(0). (28)

Now, using relation (28), we develop the recurrence relation between the probability
generating functions of Nr. The probability generating function ζr(s; k1), for r ≥ 2 and
k2 > 0, is given by(

1 −
k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζr(s; k1) =
∞∑

n=0

(
1 −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

gr(n)sn

=
(
p2m−1

)k2+(r−1)(l+1)
+

∞∑
n=0

q2m−1gr(n − 1)sn
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+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

n=0

r−2∑
j=0

(
p2m−1

)j(l+1)
gr−1−j(n)sn

=
(
p2m−1

)k2+(r−1)(l+1)
+ q2m−1sζr(s; k1)

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1) ∞∑
n=0

gr−1−j(n; k1)sn

=
(
p2m−1

)k2+(r−1)(l+1)
+ q2m−1sζr(s; k1)

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1)
ζr−1−j(s; k1).

Thus, we have proved the following lemma.

Lemma 2: For r ≥ 2 and k2 > 0, the sequence of probability generating functions satisfy
the recurrence relation

(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζr(s; k1)

=
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1)
ζr−1−j(s; k1)

+
(
p2m−1

)k2+(r−1)(l+1)
. (29)

Now we can use the above results to prove the main Theorem 1 as follows:

Proof: (Theorem 1) Let the generating function of the sequence {ζr(s; k1) : r ≥ 1} be
denoted by Ξ(z; k1), i.e., Ξ(z; k1) = ∑∞

r=1 ζr(s; k1)zr. For k2 > 0, we have

(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

Ξ(z; k1)

=
∞∑

r=1

(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζr(s; k1)zr

=
(

1 − q2m−1s −
k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζ1(s; k1)z +
∞∑

r=2

(
p2m−1

)k2+(r−1)(l+1)
zr

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

r=2

r−2∑
j=0

(
p2m−1

)j(l+1)
ζr−1−j(s; k1)zr

=
(
p2m−1

)k2
z +

(
p2m−1

)k2
z

∞∑
r=1

(
p2m−1

)r(l+1)
zr

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

j=0

∞∑
r=j

(
p2m−1

)j(l+1)
ζr−j+1(s; k1)zr+2
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=

(
p2m−1

)k2
z

1 −
(
p2m−1

)(l+1)
z

+ zΞ(z; k1)
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

j=0

(
p2m−1

)j(l+1)
zj

=

(
p2m−1

)k2
z

1 −
(
p2m−1

)(l+1)
z

+
zΞ(z; k1)

(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)

1 −
(
p2m−1

)(l+1)
z

. (30)

Now, from the above equation (30), we can easily solve for Ξ(z; k1) to obtain

Ξ(z; k1)

=
[(

p2m−1
)k2

z
][(

1 −
(
p2m−1

)l+1
z

)(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

− z
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)]−1

=
z

(
p2m−1

)k2

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

×
[
1 −

(
p2m−1

)l+1
z −

z
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

]−1

=
z

(
p2m−1

)k2

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

×
[
1 − z

[(
p2m−1

)l+1
+

(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

]]−1

. (31)

From the expression of generating function Ξ(z; k1), ζr(s; k1) is obtained by computing
the coefficient of zr. Observe that first term in the right hand side of (31) has a power
of z. Therefore, we need a power of zr−1 from the second term. Using the expansion
(1 − az)−1 = ∑∞

n=0 anzn, we have

ζr(s; k1) =
[ (

p2m−1
)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

][(
p2m−1

)l+1

+

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

(
1 −

(
p2m−1

)l+1
)]r−1

. (32)

This completes the proof.

If we consider the case, when k2 = 0, i.e., k = k1, then for r = 1, we must have
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Px(N1(k) = 1) = 1. Thus the probability generating function is given by

ζ1(s; k) = s

However for r ≥ 2, using the similar arguments, we obtain,

gr(n) = q2m−1gr−1(n − 1) +
(

1 − q2m−1 −
(
p2m−1

)l+1
)

gr−1(n)

+
r−2∑
j=1

(
p2m−1

)j(l+1)
(

1 −
(
p2m−1

)l+1
)

gr−1−j(n) +
(
p2m−1

)(r−1)(l+1)
In(0).

This again can be used to obtain the recurrence relation between the probability
generating functions ζr(s; k) for r ≥ 2. Indeed, we would obtain

ζr(s; k) =
(
p2m−1

)(r−1)(l+1)
+ q2m−1sζr−1(s; k) +

(
1 − q2m−1 −

(
p2m−1

)l+1
)

ζr−1(s; k)

+
(

1 −
(
p2m−1

)l+1
)r−2∑

j=1

(
p2m−1

)j(l+1)
ζr−1−j(s; k).

Using the above expression, we obtain the generating function Ξ(z; k) as follows:

Ξ(z; k) =
sz +

(
p2m−1

)l+1
(1 − s)

1 − z(p2m−1 + q2m−1s) − z2
(
p2m−1

)l+1
(1 − p2m−1 − q2m−1s)

. (33)

However, the explicit expression for ζr(s; k), i.e., the coefficient of zr in (33), will be compli-
cated and it would be difficult to identify the distribution of the underlying random variables
in terms of the known probability distributions..

5. Strong law of large numbers

In this section, we show how we may use our main result to establish the strong law
of large numbers for the number of runs of exact length. Given k1, we may fix k = k1 + 1.
For simplicity of the calculations, we will consider here the non-overlapping runs, i.e., l =
k − 1 = k1. Let us define

θ(n) = sup{r ≥ 0 : τr(k1 + 1, k1) ≤ n}. (34)

Clearly, θ(n) represents the number of non-overlapping runs of length k that have been
observed until time n. Also, we must have

τθ(n)(k1 + 1, k1) ≤ n < τθ(n)+1(k1 + 1, k1).

First we observe that the occurrence of a non-overlapping run is a renewal event in
our set up. Let Et denote the event that a non-overlapping run has finished at time t. Then,
for t, s ≥ 1, we have

Px(Et ∩ Et+s) = Px(Et)Px

(
Et+s | (Yu; u ≤ t)

)
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= Px(Et)Px

(
Et+s | Yt = 2k1−1

)
= Px(Et)P(2m−1)

(
Es

)
where we have used the strong Markov property on the expression in second step and the
fact that at time t, a non-overlapping run is finished and hence we must have Yt = 2k1−1.
Further, this shows that the events again have the structure of a delayed renewal event.

Since we have assumed that 0 < px < 1, for all x ∈ Ci, it is the case that the Markov
chain {Yt : t ≥ 0} is an irreducible chain and hence positive recurrent. This implies that
the renewal event is also positive recurrent. Therefore, the expected time for getting k1 + 1
consecutive successes from any state is finite and have finite expectation. In other words, we
must have

E(2m−1)(τ1(k1 + 1, k1)) = µ < ∞. (35)
The value of µ will depend upon the values of {px : x ∈ Ci}. For the i.i.d. case, it is known
that (see Feller (1968), page 324),

µ = 1 − pk1+1

qpk1+1 .

Using the results of renewal theory (see Feller (1968)), we further have that

1
n

θ(n) → 1
µ

(36)

with probability 1. Now, we prove Theorem 2 which establishes the strong law of large
numbers.

Proof: (Theorem 2) For any r ≥ 1, we can represent, using Corollary 1,

Nτr(k1+1,k1)(k1)(= Nr(k1)) d= G1 +
r∑

i=2
GiBi.

Since the equality is in distribution, we cannot directly apply the strong law on this family
to conclude our result.

Now, expectation of the random variable G1 as well as G1B1 may be computed from
the probability generating function given in equation (9). Indeed, we have E(G1B1) = µ1
(see equation (10)). Further observe that all moments of G1B1 are finite.

Let us set µ1(r) =
[
E(G1) + (r − 1)E(G1B1)

]
. Then, we have

1
r

µ1(r) = 1
r

[
E(G1) + (r − 1)µ1

]
→ µ1 (37)

as r → ∞. Note that, from the representation, we have E(Nτr(k1+1,k1)(k1)) = µ1(r). Fur-
thermore, for any ϵ > 0, we have

P
(1

r
|Nτr(k1+1,k1)(k1) − µ1(r)| ≥ ϵ

)
= P

(1
r

|G1 +
r∑

i=2
GiBi − µ1(r)| ≥ ϵ

)
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= P
(

|G1 − E(G1) +
r∑

i=2
(GiBi − E(G1B1))| ≥ rϵ

)
.

Now, we may estimate the probability using the Markov inequality. Indeed, we have

P
[
|G1 − E(G1) +

r∑
i=2

GiBi − E(G1B1)| ≥ rϵ
]

≤ 1
r4ϵ4E

[(
G1 − E(G1) +

r∑
i=2

GiBi − E(G1B1)
)4]

≤ 1
r4ϵ4

[
E

(
G1 − E(G1)

)4
+ 3(r − 1)E

(
G1 − E(G1)

)2
E

(
G1B1 − E(G1B1)

)2

+ 6(r − 1)2
(

E
(
G1B1 − E(G1B1)

)2
)2

+ (r − 1)E
(
G1B1 − E(G1B1)

)4
]

≤ C

r2ϵ4

for a suitably chosen constant C > 0.

Thus, by Borel-Cantelli lemma, we conclude that 1
r

(
Nτr(k1+1,k1)(k1)−µ1(r)

)
→ 0 with

probability 1. This along with equation (37) implies that

1
r

Nτr(k1+1,k1)(k1) → µ1 (38)

as r → ∞ with probability 1.

Since τθ(n)(k1 + 1, k1) ≤ n < τθ(n)+1(k1 + 1, k1), we must have Nθ(n)(k1) ≤ Nn(k1) ≤
Nθ(n)+1(k1). Therefore, we obtain that

1
n

Nθ(n)(k1) ≤ 1
n

Nn(k1) ≤ 1
n

Nθ(n)+1(k1)

=⇒ θ(n)
n

× 1
θ(n)Nθ(n)(k1) ≤ 1

n
Nn(k1) ≤ θ(n) + 1

n
× 1

θ(n) + 1Nθ(n)+1(k1).

Since θ(n)/n → 1
µ
, we have that θ(n) → ∞ as n → ∞. Hence, we may apply the equation

(38) along the sub-sequence θ(n) and equation (36) to conclude that both the upper bound
as well as the lower bound will converge to µ1/µ. This proves the result.
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Abstract
There are several discrete distributions have been developed in statistical literature.

Even though, it is inadequate to analyse the real data produced from different fields through
the various discrete distributions available in the existing literature. According to this mo-
tives, we have proposed a new family of discrete models called discrete intervened Poisson
compounded (DIPc) family. A key feature of the proposed family is its hazrad rate function
can take variety of shapes for distinct values of the parameters like decreasing, constant,
bathtub shaped. Furthermore, several distributional characteristics are extensively studied
for the particular distribuiton of DIPc family. Certain characterizations of the new dis-
tribution are obtained. An integer valued autoregressive process with the distribution as
marginal is introduced. The unknown parameters of the distribution are estimated using
different methods of estimation. Finally, we have explained the usefullness of the proposed
family by using a real data set.

Key words: Characterizations; Exponential Intervened Poisson (EIP) distribution; Discrete
Intervened Poisson (DEIP) distribution; INAR(1) process; Stress- strength parameter.

AMS Subject Classifications: 60E05, 62E10

1. Introduction

The intervened Poisson distribution (IPD) is introduced by Shanmugam (1985) which
provides stochastic models to study the effect of such actions as they are closer to real life sit-
uations. The IPD is a modified version of zero truncated Poisson (ZTP) distribution, which
is applicable in reliability analysis, queueing problems, epidemiological problems where ZTP
fails. Jayakumar and Sankaran (2019) introduce a new family of distributions generated us-
ing IPD and this distributions helps to develop a rich class of families which contain Marshall
and Olkin (1997) extended families of distribution. The intervened Poisson compounded (IP)
family of continuous distributions is one among them. The cumulative distribution function
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(CDF) of IP family of distributions is given by

G(x; λ, ρ; ϕ) = 1 − [e
λ(1+ρ)F̄ (x;ϕ) − eλρF̄ (x;ϕ)

eλρ(eλ − 1) ] ; x ∈ R (1)

where F̄ (x; ϕ) is the CDF of base line continuous distribution and ϕ is the vector of the given
model parameters.

Here we establish the discretization of continuous distribution. Discretization of a
continuous lifetime model is an interesting and intuitively appealing approach to derive a
lifetime model corresponding to the continuous one. Meanwhile, it is difficult or inconve-
nient to get samples from a continuous distribution in real life situations. In modelling, the
observed values are actually discrete because they are measured to only a finite number of
decimal places and cannot really constitute all points in a continuum. For example, in case
of survival analysis, the number of days of survival for lung cancer patients since therapy are
usually recorded in discrete values. In the recent, special role of discrete distributions are
getting recognition in the field of reliability. In this way, one of the active areas of research
is to model discrete data by developing discretized distributions.
Chakraborty (2015) surveyed different methods for generating discrete analogues of contin-
uous probability distributions. One of the methods is described as follows:
Let X be a continuous random variable, then the discerte analogue Y of X can be derived
by using the survival function as follows, S(.) is the survival function of the random variable
X, then

P (Y = y) = P (X ≥ y) − P (X ≥ y + 1) = S(y) − S(y + 1); y = 0, 1, 2, 3, .... (2)

where Y = ⌊X⌋ largest integer less than or equal to X. The first and easiest in this approach
is the geometric distribution with pmf

p(x) = θx − θx+1; x = 0, 1, 2, ...

which is derived by discretizing exponential distribution with survival function S(x) =
e−λx; λ, x > 0 and θ = e−λ, (0 < θ < 1).
Following this approach, discretization of some known continuous distributions for use as life-
time distribution was studied by different researchers. Nakagawa and Osaki (1975) proposed
discrete Weibull distribution with pmf

P (Y = v) = qvβ − q(v+1)β

, v = 0, 1, 2, ...; β > 0, 0 < q < 1. (3)

Stein and Dattero (1984) presented another discretization of Weibull distribution. Roy
(2003) proposed discrete normal distribution and also studied discrete Rayleigh distribution
(Roy (2004)). Krishna and Pundir (2009) studied discrete Burr distribution, and obtained
the discrete Pareto distribution as its particular case.

The discretization of a continuous distribution using this method retains the same
functional form of the survival function. As a result, many reliability characteristics remain
unchanged. As such there is enough motivation to use this technique of generating discretized
version of continuous distribution with this approach to develop new discrete lifetime mod-
els corresponding to the existing continuous one. In this article, we propose a family of
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discrete univariate distributions using survival discretization method. Thus the objective of
proposing Discrete Intervned Poisoon compounded (DIPc) family are to generate models for
modelling probability distribution of count data and produce consistently superior fits than
other developed discrete distributions in the existing literature.

The remaining parts of the article are as follows: Section 2 introduces the DIPc family
and some statistical properties are derived. In Section 3, the special model of the proposed
family is extensively studied. The expression for moments, stress - strength reliability are
derived. Also, using the proposed distribution, an integer valued autoregressive process with
the distribution as marginal is introduced. In Section 4, three characterizations of the new
distribution are obtained and in Section 5, an extensive estimation and simulation study is
conducted to investigate the behaviour of different estimation methods. The flexibility of the
proposed model is illustrated by using a real data set in Section 6. Finally, some important
remarks about the presented study are discussed in Section 7.

2. Genesis of the family

The random variable Y is said to follow Discrete Intervened Poisson compounded
(DIPc) family, its probability mass function (pmf) is given by

PY (y; λ, ρ, ϕ) =
[

eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
−
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
. (4)

The corresponding CDF of DIPc is obtained as
GY (y; λ, ρ, ϕ) = 1 − GX(y; λ, ρ, ϕ) + PY (y; λ, ρ, ϕ)

= 1 −
[

eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
+
[

eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
−
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]

= 1 −
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
; y ∈ N

(5)
where N = {0, 1, 2, ...}, (λ, ρ) ∈ (0, ∞) and GX(y; λ, ρ, ϕ) =

[
eλ(1+ρ)F̄ (y;ϕ)−eλρF̄ (y;ϕ)

eλρ(eλ−1)

]
is the CDF

of X.
The survival function of DIPc family is given by

SY (y; λ, ρ, ϕ) = eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1) ; y ∈ N. (6)

The hazard rate and reverse hazard rate are

hY (y; λ, ρ, ϕ) = 1 −
[

eλρ[F̄ (y+1;ϕ)−F̄ (y,ϕ)](eλF̄ (y;ϕ) − 1)
eλF̄ (y+1;ϕ) − 1

]
(7)

and

rY (y; λ, ρ, ϕ) =

[
eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

]
−
[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

] (8)

respectively.



104 K. JAYAKUMAR AND JIJI JOSE [Vol. 22, No. 1

2.1. Moments

Let the random variable Y ∼ DIPc(λ, ρ, ϕ), then the rth moment is given by

µ′
r =

∞∑
y=0

((y + 1)r − yr)
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
; y ∈ N. (9)

Using the Equation 9, the mean and variance of DIPc can be obtained as follows, respectively,

µ′
1 =

∞∑
y=0

[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
(10)

and

variance =
∞∑

y=0
(2y + 1)

[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
− (µ′

1)2. (11)

The index of dispersion (DI), (variance/ mean), determines whether the given distribution
is suited for under, over or equi-dispersed data sets. If DI > 1, then distribution is overdis-
persed whereas DI < 1, then distribution is underdispersed. If DI = 1, then distribution is
equidispersed.
The moment generating function of the distribution is given by

MY (t) =
t∑

y=0

∞∑
r=0

(yt)r

r!

[
eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
−
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
. (12)

From the Equation (12), it can be obtained first four raw moments about the origin when
t = 0. Also skewness and kurtosis based on moments can be computed by using the moment
generating function.

3. Special model

In this section, we study a particular distribution of DIPc family to establish its
viability. The main objective of establishing new model is to study the properties of the
particular model of the presented family, to illustrate the flexibility of the developed family
through real data sets.

3.1. Discrete Exponential Intervened Poisson (DEIP) distribution

Using the CDF of the exponential distribution, the pmf of DEIP can be formulated
as

P (Y = y) =

[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
eλρ(eλ − 1) (13)

where y = 0, 1, 2, ... , λ > 0, ρ ≥ 0, θ > 0.

Theorem 1: The pmf of DEIP distribution is unimodal.
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Proof : The pmf of DEIP is log concave, where P (y + 1; λ, ρ, θ)/P (y; λ, ρ, θ) is a
decreasing function in y for all model parameters. As a direct consequence of log concavity,
the DEIP is unimodal.

Figures 1 and 2 show the pmf and hazard rate plots of the DEIP model respectively.
The pmf is unimodal and can be used to analyze positively skewed data set. Furthermore,
the hazard rate can be either decreasing, constant, decreasing- constant and bathtubshaped.
Therefore, the parameters of the DEIP model can be fixed to fit most data sets.

3.2. Structural Properties

The CDF of DEIP is given by
F (y; λ, ρ, θ) =P (Y ≤ y)

=1 −

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 .
(14)

The survival function of DEIP is given by

S(y; λ, ρ, θ) =
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 . (15)

The hazard rate of DEIP distribution is

h(y) = P (Y = y|Y ≥ y) =P (Y = y)
P (Y ≥ y)

=

[
eλ(1+ρ)e−θy −eλρe−θy

]
−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

eλρ(eλ−1)[
eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)

eλρ(eλ−1)

]

=

[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

=
[

eλ(1+ρ)e−θy − eλρe−θy

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
− 1.

(16)

The reverse hazard rate is
r(y) =P (Y = y)/P (Y ≤ y)

=

[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

] (17)

and the second rate of failure of DEIP distribution is given by,

h∗∗(y) =log

[
S(y)

S(y + 1)

]

=log

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλ(1+ρ)e−θ(y+2) − eλρe−θ(y+2)

 .

(18)
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Figure 1: The pmf plots of DEIP(λ, ρ, θ) for different values of λ, ρ and θ

3.3. Recurrence relation for probabilities

The recurrence relation for generating probabilities of DEIP (λ, ρ, θ) is given by

p(y + 1; λ, ρ, θ)
p(y; λ, ρ, θ) =

[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
−
[
eλ(1+ρ)e−θ(y+2) − eλρe−θ(y+2)

]
[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

] (19)

3.4. Moments

The rth moment of DEIP distribution is given by

E(Y r) =
∞∑

y=0
yrP (Y = y)

=
∞∑

y=0
[(y + 1)r − yr] S(y).

(20)
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Figure 2: Hazard rate plots of DEIP(λ, ρ, θ) for different values of λ, ρ and θ

E(Y ) =
∞∑

y=0
S(y)

=
∞∑

y=0

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 .

(21)
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Now

E(Y 2) =
∞∑

y=0
(2y + 1)S(y)

=
∞∑

y=0
(2y + 1)

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 .

(22)

V (Y ) =E(Y 2) − E(Y )

=
∞∑

y=0
(2y + 1)S(y) −

∞∑
y=0

S(y)

=
∞∑

y=0
(2y + 1)

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

−

 ∞∑
y=0

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

2

.

(23)

Table 1 shows mean and variance (given in parenthesis) of DEIP distribution using given
values of λ, ρ and θ. For fixed θ, as ρ increases mean and variance decreases. Also, as λ
increases, mean and variance decreases. From the Table 1, it can also seen that mean is
always less than variance for different set of the parameters λ, ρ and θ. Therefore, DEIP is
suited better for modelling over-dispersed data.

3.5. Stress-Strength analysis

The stress - strength analysis is used in mechanical component analysis and the
stress - strength parameter R measures component reliabilty. Let the random variable Y be
strength of a component which is subjected to a random stress Z. For a detailed review of
stress- strength models, one may refer Choudhary et al. (2021). The stress-strength model
defined in discrete case as,

P (Y > Z) =
∞∑

y=0
pY (y)FZ(y). (24)

Let Y and Z be independent stress and strength random variables from Y ∼ DEIP(λ1, ρ1, θ1)
and Z ∼ DEIP(λ2, ρ2, θ2) respectively. Also pY and FY denote the pmf and CDF of the dis-
tribution respectively.

Then the stress - strength parameter for the model DEIP is given by,

R = P (Y > Z) =
∞∑

y=0

eλ1ρ1e−θ1y
[
eλ1e−θy − 1

]
− eλ1ρ1e−θ1(y+1)

[
eλ1e−θ1(y+1) − 1

]
eλ1ρ1(eλ1 − 1)


×

1 −

eλ2(1+ρ2)e−θ2(y+1) − eλ2ρ2e−θ2(y+1)

eλ2ρ2(eλ2 − 1)


= δ(λ1, ρ1, θ1, λ2, ρ2, θ2).

(25)

Obviously, the solution of the summation in Equation (25) cannot be obtained explicitly.
That is, there is no closed form expression of δ(.), therefore, we resort to numerical method
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Table 1: Mean and Variance of DEIP for different values of λ, ρ and θ

θ = 0.5
λ |ρ 0.25 0.5 1.0 2.0 3.0
0.50 1.2141 1.1259 0.9703 0.7261 0.5487

(3.1536) (2.9273) (2.5116) (1.8282) (1.3212)
0.75 1.0734 0.9604 0.7721 0.5074 0.3403

(2.7956) (2.4901) (1.9633) (1.2059) (0.7405)
1.00 0.9468 0.8182 0.6157 0.3585 0.2156

(2.4604) (2.1002) (1.5200) (0.7918) (0.4192)
2.00 0.5620 0.4276 0.2540 0.0972 0.04007

(1.3905) (1.0006) (0.5234) (0.1564) (0.0535)
θ = 1.0

λ |ρ 0.25 0.5 1.0 2.0 3.0
0.50 0.4388 0.4008 0.3348 0.2342 0.1645

(0.7198) (0.6619) (0.5573) (0.3901) (0.2702)
0.75 0.3787 0.3309 0.25309 0.1489 0.0884

(0.6282) (0.5517) (0.4225) (0.2436) (0.1391)
1.00 0.3255 0.2722 0.1908 0.0948 0.0477

(0.5440) (0.4556) (0.3166) (0.1503) (0.0712)
2.00 0.1714 0.1206 0.0604 0.0156 0.0041

(0.2860) (0.1969) (0.0929) (0.0211) (0.0051)
θ = 3.0

λ |ρ 0.25 0.5 1.0 2.0 3.0
0.50 0.0363 0.0322 0.0253 0.0157 0.0097

(0.0387) (0.0344) (0.0273) (0.0170) (0.0106)
0.75 0.0299 0.0250 0.0175 0.0085 0.0042

(0.0321) (0.0269) (0.0189) (0.0093) (0.0045)
1.00 0.0246 0.0193 0.0120 0.0046 0.0017

(0.0264) (0.0209) (0.0131) (0.0050) (0.0019)
2.00 0.0106 0.0066 0.0025 0.0003 0.0005

(0.0116) (0.0072) (0.0027) (0.0004) (0.0006)

to calculate the system reliability.

To find the maximum likelihood (ML) estimator of the system reliability, we consider
Yi, i = (1, 2, ...n) and Zj, j = (1, 2, ..., m) two independent samples from DEIP(λ1, ρ1, θ1) and
DEIP(λ2, ρ2, θ2) respectively. Then the likelihood function is given by,

L =
n∏

i=1
P (Y = yi)

m∏
j=1

P (Y = zj)

=e−nλ1ρ1(eλ − 1)−n
n∏

i=1
[L1 − L2] × e−mλ2ρ2(eλ2 − 1)−m

m∏
j=1

[L3 − L4]
(26)
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where,
L1 = eλ1(1+ρ1)e−θ1yi − eλ1ρ1e−θyi , L2 = eλ1(1+ρ1)e−θ(yi+1) − eλ1ρ1e−θ1(yi+1)

L3 = eλ2(1+ρ2)e−θ2zj − eλ2ρ2e−θzj and L4 = eλ2(1+ρ2)e−θ2(zj +1)
− eλ2ρ2e−θ2(zj +1) . In order to obtain

the ML estimators of λ1, ρ1, θ1, λ2, ρ2 and θ2, we first derive the log-likelihood (LogL) function
by taking the logarithm of Equation (26). Then, we take the derivatives of the logL function
with respect to the parameters of interest and obtain the likelihood equations. The solutions
of these equations cannot be obtained in closed form, and the estimates of the unknown
parameters are found by using numerical methods with the help of R programming. Then
by using the invariance property of ML estimators, the ML estimate of system reliability is
obtained as

R̂ = δ(λ̂1, ρ̂1, θ̂1, λ̂2, ρ̂2, θ̂2).

Some numerical results of R are reported in Table 2 using DEIP distribution for the param-
eters λ1 = λ2 = ρ1 = ρ2 = 0.5. It is clear that R decreases(increases) when θ1 increases (θ2
increases).

Table 2: Some numerical results of R for different values of θ1 and θ2

.

θ1—θ2 0.1 0.5 0.9 1.0
0.1 0.5475 0.6027 0.6093 0.6100
0.5 0.3105 0.5995 0.7066 0.7229
0.9 0.2705 0.5482 0.6707 0.6906
1.0 0.2653 0.5404 0.6651 0.6854

3.6. Infinite divisibility

The famous structural property of infinite divisibility of the distribution is an in-
teresting area to the researchers. Such a characteristic has a close relation to the Central
Limit Theorem and waiting time distributions. According to Steutel and van Harn (2003),
if px, x ∈ N0 is infinitely divisible, then px ≤ e−1 for all x ∈ N. Also from Theoreom 3.2
of Steutel and van Harn (2003), if for atleast one case for which px is greater than 1/e,
then pmf cannot be compound Poisson and hence it cannot be infinitely divisible. In DEIP
distribution, λ = 3, ρ = 0.6 and θ = 0.1, then p0 = 0.3776 > e−1 = 0.367. Therefore we can
conclude that DEIP distribution is not infinitely divisible. The classes of self-decomposable
and stable distributions are subclasses of infinitely divisible distributions, in their discrete
concepts. So in this case, DEIP distribution can be neither self-decomposable nor stable in
general.

3.7. Application in first order integer valued autoregressive (INAR(1)) process

There has been a growing interest in discrete-valued time series models and several
models for stationary processes with discrete marginal distributions have been proposed in
the literature. A simple model for a stationary sequence of integer-valued random variables
with lag-one dependence is given and is referred to as the integer-valued autoregressive
of order one (INAR(1)) process. It is widely used to model the time series of counts in
different applied sciences such as actuarial, finance and medical sciences. The INAR(1)



2024] DIPc FAMILY OF DISTRIBUTIONS AND ITS APPLICATIONS 111

process differs from the first-order autoregressive, shortly AR(1), process by applying the
binomial thinning operator. The first INAR(1) process was introduced by McKenzie (1985)
based on the Poisson innovations and is called as INAR(1)P.

Yt = α o Yt−1 + ϵt, t ∈ Z (27)
where α ∈ (0, 1) and ϵt is an innovation process with mean E(ϵt) = µϵ and variance V ar(ϵt) =
σ2

ϵt
.

According to Steutel and van Harn (1979), the binomial thinning operator ”o” is defined as

α o Yt =
Yt∑

j=i

Zj (28)

where Zj is the Bernoulli random variable with P (Zj = 1) = p = 1 − P (Zj = 0). The
one-step transition probability of INAR(1) process is

P (Yt = k|Yt−1 = l) =
min(k,l)∑

i=1
k,l≥0

P (Bp
l = i)P (ϵt = k − i) (29)

where Bp
n ∼ Binomial(n, p) and p ∈ (0, 1).

Following the results of McKenzie (1985) and Al-Osh and Alzaid (1987), we propose an
INAR(1) process with DEIP innovations by assuming that the {ϵt}t∈Z innovations follow
DEIP distribution, given in Equation(13). Thus, one-step transition probability of INAR(1)
DEIP process is given by

P (Yt = k|Yt−1 = l) =
min(k,l)∑

i=1

(
l

i

)
αi(1 − α)l−i×[

eλ(1+ρ)e−θ(k−i) − eλρe−θ(k−i)
]

−
[
eλ(1+ρ)e−θ(k−i+1) − eλρe−θ(k−i+1)

]
eλρ(eλ − 1) .

(30)

The mean and variance of the Yt process are respectively given by,

E(Yt) = µϵ

1 − α
(31)

V (Yt) = αµϵ + σ2
ϵ

1 − α2 . (32)

The mean and variance of the INAR(1)DEIP process can be computed by replacing µϵ and
σϵ in Equation(31) and Equation(32) with Equation (21) and Equation(23) respectively. The
conditional expectation and variance of INAR(1) DEIP process are given, respectively, as
(see Weiß (2018) and Al-Osh and Alzaid (1988))

E(Yt|Yt−1) = pYt−1 + µϵ (33)

and
V (Yt|Yt−1) = p(1 − p)Yt−1 + σ2

ϵ (34)
where µϵ and σ2

ϵ are given in Equation(21) and Equation(23).
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4. Characterizations

Characterizations of distributions is an important research area which has attracted
the attention of many researchers. The problem of characterizing a distribution is an impor-
tant problem, where an investigator is vitally interested to know if their model follows the
right distribution. Thus, various characterization results have been reported in the litera-
ture. These characterizations have been established in different directions. In this section,
we obtain three characterizations of DEIP distribution based on: (i) the hazard rate function
and (ii) the reverse hazard rate function and (iii) conditional expectation of certain function
of the random variable.

4.1. Characterization based on hazard rate function

Proposition 2: Let Y : Ω → N be a random variable. The pmf of Y is in Equation(13) if
and only if its hazard rate function satisfies the difference equation

h(k + 1) − h(k) =
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

−
[

eλ(1+ρ)e−θk − eλρe−θk

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
, (35)

k ϵ N, with the boundary condition h(0) = eλρ(e−θ−1)(eλ−1)
eλe−θ −1

− 1.

Proof : If Y has pmf in Equation(13), then clearly Equation(35) holds. Now, if
Equation(35) holds, then for every y ϵ N we have

y−1∑
k=1

h(k + 1) − h(k) =

y−1∑
k=1

[
eλ(1+ρ)e−θ(k+1)

− eλρe−θ(k+1)

eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

]
−

[
eλ(1+ρ)e−θk

− eλρe−θk

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
.

h(y) − h(0) =
[

eλ(1+ρ)e−θy −eλρe−θy

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)

]
−
[

eλρ(e−θ−1)(eλ−1)
eλe−θ −1

]
.

In view of the fact that h(0) = eλρ(e−θ−1)(eλ−1)
eλe−θ −1

− 1, from the last equation we have

h(y) =
[

eλ(1+ρ)e−θy −eλρe−θy

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1) − 1
]

which in view of Equation(16), implies Y has pmf in Equation(13).

4.2. Characterization based on reverse hazard rate function

Proposition 3: Let Y : Ω → N be a random variable. The pmf of Y is in Equation(13) if
and only if its reverse hazard rate function satisfies the difference equation

r(k + 1) − r(k) =

[
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
−
[
eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

]
−

[
eλ(1+ρ)e−θk − eλρe−θk

]
−
[
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
(36)
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with the boundary condition r(0) = 1.

Proof : If Y has pmf in Equation(13), then clearly Equation(36) holds. Now, if
Equation(36) holds, then for every y ϵ N we have

y−1∑
k=1

r(k + 1) − r(k) =

y−1∑
k=1

[
eλ(1+ρ)e−θ(k+1)

− eλρe−θ(k+1)
]

−
[

eλ(1+ρ)e−θ(k+2)
− eλρe−θ(k+2)

]
[

eλρ(eλ − 1)
]

−
[

eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)
]

−

[
eλ(1+ρ)e−θk

− eλρe−θk
]

−
[

eλ(1+ρ)e−θ(k+1)
− eλρe−θ(k+1)

]
[

eλρ(eλ − 1)
]

−
[

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)
] .

(37)

Or,

r(y) − r(0) =

[
eλ(1+ρ)e−θy −eλρe−θy

]
−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

[eλρ(eλ−1)]−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
] − 1.

In view of the fact that r(0) = 1, from the last equation we have

r(y) =

[
eλ(1+ρ)e−θy −eλρe−θy

]
−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

[eλρ(eλ−1)]−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

which in view of Equation(17), implies Y has pmf in Equation(13).

4.3. Characterization in terms of the conditional expectation of certain function
of the random variable

Proposition 4: Let Y : Ω → N be a random variable. The pmf of Y is in Equation(13) if
and only if

E


[
eλ(1+ρ)e−θY − eλρe−θY

]
+
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)] |Y > k

 =

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1) .

(38)

Proof : If Y has pmf Equation(13), then LHS of Eqution(38) will be
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(1 − F (k))−1
∞∑

y=k+1

[
eλ(1+ρ)e−θY − eλρe−θY

]
+
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)] ×

[
eλ(1+ρ)e−θY − eλρe−θY

]
−
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)]

= (1 − F (k))−1
∞∑

y=k+1

(
eλ(1+ρ)e−θy − eλρe−θy

eλρ(eλ − 1)

)2

−

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

2

=
(

eλρ(eλ − 1)
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

)eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)

2

= eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1) .

(39)

Conversely, if Equation (38) holds, then

∞∑
y=k+1

[
eλ(1+ρ)e−θy − eλρe−θy

]
+
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] f(y)

=
∞∑

y=k+1

[
eλ(1+ρ)e−θy − eλρe−θy

]
+
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] ×

[
eλ(1+ρ)e−θY − eλρe−θY

]
−
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)]

=
∞∑

y=k+1

(
eλ(1+ρ)e−θy − eλρe−θy

eλρ(eλ − 1)

)2

−

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

2

=
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)

2

= (1 − F (k))
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)


= (1 − F (k + 1) + f(k + 1))

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)

 .

(40)

From Equation (39), we also have,

∞∑
y=k+2

[
eλ(1+ρ)e−θy − eλρe−θy

]
+
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] f(y)

= (1 − F (k + 1))
eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

eλρ(eλ − 1)

 .

(41)

Now, subtracting Equation (41) from Equation (40), we arrive at
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(
eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)

eλρ(eλ−1)

)
f(k + 1) =

(1 − F (k + 1))
(eλ(1+ρ)e−θ(k+1) −eλρe−θ(k+1)

)
−
(

eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)
)

eλρ(eλ−1)

 .

h(y) = f(k+1)
1−F (k+1) =

(eλ(1+ρ)e−θ(k+1) −eλρe−θ(k+1)
)

−
(

eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)
)

eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)


which, in view of Equation (16), implies that Y has pmf in Equation (13).

5. Estimation and simulation

In this section, some estimation methods are discussed. In particular, we considered
the following estimation methods: Maximum likelihood (ML) estimation, ordinary least
square (OLS) estimation, weighted least square (WLS) estimation and Cramer-von Mises
(CVM) estimation.

5.1. Maximum likelihood estimation

We apply method of ML estimation for estimating the parameter vector β = (λ, ρ, θ)T

of DEIP distribution. Let (y1, y2, ..., yn) be a random sample of size n, drawn from DEIP
(λ, ρ, θ) distribution.
The log likelihood function is given below

logL = − n(λρ + log(eλ − 1))+
n∑

j=1
log

{
eλρe−θyj

[
eλe−θyj − 1

]
− eλρe−θ(yj +1)

[
eλe−θ(yj +1)

− 1
]}

.
(42)

By differentiating Equation 42 with respect to the parameters λ, ρ and θ, we get non linear
likelihood equations as follows.

∂logL

∂λ
= − nρ − neλ

eλ − 1+
n∑

j=1

(ρ + 1)e−θyj A1 − ρe−θyj A2 − (ρ + 1)e−θ(yj+1)A3 + ρe−θ(yj+1)A4

A1 − A2 − A3 + A4
.

(43)

∂logL

∂ρ
= −nλ +

n∑
j=1

λe−θyj (A1 + A2) − λe−θ(yj+1)(A3 − A3)
A1 − A2 − A3 + A4

. (44)

∂logL

∂θ
=

n∑
j=1

λyje
−θyj (A2ρ − A1(ρ + 1)) + λ(yj + 1)e−θ(yj+1)(A3(ρ + 1) − A4ρ)

A1 − A2 − A3 + A4
(45)

where A1 = eλ(ρ+1)e−θyj , A2 = eλρe−θyj , A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) .
These Equations(43–45) cannot be solved analytically, therefore an iterative procedure like
Newton Raphson is required to solve them numerically. The solutions of likelihood Equa-
tions (43–45) provide ML estimators of β = (λ, ρ, θ)T , say β̂ = (λ̂, ρ̂, θ̂)T .
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The conditions for maximum are obtained as:

Let g1(λ; ρ, θ, y) denote the function on the right hand side (RHS) of Equation (43)
where ρ and θ are the true values of the parameters. Then there exist atleast one root for
g1(λ; ρ, θ, y) = 0 for λ ∈ (0, ∞) and the solution is unique when∑n

j=1
e−2θyj [(1+ρ)2A1−ρ2A2]−e−2θ(yj +1)[(1+ρ)2A3−ρ2A4]

A1−A2−A3+A4
<

neλ

(eλ−1)2 +

∑n
j=1

(ρ[e−θ(yj +1)A4−e−θyj A2]−(1+ρ)[e−θ(j y+1)A3−e−θyj A1])(e−θyj ((1+ρ)A1−ρA2)−e−θ(yj +1)((1+ρ)A3−ρA4))
(A1−A2−A3+A4)2 .

Let g2(ρ; λ, θ, y) denote the function on the right hand side (RHS) of Equation (44)
where λ and θ are the true values of the parameters. Then there exist atleast one root for
g2(ρ; λ, θ, y) = 0 for ρ ∈ (0, ∞) when

−n +
n∑

j=1

e−θy(1 + eλe−θy) − e−θ(y+1)(eλe−θ(y+1) − 1)
eλe−θy − eλe−θ(y+1) > 0

and the solution is unique when

∑n
j=1

λ2e−2θyj (A2+A4)−λ2e−2θ(yj +1)(A3−A1)
A1−A2−A3+A4

<
∑n

j=0
(λe−θyj (A2+A1)−λe−θ(yj +1)(A3−A4))2

(A1−A2−A3+A4)2 .

Let g3(θ; λ, ρ, y) denote the function on the right hand side (RHS) of Equation (45)
where ρ and θ are the true values of the parameters. Then there exist atleast one root for
g3(θ; λ, ρ, y) = 0 for θ ∈ (0, ∞) and the solution is unique when

∑n
j=1

y2
j λ2(1+ρ)ρe−2θyj (A1−A2)−(1+yj)2λ2e−2θ(yj +1)((1+ρ)2A3−ρ2A4)−λy2

j e−θyj ((1+ρ)A2−ρA1)−λ(1+yj)2e−θ(yj +1)((1+ρ)A3−ρA4)

A1−A2−A3+A4
<

∑n
j=1

((yj+1)λe−θ(yj +1)[(1+ρ)A3−ρA4]−yjλe−θyj [(1+ρ)A1−ρA2])(λyje−θyj [(1+ρ)A2−ρA1]+λ(yj+1)e−θ(yj +1)[(1+ρ)A3−ρA4])
(A1−A2−A3+A4)2

where A1 = eλ(ρ+1)e−θyj , A2 = eλρe−θyj , A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1)
.

5.2. Ordinary least square estimation

This method is based on the observed sample y1, y2, ..., yn from n ordered random
sample of any distribution with CDF, where F (.) denotes the CDF, we get

E(F (yj)) = j

(n + 1) .

The OLS estimators are obtained by minimizing

OLS(λ, ρ, θ) =
n∑

j=1
(F (yj) − j

n + 1)2. (46)
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Putting the CDF of DEIP in Equation (46) we get

OLS(λ, ρ, θ) =
n∑

j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

2

. (47)

After differentiating Equation (47) with respect to the parameters λ, ρ and θ and equating
to zero, the normal equations are as follows:

∂OLS

∂λ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

 1
(eλ − 1)2

A4e−θ(yj+1)−λρ
(

ρeθ(yj+1) + (1 − eλ)((1 + ρ)eλe−θ(yj +1)
− ρ)

)
+

eθ(yj+1)(eλ(1 + ρ)(eλe−θ(yj +1)
− 1) − ρeλe−θ(yj +1)

).

(48)

∂OLS

∂ρ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


(

(A4 − A3)(λeλρ(e−θ(yj+1) − 1))
eλ − 1

)
.

(49)

∂OLS

∂θ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


e−λρλ(1 + yj)e−θ(yj+1)((1 + ρ)A3 − ρA4)

eλ − 1

(50)

where A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) . The above non-linear equations cannot be
solved analytically. So the OLS estimators of λ, ρ and θ can be obtained by using some
iterative techniques likes Newton-Raphson method.

5.3. Weighted least square estimation

The WLS estimators can be obtained by minimizing

WLS(λ, ρ, θ) =
n∑

j=1
wj(F (yi) − j

n + 1)2 (51)

with respect to the unknown parameters, where wj = 1
V ar(F (Yj)) = (n+1)2(n+2)

j(n−j+1) .

Putting the CDF of DEIP distribution in Equation (51), we get

WLS(λ, ρ, θ) =
n∑

j=1
wj

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

2

. (52)
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The Equation(52) is differentiated with respect to the parameters λ, ρ and θ and then equat-
ing to zero, the normal equations are as follows:

∂WLS

∂λ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

 1
(eλ − 1)2

A4e
−θ(yj+1)−λρwj(ρeθ(yj+1) + (1 − eλ)((1 + ρ)eλe−θ(yj +1)

− ρ)+

eθ(yj+1)(eλ(1 + ρ)(eλe−θ(yj +1)
− 1) − ρeλe−θ(yj +1)

)).

(53)

∂WLS

∂ρ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


wj

(
(A4 − A3)(λeλρ(e−θ(yj+1) − 1))

eλ − 1

)
.

(54)

∂WLS

∂θ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


wj

e−λρλ(1 + yj)e−θ(yj+1)((1 + ρ)A3 − ρA4)
eλ − 1 .

(55)

where A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) . These above nonlinear equations cannot
be solved analytically. Therefore the WLS estimates can be obtained by using any iterative
procedure techniques such as Newton-Raphson type algorithms.

5.4. Cramer-von Mises estimation

The CVM estimates of the parameter λ, ρ and θ are obtained by minimizing the
following expression with respect to the parameters λ, ρ and θ respectively.

CV Mλ,ρ,θ = 1
12n

+
n∑

j=1
(F (yj) − −1 + 2j

2n
)2. (56)

For in the case of DEIP distribution, put CDF of DEIP in Equation(56).

CV Mλ,ρ,θ = 1
12n

+
n∑

j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n

2

. (57)

By differentiating Equation(57) with respect to the parameters λ, ρ and θ and equating to
zero, we get the normal equations as follows:

∂CV M

∂λ
=2

n∑
j=1

(
1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n


1

(eλ − 1)2 A4e
−θ(yj+1)−λρ)(ρeθ(yj+1) + (1 − eλ)((1 + ρ)eλe−θ(yj +1)

− ρ)+

eθ(yj+1)(eλ(1 + ρ)(eλe−θ(yj +1)
− 1) − ρeλe−θ(yj +1)

)).

(58)
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∂CV M

∂ρ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n


(

(A4 − A3)(λeλρ(e−θ(yj+1) − 1))
eλ − 1

)
.

(59)

∂CV M

∂θ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n


e−λρλ(1 + yj)e−θ(yj+1)((1 + ρ)A3 − ρA4)

eλ − 1

(60)

where A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) .
These Equations (58–60) cannot be solved analytically. The estimates of λ, ρ and θ can be
obtained by setting the normal equations equations equal to zero and solving simultaneously
with the help of statistical packages like optim or nlm in R programming.

5.5. Simulation

Here we examine the performance of the estimates of DEIP parameters using simula-
tion study with 1000 replications. We calculate the estimates and mean square errors(MSE)
using the R package. We used ”nlm” function in R program for ML estimation and ”optim”
function is used for the estimation of OLS, WLS and CVM. The simulation procedure is
given below.

1. Generate N = 1000 samples of sizes n = 50, 100, 300 from DEIP(0.1, 0.1, 0.1) and
DEIP(0.5, 0.9, 0.1).

Here, the random variable X possesses a continuous Exponential Intervened Poisson
(EIP) distribution with parameters λ, ρ and θ. Then Y = ⌊X⌋ follows the DEIP
distribution with parameters λ, ρ and θ. To generate data from the DEIP distribution,
first we have to generate data from EIP. Then take the integer values of each generated
observation to get the simulated data set. The procedure of generating random samples
from EIP distribution is explained in Jayakumar and Sankaran (2019). Initial values
are chosen to compute the estimates in such way that the optimization function having
minimum bias.

2. Compute the estimates for the 1000 samples, say β̂ for j = 1, 2, ..., 1000.

3. Compute MSE by using the below quantity.

MSE(β̂) = 1
1000

1000∑
j=1

(β̂ − β)2. (61)

4. Compute the coverage probabilities [CP] of the estimates.

The empirical result from the Table 3 is when the sample size increases the MSEs of the
parameter decreases. This shows the consistency of the estimators. Also, CVM estimates
perform better when compared to other estimates.
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Table 3: Estimates of of λ, ρ and θ

True values→ λ = 0.1, ρ = 0.1, θ = 0.1 λ = 0.5, ρ = 0.9, θ = 0.1
Sample size(n) Parameter↓ ML OLS WLS CVM ML OLS WLS CVM

50 λ̂ 0.1383 0.1761 0.1596 0.0961 0.5670 0.6458 0.6351 0.5293
(MSE) (0.2121) (0.3562) (0.4970) (0.1831) (0.4031) (0.6234) (0.6037) (0.3960)
[CP] [0.841] [0.617] [0.700] [0.863] [0.796] [0.635] [0.641] [0.801]

ρ̂ 0.1312 0.1796 0.1623 0.1071 0.9606 0.8764 0.8823 0.9724
(MSE) (0.3210) (0.4013) (0.4433) (0.0961) (0.2683) (0.4801) (0.4573) (0.2541)
[CP] [0.800] [0.672] [0.727] [0.854] [0.801] [0.765] [0.768] [0.834]

θ̂ 0.1402 0.1634 0.1706 0.1324 0.1451 0.1937 0.1969 0.1433
(MSE) (0.2150) (0.4146) (0.5231) (0.1612) (0.1732) (0.4176) (0.5154) (0.1365)
[CP] [0.829] [0.631] [0.786] [0.847] [0.896] [0.719] [0.703] [0.902]

100 λ̂ 0.1238 0.1571 0.1431 0.0989 0.5312 0.6032 0.5993 0.5240
(MSE) (0.1972) (0.3237) (0.4130) (0.1645) (0.3632) (0.5710) (0.5651) (0.3649)
[CP] [0.850] [0.651] [0.711] [0.867] [0.804] [0.691] [0.699] [0.820]

ρ̂ 0.1300 0.1586 0.1604 0.1009 0.9510 0.8923 0.8967 0.9813
(MSE) (0.2291) (0.3913) (0.4312) (0.0801) (0.2402) (0.4154) (0.4403) (0.2130)
[CP] [0.838] [0.699] [0.732] [0.861] [0.864] [0.791] [0.793] [0.856]

θ̂ 0.1352 0.1546 0.1695 0.1308 0.1363 0.1891 0.1893 0.1382
(MSE) (0.1676) (0.3001) (0.4961) (0.1532) (0.1565) (0.4073) (0.5035) (0.1325)
[CP] [0.851] [0.657] [0.789] [0.857] [0.916] [0.763] [0.746] [0.917]

300 λ̂ 0.1211 0.1503 0.1364 0.1061 0.5021 0.5638 0.5712 0.5009
(MSE) (0.1681) (0.3146) (0.3291) (0.0261) (0.1641) (0.3173) (0.3630) (0.1512)
[CP] [0.891] [0.672] [0.780] [0.893] [0.899] [0.747] [0.731] [0.902]

ρ̂ 0.1281 0.1492 0.1470 0.1006 0.9371 0.8974 0.8982 0.9503
(MSE) (0.1441) (0.3530) (0.3021) (0.0541) (0.2121) (0.3903) (0.4102) (0.2053)
[CP] [0.886] [0.724] [0.786] [0.899] [0.881] [0.803] [0.800] [0.874]

θ̂ 0.1206 0.1488 0.1501 0.1201 0.1235 0.1709 0.1742 0.1292
(MSE) (0.1121) (0.2943) (0.3213) (0.1036) (0.2751) (0.4156) (0.5019) (0.2601)
[CP] [0.894] [0.786] [0.779] [0.864] [0.930] [0.796] [0.758] [0.929]

6. Application

In this section, we illustrate the flexibility of the proposed distribution using a real
data set.

The fit of the proposed distribution is compared with the following distributions:

• Poisson (P) distribution having pmf

P(Y = y) = e−λλy

y! ; λ ≥ 0, y = 0, 1, 2, ...

• Discrete Burr (Krishna and Pundir (2009)) (DB) distribution having pmf

P (Y = y) = θlog(1+yα) − θlog(1+(1+yα)); 0 < θ < 1, α > 0 , y = 0, 1, 2, ...

• Discrete Gumbel (Chakraborty and Chakravarty (2014)) (DG) distribution having pmf

P (Y = y) = exp(−αpy+1) − exp(−αpy); α > 0, 0 < p < 1, y = 0, 1, 2, ...
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• A new three-parameter Poisson-Lindley (NTPPL) distribution (Das et al. (2018)) hav-
ing pmf

P (Y = y) = θ2

(θ+1)x+2

(
1 + α+βx

θα+β

)
; θ > 0, β > 0, θα + β > 0, y = 0, 1, 2, ...

The data set is taken from Efron (1988), a study of 51 patients with head and neck
cancer conducted by the Northern California Oncology Group. We compare the fits of the
DEIP distribution with the competitive models DG, DB, NTPPL and Poisson. The data is
given below:

{0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 8,8, 9, 9, 9, 10,
13, 13, 13, 14, 17, 17, 19, 19, 36, 36, 37, 40, 44, 46, 46}

Table 4: Goodness of fit for various models fitted for the dataset.

Model P DG DB NTPPL DEIP

Estimates λ̂ = 11.314 α̂ = 3.207 α̂ = 2.551 α̂ = 1.506 λ̂ = 2.212
p̂ = 0.668 θ̂ = 0.730 β̂ = 1.282 × 106 ρ̂ = 4.404

θ̂ = 0.088 θ̂ = 0.007

K-S 0.4787 0.9821 0.2955 6.665 0.1656

p-value <0.000 <0.000 <0.000 0.000 0.1217

The K-S statistic given in Table 4 is smallest for the DEIP distribution with the value
of 0.1656 and p- value is 0.1217, which is higher when compared to other models. That is,
Table 4 gives that the DEIP distribution leads to a better fit for the data set compared to
the other four models.

7. Conclusion

In the present article, we have introduced a new family of discrete distributions called
DIPc family. One special model of the proposed family are studied in detail. Further we
have noticed DIPc family can be used for modelling variety of failure data because its hazard
rate can take different shapes. The methods of ML, OLS, WLS and CVM estimations have
been utilized to estimate the unknown parametres of the models. Some characterizations
of the proposed distribution have been also studied. An extensive simulation is carried out
to evaluate the behaviour of the above stated estimation methods. The flexibility of the
family has also been elucidated using a real data set. The new distribution can serve as a
better alternative for modelling count data in various fields including reliability, insurance,
medicine, engineering etc.
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Abstract
This paper focuses to introduce an insurance plan for HIV/AIDS patients by incorpo-

rating the prognostic factors. High death rate among the HIV infected people always made
a poor attention towards the insurance companies. The use of ART has declined the death
rates drastically over the years which show a clear path for sustainable insurance plan. The
long term survivors among HIV/AIDS patients can be treated as any other patient. The
diagnosis involves a lot of time and financial investment. An affordable insurance plan will
support the next of kin in case of patient’s death. The survival probabilities in the presence
of prognostic factors are obtained using COX-PH model and hence the cost of the premium
is obtained using actuarial model.

Key words: HIV/AIDS; CD4; COX-PH; Regression; Premium; ART.

1. Introduction

Globally, there are 37.7 million people living with HIV/AIDS and 2.3 million in India
in 2020. The incidence rate per 1000 uninfected population is 0.19 and 0.04, globally and
India respectively. 6.8 million people died from HIV/AIDS-related illnesses in 2020 UNAIDS
(2021),NACO (2019). The human immunodeficiency virus (HIV) targets the immune system
and weakens people’s defense against many infections and some types of cancer that people
with healthy immune systems can fight off. As the virus destroys and impairs the function
of immune cells, infected individuals gradually become immunodeficient. Immune function
is typically measured by CD4 cell count and viral load. The most advanced stage of HIV
infection is acquired immunodeficiency syndrome (AIDS), which can take many years to
develop if not treated, depending upon the initial health of the individual. As per WHO,
the stages of HIV/AIDS on the basis of CD4 count, WHO (2005) are presented in Table 1.

HIV can be managed by treatment regimens composed of a combination of three
or more antiretroviral (ARV) drugs. Current antiretroviral therapy (ART) does not cure
HIV infection but highly suppresses viral replication within a person’s body and allows
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Table 1: Clinical staging of HIV/AIDS infection established by WHO

Symptoms Clinical stage CD4 per microlitre
Asymptomatic 1 ≥ 500
Mild symptoms 2 350-499
Advanced symptoms 3 200-349
Severe symptoms 4 < 200

an individual’s immune system recovery to strengthen and regain the capacity to fight off
opportunistic infections and some cancers.

Since 2016, WHO has recommended that all people living with HIV be provided with
lifelong ART, including children, adolescents, adults and pregnant and breastfeeding women,
regardless of clinical status or CD4 cell count WHO (2016). Around the world, 27.5 million
people were able to access antiretroviral therapy (ART) in 2020 and 1.5 million in India
UNAIDS (2021).

Figure 1: Estimated number (in millions) of population on ART, UNAIDS 2021

Figure 2: Estimated percentage of population on ART among those living with
HIV/AIDS, UNAIDS 2021

Figure 1 shows the estimated population receiving ART globally and in India. The
overall trend is upwards. Also, out of the infected population there is steady increase in
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access to ART, Figure 2. The worldwide increased use of ART has contributed crucially for
decline in rate of death, Collaborators et al. (2016), NACO and ICMR-NIMS (2017). This
decrease in deaths shows long term survival in HIV/AIDS patients King Jr et al. (2003).

HIV/AIDS patients face a lot of problems in their day to day life. One such big
problem is financial instability. The detection and treatment process exhausts a lot of time
and money. The cost per new HIV diagnosis involves Rs. 866 to Rs. 1367 in England,
Ong et al. (2016) and Rs. 1200 to Rs. 1610 in USA, Burns et al. (2013). According to
NSSO 71st round data the average cost of diagnosis for the same is Rs. 1336 in India, Jain
et al. (2015). Generally, the cost of diagnosis and other medical expenses are borne by the
insurance company but there is no such provision for HIV/AIDS patients. This is due to
high death rate in the infected population and expensive diagnosis. The current scenario
of HIV/AIDS patients promises long term survival which supports the idea of providing an
insurance plan for them.

Insurance is a means of protection from financial loss. It is a form of risk management,
primarily used to hedge against the risk of a contingent or uncertain loss, such as death,
severe illness, etc. The insured receives a contract, called the insurance policy, which details
the conditions and circumstances under which the insurer will compensate the insured. The
amount of money charged by the insurer to the Policy holder for the insurance policy is called
the premium and the insured amount is paid once the event occurs. This premium cost is
calculated by actuarial models. Actuarial models provide frameworks for analysis, allowing
to project probable outcomes based on past experience adjusted for known material changes
in circumstances. They are usually expressed in mathematical terms, and are typically
designed to be consistent with fundamental principles of actuarial science. These models
used are classified as either deterministic or stochastic. They are simplified representations
of possible outcomes relative to future contingent events. A “contingent event” is an event
whose occurrence, timing, or severity is uncertain. This contingent event can be death
due to disease, sickness or accident, etc. Actuarial models may contain many elements
and are usually based upon multiple interrelated assumptions about various aspects of risks
associated with the event of interest. These models use probability of events and decrement
models, Bowers et al. (1997).

Actuarial modeling is widely accepted to bring reliable methods for pricing the insur-
ance contracts. As of the present there is no insurance company that provides any insurance
policy to the HIV/AIDS patients. The HIV/AIDS patients and their dear ones involved in
diagnosis process face lot of problems in terms of finance, so introducing such a plan will
be beneficial in public interest. An insurance plan is introduced for patients suffering from
Acute lymphoblastic leukemia (ALL), Grover et al. (2018) and HIV/AIDS Grover et al.
(2021) based on the survival probabilities. This study considers the estimation the survival
probability in presence of the prognostic factors and hence estimating the premium cost.
The study suggests early enrolment in the insurance plan. The premium cost is lower in the
earlier stage.

2. Methodology

A retrospective study is conducted for HIV/AIDS patients from a hospital located
in Delhi. A total of 767 patients are selected for this study out of 5894 patients after a
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complete-case analysis. The prognostic factors taken into study are age of the patients,
smoking and drinking habit, drug addiction and modes of transmission. There are four
modes of transmission 1- IDU (Injection Drug Users), 2- HOMO-MSM (sex with men to
men), 3-HETERO (infected through sex) and 4-Blood (infected through blood transfusion).
There are 556 males and 211 females. 84 of patients had smoking habit and 320 had drinking
habit. Apart from this 685 were drug edict. Out of these four modes of transmission 10 got
infected by mode 1, 6 by mode 2, 688 by mode 3 and remaining by mode 4.

The existing clinical staging of HIV/AIDS infection established by WHO in Table 1 is
redefined into two categories for the study. The CD4 count is the primary factor considered
for categorization and follow-up time is taken up for survival estimation. Based on the CD4
count the four categories mentioned in Table 1 are categorized further as:
Table 2: Categorising the existing stages of HIV/AIDS in symptomatic patients

HIV-associated symptoms CD4 per microlitre Category
Mild symptoms or Advanced symptoms 200-499 Category 1
Severe symptoms <200 Category 2

The patients with mild or advanced symptoms having CD4 count from 200 to 499
are placed in Category 1 and patients with severe symptoms having CD4 count less than
200 are placed in Category 2 (Table 2). Throughout the article, three groups are considered
for analysis. These are Category 1, Category 2 and the third is combined, when all the
symptomatic patients are taken together including Category 1 and Category 2.

Let µ(t) be the hazard rate of a HIV/AIDS patient at time i. Cox-PH model is used
to estimate the hazard rate in all three scenarios (viz, all the 767 patients and patients in
the two categories described in Table 2), in the presence of prognostic factors. The purpose
of this model is to evaluate simultaneously the effect of several prognostic factors on the
survival of the patients. The Cox-PH model is defined as,

µ(t) = µ0(t) · exp (b1x1 + b2x2 + ... + bpxp)

Where, xi is the ith(i = 1, 2, ..., p) prognostic factor, with coefficient bi and µ0(t) is
baseline hazard rate.

Further, the probability of surviving one year (t) with hazard rate µ(t) is given by:

px = exp
{

−
� x+1

x

µ(t)dt

}

These probabilities are used to obtain death probabilities in the presence of prognostic
factors.

2.1. Premium model

Models for insurance are designed to reduce the financial impact of untimely death.
Insurance systems are established to reduce the adverse financial impact of some type of ran-
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dom event; here death is the primary event. To calculate the premium cost for HIV/AIDS pa-
tients a discrete model is considered Luptáková and Biĺıková (2014), Haberman and Pitacco
(1998). Deterministic model is derived from the principle of an unreal set and the equivalence
principle which are basic principles of the classical methods Norberg (2000), Slud (2001).
The estimated death probabilities of the HIV/AIDS patients (qx) are used to calculate in-
surance premium for the given time period (t). We have considered the model for one year
of insurance. The payable insurance premium cost (A1

(x,i)) for the patient, with a rate of
interest i is calculated as

A
1
(x,i) = qx.v + px.q(x + 1).v2

where, v = (1+i)(−1) is the discount factor used to calculate the value of unit currency
after one year based on compound interest with the rate of interest i.

3. Results

3.1. Kaplan-Meier estimates

Kaplan-Meier survival estimates for HIV/AIDS patients are shown in Table 3. The
survival estimates for the HIV/AIDS patients for the first year are 0.969 (SE=0.015), 0.909
(SE=0.12), and 0.923 (SE=0.010) for Category 1, Category 2, and combined (including
patients of Category 1 and Category 2) respectively. The highest and lowest survival rates
in the first year are for Category 1 and Category 2, respectively. For the patients taken
combined the survival decreases by 4.98% in the next year. Further, from 7th to 8th year
then it declines by 7.28%, and shows a sharp decline after this (Figure 3). For the patients
in Category 1 the survival decreases by 6.91% in the very next year. In the year from 2nd
to 3rd and 7th to 8th the survival declines by 5.65% and 5.26% respectively. In between it
looks like a plateau (Figure 4). For the patients in Category 2, the survival drops by 4.51%
in the next year, and 7th to 8th the survival declines by 9.62%. Figure 5 also show sharp
decline in survival in the initial years and then after the 8th year. Eventually, after 5 years
the survival estimates decline by 14.08%, 15.58% and 13.42% respectively.

Table 3: Kaplan-Meier survival estimates for the HIV/AIDS patients

Time
(Years) Combined %

Change
Category

1
%

Change
Category

2
%

Change
1 0.923 0.969 0.909
2 0.877 4.98 0.902 6.91 0.868 4.51
3 0.839 4.33 0.851 5.65 0.834 3.92
4 0.817 2.62 0.818 3.88 0.814 2.40
5 0.793 2.94 0.818 0.00 0.787 3.32
6 0.776 2.14 0.8 2.20 0.767 2.54
7 0.742 4.38 0.761 4.88 0.738 3.78
8 0.688 7.28 0.721 5.26 0.667 9.62
9 0.508 0.451 0.523
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Figure 3: Kaplan Meier survival plot for the combined HIV/AIDS patients

3.2. Cox-PH regression survival estimates

Table 4 provides the Cox-PH model description for the combined HIV/AIDS patients.
The model is highly significant with -2 log-likelihood value (1885.682) and Chi-square value
as 38.362.

Table 4: Model description of Cox-PH for the combined HIV/AIDS patients

Omnibus Tests of Model Coefficients

-2 Log Likelihood Overall (score)
Chi-square df Sig.

1885.682 38.362 8 .000

Table 5: Model estimates of Cox-PH for the combined HIV/AIDS patients

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)
Lower Upper

Age .018 .009 3.851 1 .050 1.018 1.000 1.036
Sex -.285 .214 1.774 1 .183 .752 .495 1.144
Smoking -.970 .204 22.672 1 .000 .379 .254 .565
DRUGS .711 .323 4.836 1 .028 2.035 1.080 3.834
Alcohol -.136 .194 .490 1 .484 .873 .597 1.277
MOT 1.497 3 .683
MOT(1) .042 .627 .005 1 .946 1.043 .305 3.563
MOT(2) -.991 1.033 .921 1 .337 .371 .049 2.810
MOT(3) -.211 .246 .736 1 .391 .810 .500 1.311
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Figure 4: Kaplan Meier survival plot for the Category 1 HIV/AIDS patients

Table 5 explains the variables considered for the model of the combined HIV/AIDS
patients. The variables include demography such as age and sex of the patient, smoking
and drinking habit along with exposure to drugs. Apart from this method of transmission is
one of the explanatory variables. Out of these variables we find that age (p-value= 0.050),
habit of smoking (p-value= 0.000) and exposure to drugs (p-value= 0.028) are significant at
5% level of significance. Also, the hazard ratio suggests that for every one-year increase in
age the risk will increase with a rate of 1.018. Similarly, for patients exposed to drugs will
increase the risk with the rate 2.035.

Table 6: Cox-PH survival estimates for the combined HIV/AIDS patients

Time (Years) Baseline
Cum Hazard

Survival at
mean of covariates Std. Error Cum Hazard

1 0.11 0.95 0.01 0.06
2 0.20 0.90 0.01 0.11
3 0.28 0.86 0.01 0.15
4 0.34 0.83 0.02 0.18
5 0.40 0.81 0.02 0.21
6 0.45 0.79 0.02 0.24
7 0.51 0.76 0.02 0.27
8 0.61 0.72 0.02 0.32
9 0.89 0.62 0.03 0.47

Table 6 provides the survival estimates for the combined HIV/AIDS patients obtained
using Cox-PH regression. The estimated survival in the first year of follow-up is 0.95 and
declines to 0.90. Also, after the 3rd year drops to 0.86 and further dips to 0.62 in the 9th
year. Figure 6 shows the survival plot for the same and depicts a declining slope till 8th year
and then drops.
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Figure 5: Kaplan Meier survival plot for the Category 2 HIV/AIDS patients
Table 7: Model description of Cox-PH for the Category 1 HIV/AIDS patients

Omnibus Tests of Model Coefficients

-2 Log Likelihood Overall (score)
Chi-square df Sig.

204.944 28.099 8 .000

Table 7 provides the Cox-PH model description for the HIV/AIDS patients in Cat-
egory 1. The model is highly significant with lowest -2 log-likelihood value (204.944) and
Chi-square value as 28.099.

Table 8: Model estimates of Cox-PH for the Category 1 HIV/AIDS patients

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)
Lower Upper

Age .029 .025 1.392 1 .238 1.029 0.981 1.080
Sex -.735 .847 0.753 1 .386 .480 .091 2.522

Smoking -.351 .510 0.474 1 .491 .704 .259 1.912
DRUGS 1.892 .682 7.694 1 .006 6.634 1.742 25.257
Alcohol -1.642 .766 4.599 1 .032 .194 .043 0.868
MOT 4.351 3 .226

MOT(1) .773 1.151 .451 1 .502 2.167 .227 20.689
MOT(2) -13.104 464.703 .001 1 .978 .000 .000
MOT(3) -.991 .557 3.173 1 .075 .371 .125 1.105

Table 8 explains the variables considered for the model for the Category 1 HIV/AIDS
patients. The variables include demography such as age and sex of the patient. Smoking and
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Figure 6: Cox-PH cumulative survival plot for the combined HIV/AIDS patients

drinking habit along with exposed to drugs. Apart from this method of transmission is also
taken into care. Out of these variables we find that exposure of drugs (p-value= 0.006) and
habit of alcohol intake (p-value= 0.032) are significant at 5% level of significance. Here, for
the patient exposure to drugs, the risk will increase at a rate of 6.634 for each unit increase
in drug exposer.

Table 9: Cox-PH survival estimates for the Category 1 HIV/AIDS patients

Time (Years) Baseline
Cum Hazard

Survival at
mean of covariates Std. Error Cum Hazard

1 0.08 0.98 0.11 0.02
2 0.14 0.97 0.18 0.03
3 0.34 0.93 0.42 0.07
4 0.63 0.88 0.74 0.13
5 0.69 0.87 0.80 0.14
6 0.77 0.86 0.88 0.15
7 0.87 0.84 0.97 0.17
8 1.19 0.79 1.25 0.24
9 2.19 0.65 1.83 0.44
10 14.41 0.06 0.88 2.86

Table 9 provides the survival estimates for patients in Category 1 obtained by using
Cox-PH regression. The estimated survival in the first year of follow-up is quite high (0.98)
and reduces slightly in the next year. After 3rd year the survival estimate drops from 0.93
to 0.88 and further dips to 0.65.

Figure 7 shows the Cox-PH cumulative survival plot for the Category 1 HIV/AIDS
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Figure 7: Cox-PH cumulative survival plot for the the Category 1 HIV/AIDS
patients

patients indicting a drop in survival at 3rd and 8th year.

Table 10: Model description of Cox-PH for the Category 2 HIV/AIDS patients

Omnibus Tests of Model Coefficients

-2 Log Likelihood Overall (score)
Chi-square df Sig.

1512.359 32.131 8 .000

Table 10 provides the Cox-PH model description for the HIV/AIDS patients in Cat-
egory 2. The model is highly significant with lowest -2 log-likelihood value (1512.359) and
Chi-square value as 32.131.

Table 11: Model estimates of Cox-PH for the Category 1 HIV/AIDS patients

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)
Lower Upper

Age .015 .010 2.383 1 .123 1.015 0.996 1.035
Sex -.236 .230 1.057 1 .304 .790 .503 1.239
Smoking -1.110 .223 24.761 1 .000 .330 .213 .510
DRUGS .457 .388 1.388 1 .239 1.580 0.738 3.381
Alcohol .082 .208 .155 1 .693 1.086 .722 1.633
MOT 0.119 3 .989
MOT(1) -.052 .762 .005 1 .946 0.950 .213 4.229
MOT(2) -.357 1.040 .117 1 .732 .700 .091 5.379
MOT(3) -.025 .282 .008 1 .930 .976 .562 1.695

Table 11 explains the variables considered for the model for the Category 2 HIV/AIDS
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patients. The variables include demography such as age and sex of the patient. Smoking
and drinking habit along with exposed to drugs. Apart from this method of transmission is
also taken into care. Out of these variables we find that only habit of smoking (p-value =
0.000) is significant at 5% level of significance.

Table 12: Cox-PH survival estimates for the Category 2 HIV/AIDS patients

Time (Years) Baseline
Cum Hazard

Survival at
mean of covariates Std. Error Cum Hazard

1 0.11 0.94 0.01 0.07
2 0.22 0.88 0.01 0.12
3 0.27 0.85 0.02 0.16
4 0.32 0.83 0.02 0.18
5 0.37 0.81 0.02 0.21
6 0.43 0.78 0.02 0.25
7 0.49 0.75 0.02 0.28
8 0.57 0.72 0.03 0.33
9 0.83 0.62 0.04 0.48

Figure 8: Cox-PH cumulative survival plot for the the Category 2 HIV/AIDS
patients

Table 12 provides the survival estimates for patients in Category 2 obtained by using
Cox-PH regression. The estimated survival in the first year of follow-up is 0.94 and declines
to 0.88. Also, after the 5th year it goes from 0.81 to 0.78 in the 6th year and further dips to
0.62 in the 9th year.

Figure 8 shows the survival plot for the Category 2 depicts a drop in the survival first
two years and then after the 8th year. In-between the survival declines slowly.

3.3. Calculation of premium cost

The survival estimates of Cox-PH regression are further utilised for the estimation of
the premium cost. Table 13 shows the cost of the premium for all the HIV/AIDS patients



134 GURPRIT GROVER AND PARMEET KUMAR VINIT [Vol. 22, No. 1

combined and also for the patients in Category 1 and 2. Here, rupees one hundred is taken
as sum insured and the cost of the premium to be paid is estimated. The estimated premium
cost for HIV/AIDS patients cumulatively, Category 1 and 2 is Rs. 14.59, Rs. 4.16 and Rs.
16.77 respectively. Cumulatively, there is 5% decline in survival from 1st to 2nd year and
from 7th to 8th year. In the same manner the premium cost increases by 48.94% and 22.27%
respectively. Here we see that the patients under Category 1 have lowest premium cost. But
in the very next 2 subsequent years the premium cost for Category 1 is almost doubled to
Rs. 8.82 (112.09% rise from the previous year) and then shoots to Rs. 16.99 (92.65% rise
from the previous year. In Category 2 the premium cost increases from Rs. 16.77 to Rs.
23.92 (42.62% jump) in the first year. Overall, for the five years the rise in premium cost is
142.66%, 487.79% and 114.11% respectively for the three categories.

Figure 9 shows the comparison of survival estimates (primary-axis) and premium cost
(secondary-axis) for all the patients combined, in Category 1 and 2. The increasing trend
of premium cost is followed by the decreasing survival estimates over the follow-up years. It
clearly reflects that throughout the year, premium cost for Category 1 is lowest of all.

Table 13: Cost of premium for the HIV/AIDS patients

Survival Estimates Premium Cost
Time

(Years) Combined Category
1

Category
2 Combined Category

1
Category

2
1 0.95 0.98 0.94 14.59 4.16 16.77
2 0.90 0.97 0.88 21.73 8.82 23.92
3 0.86 0.93 0.85 27.12 16.99 28.06
4 0.83 0.88 0.83 31.67 22.36 31.86
5 0.81 0.87 0.81 35.40 24.44 35.91
6 0.79 0.86 0.78 38.97 27.00 39.92
7 0.76 0.84 0.75 43.61 32.59 44.53
8 0.72 0.79 0.72 53.33 47.47 53.75
9 0.62 0.65 0.62

4. Conclusion

The survival estimates of the HIV/AIDS patients are obtained using Kaplan-Meier
and Cox-PH regression methods. These estimates are obtained for the patients in three
scenarios, Category 1, Category 2 and combined. The estimates obtained using Cox-PH
regression gave better estimates than that of Kaplan-Meier. For the patients taken combined,
age, smoking habit and exposure to drugs are significant predictors. In Category 1 the habit
of smoking and alcohol consumption are the significant predictors whereas in Category 2 only
smoking habit is the significant predictor. The fitted model in all three scenarios is highly
significant. Till 7 years the overall survival estimates are more than 75%. This high survival
estimates provide great evidence to introduce a yearly insurance plan for the HIV/AIDS
patients.

The suggested yearly insurance plan assures a sum of Rs. 100 against the premium of
Rs. 14.59, Rs. 4.16 and Rs. 16.77 in the three scenarios respectively, in case of death. The
best premium is for the patient in Category 1 since they have to pay very less as compared
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Figure 9: Comparison of survival estimates (primary-axis) and premium cost
(secondary-axis) for all the HIV/AIDS patients

to the others. For a five-year difference the premium cost increases by 142.66%, 487.79% and
114.11% respectively in the three scenarios. So, it is recommended to opt for the insurance
as early as possible because the premium cost keeps increasing over the time as the survival
estimates decline.
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Abstract
Reliability engineering is a branch of systems engineering concerned with the depend-

ability of machinery. Reliability is the degree to which a system or component continues to
function as intended over time and under stress. In a ‘k’ out of ‘n’ systems, the total efficiency
is greater than the efficiency of any individual component. Here, we propose an additional
system, An Integrated Reliability Model (IRM) for the ‘k’ out of ‘n’ systems to take into ac-
count the factors’ efficiencies, the number of factors in each stage, and the various constraints
in order to maximize the system’s efficiency. The authors used the above-cited integrated
model for obtaining various components’ reliability and efficiency in a Muffle Box Furnace
machine by using Lagrangean methods to calculate the price-component, weight-component
and volume-component associated with various configurations of the system, all in an effort
to maximize overall system performance. To get a real-looking result in an integer space, we
adopted the integer programming method and the dynamic programming technique.

Key words: IRM; Lagrangean approach; Stage efficiency; Integer programming; D.P. ap-
proach; Structure’s efficiency.

AMS Subject Classifications: Primary: 90B25; Secondary: 90C39, 90C59

1. Introduction

Aggarwal et al. (1975) present a practical approach for resolving the redundancy-
based, multi-criteria optimization issues that typically occur in the dependability design of
engineering systems. Because it can take into consideration any combination of redundancy,
limitations, and individual cost functions, it might resolve many design issues relating to
dependability. Kuo and Prasad (2000) are well-known names when it comes to the secure and
efficient creation of technical systems. They gave actual instances to show how multicriteria
optimization issues may be utilised to successfully tackle redundancy optimization issues.
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The Structure’s reliability can be improved by either placing superfluous units, ap-
plying the element of greater reliability or by adopting the two methods at a time and both
of them use extra resources. Optimizing structure reliability, and conditions to resource
availability viz. price-components, weight-components and volume-components are exam-
ined. In general, reliability is tested as an element of price-component; But, when tested
with real-world problems, the invisible effect of other restraints such as weight-component,
volume-components, etc., has a special effect on improving structural reliability.

A team of researchers under the direction of Sankaraiah et al. (2011) set out to look
at how numerous restrictions affect system reliability. An integrated redundant reliability
system is modelled and solved using a Lagrangian multiplier. This provides a real-valued
response on the total number of components, the dependability of all system stages, and
the dependability of individual stages. Sridhar et al. (2013) created a novel method for
optimising a redundant IRM with several limitations. The method accounts for the k-out-
of-n configuration system and enables the optimization to discover the unexpected effects
of other constraints in addition to the cost constraint. A unique strategy for optimising a
redundant IRM was developed by Sasikala et al. (2013), however it has several drawbacks.
The technique takes into consideration the k-out-of-n configuration system and enables the
optimization to find the unexpected impacts of additional constraints aside from the cost
constraint.

The specific functionality of the over-reliability model with several limitations to op-
timize the recommended setup was examined to maximize the recommended setup. The
problem examines the unknowns that is, various elements (Ycj), the element reliability (rcj),
and the stage reliability (RRP ) at a specific point for disposing of multiple restraints to mag-
nify the structure reliability (RRS) that is described as a United Reliability Model (URM). In
literature, United Reliability Models are enhanced by applying value restraints where there
is a fixed association between price-component and reliability. A unique pattern of planned
work is a deliberation of the weight-component and volume-component as supplementary
restraints along with price-component to form and improve the superfluous reliability sys-
tem for ‘k’ out of ‘n’ structure composition. The rest of the paper has been organized
into five sections. In Section 2, we detail the Lagrangean analysis of the corresponding
new mathematical function. In Section 3, we get an overview of the Muffle Box furnace’s
parts, including its price-component, weight-component, volume-component, stage, compo-
nent, and structure reliability. Our rounded-off Lagrangean approach results are presented
in Section 4. In Sections 5 and 6, we will present the Integer programming, results and make
comparisons to the Lagrangean method (both without and with rounding off). Finally, the
author concludes and makes some suggestions in Section 7.

1.1. Assumptions and notations

1. Each stage’s elements are believed to be identical, i.e., all elements have the same level
of reliability.

2. All elements are supposed to be statistically independent, meaning that their failure
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has no bearing on the performance of other elements in the structure.

RRS = Reliability of structure
RRP = Reliability of stage , 0 < RRP < 1

rcj = Reliability of each component in stage cj; 0 < rcj < 1
Ycj = Number of components in stage cj

PCcj = Price component in stage cj

WCcj = Weight component in stage cj

V Ccj = Volume component in stage cj

Pc0 = Greatest allowable complex for price component
Wc0 = Greatest allowable complex for weight component
Vc0 = Greatest allowable complex for volume component

Pcj; αcj; Wcj; βcj; Vcj; γcj are constants.

2. Mathematical analysis

The efficiency of the system to the provided price-component function

RRS =
n∑

i=1
B(m, i)(p)i(1 − p)(m−i) (1)

The following relationship between price-component and efficiency is used to calculate the
price-component coefficient of each unit in Stage j.

rcj = Cosh−1
[

PCcj

Pcj

] 1
αcj

Therefore

PCcj = PcjCosh[rcj]αcj (2a)
WCcj = WcjCosh[rcj]βcj (2b)
V Ccj = VcjCosh[rcj]γcj (2c)

Since price-components are linear in Ycj,
n∑

j=1
PCcjYcj ≤ Pco (3a)

Similarly, weight-components and volume-components are also linear in Ycj

n∑
j=1

WCcjYcj ≤ Wco (3b)

n∑
j=1

V CcjYcj ≤ Vco (3c)
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Substituting (2a, 2b & 2c) in (3a, 3b & 3c) respectively, we get

n∑
j=1

PcjCosh[rcj]αcj . Ycj − PC0 ≤ 0 (4a)

n∑
j=1

WcjCosh[rcj]βcj . Ycj − WC0 ≤ 0 (4b)

n∑
j=1

VcjCosh[rcj]γcj . Ycj − VC0 ≤ 0 (4c)

The transformed
Ycj = lnRRP

lnrcj

(5)

where
RRP =

n∑
k=2

B(Ycj, k)(rcj)k(1 − rcj)(cj−k) (6)

Subject to the constraints
n∑

j=1
PcjCosh[rcj]αcj .

lnRRP

lnrcj

− PC0 ≤ 0 (7a)

n∑
j=1

WcjCosh[rcj]βcj .
lnRRP

lnrcj

− WC0 ≤ 0 (7b)

n∑
j=1

VcjCosh[rcj]γcj .
lnRRP

lnrcj

− VC0 ≤ 0 (7c)

Positivity restrictions Ycj ≥ 0.

A Lagrangean function is defined as

LG = RRS + ω1

 n∑
j=1

Pcj. Cosh[rcj]αcj .
lnRRP

lnrcj

− Pc0

 + ω2
[ n∑

j=1
Pcj. Cosh[rcj]βcj .

lnRRP

lnrcj

−Wc0
]

+ ω3

 n∑
j=1

Vcj. Cosh[rcj]γcj .
lnRRP

lnrcj

− Vc0

 (8)

The Lagrangean function can be used to find the ideal point and separating it by
RRS, rcj, ω1, ω2 and ω3.

∂LG

∂RRS

= 1 + ω1

 n∑
j=1

Pcj. Cosh[rcj]αcj .
1

lnrcj

1
RRP

 + ω2

 n∑
j=1

Wcj. Cosh[rcj]βcj .
1

lnrcj

1
RRP


+ω3

 n∑
j=1

Vcj. Cosh[rcj]γcj .
1

lnrcj

1
RRP

 (9)
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∂LG

∂rcj

= ω1

 n∑
j=1

Pcj. Cosh[rcj]αcj .
lnRRP

lnrcj

 [
αcj. Tanh(rcj) − 1

rcj.lnrcj

]

+ω2

 n∑
j=1

Wcj. Cosh[rcj]βcj .
lnRRP

lnrcj

 [
βcj. Tanh(rcj) − 1

rcj.lnrcj

]

+ω3

 n∑
j=1

Vcj. Cosh[rcj]γcj .
lnRRP

lnrcj

 [
γcj. Tanh(rcj) − 1

rcj.lnrcj

]
(10)

∂LG

∂ω1
=

n∑
j=1

Pcj. Cosh[rcj]αcj .
lnRRP

lnrcj

− Pc0 (11)

∂LG

∂ω2
=

n∑
j=1

Wcj. Cosh[rcj]βcj .
lnRRP

lnrcj

− Wc0 (12)

∂LG

∂ω3
=

n∑
j=1

Vcj. Cosh[rcj]γcj .
lnRRP

lnrcj

− Vc0 (13)

where ω1, ω2 and ω3 are Lagrangean multipliers.

Using the Lagrangean method, we can calculate the number of elements in each
Stage (Ycj), the best reliability of an individual element (rcj), the reliability of an entire
Stage (RRP), and the reliability of the entire structure (RRS). When it comes to the price-
component, weight-component, and volume-component, this method yields a true (valued)
answer.

3. Case problem

To derive the multiple parameters of a given mechanical system using optimization
techniques, where all the assumptions like price-component, weight-component, and volume-
component are directly proportional to system reliability has been considered in this research
work. The same logic may not be true in the case of electronic systems. Hence, the optimal
element accuracy (rcj), Stage reliability (RRP ), Number of elements in each Stage (Ycj), and
structure accuracy (RRS) can be evaluated in any given mechanical system. In this work,
an attempt has been made to evaluate the Structure accuracy of a special purpose of Muffle
Box Furnace machine that is utilized in the laboratories for testing different materials.

The machine is used for the assembly of many components. But our case steady, we
are considering 3 or 4 important components on the base of Muffle Box Furnace machine.

The muffle furnace is an essential laboratory testing instrument used for a wide variety
of materials. The instrument is useful in the study of materials’ properties and can be found
in most laboratory settings. The tool is put to use in numerous heat-treating metallurgical
procedures. Altering the molecular structure of a material is a common application of heat
treatment. The machine’s approximate price was Rs. 5000, which is considered a structure
price, the weight of the machine is 156 kg, which is the volume of the structure, and the space
occupied by the machine is 100cm3, which is the volume of the structure. To attract the
authors from different cross sections, the authors attempted to use hypothetical numbers,
which can be changed according to the environment. The Lagrangean approach of modelling
and solving produces real-valued solutions for the number of elements, element reliability,
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Figure 1: Schematic diagram of muffle box furnace

moment reliability, and therefore structure reliability, as shown by Sasikala et al. (2020).

3.1. Constants

The data required for the constants for the case problem are provided hereunder.

Table 1: The details of price-component, weight-component and volume-
component for case problem

Phase Price constants Weight constants Volume constants
Pcj αcj Wcj βcj Vcj γcj

1 600 0.85 110 0.92 95 0.94
2 650 0.88 90 0.88 85 0.89
3 700 0.91 70 091 75 0.86

The efficiency of each factor, phase and number of factors in each stage, as well as
the structural efficiency, are shown in the tables below.

3.2. The details of price-component, weight-component and
volume-component

The price-components, weight-components, and volume-components related efficiency
design and total price of the components is described in the table below.

Structure efficiency = RCR = 0.9664
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Table 2: The details of price-component, weight-component and volume-
component by using Lagrangean approach

Phase Pcj αcj rcj Log rcj RRP Log RRP Ycj PCcj = PcjCosh[rcj]αcj Ycj.PCcj

1 600 0.85 0.8741 -0.0584 0.6777 -0.169 2.89 801.00 2314.89
2 650 0.88 0.8445 -0.0734 0.6487 -0.188 2.56 861.30 2204.93
3 700 0.91 0.8456 -0.0728 0.5461 -0.2627 3.61 937.60 3384.74

Total price of the components 7904.55
Phase Wcj βcj rcj Log rcj RRP Log RRP Ycj WCcj = WcjCosh[rcj]βcj Ycj.WCcj

1 110 0.92 0.8741 -0.0584 0.6777 -0.169 2.89 150.48 434.89
2 90 0.88 0.8445 -0.0734 0.6487 -0.188 2.56 119.34 305.51
3 70 0.91 0.8456 -0.0.728 0.5461 -0.2627 3.61 93.73 338.37

Total weight of the components 1078.76
Phase Vcj γcj rcj Log rcj RRP Log RRP Ycj V Ccj = VcjCosh[rcj]γcj Ycj.V Ccj

1 95 0.94 0.8741 -0.0584 0.6777 -0.169 2.89 130.8 378.01
2 85 0.89 0.8445 -0.0734 0.6487 -0.188 2.56 113.8 291.33
3 75 0.86 0.8456 -0.0728 0.5461 -0.2627 3.61 98.85 356.85

Total volume of the components 1026.19

4. Efficiency design with ej rounding off

The acceptable outcomes for the price-component, weight-component, and volume
components are listed in the tables, and the Ycj values are summarised as integers (rounding
the value of cj to the nearest integer) in the efficiency design. The information you seek
can be determined by calculating the variance caused by the price-component, the weight-
component, and the volume-component of the building’s capacity (both before and after
rounding Ycj to the nearest integer).

4.1. Efficiency design concerning price-component, weight-component and
volume-component with rounding off

Table 3: The details of price-component, weight-component and volume-
component analysis by using rounding off approach

Phase rcj RRP Ycj Pcj Ycj.Pcj Wcj Ycj.Wcj Vcj Ycj.Vcj

1 0.8741 0.6777 3 801 2403 150 450 131 393
2 0.8445 0.6487 3 861 2583 119 357 114 342
3 0.8456 0.5461 4 938 3752 94 376 99 396

Total price of the components 8738 1183 1131
Structure efficiency (RCR) 0.9687

4.1.1. Variation in total price-component

= Total price-component with rounding off - Total price-component without rounding off
Total price without rounding off = 10.54%

4.1.2. Variation in total weight-component

= Total weight-component with rounding off - Total weight-component without rounding off
Total weight-component without rounding off = 09.66%
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4.1.3. Variation in total price-component

= Total volume-component with rounding off - Total volume-component without rounding off
Total volume-component without rounding off = 10.21%

4.1.4. Variation in structure efficiency

= Structure efficiency with rounding off - Structure efficiency without rounding off
Structure efficiency without rounding off = 01.24%

Instead of using complex algorithms, the Lagrangian multiplier method provides a
way to quickly find the best possible design. Naturally, this assumes that the component
count at each Stage (Ycj) is real. When Ycj is rounded off to the nearest integer, it has a
domino effect on all the other numbers in the reliability design, including the values of the
reliability at each Stage (RRP) the reliability of the system as a whole (RRS), the total Price
of each Stage, and the Price of the system as a whole. It is demonstrated in the examples how
changing the way Ycj is rounded can affect the reliability of a design. Integer programming
can be used to counter this shortcoming.

5. Integer programming

To determine the number of components in each stage, stage reliabilities, and system
reliability, integer programming requires the component reliabilities as input. The fundamen-
tal disadvantage of integer programming is that it cannot be utilised directly, i.e., without
the input of the component reliabilities, even if it is beneficial for creating integrated reli-
ability models. Therefore, integer programming may take the component reliabilities from
the previous approach, the Lagrangian method, as input and output the stage reliabilities,
system reliabilities, system reliabilities, stage reliabilities, and stage reliabilities. Integer pro-
gramming allows you some flexibility to select the number of components in each step, the
dependability of each stage, and the reliability of the entire system within the limits that
are provided.

Pavankumar et al. (2020) look into how the many constraints listed above affect how
the integrated reliability and optimization is formulated. Statistics are utilised with IRRCCS
(Integrated Redundant Reliable Coherent Configuration system is considered). Sridhar et
al. (2021), have provided a thorough examination, design, analysis, and optimization of a
coherent redundant reliability design.The work of Sridhar et al. (2022) is applied to parallel-
series systems where both technologies include parallel factors. A parallel approach can only
function if all of its components are active at all times.To determine the optimum solution,
Srinivasa Rao et al. (2022) recommended utilising an appropriate method based on Heuristic
approach and included the redundancy strategy as a new decision variable.

Integer programming methodology as a whole has grown rapidly over the past half
century, but linear integer programming has been its main focus. But there have been some
promising theoretical and methodological developments in nonlinear integer programming in
recent years. Because of these changes, nonlinear integer programming is now used in many
areas of scientific computing. For example, it is a key criterion for choosing portfolios and
managing risks.

The author used the LINGO Programme (created by Lindo Corporation, USA) to find
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a decimal solution to the problem. Lingo is an all-inclusive Programme that streamlines the
process of creating and solving linear, nonlinear, and integer optimization models. Lingo is
an all-inclusive package that features a robust language for expressing optimization models,
a comprehensive environment for creating and editing problems, and a collection of fast,
in-built solvers.

An integrated reliability model for redundant systems with multiple constraints is
established and optimized using integer programming for the considered function. By using
the values of component dependability’s (rcj) and the number of components in each stage
(Ycj) as inputs for the application of integer programming, we can optimize the design in
light of the case problem discussed in the previous section for the respective mathematical
function (refer to equation 1). Since the values of Ycj are integers, this method helps optimise
the design and makes it easier to use in the real world.

6. Results

6.1. The details of price-component, weight component and
volume-component constraint by using integer programming approach

The value-related efficiency design is described in the Table 4.

Table 4: The details of price-component, weight-component and volume-
component constraint by using integer programming approach

Phase Pcj αcj rcj Log rcj RRP Log RRP Ycj PCcj = PcjCosh[rcj] Ycj.PCcj

1 600 0.85 0.9982 -0.0008 0.9945 -0.0024 3 866 2598
2 650 0.88 0.9736 -0.0116 0.9229 -0.0348 3 936 2808
3 700 0.91 0.9891 -0.0048 0.9571 -0.0190 4 1031 4124

Final price 9530
Phase Wcj βcj rcj Log rcj RRP Log RRP Ycj WCcj = WcjCosh[rcj] Ycj.WCcj

1 110 0.92 0.9982 -0.0008 0.9945 -0.0024 3 164 492
2 90 0.88 0.9736 -0.0116 0.9229 -0.0348 3 130 390
3 70 0.91 0.9891 -0.0048 0.9571 -0.0190 4 103 412

Final weight 1294
Phase Vcj γcj rcj Log rcj RRP Log RRP Ycj V Ccj = VcjCosh[rcj] Ycj.V Ccj

1 95 0.94 0.9982 -0.0008 0.9945 -0.0024 3 143 429
2 85 0.89 0.9736 -0.0116 0.9229 -0.0348 3 123 369
3 75 0.86 0.9891 -0.0048 0.9571 -0.0190 4 108 412

Final volume 1230
Structure efficiency (RSR) 0.9998

6.2. Comparison of optimization of integrated redundant reliability k out of n
systems - LMM with rounding off and integer programming approach for
price-component, weight-component and volume-component

7. Conclusion

This work proposes an integrated reliability model for a k out of n configuration
system with many efficiency criteria. When the data are discovered to be in reals, the La-
grangean multiplier approach is used to compute the number of components (cj), component
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Table 5: Results correlated LMM with rounding off approach and integer
programming approach for price-component, weight-component and volume-
component

With rounding off Integer programming
Phase Ycj rcj RRP PCcj Ycj.PCcj rcj RRP PCcj Ycj.PCcj

1 3 0.8741 0.6777 801 2403 0.9982 0.9945 866 2598
2 3 0.8445 0.6487 861 2583 0.9736 0.9229 936 2808
3 4 0.8456 0.5461 938 3752 0.9891 0.9571 1031 4124

Total price 8738 9530
Structure Using with rounding off 0.9987 Using integer
efficiency approach (RSR) programming approach 0.9999

(RSR)
With rounding off Integer programming

Phase Ycj rcj RRP WCcj Ycj.WCcj rcj RRP WCcj Ycj.WCcj

1 3 0.8741 0.6777 150 450 0.9982 0.9945 164 492
2 3 0.8445 0.6487 119 357 0.9736 0.9229 130 390
3 4 0.8456 0.5761 94 376 0.9891 0.9571 103 412

Total weight 1183 1294
Structure Using with rounding off 0.9987 Using integer
efficiency approach (RSR) programming approach 0.9999

(RSR)
With rounding off Integer programming

Phase Ycj rcj RRP V Ccj Ycj.V Ccj rcj RRP V Ccj Ycj.V Ccj

1 3 0.8741 0.6777 131 393 0.9982 0.9945 143 429
2 3 0.8445 0.6487 114 342 0.9736 0.9229 123 369
3 4 0.8456 0.5461 99 396 0.9891 0.9571 108 432

Total volume 1131 1230
Structure Using with rounding off 0.9664 Using Integer
efficiency approach (RSR) programming approach 0.9998

(RSR)

efficiencies (rcj = 0.8741, 0.8445, 0.8456), stage efficiencies (RRP = 0.6777, 0.6487, 0.5461),
and structure efficiency (RRS = 0.9664). To obtain practical applicability, an integer way
of programming approach is employed to construct an integer solution whereas component
efficiencies (rcj = 0.9982, 0.9736, 0.9891), stage efficiencies (RRP = 0.9945, 0.9229, 0.9571),
and structure efficiency (RRS = 0.9998). using the inputs from the Lagrangean method.
Finally, we observed that the price, weight, and volume components changed slightly, but
the reliability of the stage and structure increased, resulting in increased system reliability.

The IRM model generated in this manner is quite valuable, particularly in real-world
settings when a k from n configuration IRM with reliability engineer redundancy is required.
In circumstances where the system value is low, the proposed model is especially valuable
for the dependability design engineer to build high-quality and efficient materials.

In future study, the authors recommend utilizing a unique approach that limits the
minimum and maximum component reliability values while maximizing system dependability
using any of the current heuristic processes to build similar IRMs with redundancy.
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Abstract
Marriage is a life event which could change the qualitative status of an individual

from single to married life. Studies on the duration of an individual’s single status are of
particular importance as it reflects the age pattern of marriage for a particular community
or population. The median age at first marriage of India count to be 18.6 years for women
and 24.5 years for men. This study aims the differentials and determinants of male and
female singlehood durtation in North East States of India. Data from NFHS-4 are used to
compute median duration of singlehood and its influential covariate are determined by using
semi-parametric hazards model. Results show that the median duration of singlehood for
North-East women and men are 21 years and 26 years respectively. Manipur women and
men are recorded highest singlehood duration of 23 years and 27 years respectively. Findings
shows that covariates such as place of residence, religion, ethnicity, wealth of the family and
working status of women and men have significant effects on the duration of singlehood. As
early marriages are expected to contribute more births it is important to increase the age at
marriage of both men and women in order to reduce fertility.

Key words: Singlehood; NFHS-4; Median duration; Semi-parametric hazards model; North
East India; Manipur.

Mathematics Subject Classification: 62G08, 91D20

1. Background

Singlehood is a term used for an individual who has never been married in his or her
lifetime. Studies on singlehood for both men and women are equally important in a society.
All the life course activities of an individual during his/her singlehood are determining factors
for the individual’s future shape. The status of single for an individual is defined in terms of
their relationship to marriage. Marriage is a major life event where a change of status takes
place in an individual’s life course whoever male or female. In many societies, marriage is
defined as the onset of socially accepted sexual activity and as such marriage is considered as
an important proximate determinant of fertility by Bongaarts (1978). And also it is the onset
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of making one family and society sooner or later. Marriage is a demographic event which
could change the nomenclature of one’s social recognition or status as an individual that is
from single status (bachelor or spinster) to married life. There is differences or changes in the
life course activities and routines between a never married individual and an ever married
individual.

Stein (1975) suggest that U.S. census and surveys indicate the increased postpone-
ment of marriage led the growing number of singles. Singlehood as a positive choice have
been made by adults who have chosen not to marry. Due to dissatisfaction with traditional
marriage, a new lifestyle of being single throughout their life has been chosen. In addition,
Stein (1975) reveals that more and more people are rejecting and postponing their marriage
in favour of independence.

Many women in developing countries of the world are subject to early marriage. It is
believed that many women in such countries have little to no chance to choose themselves
to whom they should marry and at what age they would marry by Jensen and Thornton
(2003). Hayase and Liaw (1997) claim that women who marry at an early age have a longer
period of exposure to pregnancy and consequently led to high fertility level. Jensen and
Thornton (2003) also reveals that early married women face many disadvantages in the field
of education, status, autonomy and even including physical safety. They have less power on
decision-making, and better experiences of domestic violence are reported from them.

Kumchulesi et al. (2011) suggest that many socio economic factors such as age of
women, place of residence, region, economic status etc. have an effect on the age at first
marriage. With rapid increase in the educational attainment, age at first marriage and age
at first birth is also increased. In addition, Gangadharan and Maitra (2000) also found that
education of husband significantly affects the time to conception.

The study from Weinberger (1987) found that early marriage occurs more often in
the less educated women. Findings from the world fertility survey 1987 which include 38
countries around the world, shows that singulate mean age at marriage (SMAM) of women
with seven or more years of education is almost four years higher than the women with no
education. And Matlabi et al. (2013) also suggest that one of the method for reducing early
child marriage is mandating girls stay in school. Early marriage is associated with early
childbearing and also linked to various adverse health related outcomes for both mother and
child. Such early child bearing is lowered by increasing longer duration of singlehood with
subsequently slowing population growth.

Kumar (2016) studies provide that place of residence is a responsible variable for a
wide variation in child marriage. The percentage of girls married before 18 years of age
among all those got married 0-4 years before to census 2011 of India in rural areas was 21%
while it is only half in urban area. Other studies from McLaughlin et al. (1993); Westoff and
ORC Macro (2003) also show that rates of early marriage are higher in rural areas than in
urban areas.

A longer duration of singlehood results in lowering childbearing experience with sub-
sequently slowing population growth. Women who have higher level of intelligence, education
and occupation are more likely to remain as a single for a longer period of time. Highly ed-
ucated women want to live on their own way. However, studies from Spreitzer and Riley
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(1974), in contrast to women, educated men, and those with higher occupational achievement
want to get married sooner.

Lalmalsawmzauva et al. (2011) claim that, though the legal age at marriage for girls
in India is fixed at 18 years many girls are married before reaching that particular age. The
female age at marriage in India is not uniform in all states, districts, ethnic, caste, class and
religious groups. The female of rural areas get married earlier than those of urban. Some
states located to southern part (except Andhra Pradesh), North West and North East India
have relatively higher mean age at marriage .

Although, till date marriage is universal in Indian context, there are certain shifts
observed in the age at marriage. There is a consistence increasing trend in respect of mean
and median age at marriage over cohort since 2005 to 2016 (NFHS-3 (2007) and NFHS-4
(2017)). Thus it becomes important to understand the current situation of marriage pattern
in India in the light of policies aimed at increasing the age at marriage and the major
contribution factors determining the change in median age at marriage in the last decade.
Not much work had been done to model duration of singlehood exclusively for North East
India. Thus, the present study attempt to analyze the differentials and determinants of
singlehood duration of North Eastern States of India.

2. Data and methods

In view of literature reported on the age at marriage, the authors have an interest
on the singlehood duration both for men and women the for whole North East India. The
North Eastern region of India comprises of eight states viz. Assam, Arunachal, Manipur,
Meghalaya, Mizoram, Nagaland, Sikkim and Tripura. These states have socio-economic and
demographic characteristics, which are more or less different from the mainland population of
India. Specifically, the economic activity in the region is quite different from the mainland
as having little to no industrialization and mainly depends on agricultural activities. All
states are dominated by tribal population except Assam where tribal population accounts
for 12.5% only. The main religious groups in the region are Hindu, Muslim, Christians, Bud-
dhists and some unrecognized local faiths still exist though fewer in number. The population
of the region is sparse as compared to other parts of country and shares only 3.57% of whole
population of India while the geographical area covers 7.5% of the total area of the country.
All states except Meghalaya follow patrilineal norms while in Meghalaya there are ethnic
groups who follow matrilineal norms. The present paper uses data from the National Family
Health Survey-4 which provides information on various aspects of demographic analysis, re-
productive health and nutrition for India. NFHS-4 (2017), 2015-16 (International Institute
for Population Sciences (IIPS) and ICF, 2017) collected information from nationally repre-
sentative samples regarding women, men, household and children. Interview was taken from
98702 women in the age group 15-49 years of the eight states of North Eastern region of
India. Also, 14555 men in the age group 15-54 years were interviewed during the survey in
the region. The duration of singlehood for these women and men were obtained from their
age at marriage and current age. For those women or men who are never married, their
duration of singlehood is obtained from their current age and is marked censored. Censored
duration indicates that the event of interest (i.e marriage) does not occur to these women
and men, whereas a complete duration indicates that the event has occurred at least once to
the individuals. Out of total the women samples from North East India, 93321 women were
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considered in the present study. Likewise, 14280 men in age group 15-54 were considered in
the analysis.

2.1. Variables in the study

In any regression analysis one has to ascertain the outcome and the predictor variables.
The outcome or dependent variable in the present study is the duration of singlehood. In the
event history method duration of singlehood may be looked upon as the time to first marriage.
In the literature, time to first marriage is the duration of the total time where an individual
lives in the single state starting from the birth of individual. Several predictor variables are
considered in the present study which are potential to influence the duration of singlehood.
All the variables are categorical variables. These variables which are thought to influence
the outcome variable are educational level of individuals, type of place of residence, religion,
ethnicity, wealth of family, exposure to mass media and working status. At the community
level, place of residence, religion and ethnicity are considered. At the household level wealth
of family is considered and at the individual level educational level, exposure to mass media
and working status are included as covariates. Table 1 gives the definition and categories of
the predictor variables.

2.2. Methodology

The duration of singlehood (or time to first marriage) has been studied by way of
survival analysis techniques using the non-parametric Kaplan-Meier, see Kaplan and Meier
(1958) method and the semi-parametric Cox proportional hazards model, Cox (1972). As
noted earlier duration of singlehood is the time an individual has got married for the first
time starting from birth. In the present study, the event of interest is the first marriage. The
Cox proportional hazards model is the most applied regression technique which addresses
the risk of event time. Thus, the time to first marriage is fitted to the Cox model considering
some potential covariates which are thought to explain the age of first marriage to estimate
the relative risks. The median duration of singlehood is computed using the non-parametric
K-M method.

Kaplan-Meier estimator of survival probability at time t is given by

Ŝ(t) =
∏
ti<t

rti
− dti

rti

where rti
is the number of risk of experiencing the event at the time ti, and dti

is the number
of events at that time, with the convention that Ŝ(t) = 1 if t < ti.

Using Greenwood’s formula for the variance of survival function

V̂ (Ŝ(t)) = (Ŝ(t))2 ∑
rti

rti

rti
− dti

V̂ [ln(Ŝ(t)] =
∑
rti

rti

rti
− dti

The end point of 100(1 − α)% confidence interval for S(t) on cumulative hazard or log-
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Table 1: Variables and categories with sample size

Variables Categories Sample size
Women Men

Arunachal Predesh 13667 2109
Assam 27089 4138
Manipur 12956 1856
Meghalaya 8662 1220

State Mizoram 11115 1661
Nagaland 10275 1567
Sikkim 5114 860
Tripura 4553 871

Type of place
ofresidence Urban 24754 3923

Rural 68567 10357
No Education 16418 1672

Educational level Primary 13257 2142
Secondary 54803 8629
Higher 8843 1837
Hindu 34828 5512

Religion Muslim 10443 1500
Christian 38789 5800
Others 9266 1468
SC 6707 1098

Ethnicity ST 51621 7985
OBC 12845 1993
Others 14345 1933
Poor 40363 6081

Wealth of family Middle 24945 3891
Rich 29613 4308

Working status No 11417 3248
Yes 3776 11032

Exposed to Media No 16651 1378
Yes 76670 12902

Working status and wealth of family are defined in the note.

survival scale is

exp(ln Ŝ(t)) ± z1− α
2
ŝe(ln Ŝ(t)) (1)

We have also computed the estimates of sample median and 95% confidence intervals
for all the estimates. The median duration of singlehood is obtained at the time point
at which S(t) is less than 0.5. Using the test for Mantel (1966) Log rank test is used to
compare the survival experience of duration of singlehood among the categories defined by
socio-economic covariates. The regression model for the hazard function that addresses the
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study goal is
h(t|x) = h0(t).r(β′x) (2)

Where h(t|x) is the hazard function, h0(t) is the baseline hazard and β is the vector of
regression parameters and x is the vector of explanatory covariates. Under the model in (2),
the ratio of the hazard functions for two individuals (or group of individuals) with covariates
x1 and x2 is

HR(t|x1, x2) = h(t|x1)
h(t|x2)

= r(β′x1)
r(β′x2)

(3)

From (3), see that if the hazard ratio is easily interpreted then baseline hazard is of little
importance. Cox (1972) proposed that the conditional hazard h(t|x) be modelled as the
product of h0(t) and an exponential function which is linear in x that is r(β′x) = eβ′x so
that

h(t|x) = h0(t).eβ′x (4)
Under the Cox model in (4), the hazard ratio

HR(t|x1, x2) = exp(β′x1 − x2)

As the method in (4) forces the hazard ratio between two individuals to be constant over
time, we call it proportional hazards model.

3. Results

The estimated median duration of singlehood along with 95% confidence interval
(C.I.) using (1) for both women and men computed using the non-parametric Kaplan-Meier
method is presented in Table 2. The median duration of singlehood for the whole North-
East women and men are 21 years and 26 years respectively. Among the eight states Assam
and Tripura have the shortest duration of singlehood estimated at 19 years each and Ma-
nipur have the longest duration estimated at 23 years for women. For men, Manipur and
Nagaland have longest median duration for singlehood of 27 years and Arunachal, Megha-
laya and Mizoram have the least median duration of 25 years. Those women and men who
are living in urban area have longer median duration of singlehood as compared to their
rural counterparts by two years. Women who are educated upto secondary or higher have
longer singlehood duration than those women who are educated upto primary or illiterate.
Women belonging to Christian and Others religious groups have longer median duration of
singlehood. However, those men who are in Hindu religion have longest median duration as
compared to the remaining groups. Results show that Muslim women and men have lowest
median duration of 18 years and 25 years respectively. Those men who are belonging to
SC, ST and OBC category have same median duration of 26 years and others category have
the highest (27 years) median duration. Women belonging to SC category have shortest
duration of singlehood. Median duration of singlehood for men living in poor and middle
wealth categories increases successively by one year. Rich men tend to have longer duration
of singlehood (28 years). Women from poor family have shortest singlehood duration among
all wealth categories. Generally individuals from richest family have to stay longer in single
status. Furthermore, working women have the longer length of singlehood duration than
their non-working counterparts but it is contrast in men category. Exposure to mass media
is also one of the significant covariates for the study of singlehood duration. Those women
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Table 2: Median duration of singlehood for women and men and its p-values for
testing significance of survivorship experience among categories

Variables Categories Median(95% C.I.) Log rank test
(p-value)

Women Men
Overall 21(20.95,21.05) 26(25.85,26.16)
Arunachal
Pradesh 20(19.88,20.12) 25(24.61,25.38)
Assam 19(18.92,19.08) 26(25.71,26.28)
Manipur 23(22.83,23.16) 27(26.56,27.44)

State Meghalaya 21(20.82,21.17) 25(24.57,25.42) 0.00
Mizoram 22(21.83,22.17) 25(24.57,25.42)
Nagaland 22(21.82,22.18) 27(26.53,27.47)
Sikkim 22(21.76,22.24) 26(25.37,26.65)
Tripura 19(18.83,19.17) 26(25.84,26.54)

Type of place
of residence Urban 23(22.87,22.13) 27(26.86,27.31) 0.00

Rural 20(19.94,20.06) 25(24.82,25.18)
No Education 18(17.91,18.08) 24(23.64,24.35)

Educational level Primary 19(18.91,19.08) 24(23.67,24.32) 0.00
Secondary 21(20.94,21.06) 26(25.79,26.20)
Higher 28(27.76,28.23) 30(29.59,30.40)
Hindu 21(20.92,21.08) 27(26.75,27.25)

Religion Muslim 18(17.90,18.10) 25(24.57,25.42) 0.00
Christian 22(21.94,22.08) 26(25.76,26.23)
Others 21(20.82,21.17) 25(24.53,25.46)
SC 20(19.82,20.17) 26(25.24,26.57)

Ethnicity ST 21(20.92,21.07) 26(25.79,26.20) 0.00
OBC 21(20.86,21.13) 26(25.59,26.40)
Others 21(20.86,21.13) 27(26.54,27.45)
Poor 19(18.94,19.06) 25(24.79,25.20)

Wealth of family Middle 21(20.90,21.09) 26(25.69,26.30) 0.00
Rich 23(22.88,23.11) 28(27.70,28.29)

Working status No 20(19.86,20.13) 29(28.17,29.80) 0.00
Yes 22(21.69,22.31) 25(24.84,25.17)

Exposed to Media No 19(18.91,19.08) 25(24.62,25.37) 0.00
Yes 21(20.94,21.05) 26(25.83,26.16)

who are exposed to mass media have 2 years longer singlehood duration than women who
are not exposed to mass media. The last column of Table 2 gives the p-values for testing the
significant difference of the survival experience among the groups or categories defined by
the socio-economic covariates. All covariates are significant at 5% level in the log rank test
which in turn suggests that these covariates are important to influence singlehood duration
and are potential candidates for the hazards regression model.
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Figure 1: Survival curves by background characteristics(women)
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Figure 2: Survival curves by background characteristics(men)
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3.1. Results of fitting the Cox hazards regression model

All covariates which are significant (at 5% level) in the bivariate analysis (Table 2) are
potential covariates to include in the hazards model as explanatory variables. Consequently,
two hazards models one for women and one for men are fitted with the significant covariates
to regress the duration of singlehood. The results of fitting the two models are presented
in Tables 3 and 4 which include the estimated coefficients, hazards ratio (indicating the
reference category), standard error of the estimates and p-values for Wald test for testing
the significance of the coefficients. The two models are checked and verified for violation
of proportionality assumptions and leverage for influencing observations. Both the models
pass the test for proportionality assumption and no influencing observation is present in the
data. We discuss it in the next subsection model diagnostics.

3.2. Model diagnostics

Model based inferences depend completely on the fitted Statistical model. For these
inferences to be valid in the real sense of the world, fitted model must provide an adequate
summary of the data upon which it is based. A complete and thorough examination of
the model’s fit and adherence to model assumptions is just as important as careful model
development. The methods for assessment of a fitted proportional hazards model essentially
consists of i) methods for testing the assumption of proportional hazards and ii) subject spe-
cific diagnostic statistics that extend the notion of leverage and influence to the proportional
hazards model.

A large number of tests of proportionality assumptions are found in the literature.
However, works developed by Grambsch and Therneau (1994) and simulation work by
Ng’andu (1997) have shown that an easily performed statistical test and an associated graph
yield a powerful and effective method for examining the proportionality assumption. These
are the two steps: 1) add the covariates by log time interaction to the model and assess
their significance using partial likelihood ratio test, score test or Wald test, and 2) plot the
scaled and smoothed scaled Schoenfeld residuals obtained from the model without interaction
terms. The result of the two steps should support each other.

The plot for scaled Schoenfeld residuals for some of the covariates are shown in An-
nexure (Figure 3 and Figure 4) for female and male respectively. Results of statistical tests
for proportionality assumptions are shown in Annexure (Table 5 and Table 6) for women
and men respectively. We examine the p-values for Wald tests in the interaction terms which
are all insignificant suggesting that the covariates have passed the proportionality tests. The
graphical plots are more or less flat in all the covariates which support that they all have
approximately zero slopes. Covariates with p-value significant at 5% level of significance are
removed from the model fit as they may violate proportionality assumption. In the women
data all covariates have insignificant p-values and they are all included in the main effects
model. All covariates except education are insignificant at 5% level of significance in the
men data. So, the final main effects model in the men data include the covariates state,
place of residence, religion, ethnicity, wealth of family, working status and media.

It is also important to check outliers by visualising the deviance residuals to identify
the influential subjects in the data. The plots of the deviance residuals are shown in Appendix
(Figure 5). From the plots it is evident that there are no widely deviant observations in both
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the women and men data.

Table 3: Estimated regression coefficients (β), hazards ratio (HR), standard
error(SE), two tailed p-values for the proportional hazard model for women

Variables Categories β HR SE p-value
Arunachal
Pradesh(Ref) - - - -
Assam -0.13 0.88 0.04 0.001∗∗∗

Manipur -0.34 0.71 0.04 0.000∗∗∗

State Meghalaya -0.17 0.84 0.045 0.000∗∗∗

Mizoram -0.35 0.70 0.045 0.000∗∗∗

Nagaland -0.35 0.70 0.04 0.000∗∗∗

Sikkim -0.21 0.81 0.05 0.000∗∗∗

Tripura 0.18 1.20 0.05 0.000∗∗∗

Type of place
of residence Urban(Ref) - - - -

Rural 0.07 1.08 0.03 0.005∗∗∗

No Education(Ref) - - - -
Educational level Primary 0.01 1.01 0.03 0.725

Secondary -0.38 0.69 0.03 0.000∗∗∗

Higher -1.25 0.29 0.05 0.000∗∗∗

Hindu(Ref) - - - -
Religion Muslim 0.35 1.41 0.05 0.000∗∗∗

Christian 0.06 1.06 0.04 0.111
Others -0.03 0.97 0.04 0.458
SC(Ref) - - - -

Ethnicity ST -0.14 0.87 0.04 0.001∗∗∗

OBC -0.06 0.94 0.04 0.151
Others -0.02 0.97 0.04 0.529
Poor(Ref) - - - -

Wealth of family Middle -0.69 0.94 0.03 0.019∗∗

Rich -0.09 0.92 0.03 0.006∗∗∗

Working status No(Ref) - - - -
Yes -0.08 0.93 0.02 0.001∗∗∗

Media No(Ref) - - - -
Yes -0.004 1.00 0.03 0.888

Ref=reference, ∗∗∗=p <0.01, ∗∗=p <0.05.

3.3. Interpretation of fitted models

The popularity of a fitted regression hazards model is due to its ease in interpreting
and understanding the hazards ratios which literally gives relative risk of experiencing the
event of interest with respect to a reference category for a categorical covariate. The 4th
column of Table 3 present the relative risk of first marriage for women and men respectively,
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Table 4: Estimated regression coefficients (β), hazards ratio (HR), standard
error(SE), two tailed p-values for the proportional hazard model for men

Variables Categories β HR SE p-value
Arunachal Pradesh(Ref) - - - -
Assam -0.37 0.69 0.04 0.001∗∗∗

Manipur -0.36 0.70 0.05 0.000∗∗∗

State Meghalaya -0.20 0.82 0.05 0.000∗∗∗

Mizoram -0.18 0.83 0.05 0.000∗∗∗

Nagaland -0.44 0.64 0.05 0.000∗∗∗

Sikkim -0.05 0.95 0.05 0.334
Tripura -0.25 0.78 0.06 0.000∗∗∗

Urban(Ref) - - - -
Type of place
of residence Rural 0.05 1.05 0.03 0.078∗

No Education(Ref) - - - -
Educational level Primary 0.01 1.01 0.03 0.725

Secondary -0.38 0.69 0.03 0.000∗∗∗

Higher -1.25 0.29 0.05 0.000∗∗∗

Hindu(Ref) - - - -
Religion Muslim 0.20 1.22 0.06 0.000∗∗∗

Christian 0.06 1.06 0.04 0.171
Others 0.013 1.01 0.05 0.795
SC(Ref) - - - -

Ethnicity ST -0.03 0.97 0.05 0.540
OBC -0.007 0.99 0.05 0.822
Others -0102 0.88 0.05 0.014∗∗

Poor(Ref) - - - -
Wealth of family Middle -0.24 0.79 0.03 0.000∗∗∗

Rich -0.37 0.69 0.03 0.000∗∗∗

Working status No(Ref) - - - -
Yes 0.65 1.91 0.04 0.000∗∗∗

Media No(Ref) - - - -
Yes 0.005 1.01 0.04 0.884

Ref=reference, ∗∗∗=p <0.01, ∗∗=p <0.05, ∗=p <0.1

along with the regression coefficients and standard error of coefficients for different socio-
economic covariates. In Table 3 and Table 4, the hazards ratios (HR) are shown for all
the North East states (women) with Arunachal as the reference category state. From the
p-values (Wald test)in the last column of Table 3, it is evident that the HR for all states are
significant at 5% level. Manipur’s HR of 0.71 reveals that women in Manipur have nearly
29% less risk of first marriage as compared to women in Arunachal Pradesh. Similarly,
women in Nagaland have significantly lower risk (30%) of first marriage as compared to
Arunachal women. However, women in Tripura marry earlier as the HR of 1.2 indicates that
the risk of first marriage for women in Tripura is nearly 1.2 times that of Arunachal women.
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As of now the insignificant HR’s may not be interpreted as such. For men (Table 4) all the
HRs for all the states except Sikkim are highly significant. Literally, the risks of marriage
for men in these states are significantly lower than that of Arunachal men.

In the whole North East region, women who live in urban area have lower risk of age
at marriage. Rural women have 1.08 times higher risk of first marriage as compared to urban
women. Approximately, men in rural area have the same higher risk (5%) of first marriage
as compared to urban men. Among women who are educated upto primary or no education
the risk of marriage does not differ significantly. However, those women who have education
upto secondary and higher have significantly lower risk of first marriage upto the tune of
31% and 70% respectively as compared women who have no education at all. Among the
religious groups at the community level, the relative risk of first marriage for Muslim women
is significantly higher than the Hindu women. Muslim women have 51% higher chance to
marry earlier than the Hindu women. Similarly, for Muslim men have 22% more chance of
first marriage as compared to men in the Hindu religion. Other categories of religion are
not significant. Among the ethnic groups, ST category has HR = 0.97 which interpret that
women of ST category have 3% less likely to marry as compared to women belonging to SC
category. Other categories of ethnicity are not significant.

At the household level, women living in middle and rich family exhibit lower risks of
marriage as compared to women in poor family. Women in middle and rich wealth quintiles
are 6% and 8% less likely to marry as compared to women in poor wealth quintile respectively.
Similarly, men belonging to middle and rich wealth quintiles are respectively 21% and 31%
less likely to marry as compared to men belonging to poor wealth quintile.

At the individual level, working status of both women and men has significant effect
on singlehood duration. Working women have less chance of marriage to the tune of 7% less
as compared to women living with no working status. However, for men the result is just
the reverse as working men have more chance to marry to the tune of 1.9 times more likely
as compared to non-working men.

4. Discussion

Age at marriage is one of the significant life events for every individual. It signals
the entry of each individual into the state of being married. This study attempted to
investigate the median duration of singlehood for North east India using the NFHS-4 data.
Cox proportional hazards model is fitted to assess the significant effect of various covariates
on the singlehood duration.

First, it is observed that the duration of singlehood varies among groups of population
identified by different covariates. In NFHS-4 (2017), 2015-16 (International Institute for
Population Sciences (IIPS) and ICF, 2017) the median age at marriage for women and men
in India is estimated to be 18.6 years and 24.5 years respectively. However, for North–east
region the median age at first marriage for women is 21 years and 26 years for men. This
indicates that the people in North east India are more likely to live in single status than
the people in the rest of the country. North East region of India comprises of eight states
with a different socio-cultural set up from the mainland India. From the results states
with Christian as main religion like Arunachal, Meghalaya and Mizoram have least duration
of singlehood in men category. Whereas Manipur and Nagaland show higher estimates of
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median duration of singlehood than others in men category.

Rural women and men are more likely to get married at early ages which in turn
indicate that urban people have longer median duration of singlehood as compared to rural
people in the North east region. Educational level of individuals is one of the important
determinant factors for the early marriage as many literatures have cited. North East women
and men with higher education have longer duration of singlehood than others with low
educational level which is in line with the findings of other studies. The chance of singlehood
for women increases with increase in educational level.

For the whole country according to NFHS-4 (2017), 2015-16 (International Institute
for Population Sciences (IIPS) and ICF, 2017) and NFHS-3 (2007), 2005-06 (International
Institute for Population Sciences (IIPS) and Macro International, 2007) reports, Hindus and
Muslims have similar median age at marriage for the whole country. However, in the North
East region, Muslims are more likely to marry at early ages than the Hindus and Christians.
Thus, Muslims have shorter duration of singlehood.

Present paper also explores the effect of ethnicity on the survival experience on the
duration of singlehood. Schedule tribe women population has lower risk of marriage as
compared to Schedule caste women population in the region less chance of marriage than
the schedule caste women. Besides, men from others ethnicity groups are less likely to get
married than those in other categories. Another important finding is that wealth of the
family significantly affects the duration of singlehood. Women from poor family are more
likely to marry earlier than others. In a similar manner,men fro m poor family have higher
chance of marriage than men from richer families. Last but not the least; we assess the
influence of working status on the singlehood duration. Working women are more likely
to be in single state than non-working women. Interestingly, this phenomenon is just the
reverse for men, which shows that men who are currently working have more risk of marrying
earlier than their non- working counterparts. This is also in line with some of the findings
in the literature. Exposure to mass media has no significant effect on the study of duration
of singlehood in North East region.

5. Conclusion

Marriage is a major life event which basically marks the onset of married couples
contributing to human reproduction. As such marriage is considered as an important prox-
imate determinant of fertility for a country or a region. As early marriages are expected
to contribute more births it is important to increase the age at marriage of both men and
women in order to reduce fertility NFHS-3 (2007). The median age at marriage in India
increases from NFHS-3 (2007) to NFHS-4 (2017) by two years for both men and women. In
order to further improve the age at marriage, the policy makers have to give further atten-
tion to the socio-economic disparities of age at marriage in the country. Regional findings
will be helpful in the present context and as such the findings in this paper could be helpful
to policy and programme planners while addressing the issue of population control through
improvement in age at marriage.
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Note

1. According to NFHS-4 (2017), Wealth index is a measure of living standards based on
households’ ownership of items such as televisions to housing features such as drinking
water sources. The population is divided into five equally sized groups based on index.
The top 20% form the richest, and the bottom 20% the poorest quintile. In the present
analysis the wealth index is condensed into 3 categories viz (1) poorer and poorest into
poor, (2) middle and (3) richer and richest to rich.

2. Women who are currently working outside the home for earning are considered as
working women. Such working women are categorized as “Yes” otherwise “No”.
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ANNEXURE

Table 5: Test for proportional hazards assumption(women)

Covariants Categories Chisq p-value
Assam 0.120 0.729
Manipur 0.517 0.472

State Meghalaya 0.630 0.428
Mizoram 0.222 0.638
Nagaland 0.268 0.604
Sikkim 0.533 0.465
Tripura 1.170 0.279

Type of place of residence Rural 1.950 0.163
Educational level Primary 2.600 0.107

Secondary 0.001 0.969
Higher 119 0.000

Religion Muslim 1.880 0.171
Christian 0.518 0.472
Others 0.206 0.650

Ethnicity ST 0.168 0.682
OBC 3.060 0.081
Others 1.290 0.257

Wealth of family Middle 4.430 0.035
Rich 15.600 0.000

Working status Yes 16.600 0.000
Media Yes 3.710 0.054

Assam 1.300 0.254
Manipur 2.430 0.119

State:time Meghalaya 0.037 0.847
Mizoram 1.420 0.234
Nagaland 0.739 0.390
Sikkim 0.365 0.546
Tripura 0.075 0.784

Type of place of residence :time Rural 0.592 0.442
Educational level :time Primary 2.600 0.107

Secondary 0.001 0.969
Higher 119 0.000

Religion:time Muslim 1.880 0.171
Christian 0.518 0.472
Others 0.206 0.650

Ethnicity :time ST 0.168 0.682
OBC 3.060 0.081
Others 1.290 0.257

Wealth of family :time Middle 0.757 0.384
Rich 0.180 0.672

Working status:time Yes 3.380 0.066
Media :time Yes 0.483 0.487
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Figure 3: Plot of scaled Schoenfeld residuals and smoothed scaled Schoenfeld
residuals for assessing proportionality assumptions in some covariates (women)
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Table 6: Test for proportional hazards assumption(men)

Covariates Categories Chisq p-value
Assam 0.800 0.371
Manipur 1.450 0.229

State Meghalaya 8.640 0.003
Mizoram 4.330 0.037
Nagaland 0.137 0.711
Sikkim 0.172 0.678
Tripura 0.143 0.706

Type of place of residence Rural 4.840 0.028
Educational level Primary 6.400 0.011

Secondary 1.510 0.219
Higher 119.000 0.000

Religion Muslim 0.096 0.757
Christian 1.310 0.253
Others 0.051 0.822

Ethnicity ST 0.713 0.398
OBC 0.263 0.608
Others 0.000 0.922

Wealth of family Middle 0.080 0.777
Rich 0.732 0.392

Working status Yes 1.400 0.237
Media Yes 0.035 0.852

Assam 1.720 0.190
Manipur 0.657 0.418

State:time Meghalaya 8.920 0.003
Mizoram 6.340 0.012
Nagaland 0.807 0.369
Sikkim 0.102 0.749
Tripura 0.196 0.658

Type of place of residence :time Rural 1.890 0.169
Educational level :time Primary 7.010 0.008

Secondary 7.480 0.006
Higher 91.700 0.000

Religion:time Muslim 0.151 0.698
Christian 0.645 0.422
Others 0.123 0.725

Ethnicity :time ST 0.183 0.669
OBC 0.137 0.711
Others 0.082 0.775

Wealth of family :time Middle 0.070 0.792
Rich 0.711 0.399

Working status:time Yes 0.676 0.411
Media :time Yes 0.013 0.911
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Figure 4: Plot of scaled Schoenfeld residuals and smoothed scaled Schoenfeld
residuals for assessing proportionality assumptions in some covariates (men)
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Figure 5b: Deviance residuals for men 

covariates 
 

Figure 5: Deviance residuals





Statistics and Applications {ISSN 2454-7395 (online)}
Volume 22, No. 1, 2024 (New Series), pp 171–192
http://www.ssca.org.in/journal

A Multi-Criteria Decision-Making Approach to Compare
the Maternal Healthcare Status of Indian States: An

Application of Data Science

Sangeeta Goala1, Supahi Mahanta2 and Dibyojyoti Bhattacharjee1
1Department of Statistics, Assam University, Silchar, Cachar, Assam

2Department of Agricultural Statistics, Assam Agricultural University, Jorhat, Assam

Received: 30 March 2023; Revised: 31 May 2023; Accepted: 14 July 2023

Abstract
The health system of a nation influences the well-being of its citizens. Maternal health

is about the contentment of women throughout pregnancy, childbirth, and the postpartum
period. In a country with millions of people like India, there are still goals in the area of ma-
ternal healthcare that need to be met despite widespread concern by the authorities. Spatial
quantification of maternal health is necessary to identify the regions of immediate concern.
In light of the methods and the variables used- the result of the quantification techniques
produces a range of possible outcomes. The paper builds Composite Indicators based on
some parameters of maternal healthcare, using different weighting methods, namely- TOP-
SIS, Iyengar-Sudarshan, Principal Component Analysis, Data Envelopment Analysis, and
Ordered Weighted Average. Eventually, the most robust weighting technique is identified.
The study finds Lakshadweep, Kerala, and Goa have better maternal healthcare, while Bihar,
Arunachal Pradesh, and Nagaland are poorly positioned.

Key words: Demography; Composite index; TOPSIS; Principal component analysis; Data
envelopment analysis; Ordered weighted average; Robustness.

AMS Subject Classifications: 90B50, 91B42

1. Introduction

Health, education, and income are the essential aspects of human development Swain
and Mohanty (2010). A healthy society results from a community’s access to quality health-
care services. The WHO rightly emphasized that the main objective of a healthcare system
is to deliver better health services appropriately WHO (2000). However, the performance of
a health system in achieving its objectives is measured by the actual health outcomes. The
primary health system undertakes several interventions for promotive and preventive care of
mother and child, along with curative and referral services Mishra (2001).

The healthcare services have two divisions, as detailed in the seventh schedule of part
XI of the Indian Constitution, which deals with dividing powers between the central and
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state governments. Some of the health services are under the Concurrent List 1 like All In-
dia Institutes of Medical Sciences (AIIMS), controlled by the central government under the
jurisdiction of the Ministry of Health and Family Welfare (MoHFW), whereas Government
Medical Colleges, Civil Hospitals, Community Health Centers (CHC), Primary Health Cen-
ters (PHC) and Sub Centers are under the control of Directorate of Health Services by state
government comes under State List. ‘The matter of public health belongs to state list and
maternity benefits is under concurrent list so a state-wise variation in maternal healthcare
is expected’ Chakraborty and Bhattacharjee (2017). For example, Janani Suraksha Yojana
(JSY) is a centrally sponsored scheme but the state governments implement it through civil
hospitals, health centers, etc. The extent of implementation of such schemes varies depending
upon the quality of governance at the state level.

Maternal Health refers to women’s health during pregnancy, childbirth, and postpar-
tum. It encompasses the healthcare dimensions of family planning, preconception, prenatal
and postnatal care to reduce maternal morbidity and mortality Chakraborty and Bhat-
tacharjee (2017).

With the safe motherhood initiative by the UN in the 1980s, India initiated the
Reproductive and Child Health Policies in 1997, followed by the National Population Policy
in 2000, the National Health Policy in 2002, and then the National Rural Health Mission
(NRHM) in 2005 based on Global health commitments for Millennium Development Goals
(MDGs) to enhance access to high-quality healthcare for women Mali (2018). It is estimated
that about 21 million women benefited from this scheme between April 2005 to August
2009 Jain (2010). In the last three years, 28.223 million mothers benefitted from JSY,
with an expenditure of 46.23 billion. In India, institutional delivery has increased to 78
percent Janani Suraksha Yojana (2017). According to Sunaina (2018) the fifth Millennium
Development Goal (MDG) called for lowering the Maternal Mortality Ratio (MMR) by at
least three-fourths by 2015, from 437 to 109 per 100,000 live births. The achievement by
2015 was 167, according to the country report for the MDG 2015 MDG (2015).

Recognizing the need for improved maternal health, the government of India came
up with different schemes like the cash assistance program Janani Suraksha Yojana (JSY)
in April 2005 to encourage institutional deliveries by providing cash incentives to preg-
nant women and Accredited Social Health Activists (ASHA) and thus to reduce the MMR,
especially among the states with high maternal mortality. The Janani Shishu Suraksha
Karayakaram (JSSK) provided free medical services such as nutritional supplements, ante-
natal check-ups, medical transportation, free admission to hospitals, etc., during the period
of pregnancy and with limited prenatal and post-natal healthcare through public health-
care institutions. According to Mali (2018) the Indira Gandhi Matritva Sahyog Yojana
(IGMSY) provided cash to pregnant women to make up for the loss of income they expe-
rienced during pregnancy, subject to age and parity requirements. Another program, the
Pradhan Mantri Surakshit Matritva Abhiyan (PMSMA) provides guaranteed, comprehen-
sive, and high-quality antenatal care at no cost to all pregnant women on the ninth day
of every month. PMSMA assures pregnant women a minimum package of antenatal care
services in their second/third trimesters at assigned government health centers NHP (2016).

1A list of activities that both state and central government look after. Public Health is one such activity.



2024] COMPARISON OF INDIAN STATES USING MCDM 173

Pandey and Singh (2018) measured the frequency with which women utilize pregnancy
and child health services using data from the National Family Health Survey (NFHS-III).
Their work serves as an illustration of Andersen’s Behavioural Model of healthcare usage.
It was discovered that the quintile of home wealth and the mother’s educational level were
accurate indicators of the use of maternal healthcare services.

Obviously, better maternal healthcare namely, prenatal health, including antenatal
check-ups, neo-natal tetanus protection, and pregnancy registration in suitable health centers
shall lead to a decrease in maternal mortality. This study’s primary goal is to investigate
the maternal healthcare condition in different Indian states and Union Territories (UTs) to
identify the maternal health services that need immediate attention. This shall help the
government in policy-making to achieve uniform national growth.

Since many demographers are continually working on various issues relating to the
health sector, there is a wealth of literature concerning maternal health in India. Blum and
Fargues (1990) created a mechanism to predict maternal mortality when cause-of-death is
insufficient. They provided two strategies: one based upon an extrapolation by smoothing
the observed profile of deaths among women, which yields lower estimates, and another on
the age-specific mortality ratio of men and women. By processing a few life tables, one can
quickly determine the number, age pattern, and trend of maternal mortality regardless of the
method. Bhat (2002) derived estimates of maternal mortality for India using the sisterhood
technique and a regression method that took into account sex differences in adult mortality
and compared those values to the values of the estimates from different sources.

Research on the disparity in maternal healthcare facilities in different regions is under-
taken periodically using different approaches, leading to the classification of alternatives are
abundant in the literature. Authors like Iyengar and Sudarshan (1982), Ram and Shekhar
(2006), Mohanty and Ram (2001) developed different multivariate ranking techniques using
various parameters to rank the districts/states of India. These studies mainly focused to
calculate a single index and a conclusion is made based on the value of the index. In this
study, some methods of computing maternal healthcare are considered, and the authors tried
to reach a unique solution that gives the most robust result.

Robustness signifies the insensitivity of a result to minor deviations from the as-
sumptions Huber and Ronchetti (2009). “In a broad informal sense, robust statistics is a
body of knowledge, partly formalized into theories of robustness, relating to deviations from
idealized assumptions in statistics” Hampel et al. (1986). For robust composite indices, mi-
nor changes in the values of the participating variables in the index should not change the
values in ranking. Robustness analysis is required to limit the possibility of getting mean-
ingless Composite Indicators. This kind of analysis can enhance the final results’ accuracy,
credibility, and interpretability OECD (2008).

Many studies are carried out by converging values from different relevant parameters
into a single index using several different methods of aggregation and weighting Chakraborty
and Bhattacharjee (2017), Iyengar and Sudarshan (1982), Mohanty and Ram (2001). Gang
et al. (2012) ranked the alternatives using various Multi-Criteria Decision Making (MCDM)
methods and later used Spearman’s rank correlation coefficient to generate the final ranking
to resolve the inconsistency. A significant value of Spearman’s rank correlation coefficient
indicates a good agreement between a given MCDM method with other MCDM methods.
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In this study, different weighting techniques are visited to build Composite Indicators
using parameters associated with maternal healthcare. This paper distinguishes itself from
the previously mentioned papers by employing multiple weighting methods to construct
Composite Indicators, rather than creating a single index. (Gang et al., 2012, pp.198)
claims that - applying various MCDM methods to a sorting problem is beneficial because
the ranking agreed by several methods is more trustful than a single method. However, it
is necessary to check the robustness of the various methods used for ranking the regions to
identify the most reliable method of ranking.

In this paper, the researchers identified some parameters that influenced maternal
healthcare. These parameters were then combined into a single index using different weight-
ing methods, forming different indices. However, it should be noted that no single approach
can be superior in all aspects, and the selection of the optimal method depends on its
compatibility and robustness. Combining some scattered statistical tools, the researcher’s
aim is to determine the robust Composite Indicator (MCDM method) from the competing
approaches.

2. Objectives of the study

Based on the research gap identified and the issues raised in the above discussion,
this paper intends to attain the following objectives :

• Formulate Composite Indicators to measure the extent of maternal healthcare status
of the states/UTs of India combining all the maternal healthcare parameters.

• Identifying the most robust composite index amongst the competing methods of weight-
ing.

• Ranking the states/UTs according to maternal health care services and accordingly
identifying the state-wise level of maternal healthcare attainments.

3. Data source

The study uses secondary data from 36 Indian states and union territories that can
be found in factsheets for the National Family Health Survey (NFHS-4) (http://rchiips.
org/nfhs/factsheet_NFHS-4.shtml). The following parameters for evaluating maternal
healthcare are identified from the aforementioned data source:

• P1 = Mothers who had an antenatal check-up in the first trimester (%)

• P2 = Mothers who had at least 4 antenatal care visits (%)

• P3 = Mothers whose last birth was protected against neonatal tetanus (%)

• P4 = Mothers who consumed iron folic acid for 100 days or more when they were
pregnant (%)

• P5 = Mothers who had full antenatal care (%)

(http://rchiips.org/nfhs/factsheet_ NFHS-4.shtml)
(http://rchiips.org/nfhs/factsheet_ NFHS-4.shtml)
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• P6 = Registered pregnancies for which the mother received Mother and Child Protec-
tion (MCP) card (%)

• P7 = Mothers who received postnatal care from a doctor/ nurse/ LHV/ ANM/ mid-
wife/ other health personnel within 2 days of delivery (%)

• P8 = Mothers who received financial assistance under Janani Suraksha Yojana (JSY)
for births delivered in an institution (%)

4. Different steps of composite indicator building

A Composite Indicator (CI) is a multidimensional concept calculated based on two or
more single indicators on the basis of an underlying model. It compares spatial performance
and is increasingly recognized as a useful tool in policy analysis and public communication
OECD (2008). Defining a composite index is an integral part of MCDM problem which looks
into selecting, ranking, and evaluating a finite set of alternatives (in this case states/UTs)
Singh and Pant (2021). A brief description of the various steps involved in building a
composite index is provided in the subsequent Sub-sections.

4.1. Normalization of parameters

The first step of Composite Indicator (CI) building invites the normalization of the
variables. By converting the data to pure, dimensionless numbers, the data collected for the
variables under consideration are normalized to bring the indicators to the same standard.
Although there are other normalizing methods, in the current work re-scaling approach is
utilized which is commonly coined as the max-min approach of indicators. To know in detail
about different normalization techniques, one may refer to (OECD, 2008, pp.29–32).

Let, xij represents the value of the ith state of the jth parameter. The normalized
decision matrix yij is calculated as

yij =
xij − min

i
(xij)

max
i

(xij) − min
i

(xij)
, i = 1, 2, . . . , n and j = 1, 2, . . . , m (1)

The normalization technique is fixed throughout the study only the weighing tech-
niques are changed. The weights of the normalized parameters are computed using five
different weighting techniques, then the weights and normalized score of a given state are
combined as a sum-product (linear aggregation) to attain the value of the composite index
of the state. As five weighting techniques are used so for each state five composite index
values are obtained, one for each weighing technique.

4.2. Weighting of the indicators

As weights quantify the relative importance of the different factors in the composite
index and also control the dominance of the parameters with higher variance, so different
popular methods of weighting are identified from the available literature and different sets
of weights wj for each of the weighting methods are computed. The values of the Composite
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Indicators are calculated using the method of linear aggregation. A brief description of the
various weighting techniques is provided below:

(i) Technique for order preference by similarity to ideal solution

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) ap-
proach, developed by Hwang and Yoon (1981) is a mechanism for ranking alternatives based
on a variety of factors by minimizing the distance to the ideal solution and maximizing the
distance to the negative-ideal solution.

Let, xij represent the value of the ith state of the jth parameter; L(i, IDR) and
L(i, NIDR) are two components of an ideal solution and negative-ideal solution, then

L(i, IDR)=

√√√√√√√√
m∑

j=1

(
xij − max

i
(xij)

)2
wj

m∑
j=1

x2
ij

(2)

L(i, NIDR) =

√√√√√√√√
m∑

j=1

(
xij − min

i
(xij)

)2
wj

m∑
j=1

x2
ij

(3)

The weight (wj) is calculated using Shannon’s entropy Wu et al. (2011), Chakraborty and
Bhattacharjee (2017)

wj = 1 − ϕj∑
j

(1 − ϕj)
; 0 < ϕj < 1 and

m∑
j=1

wj = 1 (4)

The entropy of the jth parameter is given by

ϕj = −
∑

i

pijln(pij)
ln(n) (5)

where, pij = dij∑
j

dij

and n = total no of state/UT;

dij = xij

max
j

(xij)
in case of positive indicators

and dij = xij

min
j

(xij)
in case of negative indicators

Composite Indicator (CIT OP ) for the TOPSIS method is given by:

CIT OP = L(i, IDR)
L(i, IDR) + L(i, NIDR) (6)
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(ii) Iyengar-Sudarshan method

Iyengar and Sudarshan (1982) proposed a weighting technique where the weights vary
inversely proportional to the variation in the respective variables. Here the weights act as
variance stabilizers of the participating parameters.

Let, yij represents the normalized value of the ith state of the jth parameter, and wj

represents the weights of the jth parameter, then,

wj = k√
var

i
(yij)

with
∑

j

wj = 1 and 0 < wj < 1 (7)

and k =
[ m∑

j=1

1√
var(yij)

]
(8)

These weights stabilize the variance of the normalized parameters and prevent any
one of the variables from dominating the composite index. The choice of the weights in
this manner would ensure that large variation in any one of the indicators would not unduly
dominate the contribution of the rest of the indicators and distort the inter-state comparisons
Bhattacharjee and Wang (2011).

Composite Indicator (CIIS) for the Iyengar − Sudarshan method is given by:

CIIS =
m∑

j=1
wjyij (9)

(iii) Principal component analysis

The eigenvalues indicate the proportion of each variable’s variance that can be ex-
plained by the primary component. The Eigenvalues of the parameters for maternal health-
care can be obtained using the Principal Component Analysis (PCA) method.

The term Principal Component Analysis (PCA) refers to a technique that employs
complex mathematical principles to reduce a large number of variables that could be asso-
ciated with one another into a smaller set. It rotates the data point cluster to highlight the
maximum variance. Additionally, because the input variables are grouped in a particular
way using the Principal component analysis, the least important variables can be eliminated
while the most useful ones can be retained.

wj = Individual Eigen values
Sum of all Eigen values (10)

Composite Indicator (CIP CA) for the Principal Component Analysis method is given
by:

CIP CA =
m∑

j=1
wjyij (11)
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(iv) Data envelopment analysis

Data Envelopment Analysis (DEA) is a mathematical programming technique pre-
sented by Charnes et al. (1978). Its application has been focused mainly on efficiency as-
sessment. An efficiency frontier that could be used as a benchmark to compare countries’
relative performance is estimated using linear programming tools by DEA. This requires
the development of a benchmark (the frontier) and the estimation of the distance between
nations in a multi-faceted system OECD (2008).

The weighted composite index for the ith state is given by,

CIDEA =

m∑
j=1

wjyij

m∑
j=1

wj

(12)

The weights are to be selected in such a way that CI is maximized for the ith state. Thus,
the objective function is

Maximize CIDEA =

m∑
j=1

wjyij

m∑
j=1

wj

(13)

Constrained by the following relations
m∑

j=1
wj = 1 ; a < wj < b ∀j

The values of a and b are fixed for a particular problem and it depends on the value of the
number of parameters (m) in the composite index.

(v) Ordered weighted average

Yager (1988) introduced the concept of Ordered Weighted Average (OWA). The main
objective of the technique is to determine the weights of the different components partici-
pating in the formation of the composite index.

The weighted composite index for the ith state is given by,

CIOW A =
m∑

j=1
wjyij (14)

where yij is the ith largest observation of the normalized matrix and wj are the corresponding
weights with the ordered values of the component yij such that

wj > 0,
m∑

j=1
wj = 1, ∀j

Accordingly, some OWA operators are defined as the entropy function explaining the disper-
sion in the weights,

Disp(wj) = −
m∑

j=1
wjln(wj) (15)
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and some OWA operators are called the orness and are defined as,

α = Orness(wj) = 1
n − 1

m∑
j=1

(n − j)wj (16)

The OWA weights are determined using the linear programming method minimax
disparity rule proposed by Wang and Parkan (2005). The objective function is

Minimize δ (17)

such that
m∑

j=1

(n − j

n − 1
)
wj = α, where α ∈ [0, 1], wj > 0 (18)

m∑
j=1

wj = 1, ∀j and |wj − wj+1| ⩽ δ, j = 1, 2, . . . , j − 1 (19)

The ultimate value of the composite index shall lie between the highest and the lowest value
of the participating components in the formation of the index.

5. Process of testing robustness of composite indicators

As such, no fixed method is available to check the robustness of composite indices.
With the help of the available resources from the literature, combining some scattered sta-
tistical tools an algorithm is developed to identify the robust Composite Indicator/MCDM
method from a set of competing approaches. The algorithm is provided in Table A.1 of the
paper. However, before introducing the method one needs to know about some statistical
tests detailed below:

The process of measuring the robustness of the ranks of the same set of subjects
(alternatives) obtained from different processes discussed here is improvised notation-wise
over the method explained by Saisana et al. (2005) and Saltelli et al. (2008). Here, Rij

denotes the rank of the ith state/UT (alternative) obtained from the jth method. Let there
be n states/UTs and m competing methods.

5.1. Inter-rater agreement of subjective judgment

The method proposed by Tinsley and Weiss (1975) looks into the agreement in ranks
of a common group of subjects provided by different raters. The method can be hired and
designed into the current setup to compare the agreement of the rating (in this case the
ranking) of states/UTs obtained from different weighting methods. From the ranks of the n
competing states and m methods S and S1 are computed, where,

S = mn
(n2 − 1)

12 , S1 = 1
m

n∑
i=1

[
(

m∑
j=1

Rij) − ( 1
n

n∑
i=1

m∑
j=1

Rij)
]2

and S2 = S − S1

The corresponding test statistic as defined by Tinsley and Weiss (1975) is

F = S1/n − 1
S2/nm − n

∼ F(n − 1, nm − n) (20)
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It can be applied to test the null-hypothesis of independence amongst the raters i.e., the
different methods in this case related to the ranking of states are independent of each other.
The agreement between the raters takes place in case the null hypothesis is rejected.

5.2. Rank correlation matrix

The Rank correlation coefficient measures the degree of similarity between two rank
sets of the same groups of subjects. A high value of the Rank correlation coefficient implies
a better agreement between two rank sets and vice versa. The Rank correlation coefficient
(Rij) is defined as

Rij = 1 − 6 ∑
dijk2

n(n − 1) (21)

where n is the number of alternatives (states/UTs) and dijk is the difference between ranks
of kth state in the ith and jth weighting technique.

The correlation between the various methods of ranking can be checked with the help
of the rank correlation matrix. It gives the pairwise comparison of rank correlation with
every method.

5.3. Distance between ranks across different methods

The aggregate absolute difference in rank of the ith state across all the different
methods is given by,

m∑
j′=1,j′ ̸=j

∣∣∣Rij − Rij′

∣∣∣ (22)

gives the sum of the absolute difference of the rank of the ith state obtained through the jth

method with the rank of the same ith state obtained from all the other (j′)th methods i.e.,
j′ = 1, 2, . . . , j − 1, j + 1, . . . , m. More precisely, in (22) j is fixed but. j′ is varying from 1
to m (assuming there are m methods) but, j ̸= j′

Subsequently, the average R̄j, aggregating the difference of ranks of all the states
across all the competing methods is defined as

R̄j = 1
n(m − 1)

n∑
i=1

m∑
j′=1,j′ ̸=j

∣∣∣Rij − Rij′

∣∣∣ (23)

The ideal situation when all the techniques are equally robust is that the value of
R̄j should be very close to 0 ∀ j and accordingly the Avg(R̄j), with average taken over
all the different methods shall be close to 0 too. Accordingly, the one-sided Studentized t
is proposed for testing the null-hypothesis that H0 : Avg R̄j = 0 against the alternative
hypothesis H1 : Avg R̄j > 0, taking the values of R̄j as j = 1, 2, . . . , m as the values of the
test variable. Accepting the null hypothesis takes us to the conclusion that the methods are
equally robust.
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Another single measure for overall robustness is defined in OECD (2008) as,

R̄ =
m∑

j=1
R̄j = 1

nm(m − 1)

n∑
j=1

n∑
i=1

m∑
j′=1,j′ ̸=j

∣∣∣Rij − Rij′

∣∣∣ (24)

High values of R̄ indicate the need for robustness check or sensitivity analysis of the
competing methods (OECD, 2008, pp.117–118). However, the existing body of literature is
yet to define any test for the statistic R̄ to be utilized to test the hypothesis H0: R̄ = 0
against the alternative H1 : R̄ > 0.

5.4. Kendall Tau distance

The Kendall Tau rank distance Kendall (1938) is a statistic originally used to compute
the dissimilarity between two rank sets and can be extended to find the robust composite
index out of the competing composite indices. Considering two rank-sets of the same set of
subjects (alternatives) say τ1 and τ2, the distance is defined as

K(τ1, τ2) =|{(i, i′) : i < i′, [τ1(i) < τ1(i′) ∧ τ2(i) > τ2(i′)]
∨ [τ1(i) > τ1(i′) ∧ τ2(i) < τ2(i′)]}| (25)

where, τ1(i) and τ2(i′) are the ranking of the ith and (i′)th subject in the rank set τ1 and τ2
respectively. The expression in (25) is summarized as

K(τ1, τ2) =
∑

{i,i′}∈P
i<i′

K̂i,i′(τ1, τ2) (26)

where, P is the set of unordered pairs of all the distant subjects in the rank set τ1 and τ2
respectively, and

K̂i,i′(τ1, τ2) = 0 if the ith and (i′)th subject are in the same order in both the rank set τ1 and τ2

= 1, otherwise

Thus, the statistic K(τ1, τ2) is a measure of the distance between the rank set τ1 and τ2 for
the same set of subjects. Accordingly, the statistic for an aggregate distance of a rank set τj

and τj with all other rank set τj′ is defined as

Kj =
m∑

j′=1
j′ ̸=j

K(τj, τj′), j = 1, 2, . . . , m (27)

The rank set τj shall be considered as the most robust set of ranks of the subjects (alterna-
tives) over any other rank set τj′ if

Kj < Kj′ ∀ j′ (but ̸= j) (28)

Eventually, the jth method of ranking stands out to be the most robust technique of ranking
the subjects given the dataset.
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6. Analysis and result

As described in Section 4.1. the normalized values of the parameters for the different
states/UTs are computed. The normalized values of the parameters are used to calculate the
composite index with the use of five weighting techniques viz ; TOPSIS, Iyengar-Sudarshan,
Principal Component Analysis, Data Envelopment Analysis, and Ordered Weighted Average.
The aggregation of the normalized score was done using the linear aggregation method. The
normalization and aggregation method remains the same throughout the study only the
weighting techniques varied. Based on the methods discussed in Section 4.2. above, 5 sets
of composite indices along with their ranks are obtained and are given in Table A.2. From
Table A.2, it can be seen that Kerala and Lakshadweep are the two states that are on the
top list of ranking for all the methods. However, for other states, it can be seen that there
is heterogeneity of ranking especially for ranks obtained by the TOPSIS method which has
significant dissimilarity in ranking in comparison to the other four methods. Moving down
the table one can find a lack of consensus on ranks among the different methods. This shows
the relevance of the current study. Different method generates different ranking so one needs
to check for the robustness of different competing approaches to reach a unique set of ranks.

The next step is to use the proposed algorithm (c.f. Table A.1) to check the robustness of
the methods. All the steps of the algorithm are implemented in R-software.

Initially, the test proposed by Tinsley and Weiss (1975) is applied to look for consistency in
the rankings obtained from several methods under

Null hypothesis H0: There is independence in ranks obtained from different methods.

Alternative hypothesis H1: the ranking methods are in agreement with each other.

After performing the test in R-software we have found that Cal.F (42.3184) > Crit.F (1.5050)
at 5% level of significance. Accordingly, the null hypothesis is rejected and it is concluded
that there is an agreement between the ranking methods.

As agreement could be found between the rankings one can skip steps III and IV of the
algorithm (c.f. Table A.1) and directly can move towards step V to check:

Null hypothesis H0: All the ranking methods are equally robust.

Alternative hypothesis H1: All the ranking methods are not equally robust.

From Table 1 we find that the p-value is 0.0024 < 0.05, so, we shall conclude that all
the methods are not equally robust. Hence, the next task is to determine the most robust
ranking method out of the methods used (c.f. Table A.1). Kendall’s distance measures the
pairwise disagreement between two rankings. The lesser the distance, the more robust the
method is. A detailed discussion on the same is available in Section 5.4.

Table 1: Result for robustness check

R1 R2 R3 R4 R5 R t-value p-value
4.6389 2.2917 4.0278 2.1389 2 3.0389 5.646494 0.0024



2024] COMPARISON OF INDIAN STATES USING MCDM 183

Table 2 confirms that method Ordered Weighted Average (OWA) has the least score
(190), i.e., the lowest distance with all other methods. Hence, the composite index based on
the OWA method of weighting is considered to be the most robust method for the said data.
Accordingly, the composite index values obtained from OWA method are shown in Figure 1.

Table 2: Kendall’s distance measurement

Sl no Methods Distance between rankings (S) Rank
1 TOPSIS 422 5
2 I-S 215 3
3 PCA 398 4
4 DEA 199 2
5 OWA 190 1

*one with minimum score is ranked 1

Figure 1: CI values of all the states/UTs using OWA method

7. Discussion and conclusion

Using several healthcare indicators, the article aimed to compare the situation of
maternal healthcare in India’s various states and UTs using the MCDM technique. In order
to determine the most reliable weighting approach for merging multiple healthcare indicators,
the study suggests a methodology incorporating a number of dispersed statistical methods.
The states and UTs were rated in terms of their maternal healthcare facilities using the
Ordered Weighted Average (OWA) technique, as this weighting tool posted itself as the most
robust of the various weighting techniques. The states and UTs that do poorly in terms
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of maternal healthcare are identified, and pertinent discussion concerning those states is
conducted.

According to the aforementioned survey, the top five performing states/UTs are Lak-
shadweep, Kerala, Goa, Puducherry, and Sikkim, whereas the bottom five states or UTs are
Jharkhand, Uttar Pradesh, Bihar, Arunachal Pradesh, and Nagaland.

As per census 2011 data, it has been observed that the female literacy rate of all
the top 5 states/UTs, namely Puducherry (81.2), Goa (81.8), Lakshadweep (88.3), Kerala
(92), is very high (above 81 percent) except Sikkim (76.4 percent). Similarly, for the bottom
five states, Jharkhand (56.2), Uttar Pradesh (59.3), Bihar (53.3), and Arunachal Pradesh
(59.7), the female literacy rate is below 60 percent; the exception lies with Nagaland, where
the female literacy is (76.7) percent which is same as Sikkim Ministry of Statistics and Pro-
gram Implementation (2017). Thus, female literacy might be one of the major contributors
to better maternal healthcare status as literature has evidence of the positive and signifi-
cant influence of mother’s schooling on maternal care utilization Govindasamy and Ramesh
(1997). Nagaland ranks lowest in maternal healthcare despite having the same literacy rate
as that of Sikkim. This might be due to Nagaland’s remote location, restricted access to
healthcare, and lack of proper medical facilities.

Among the top-ranked states/ UTs, Puducherry has a compact geographical area with
a high literacy rate and better health facilities both in the public and private sectors. As per
Kayaroganam et al. (2016) 78.6 percent of the mother avail full ANC. Paul and Chouhan
(2020) suggested that Maternal mortality can be prevented by regular ANC visits, supervised
deliveries, and postnatal care (PNC). According to Census 2011, in Puducherry, 87 percent
of mothers consult an Obstetrician and prefer delivery at government hospitals, while 56
percent have good knowledge of nutrition during pregnancy. Additionally, 99 percent of
mothers have adequate knowledge of breastfeeding and its benefits Ramaiah et al. (2022).

Goa, a coastal state with mountains on its western border, covers an area of 3702
square kilometers and has a population of 1.46 million. The state excels in protecting mothers
against neonatal tetanus, with a rate of 96.2 percent surpassing the national average of 89
percent. Iron deficiency anemia among mothers is a major threat to safe motherhood and to
the health and survival of infants, but Goa has achieved a consumption rate of 67.4 percent
for Iron and Folic Acid (IFA), surpassing the national average of 30.3 percent Dehury et al.
(2017).

Kerala, a state in South India is home to more than 33 million people “with females
enjoying higher status compared to other states” Gupta and Mani (2022). This state is
known for its remarkable achievements in education and health Mukherjee (2010). As per
the report of the Department of Health, Govt of Kerala, the state has 1280 numbers of
modern medicine Institutions including Hospitals, Community Health Centers (CHC), Public
Health Center (PHC) etc., with 38004 numbers of Beds with a population bed ratio of 879
per person Saritha (2018). As per the 2011 census, 92 percent of the women of Kerala are
literate. The government’s efforts to improve healthcare have positively impacted the state’s
socioeconomic development. Easy access to adequate medical facilities and the availability of
such facilities to its stakeholders are significant contributors to maternal health issues. Access
to quality obstetric care is a priority to prevent complications during and after delivery.
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Sikkim is a mountainous state, with Kangchenjunga having the highest peak in India.
It is one of the states of North-east India with a population of 6 million. Numerous studies
concur that women’s empowerment improves access to health and wellness. 95.3 percent of
the women in Sikkim participate in household decision-making. Proper nutrition is crucial
for women’s health; inadequate nutrition can lead to anemia and health issues Dehury et al.
(2017).

As derived, Nagaland has one of the worst maternal healthcare, preceded by Arunachal
Pradesh, Bihar, Uttar Pradesh, and Jharkhand. Nagaland’s maternal care and child im-
munization indicators are significantly below the national average Chakraborty and Bhat-
tacharjee (2017). Geographic isolation, limited healthcare access, high medical costs, and
inadequate health facilities contribute to the challenges faced by women in Nagaland. They
often prefer home births assisted by traditional midwives to reduce expenses. A lack of
encouragement to participate in seminars and awareness programs on maternal healthcare
is observed, particularly in rural areas. Traditional midwives support childbirth and reduce
family costs Humtso and Soundari (2019).

Arunachal Pradesh, the neighboring state of Nagaland, has the second lowest position
in maternal healthcare status. Singh et al. (2009) points out that approximately 50 percent
of women in Arunachal Pradesh do not make any prenatal visits. Prenatal visits are crucial
for recognizing pregnancy complications and knowing when to seek emergency obstetric care,
reducing the risk of maternal death.

The neighboring states Bihar, Uttar Pradesh, and Jharkhand located in eastern In-
dia, rank among the bottom five states. Under utilization of professional assistance during
delivery may contribute to the poor conditions of maternal healthcare. Singh et al. (2009)
stated that nearly 75 percent of women still give birth without any medical assistance in
Uttar Pradesh and Bihar. Despite the fact that 56 percent of women are aware of the re-
quirement for three ANC check-ups, 49 percent do not adhere to it because they are unaware
of the hazards associated with pregnancy without these check-ups. Many people think that
unless there are difficulties, a normal pregnancy doesn’t need three ANC checks. Only 22
percent of pregnant women are advised to have a minimum of three ANC visits Khan et al.
(2014).

Despite its abundant resources, Jharkhand faces issues in maternal healthcare, with
high maternal mortality and low utilization of prenatal and secure delivery services IIPS
(2010). In 2009, the maternal mortality rate in Jharkhand was 261 per 100,000 live births,
higher than the national average of 212 Ogala et al. (2012). As per the guidelines developed
by the Ministry of Health and Family Welfare (2010) and WHO (2006), complete ANC is
one of the key factors of maternal healthcare utilization. Only 9 percent of women in Jhark-
hand used complete ANC services during 2007-2008, compared to 18.8 percent nationally.
Socioeconomic disparities, caste, and media exposure influence the utilization of ANC ser-
vices Kavitha and Audinarayan (1997), Pandey et al. (2004). Complete ANC services were
provided to approximately 19 percent from other social groups, compared to 7 percent of
SC and 6 percent of ST married women. All ANC services were utilized by 10 percent of
Hindus and 27 percent of urban women Singh and Chaturvedi (2015). Women exposed to
mass media were 65 percent more likely to use all ANC services Gupta et al. (2016). The
coal mine industry in Jharkhand also contributes to the problem of an irregular visit to
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health centers with women not receiving paid leave and facing occupational hazards Dubey
(2016), Bhanumathi (2002). It is essential to address these issues for improved maternity
healthcare.

Governments must prioritize maternal healthcare as an investment in society. India
needs a clear healthcare vision, emphasizing immunization, maternity care, primary health
centers, committed doctors, and support staff. Public awareness campaigns can reduce dis-
parities in ANC utilization. Spreading knowledge about prenatal screening and highlighting
government health programs are essential.

Although the study is exploratory and indicative, it provides comparative information
on the status of Indian states/UTs in terms of maternal health care. Policymakers should
focus on lower-ranked states/UTs as they shall show a higher convergence rate. To identify
such spatial black spots, further research is needed at the district level in such low-performing
states. Various normalization and aggregation techniques can benefit the quantification of
maternal healthcare. Incorporating other demographic and socioeconomic variables can
generate an advanced composite score. Examining further the disadvantaged districts may
offer focused insights and potential solutions. Timely ANC check-ups, preparedness for
delivery, postnatal care, and family planning are crucial for improving maternal health Khan
et al. (2014). This approach of identifying a reliable MCDM method from among the many
choices available can also be applied to several other MCDM-related activities in other
knowledge domains.
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Appendix A
Table A.1: Algorithm for robustness check

Step I Compute rank of all the subjects (alternatives) based on the
composite index developed from all the methods i.e., rank of
the n-subjects for the m-different methods.

Step II Perform test for Inter-rater agreement of subjective judgment
(different methods in this exercise) as defined in Tinsley and
Weiss (1975). Null hypothesis:
H0: There is independence in ranks (of subjects) obtained
from different methods
tested against the alternative
H1: The ranking methods are in agreement to each other
If H0 is rejected go to Step V else go to step III.

Step III Rank correlation Matrix taking all the methods in pairs are
computed

Step IV Look for insignificant rank correlations if any. Identify the
method(s) which is (are) insignificant from the other methods
and drop it from further analysis. Repeat step II else GO TO
Step V

Step V Compute R̄j (Eqn. 23) for each of the methods (j =
1, 2, . . . , m).
Test if Avg (R̄j ) is significantly greater than 0.
If Avg (R̄j ) is significantly close to zero conclude that “All
the methods are equally robust”- GOTO Step VIII
ELSE – “All methods are not equally robust and there is a
need of Robustness study”- GOTO Step VI

Step VI Compute Kendall Tau distance of a method (j, say) with all
the other methods (except j) and add the distances. Call it
Kj

Compute Kj for all the methods (j = 1, 2, . . . , m). The
method with a minimum value of Kj is the most robust tech-
nique.
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Table A.2: Rank & CI values of states/UTs of maternal healthcare parameters

State/UTs Methods
TOPSIS I-S PCA DEA OWA

Andaman & Nicobar 13 7 10 7 7
(0.5200) (0.7277) (0.7178) (0.7179) (0.7109)

Andhra Pradesh 11 6 4 5 6
(0.5410) (0.7439) (0.8158) (0.7315) (0.7266)

Arunachal Pradesh 36 35 35 35 35
(0.1836) (0.2381) (0.1505) (0.2089) (0.2015)

Assam 12 23 28 21 22
(0.5264) (0.5857) (0.469) (0.576) (0.5672)

Bihar 32 34 34 34 34
(0.3582) (0.3578) (0.1955) (0.352) (0.3401)

Chandigarh 20 11 14 11 12
(0.4566) (0.6908) (0.6513) (0.6686) (0.6649)

Chhattisgarh 10 15 15 13 14
(0.5607) (0.6574) (0.6473) (0.6526) (0.6449)

Daman & Diu 25 27 18 29 29
(0.4237) (0.5257) (0.6178) (0.5088) (0.502)

Delhi 21 20 20 20 20
(0.4428) (0.5983) (0.6034) (0.5863) (0.5811)

Dadra & Nagar Haveli 26 21 19 22 21
(0.4148) (0.5902) (0.6039) (0.5752) (0.5684)

Goa 7 3 3 3 3
(0.5828) (0.8373) (0.8811) (0.8280) (0.8233)

Gujarat 28 22 12 23 23
(0.4032) (0.5859) (0.6774) (0.5703) (0.5637)

Haryana 34 24 25 25 25
(0.3256) (0.5454) (0.5465) (0.5219) (0.5154)

Himachal Pradesh 16 16 13 16 16
(0.4678) (0.6411) (0.6579) (0.6218) (0.6171)

Jammu & Kashmir 8 12 8 10 10
(0.5719) (0.6797) (0.7225) (0.6746) (0.6699)

Jharkhand 33 32 32 32 32
(0.336) (0.442) (0.3954) (0.4282) (0.4185)

Karnataka 18 18 17 18 18
(0.466) (0.6136) (0.6208) (0.6011) (0.5962)

Kerala 2 2 1 2 2
(0.6353) (0.8383) (0.9744) (0.8373) (0.8343)

Lakshadweep 1 1 2 1 1
(0.6453) (0.8789) (0.9404) (0.8669) (0.8656)

Madhya Pradesh 19 28 31 28 28
(0.4596) (0.5256) (0.4198) (0.5147) (0.5048)

Maharashtra 23 17 16 17 17
(0.4262) (0.6294) (0.6439) (0.609) (0.6082)
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Table A.2: Continued

State/UTs Method
TOPSIS I-S PCA DEA OWA

Manipur 15 31 11 26 26
(0.4728) (0.4866) (0.6982) (0.5179) (0.5109)

Meghalaya 29 30 29 31 31
(0.3916) (0.4895) (0.4259) (0.4624) (0.4635)

Mizoram 4 13 22 15 13
(0.6189) (0.6634) (0.5931) (0.6485) (0.6456)

Nagaland 35 36 36 36 36
(0.2122) (0.151) (0.0122) (0.1333) (0.127)

Odisha 6 8 21 8 8
(0.6034) (0.7034) (0.6032) (0.6959) (0.6905)

Punjab 17 10 9 12 11
(0.4667) (0.6914) (0.7194) (0.6682) (0.6672)

Puducherry 3 4 6 4 4
(0.6215) (0.7758) (0.7918) (0.7644) (0.7589)

Rajasthan 22 25 25 24 24
(0.4359) (0.5442) (0.5076) (0.5251) (0.5205)

Sikkim 9 5 7 6 5
(0.5644) (0.7487) (0.7624) (0.7291) (0.7292)

Tamil Nadu 5 14 24 14 15
(0.6103) (0.6609) (0.5866) (0.6508) (0.6438)

Telangana 14 9 5 9 9
(0.5074) (0.7015) (0.7948) (0.6882) (0.6832)

Tripura 31 26 23 27 27
(0.3582) (0.5259) (0.5923) (0.5165) (0.5086)

Uttar Pradesh 30 33 33 33 33
(0.3605) (0.4084) (0.313) (0.3999) (0.3904)

Uttarakhand 27 29 30 30 30
(0.4082) (0.5129) (0.4206) (0.497) (0.4874)

West Bengal 24 19 26 19 19
(0.4257) (0.6058) (0.5434) (0.5912) (0.5857)
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Abstract
In the context of nonparametric regression, statistical relationship between the covari-

ate and the random error is a matter of interest. For a traditional nonparametric regression
model Y = g(X) + ϵ where Y is the response, X the covariate, ϵ the random error and g(·) a
suitably chosen smooth function, null hypothesis may be framed as the independence of X
and ϵ against all possible alternatives citing dependence between them. It may be of further
concern, whether for an incomplete data set with several missing observations, such rank
based testing of independence can be performed. For example, some observations on Y are
unreported whereas the covariate X has complete data. On this structure of missingness
completely at random (MCAR) situation, process of rank based testing on independence
between X and ϵ may be thought of. This article delineates such testing techniques, based
on Kendall’s τ or Bergsma’s (2014) τ ∗ and Blum et al. (1961) distance based test statistics,
in order to develop consistent test procedures against a sequence of contiguous alternatives.
The asymptotic powers of these test statistics are further studied through the finite sample
simulation study, choosing different levels of missingness percentage. Finally, a real data
analysis presents a comparative testimony of those proposed test statistics.

Key words: Asymptotic power; Contiguous alternative; Distance covariance; Kendall’s τ ;
Missing completely at random; Nonparametric regression model; Local linear smoothing.

AMS Subject Classifications: 62G08, 62G30

1. Introduction

For a quite substantial period of time in statistics literature, missing data context
continues to be a live topic. The impact of missing data on quantitative research can be
serious, heading to biased estimates of parameters, loss of information, increased standard
errors and debilitated the generalizability of findings. Usually, most statistical processes are
designed for complete data. In the presence of missing values, failing to edit the incomplete
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data into “complete” one can turn the data statistically unsuitable. Particularly, statisti-
cal inference process experiences a huge toll in presence of missingness. Thus, as a default
approach, one may delete those missing observations before going to conduct the necessary
analysis using statistical methods. Most inevitable drawback of such listwise deletion is
that a large fraction of sample might get trimmed causing severe loss to statistical power.
Some articles by Anderson(1957), Wilks(1932), Afifi and Elashoff(1966), Hartley and Hock-
ing(1971) discussed the problem of listwise deletion where each value of data set is equally
likely to be missing.

In regression set up, missing scenario mostly occurs in response variable Y where some
of the observations in Y are not available. The chance mechanism of this missingness may be
independent of X and Y or may depend fully on the covariate, X. The first case is termed
as missing completely at random (MCAR) while the second type of missingness is missing at
random (MAR) (Little and Rubin (2014)). Mathematically speaking, in regression set-up,
missingness can be interpreted via a triplet (Xi, Yi, δi) for a set of n observations on (X, Y ).
At a given point Xi, the response Yi is either observed or missing. The indicator variable δ
takes the value 1 or 0 according as the value of Y is reported or not. Clearly for MCAR,
Prob[δ = 1/X, Y ] = p (a constant) while for MAR Prob[δ = 1/X, Y ] = P [δ = 1/X] = p(X)
(a function of X). We shall proceed with an MCAR data to test the association in the
context of nonparametric regression further.

Suppose in nonparametric regression model Y = g(X) + ϵ with g being the unknown
regression function and ϵ the error, missingness at random occurs in Y . Instead of com-
plete deletion of those unavailable (X, Y ) observations, imputation techniques may be used
where substitutes for missing values are looked for. In contrast to imputing certain global
estimates such as mean/median of available Y figures, it may be worthwhile to opt for some
other imputation alternatives based on nonparametric regression estimation, like local linear
smoothing, kernel density estimation etc. (Chung et al. (1993), Cheng (1994)), thereafter
examining the impact of missingness on their performances. One may note that downside of
imputation technique is to produce underestimates of standard errors, which leads in turn
to inflated test statistics.

In nonparametric regression, a fundamental assumption is homoscedasticity, i.e.
E(ϵ2/X = x) = σ2 > 0. However even for homoscedastic model, inference based on unknown
regression function g(x) may be unconvincing, for instance in isotonic mean/median regres-
sion model, confidence interval for the regression function at a given point will be wrong
even if the homoscedasticity holds. In such cases, it is safer to assume the independence
between X and ϵ. This issue of checking the independence against all possible alternatives,
has been addressed in the literature by Einmahl et al.(2008), Neumeyer(2009), Hlavka et al.
(2011), Dhar et al.(2018). Most of the test statistics proposed are distance based except the
rank based test statistic by Bergsma (2014), followed by Dhar et al. (2018), Das et al.(2022)
where the test statistic is constructed on the sign function of second/third order differences
of neighbouring quadruplet of responses.

The present article is evolved on the adoption of such rank based test statistic to
investigate the independence of ϵ andX in nonprametric regression when the data has MCAR
in Y . At the first stage, the missing places are imputed by the regression estimator through
Nadaraya- Watson estimation and local linear smoothing technique respectively. Thereafter,
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filling those unregistered Y values we try to form rank based test statistic following the road-
map by Bergsma (2014). We also investigate the asymptotic theory of those test statistics
under null and contiguous alternative (Lehmann and Romano, 2005).

The rest of the article is organized as follows. Section 2 describes original regres-
sion model and the transformed imputed model. Section 3 provides the methodologies to
estimate the regression function g(.) using various estimation techniques. In section 4, test
statistics are constructed based on the newly obtained bivariate observations X and Y . The
asymptotic local powers of the test statistics under contiguous alternatives are computed in
Section 5. Section 6 includes a real data study. A precise conclusion is presented in section
6. Appendix 1 contains derivation of technical details while appendix 2 contains numerical
results of asymptotic power study.

2. Regression setting

Let the nonparametric regression model to be considered as Y = g(X) + ϵ. Consider
the following imcomplete data: (Xi, Yi, δi), i = 1, 2 · · · , n where δ = 1 if Yi is observed
otherwise δ0 = 0 if Yi is missing. Also, Prob(δ = 1/X, Y ) = Prob(δ = 1/X) = p (0 < p < 1)
where p being a fixed constant, i.e., missingness is MCAR type. Let there be k bivariate
observations assuming missingness on Y and the remaining (n − k) pairs are complete.
Suppose (X ′

i, Y
′

i ) denote the i-th complete observation of (X, Y ), i = 1, 2, · · · , (n − k). A
nonparametric sub-model can be formulated on these complete pairs as

Y ′ = g1(X ′) + ϵ′ (1)

with the assumptions on error ϵ′ similar to the assumptions, already drawn on error ϵ of the
original model, as E(ϵ′|X ′ = x′) = 0 ∀ x′ and E(ϵ′2|X ′ = x′) = σ2(x′) where σ2(x′) > 0.
The regression function g1(·) is the first step regression function. Its nonparametric
estimator may be treated as a naive alternative against the estimator of g(X) in the original
model. After deducing the estimator of g1(·) as ĝ1(·), the missing observations on Y will be
filled up by ĝ1(·) at the values of the covariate X corresponding to the missing responses.
These fillers are known as imputed responses. Thus, by imputing the missing values of
Y , the complete data set (X∗, Y ∗) of size n can be re-framed as follows.

Y ∗
i =

{
Y ′

i when δ = 1
ĝ1(Xi), when δ = 0 ; i = 1, 2, · · · , n

Then, the following regression model is proposed on the hence completed bivariate data
(X∗, Y ∗).

Y ∗ = g2(X∗) + ϵ∗ (2)

where X∗ being the covariate and ϵ∗ being the error. Finally, g2(X∗) is estimated using the
conventional methods like Nadaraya-Watson (NW) estimation and local linear smoothing
method respectively.
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3. Estimation of regression functions

3.1. Estimation using Nadaraya-Watson method

The first step regression function g1(.) in (1) can be estimated using Nadaraya Watson
(NW) estimation process at X ′ = x′ as

ĝ1(x′) =

n∑
i=1

k

(
X ′

i − x′

h

)
Y ′

i

n∑
i=1

k

(
X ′

i − x′

h

) (3)

where k(·) is the kernel density function and h is the bandwidth satisfying h → 0 with
nh → ∞ where n → ∞. A variety of kernel functions are possible to be chosen but for
practical and theoretical considerations we choose a very common one, Epanichnikov kernel
k(u), where k(u) = .75(1−u2).I(|u| ≤ 1). This parabolic shape kernel enjoys some optimality
properties.

The second stage estimator of the regression function g2(X∗) in (4) is also deduced
in a similar manner.

ĝ2(x∗) =

n∑
i=1

k
(
X∗

i − x∗

h

)
Y ∗

i

n∑
i=1

k
(
X∗

i − x∗

h

) (4)

Further, proposition of some test statistics are made.

3.2. Estimation using local linear smoothing (LLS)

In addressing the same issue, another alternative approach against NW estimation
can be the technique of local linear smoothing (Chu et al., 1995). This method begins with
the minimization of the local weighted least squares based on all bivariate observations, i.e.
minimization of the following expression.

n∑
i=1

[Yi − r0 − r1(x−Xi)]2 k
(
x−Xi

h

)
δi (5)

As per the notation stated in section 2, specifically for non missing pairs of observations
(X ′, Y ′) the above expression of minimization can be re-framed as minimization of

n−k∑
i=1

[Y ′
i − r0 − r1(x′ −X ′

i)]
2
k

(
x′ −X ′

i

h

)
(6)

The minimization yields the solutions of the constants r0 and r1. (5) gives

r̂0 =

n∑
i=1

(M2 − (x−Xi)M1) k
(
x−Xi

h

)
δi Yi

n∑
i=1

[M2 − (x−Xi)M1] k
(
x−Xi

h

)
δi

(7)
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where Ml =
n∑

i=1
(x−Xi)l k

(
x−Xi

h

)
δi, l = 1, 2. Clearly, for non-missing pairs of observa-

tions (X ′, Y ′) (6) would be reshaped as

r̂0 =

n−k∑
i=1

[M ′
2 − (x′ −X ′

i)M ′
1] k

(
x′ −X ′

i

h

)
Yi

n−k∑
i=1

[M ′
2 − (x′ −X ′

i)M ′
1] k

(
x′ −X ′

i

h

) (8)

where M ′
l =

n−k∑
i=1

(x′ −X ′
i)l k

(
x′ −X ′

i

h

)
, l = 1, 2. The least square estimate r̂1 of r1 can be

deduced in a similar way from (5) or (6) which is simply

r̂1 =

n∑
i=1

(x′ −X ′
i) k

(
x−Xi

h

)
δi Yi − r̂0M

′
1

M ′
2

.

Next, by the first order Taylor’s expansion, g(Xi) can be expanded in the neighbour-
hood of x as

g(Xi) = g(x) − (x−Xi)g(1)(x) (9)

where g(1)(x) is the first order derivative of g(x). Hence the response Yi can be approximated
as {g(x) − (x − Xi)g(1)(x) + ϵi}, i = 1, . . . , n. Synonymously, under non missing set up Y ′

i

may be approximated as {g(x′) − (x′ −X ′
i)g(1)(x′) + ϵ′

i}, i = 1, . . . , n. Then substituting Y ′
i

in (3), we obtain

ĝ1(x′) =

n∑
i=1

k

(
X ′

i − x′

h

)
{r̂0 + r̂1 (x′ −X ′

i)}
n∑

i=1
k

(
X ′

i − x′

h

)

= r̂0 − hr̂1

n∑
i=1

(
X ′

i − x′

h

)
k

(
X ′

i − x′

h

)
n∑

i=1
k

(
X ′

i − x′

h

)

which approaches to r̂0 mentioned in (7) for relatively small bandwidth h such that h → 0.
Noticeably, the estimator r̂1 is not of use when h → 0. Denote β′

i = M ′
2 − (x′ − X ′

i)M ′
1 ∀

i = 1, . . . , n. Then the estimate of g1(x) will be

ĝ1(x′) =

n∑
i=1

β′
iY

′
i

n∑
i=1

β′
i

(10)
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or a slightly modified estimator ĝ1(x′) =

n∑
i=1

β′
iY

′
i

n∑
i=1

β′
i + n−2

where n−2 is added to the denominator

to avoid the situation of
n∑

i=1
β′

i ≈ 0. This ĝ1(x′) is called simplified local linear smoother

(SLLS) of g1(x′).

As we mentioned in the introduction, deletion of incomplete pairs may cause loss of
information in data analysis. Hence the technique of refilling the missing observations or
imputation would be thought of. ĝ1(x′) can be treated as the imputed estimator for those k
missing responses at the values of corresponding X. Subsequently, the estimator ĝ2(·) is to
be derived on the basis of complete bivariate observations (X, Y ), denoted as (X∗, Y ∗) after
the imputation process.

Thus, in this concocted data X∗ = X and Y ∗
i = δi Y

′
i + (1 − δi) ĝ1(X ′

i).

Minimizing
n∑

i=1
[Y ∗

i − s0 − s1(x∗ −X∗
i )]2 k

(
x∗ −X∗

i

h

)
with respect to the linear con-

stants s0 and s1 following the same arguments already proposed in (5) and (6),

ŝ0 =

n∑
i=1

(M∗
2 − (x∗ −X∗

i )M∗
1 ) k

(
x∗ −X∗

i

h

)
δi Y

∗
i

n∑
i=1

(M∗
2 − (x∗ −X∗

i )M∗
1 ) k

(
x∗ −X∗

i

h

) (11)

where

M∗
l =

n∑
i=1

(x∗ −X∗
i )l k

(
x∗ −X∗

i

h

)
, l = 1, 2.

and ŝ1 be the solution of s1.

Ultimately, using the same logic as projected in (10), the final estimator ĝ2(·) at
X∗ = x∗ is derived as

ĝ2(x∗) =

n∑
i=1

β∗
i Y

∗
i

n∑
i=1

β∗
i

(12)

where β∗
i = M∗

2 − (x∗ −X∗
i )M∗

1 ∀ i = 1, . . . , n. Alternatively, (11) can be written as

ĝ2(x∗) =

n∑
i=1

β∗
i Y

∗
i

n∑
i=1

β∗
i + n−2

in order to avoid the possibility of the inflation of ĝ2(x∗). This

estimator ĝ2(·) is called the imputed local linear smoother (ILLS) of g(x).
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4. Relevant test statistics

In order to test H0 : X∗ ⊥⊥ ϵ∗ (⊥⊥ means independence) we consider a sequence of
contiguous alternatives, say Hn, that converges to H0 as n → ∞. In this case, the sequence
of contiguous alternative Hn, indicating to the dependence between X∗ and ϵ∗, has the
following expression

Hn : Fn;X∗,ϵ∗(x∗, e∗) = (1 − γ√
n

)GX∗(x∗)Hϵ∗(e∗) + γ√
n
KX∗,ϵ∗(x∗, e∗) (13)

where Fn;X∗,ϵ∗(·, ·) denote the joint CDF of (X∗, ϵ∗) under Hn while, Hϵ∗(·) and GX∗(·) are
the marginal CDFs of ϵ∗ and X∗ respectively and KX∗,ϵ∗(·, ·) is the proper joint distribu-
tion function of (X∗, ϵ∗). γ > 0 is the mixing constant for F0(·, ·) and KX∗,ϵ∗(·, ·) where
F0(x∗, e∗) = GX∗(x∗)Hϵ∗(e∗) is the joint CDF of (X∗, ϵ∗) under H0. First we generate a
bivariate sample {(x∗

1, e
∗
1), . . ., (x∗

n, e
∗
n)} of size n from F0(x∗, e∗) under H0. Then, using the

regression model Y ∗ = g(X∗) + ϵ∗ we obtain the bivariate observations (x∗
1, y

∗
1), . . ., (x∗

n, y
∗
n)

can be from the joint distribution function of (X∗, Y ∗). Taking the ordered observations
on X∗ as x∗

(1), . . ., x∗
(n) and then the corresponding Y ∗-values as y∗

(1), . . ., y∗
(n) (y∗

(i)’s termed
as induced ordered statistics), we achieve the ordered set {(x∗

(1), y
∗
(1)), . . ., (x∗

(n), y
∗
(n))}. The

related errors are ϵ∗
(1), . . ., ϵ∗

(n) which are also viewed as the induced ordered values of ϵ∗
1, . . .,

ϵ∗
n. The second order differences of these induced ordered observations y∗

(i)’s, i = 1, . . . , n
are defined as y∗(2)

(i) := y∗
(i+1) − 2y∗

(i) + y∗
(i−1) with the marginal considerations as y∗

(0) = y∗
(1),

y∗
(n+1) = y∗

(n), resulting two threshold figures as y∗(2)
(1) = y∗

(2) − y∗
(1) and y

∗(2)
(n) = y∗

(n−1) − y∗
(n).

Based on the these bivariate observation (x∗
(i), y

∗(2)
(i) )s for i = 1, . . . , n, the following test

statistics (Dhar et al. (2018)) are proposed as

Tn,1 = 1(
n
2

) ∑
1≤i<j≤n

sign{(x∗
(i) − x∗

(j))(y
∗(2)
(i) − y

∗(2)
(j) )} (14)

Tn,2 = 1(
n
4

) ∑
1≤i<j≤n

a(x∗
(i), x

∗
(j), x

∗
(k), x

∗
(l))a(y∗(2)

(i) , y
∗(2)
(j) , y

∗(2)
(k) , y

∗(2)
(l) ) (15)

Tn,3 = 1(
n
4

) ∑
1≤i<j≤n

1
4h(x∗

(i), x
∗
(j), x

∗
(k), x

∗
(l))h(y∗(2)

(i) , y
∗(2)
(j) , y

∗(2)
(k) , y

∗(2)
(l) ) (16)

where sign(t) = t
|t| if t ̸= 0 or 0 otherwise, h(p, q, r, s) = {|p − q| + |r − s| − |p − r| − |q −

s|}; p, q, r, s ∈ R and a(p, q, r, s) = sign{|p−q|+ |r−s|−|p−r|−|q−s|}. (14) is the sample
version of Kendall’s tau statistics between X∗ and Y ∗(2) while (15) is the sample statistic
in favour to τ ∗ which is an extended version of Kendall’s tau by Bergsma et al. (2014).
In contrast, (16) is the sample counterpart of the distance based measure D introduced by
Blum-Kiefer-Rosenblatt (1961).

For the sake of readers’ interest the population versions of the aforementioned test
statistics for unordered observations on (X∗, Y ∗), i = 1, 2, 3 are too presented herewith.

T1 = E[sign(X∗
1 −X∗

2 )(Y ∗
1 − Y ∗

3 )]

T2 = E[a(X∗
1 , X

∗
2 , X

∗
3 , X

∗
4 )a(Y ∗

1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )]
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T3 = E[14h(X∗
1 , X

∗
2 , X

∗
3 , X

∗
4 )h(Y ∗

1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )].

To check H0 : X∗ ⊥⊥ ϵ∗ is analogous of checking H0 : X∗ ⊥⊥ f(ϵ∗) for any proper
function f(·). Let us assume the form of the function as f(ϵ∗) = ϵ∗(2) = ϵ(i+1) − 2ϵ(i) + ϵ(i−1),
i = 1, . . . , n, the second order difference of ϵ∗. Thus modified H0 is H0 : X∗ ⊥⊥ ϵ∗(2). Since
ϵi’s are unobservable, so is ϵ∗(2). Thus instead of ϵ∗(2) we may judiciously approximate it
by Y ∗(2) provided the function g(.) is sufficiently smooth. Thus H0 can further be modified
to H0 : X∗ ⊥⊥ Y ∗(2). Evidently, independence of X∗ and ϵ∗ implies and implied by Tk = 0
for k = 1, 2, 3. So, H0 : X∗ ⊥⊥ Y ∗(2) implies Tk = 0, k = 1, 2, 3 and vice versa. Therefore
their sample representatives, viz., Tn,k for k = 1, 2, 3 would be regarded as the desired test
statistics to carry out the test of independence.

To kick-start the test process it is reasonable to approximate Tn,k((x∗
(1), e

∗(2)
(1) ), . . . ,

(x∗
(4), e

∗(2)
(4) )) by Tn,k((x∗

(1), y
∗(2)
(1) ), . . . , (x∗

(4), y
∗(2)
(4) )) for k = 1, 2, 3, as due to smoothness of g(.),

y∗(2) would enable to sweep out the effect of g for large n. In fact, any function sorting
out the effect of g(·) can be chosen instead of y∗(2)

(i) . For instance, the test statistic based
on first order differences of Y ∗ may be applicable also for testing homoscedasticity of errors
against all possible alternatives, which coincides with any traditional nonparametric test of
homoscedasticity [see the discussion in Einmahl et al., 2008]. Under H0 the critical regions
can be determined by the test statistics Tn,i’s (i = 1, 2, 3) as ωn,i : Tn,i > cα,i, i = 1, 2, 3,
where α ∈ (0, 1) is the level of significance satisfying PH0 [Tn,i > cα,i] = α and cα,i is the α-th
critical point of the limiting distribution of Tn,i under H0. To study the statistical powers of
all Tn,i’s under Hn for different values of γ, we have to ascertain their limiting distributions.

5. Study on asymptotic powers of the test statistics

It can be shown that the proposed test statistics Tn,1, Tn,2 and Tn,3 are all degen-
erate U-statistics. In order to study their asymptotic powers we would use various asymp-
totic properties such as consistency, efficiency, limiting law related to degenerate U statistic.
Hence, the order of degeneracy of Tn,i for each i = 1, 2, 3 is derived hereafter so that their
asymptotic distributions under H0 and Hn can be established.

5.1. Contiguity

For two arbitrary sequences of probability measures, say Pn and Qn, the definition of
contiguity of Pn and Qn on the sequence of measurable spaces (χn,An) is stated from Le
Cam (1960a).

Definition 1: For an arbitrary sequence of events An ∈ An, if Pn(An) −→ 0 =⇒
Qn(An) −→ 0 for sufficiently large sample size n, then Qn is concluded as contiguous with
respect to Pn. It is symbolically expressed as Pn ◁ Qn.

To detect whether Pn ◁ Qn holds, the theory of local asymptotic normality (LAN)
needs to be expounded. Le Cam’s first lemma describes the asymptotic Gaussian nature of
the quantity log dQn

dPn
under the probability measure Pn (p.253, Hajek et al., 1999)

Lemma 1: Let ln = dQn

dPn
be a sequence of likelihood ratios corresponding to Pn and Qn.



2024] TESTING IN NONPARAMETRIC REGRESSION WITH MISSING RESPONSES 201

Define Gn to be the sequence of distribution functions of ln. Furthermore, Gn converges to
another distribution function G such that

� ∞

0
v dG(v) = 1.

Then, Pn ◁ Qn.

Corollary 1 below delves out an useful consequence of Lemma 1 .

Corollary 0.1: log ln Pn∼ N(−1
2θ, θ) implies that Qn is contiguous with respect to Pn.

The proof of Corollary 1 can be derived using Lemma 1 (for details see Van Der Vaart
(2002)). To derive the asymptotic distributions of Tn,1, Tn,2 and Tn,3 using Le Cam’s first
lemma under contiguous alternatives Hn we assume

Assumption 1: fX∗,ϵ∗(x∗, e∗) > 0 for all x∗ and e∗, where fX∗,ϵ∗ is the joint PDF of (X∗, ϵ∗).

Assumption 2: EFX∗,ϵ∗ (kX∗,ϵ∗ (x∗,e∗)
fX∗,ϵ∗ (x∗,e∗) − 1)2 < ∞ where kX∗,ϵ∗(·, ·) is the joint proper PDF of

(X∗, ϵ∗).

Theorem 1: Under Assumption 1 and Assumption 2, Hn is a sequence of contiguous alter-
natives.

The formal proof of Theorem 1 is provided in Appendix 1. Next, we explore out the
limiting laws of an U-statistic with certain order of degeneracy so that limiting distributions
of Tn,i’s under both hypotheses can be intuited further.

Definition 2: (U statistic) Suppose ψ(z1, . . . , zm) be a real-valued measurable function.
Based on a sample {Z1, . . . , Zn} from FZ(·) ∈ F , m ≤ n, a U-statistic with kernel ψ is
defined as

Un ≡ Un(ψ) = 1(
n
m

) ∑
1≤i1<...<im≤n

ψ(Zi1 , . . . , Zim). (17)

Un is an unbiased estimator of population parameter θ. Also, Un attains the minimum
variance among all other unbiased estimators of θ.
Let us define a sequence of functions related to ψ. For c = 0, 1, · · · ,m, let

ψc(z1, . . . , zc) = E[ψ(z1, . . . , zc, Zc+1, . . . , Zm)] where Xc+1, · · · , Xn are i.i.d. Clearly,
Eψc(z1, . . . , zc) = θ.

Denote, ψ∗
c (z1, . . . , zc) = ψc(z1, . . . , zc)−E[ψc(z1, . . . , zc)] and ξc = var[ψ∗

c (z1, . . . , zc)], 0 ≤
c ≤ m.

Under this notation, the degeneracy of U statistic of order m is defined as follows.

Definition 3: (Order of degeneracy) The order of degeneracy of a U statistic is p if ξ0 =
. . . = ξp = 0 and ξp+1 > 0.
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Here p is the order of degeneracy for the associated kernel ψ(.) and the corresponding
U -statistic Un as well. Some useful theorems, provided by Lee (1990), are pertinent in the
context of variance of Un.

Theorem 2: (i) ψc(z1, . . . , zc) = E[ψd(z1, . . . , zc, Zc+1, . . . , Zd)] for 1 ≤ c < d ≤ m.

(ii) E[ψc(Z1, . . . , Zc)] = E[ψ(Z1, . . . , Zm)].

Theorem 3: ξc = cov(ψ(N1), ψ(N2)) with N1, N2 being the subsets of Cm,n, c = 1, . . . ,m
each with m number of elements.

Theorem 4: The variance of Un based on kernel ψ of degree m is

V ar(Un) =
(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
ξc (18)

The asymptotic distribution of
√
n(Un − θ) for large n is normal with mean 0 and

variance m2 ξ1 (Serfling, 1980) . Unfortunately, in degenerate situation the asymptotic dis-
tribution of Un is no longer normally distributed. Also, it can be explained that

√
n(Un − θ)

does not converge to a random variable with degenerate distribution function. If the kernel ψ
possesses order of degeneracy p, then the asymptotic distribution of n d+1

2 (Un−θ) converges to
a nonnormal distribution as n increases. The following theorem from Serfling (1980) unveils
on the pattern of distribution when p = 1(i.e. order of degeneracy 1).

Theorem 5: Let ψ̃2(z1, z2) = E[ψ(Z1, Z2, Z3, . . . , Zm)|Z1 = z1, Z2 = z2], and ξ2 = V ar[ψ̃2(z1,
z2)]. If ξ1 = 0 < ξ2 and E[ψ2(Z1, . . . , Zm)] < ∞, then for some real constants λ1, λ2, . . . and
iid N(0, 1) random variables Γ1, Γ2, . . .,

n(Un − θ) L−→ Y (19)

where Y ∼
(

m
2

) ∞∑
i=1

λi(Γ2
i − 1), m ≥ 2.

The asymptotic non-Gaussian distribution of degenerate U-statistic may also be ex-
plicated through obtaining the variance of a symmetric and positive definite quadratic kernel
W (Z1, Z2) with order of degeneracy 1 where Z1, Z2 are i.i.d. random variables. The kernel
W (Z1, Z2) can be expanded as

W (z1, z2) =
∞∑

k=1
λkϕk(z1)ϕk(z2)

where λk’s are the eigenvalues with corresponding eigenfunctions ϕk(z)’s satisfying� ∞

−∞
W (z, Z2)ϕk(Z2)dZ2 = λkϕk(z).

In contiguous set up, the distribution of degenerate U statistic can be deduced (Gregory,
1977). Let Qn,1 be the sequence of probability measures with Qn = Qn,1 × . . . × Qn,1 (n
times). P0 is the probability measure under H0 with Pn = P0 × . . .× P0 (n times). Further
suppose, Qn is contiguous with respect to Pn. Then, the following theorem asserts the
limiting distribution of an U-statistic Tn under the probability measure Qn.



2024] TESTING IN NONPARAMETRIC REGRESSION WITH MISSING RESPONSES 203

Theorem 6: (Gregory, 1977) Suppose the Radon-Nikodym derivative dQn,1/dP0 = 1 +
n− 1

2 hn holds for some sequence {hn} in L2(χ,A) that converges to h ∈ L2. Then, for an
U-statistic Tn with order of degeneracy 1,

lim
n→∞

Qn,1{Tn ≤ x} = P

( ∞∑
k=1

λk{(Γk + ak)2 − 1} ≤ x

)
(20)

where ak =
�
hϕk dP0 and Γ1, Γ2, . . . are iid N(0, 1) random variables.

The asymptotic distributions for Tn,2 and Tn,3 under H0 and Hn are easily obtainable
using Theorem 6.

Generally speaking, let us define an operator E on L2(χ,A) for ψ̃2(z1, z2) associated
with the kernel ψ as

E g(z) =
� ∞

−∞
ψ̃2(z, y)g(y)d(F (y)), z ∈ R, g ∈ L2 (21)

and corresponding to E the eigenvalues λ1, λ2, . . . satisfy E g = λ g. Hence one can con-
clude that ψ̃2(z1, z2) =

∞∑
k=1

λkgk(z1)gk(z2) with being orthonormal sequence gk’s satisfying

E[gk(Z1)gl(Z2)] = 1 if k = l and 0 if k ̸= l. Here gk’s are the eigenfunctions corresponding
to λk’s of the transformation

E[ψ̃2(z, Z1)gk(Z1)] = λk gk(z) (22)

and in L2,
n∑

k=1
λkgk(Z1)gk(Z2)

q.m.−→ ψ̃2(Z1, Z2). (23)

5.2. Limiting distributions of Tn,1, Tn,2 and Tn,3

These test statistics are constructed by the spacings function formed from the distri-
bution function of X∗ i.e. GX∗(·). Regarding consistency of the test statistics under H0, we
prefer to mention below an important result related to the expectation of an ordered uniform
spacing due to Bairamov et al. (2010).

Result 1: For r ≥ 1 and n → ∞,

E(V(n+2−r)) ∼ log n
n

−→ 0 (24)

where V(s) is the sth order statistic among {V(1), . . . , V(n)} based on the uniform spacings
Vi = U(i) − U(i−1)’s ∀ i = 1, . . . , n. V(s) is also called the sth ordered uniform spacing,
1 ≤ s ≤ n. U(i) is the ith order statistic based on {U1, . . . , Un} obtained from Uniform(a, b)
distribution, a < b, 1 ≤ i ≤ n.
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Along with Assumptions 1 and 2, let us further assume

Assumption 3: X∗
1 , . . ., X∗

n (as defined earlier) are i.i.d. random variables with distribution
function GX∗ .

Assumption 4: Y ∗
1 , . . ., Y ∗

n (as defined earlier) are obtained from the model Y ∗
i = g(X∗

i )+ϵ∗
i ,

i = 1, . . . , n, with g(·) having bounded derivative, ϵ∗ having bounded probability density
function and E(ϵ∗

i |X∗
i ) = 0 ∀ i = 1, . . . , n.

Based on Assumption 1-4, we develop the following theorems (Theorem 7, 8 and 9)
regarding the limiting properties of Tn,i’s, i = 1, 2, 3. In each theorem, part (i) detects
the order of degeneracy attached to each of Tn,i’s, i = 1, 2, 3. Part (ii) and part (iv) are
directly followed from (i), describing the limiting distributions of Tn,1, Tn,2 and Tn,3. Part (ii)
establishes the consistency of each of the test statistics. Suppose ϵ∗(2) has the CDF H∗

ϵ∗(2)(·).

Theorem 7: (i) Tn,1 has kernel of order of degeneracy 0.

(ii) Tn,1
P−→ 0 under H0.

(iii) Under H0,
√
n(Tn,1 − E(Tn,1)) L−→ N(0, 4ξ1).

(iv) Under Hn,
√
n(Tn,1 − E(Tn,1)) L−→ N(µ1, 4ξ1), where

µ1 = 2γ
� ∞

−∞

� ∞

−∞
[2
� x∗

−∞

� y∗

−∞
dGX∗(u∗)dH∗

ϵ∗(2)(v∗) + 2
� ∞

x∗

� ∞

y∗
dGX∗(u∗)dH∗

ϵ∗(2)(v∗)]dKX∗,ϵ∗(x∗, y∗)

(25)
and,

ξ1 =
� ∞

−∞

� ∞

−∞
[2
� x∗

−∞

� y∗

−∞
dGX∗(u∗)dH∗

ϵ∗(2)(v∗) + 2
� ∞

x∗

� ∞

y∗
dGX∗(u∗)dH∗

ϵ∗(2)(v∗)]2dGX∗(x∗)dHϵ∗(y∗).

(26)

Theorem 8: (i) Tn,2 has kernel of order of degeneracy 1.

(ii) Tn,2
P−→ 0 under H0.

(iii) The asymptotic distribution for Tn,2 under H0 is given by

n(Tn,2 − E(Tn,2)) L−→
∞∑

k=1
λk{Γ2

k − 1}

where Γ1, Γ2, . . . are iid N(0, 1) random variables, λk’s are the eigenvalues associated
with

l(x, y) = E[sign{|X∗
(1) −X∗

(2)| + |X∗
(3) −X∗

(4)| − |X∗
(1) −X∗

(3)| − |X∗
(2) −X∗

(4)|}

×sign{|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) |}

|X∗
(1) = x∗, Y

∗(2)
(1) = y∗].
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(iv) The asymptotic distribution for Tn,2 under Hn is given by

n(Tn,2 − E(Tn,2)) L−→
∞∑

k=1
λk{(Γk + ak)2 − 1} (27)

where Γ1, Γ2, . . . are iid N(0, 1) random variables, λk’s are the eigenvalues associated
with l(x∗, y∗) given in (iii). The quantities ak’s are defined as

ak =
�
h fk(x∗)fk(y∗) dGX∗(x∗)dH∗

ϵ∗(2)(y∗). (28)

where fk’s are the eigenfunctions corresponding to λk’s, k = 1, 2, . . ..

Theorem 9: (i) Tn,3 has kernel of order of degeneracy 1.

(ii) Tn,3
P−→ 0 under H0.

(iii) The asymptotic distribution for Tn,3 under H0 is given by

n(Tn,3 − E(Tn,3)) L−→
∞∑

k=1
λ∗

k{Γ∗2

k − 1}

where Γ∗
1, Γ∗

2, . . . are iid N(0, 1) random variables, λ∗
k’s are the eigenvalues associated

with

l∗(x∗, y∗) = E[{|X∗
(1) −X∗

(2)| + |X∗
(3) −X∗

(4)| − |X∗
(1) −X∗

(3)| − |X∗
(2) −X∗

(4)|}

×{|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) |}

|X∗
(1) = x∗, Y

∗(2)
(1) = y∗].

(iv) The asymptotic distribution for Tn,3 under Hn is given by

n(Tn,3 − E(Tn,3)) L−→
∞∑

k=1
λ∗

k{(Γ∗
k + a∗

k)2 − 1} (29)

where Γ∗
1, Γ∗

2, . . . are iid N(0, 1) random variables, λ∗
k’s are the eigenvalues associated

with l∗(x∗, y∗) given in (iii). The quantities a∗
k’s are defined as

a∗
k =

�
h f ∗

k (x∗)f ∗
k (y∗) dGX∗(x∗)dH∗

ϵ∗(2)(y∗). (30)

where f ∗
k ’s are the eigenfunctions corresponding to λ∗

k’s, k = 1, 2, . . ..

Proofs of all three theorems are furnished in Appendix 1.
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5.3. Examples on asymptotic power calculation

To check on the performance of asymptotic power curves of Tn,1, Tn,2 and Tn,3 with
respect to different values of the mixing constant γ introduced in (13) we consider the values
of γ from 0 to 10. We investigate on power against the H0 in reference with these three
statistics when the different percentage of missingness occurs in Y values under missing at
random (MCAR) structure. All those missing values are refilled by NW estimation process
as well as local linear smoothing (ILLS) as elaborately discussed in Section 3. Thereafter,
the power functions for Tn,1, Tn,2 and Tn,3 are found for the imputed set of (X∗, Y ∗) under
n = 100. We generate such 500 sets of bootstap sample.

Let us pick up a couple of examples from Einmahl et al.(2008) where the conditional
distributions of the error ϵ∗ for given value of the covariate X∗, along with the joint proper
distribution of (X∗, ϵ∗) are proposed. Epanechnikov kernel is used as the kernel function in
the expression of the test statistics. Note that for each of the examples under consideration,
the null model is taken as independent bivariate normal, i.e., fX∗,ϵ∗(., .) = 1

2π
e− ϵ∗2+x∗2

2 . Since
under H0, FX∗,ϵ∗(., .) = GX∗(.)Hϵ∗(.), µ1 and ξ1 in (25) and (26) are theoretically found out
using the integral of standard normal variable. The rest of the results related to Tn,2 and
Tn,3 are deduced by approximating infinite sum of weighted chi-square by finite one (taking
upto the tenth term of (27) and (29)).

Example 1: kX∗,ϵ∗(x∗, e∗) is such that (ϵ∗|X∗ = x∗) ∼ N(0, 1+5x∗

100 ) with X∗ ∼ N(0, 1).

Example 2: kX∗,ϵ∗(x∗, e∗) is such that (ϵ∗|X∗ = x∗) D= Cauchy(0, x∗2) with X∗ ∼ N(0, 1) .

Percentages of missingness are chosen as 5%, 10% and 20% respectively. For each
example, power curves of three statistics under complete data (without missing value) and
other three missing proportion cases are drawn (a total of eight figures). The red line denotes
the power curve of Tn,1, whereas the green and blue lines denote the power curves of Tn,2
and Tn,3 respectively. Due to space constraint, the power curves obtained only through LLS
imputation technique in n = 100 are provided here. Appendix 2 contains the detailed and
comparative tables of power calculation derived by both NW estimation and ILS technique
taking sample size 100 with bootsrap size 500.

Figure 1: Power for Example 1
against γ in no missing setup

Figure 2: Power for Example 1
against γin 5% MCAR setup
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Figure 3: Power for Example 1
against γ in 10% MCAR setup

Figure 4: Power for Example 1
against γ in 20% MCAR setup

Figure 5: Power for Example 2
against γ in no missing setup

Figure 6: Power for Example 2
against γ in 5% MCAR setup

Figure 7: Power for Example 2
against γ in 10% MCAR setup

Figure 8: Power for Example 2
against γ in 20% MCAR setup

Although for no missing case power exerted by Tn,2 performs better across the mixing
constant γ, in presence of missingness its power gets deteriorated as compared with the power
by Kendall’s tau, i.e. Tn,1. In contrast, power by distance based measure Tn,3 behaves not so
well for all choices of missingness. Imputation done by local linear smoothing also does not
change the scenario. In applying rank based test when observations on Y are missing does
not guarantee the universal superiority in power. The more the counts in bivariate pairing
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in test statistic; lesser will be the power with the increase of missingness. Since in Tn,2 four
bivariate pairs are in use, impact of missingness hits it more sharply than Tn,1. Plausible
imputation can not improve the downfall as well.

Additionally, under normally distributed alternative the power exerted by all three
statistics are quite reasonable and closer to 1. In contrast, Example 2 dealing with Cauchy
alternatives experiences poorer power performance. Cauchy distribution being a heavy tailed
distribution might be a good indicator of how sensitive the tests are to departures from
normality, i.e. in presence of extreme observations. Although in no missing case the proposed
Tn,2 holds its superiority, it fails to hold that in missing cases. In fact more the missingness
worse the power comes out.
The entire simulation exercise is performed by R 4.0.5.

6. Real data analysis

In this segment of real data analysis, we choose out Abalone Data collected by the De-
partment of Primary Industry and Fisheries, Tasmania. The data is available online in UCI
Machine Learning Repository Data Set page (https://archive.ics.uci.edu/ml/datasets/Abalone).

The primary objective of this zoological data is to predict the age of abalone (a
common species of marine gastropod molluscs, mainly inhabited in warm seas) from different
physical measurements. This data consists of 4177 observations each having 10 qualitative
and quantitative characters. Among those there are 9 independent characters, based on the
physical measurements – viz, sex (nominal), length (in mm) for longest shell measurement,
diameter (in mm) perpendicular to length, height (in mm) with meat in shell, whole weight
(in grams) of abalone, shucked weight (in grams) i.e. weight of meat, viscera weight (in
grams) i.e. gut weight (after bleeding), shell weight (in grams) after being dried, rings
(integer) and one dependent variable — age (in years).

In our study, we pick up a single nonparametric regressor, viz., shell weight after being
dried (X in grams) and the regressand, viz. age (Y in years). For the sake of preciseness,
we select first 100 observations instead of the whole. As a preliminary exploratory analysis,
let us highlight the scatter plot on age against scaled shell weights below. The plot projects
positive association with weakly linear tendency.

In order to incite readers’ interest, the group of histograms (Figure 1) on underlying
distributions of the response variable Y for complete case as well as for of several percentage
of missingness is provided. In this figure, the missing observations are imputed by Nadaraya
Watson estimator. Also the kernel density inlay is curved over each histogram. The underly-
ing distribution is mildly right skewed which remains almost same not only in complete case
but also in imputed distributions under 5%,10% and 20% missingness. Therefore imputation
does not trigger any significant change in the underlying distribution.

To test the independence of X and ϵ we carry out bootstrap tests on 200 resamples
having 100 sample observations in each set. At first, the observed values of the test statistics
under the null hypothesis are obtained for the fixed sample size 100. Suppose the bth resam-
ple of Tn,k be T b

n,k, b = 1, . . . , 200, k = 1, 2, 3. The estimated p-value of Tn,k is computed as
#{T b

n,k > T ∗
n,k}

200 , b = 1, . . . , 200, k = 1, 2, 3 where T ∗
n,k is the observed value of Tn,k under H0.
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Figure 9: Scatter diagram

The same is repeated for (i) complete case (with 100 observations in each bootstrap set); (ii)
5% randomly missing observations, (iii) 10% randomly missing observations and (iv) 20%
randomly missing observations. In each of the missing scenario, the missing observations are
imputed by NW estimation as well as ILLS estimation and p-value is reported accordingly.
Higher the p-value stronger is the evidence in favour of H0. Tacitly speaking, for this data,
under missingness, each p-value indicates preference towards H0.

Table 1: Table showing p-values of Tn,1, Tn,2 and Tn,3 under missingness estimated
by N-W & ILLS imputation respectively

p-values
Statistic Complete N-W ILLS

case 5% 10% 20% 5% 10% 20%
Tn,1 0.575 0.375 0.480 0.415 0.490 0.515 0.635
Tn,2 0.680 0.940 0.930 0.900 0.980 0.989 0.890
Tn,3 0.660 0.900 0.920 0.880 0.980 0.999 0.905

7. Conclusion

In this article we have investigated the performance of three statistics– two rank based
and one distance based, in the presence of MCAR missingness of observations. These tests are
consistent. Powers are calculated under contiguous alternatives. For complete case situation
Tn,2 shows best staging over Tn,1 and Tn,3 in both Gaussian and the heavy tailed distribution
Cauchy but Tn,2 is not robust enough in presence of constant proportion of missingness.
Specifically for non Gaussian alternative, missingness yields poor power exerted by Tn,2
and Tn,3 as compared to that by Tn,1. On the other hand, estimation of missing responses
by imputated local linear smoothing (ILLS) method may yield a better power over that
deduced by Nadaraya Watson (N-W) method, still those results are not convincing enough
for non Gaussian distribution. Therefore, applying a rank based test statistic in testing of
independence under nonparametric regression set up in presence of missingness would not
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For complete case
With 5% missing

With 10% missing With 20% missing

Figure 10: Histograms and regression curve in-lays for complete and missing
cases

add substantial amount of power. In order to deal with such a situation few other distance
based measure on distribution functions, e.g. Kolmogorov-Smirnov or Cramer-Von-Mises
might be given a thought. It is to be noted that Alvo et al. (1995) proposed a new class of
measures of rank correlation which are formed on a notion of distance between incomplete
rankings. This approach utilizes the information on the positions of the actual observations
relative to the string of incomplete observations. This mechanism would compensate for
missing values and may be used as consistent test statistic in same context too.

In missing situation the strongest assumption that is commonly made is that the data
are missing completely at random (MCAR) as probability that any variable is missing can
not depend on any other variable in the model of interests. But for most data sets, the MCAR
assumption is unlikely to be precisely specified, specially in design data. In those cases, a
much weaker assumption, missing at random (MAR) is more common in practice. In MAR,
the missingness of response depends on another observed variable. Therefore, effectivity of
Tn,2 may be more worth investigating subject under MAR situation as compared with the
performance by Tn,1 and Tn,3, considering a certain probability distribution of missingness.
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ANNEXURE

Appendix 1

Proof of Theorem 1

The expansion of logLn takes the form as follows

logLn = log
n∏

i=1

fn;X∗,ϵ∗(x∗
i , e

∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

= log
n∏

i=1

{(1 − γ√
n
)fX∗,ϵ∗(x∗

i , e
∗
i ) + γ√

n
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

}

=
n∑

i=1
log
{(1 − γ√

n
)fX∗,ϵ∗(x∗

i , e
∗
i ) + γ√

n
kX∗,ϵ(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

}
.

With the aid of Taylor’s expansion of log(1 + r), r > −1 as well as the weak law of large
numbers, logLn is further expanded as

n∑
i=1

γ√
n

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)

− γ2

2n

n∑
i=1

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)2

+OP (n−1/2). (31)

Then,

logLn −∑n
i=1

γ√
n

(
kX∗,ϵ∗ (x∗

i ,e∗
i )

fX∗,ϵ∗ (x∗
i ,e∗

i ) − 1
)

+ γ2

2n

∑n
i=1

(
kX∗,ϵ∗ (x∗

i ,e∗
i )

fX∗,ϵ∗ (x∗
i ,e∗

i ) − 1
)2

= OP (n−1/2) −→ 0 as n → ∞.

Define a sequence of random variables Wn as
n∑

i=1

γ√
n

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)

. With the help

of Lindeberg’s condition, the asymptotic distribution of Wn is developed as Wn−E(Wn)√
V ar(Wn)

L−→
N(0, 1) under H0, where

EH0(Wn) =
n∑

i=1

γ√
n
EH0

(
kX∗,ϵ(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)

= 0

and V arH0(Wn) = γ2

n

n∑
i=1

EH0

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)2

= γ2EH0

(
kX∗,ϵ∗

fX∗,ϵ∗
− 1

)2

. Hence underH0,

Wn
L−→ N

0, γ2EH0

(
kX∗,ϵ∗

fX∗,ϵ∗
− 1

)2
 .

Another sequence of random variables Vn = γ2

2n

n∑
i=1

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)2

weakly converges to

γ2

2 EH0

(
kX∗,ϵ∗

fX∗,ϵ∗
− 1

)2
. So, logLn − Wn + Vn = op(1). Slutsky’s theorem further ensures that
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the limiting distribution of the sequence of random variables Mn = Wn − Vn converges to a
random variable M such that

M ∼ N

−1
2γ

2EH0

(
k

f
− 1

)2

, γ2EH0

(
k

f
− 1

)2
 . (32)

Summing up all, one can conclude that logLn − Mn = op(1), i.e. logLn has the limiting
distribution which is identical with that of limiting distribution of Mn, i.e. N(−1

2σ, σ) where
σ = γ2EH0

(
k
f

− 1
)2

. Thereafter, the Corollary 5.1 of lemma 5.1 is sufficient enough in
establishing the fact that Hn is a contiguous sequence of alternatives due to asymptotic
normality of logLn. Notationally, contiguity can be expressed as FX∗,ϵ∗ ◁ Fn;X∗,ϵ∗ .

Proof of Theorem 7

(i) Suppose the kernel of Tn,1 is denoted by ψ((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) )). One can simplify
its form as

ψ1(x∗, y∗) = E[ψ((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ))|X∗
(1) = x∗, Y

∗(2)
(1) = y∗]

= E[sign{(X∗
(1) −X∗

(2))(Y
∗(2)

(1) − Y
∗(2)

(2) )}|X∗
(1) = x∗, Y

∗(2)
(1) = y∗]

= 2P [(X∗
(1) −X∗

(2))(Y
∗(2)

(1) − Y
∗(2)

(2) ) > 0|X∗
(1) = x∗, Y

∗(2)
(1) = y∗] − 1.

Now under H0 one can determine that

E(X∗
(1),Y

∗(2)
(1) )[ψ1(X∗

(1), Y
∗(2)

(1) )] = E(X∗
(1),Y

∗(2)
(1) ),(X∗

(2),Y
∗(2)

(2) )[ψ((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ))] = 0.

Then, ξ1 = V ar[ψ1(X∗
(1), Y

∗(2)
(1) )] = E[ψ2

1(X∗
(1), Y

∗(2)
(1) )] > 0, where Y ∗(2) is approximately

identically distributed with ϵ∗(2). Therefore, ξ0 = 0 and ξ1 > 0 is enough to conclude
that ψ has order of degeneracy 0.

(ii) From Theorem 4 it is clear that the variance of Tn,1 gets approximated as 4ξ1
n

for large n,
and E[sign{(X∗

(i) −X∗
(j))(Y

∗(2)
(i) −Y

∗(2)
(j) )}] = 0 ∀ 1 ≤ i < j ≤ n as P [(X∗

(i) −X∗
(j))(Y

∗(2)
(i) −

Y
∗(2)

(j) ) > 0] = P [(X∗
(i) − X∗

(j))(Y
∗(2)

(i) − Y
∗(2)

(j) ) < 0] under H0. One may conclude that
Tn,1

P−→ 0 as E(Tn,1) = 0 and var(Tn,1) → 0 for n → ∞ under H0.

(iii) Deducing the asymptotic variance in Theorem 4 when n → ∞, we derive the asymp-
totic distribution of

√
n(Tn,1 − E(Tn,1)) under H0. To prove this part of the theorem,

any standard textbook on nonparametric inference would suffice.

(iv) Directed from the Le Cam’s third lemma (Dhar et al. (2018)) the asymptotic distribu-

tion of (
√
n(Tn,1 −E(Tn,1)), logLn) converges to N2

((
0

− θ
2

)
,

(
4ξ1 τ
τ θ

))
, θ > 0 under

H0. Then it is easy to determine the limiting distribution of
√
n(Tn,1 −E(Tn,1)) under

Hn as N(0 + τ, 4ξ1) i.e. N(τ, 4ξ1). Hence τ = lim
n→∞

covH0(
√
n(Tn,1 − E(Tn,1)), logLn)

which can be finally derived as

2γ
� ∞

−∞

� ∞

−∞
[2
� x∗

−∞

� y∗

−∞
dGX∗(u∗)dHϵ∗(v∗) + 2

� ∞

x∗

� ∞

y∗
dGX∗(u∗)dHϵ∗(v∗) − 1]dKX∗,ϵ∗(x∗, y∗).
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Proof of Theorem 8

(i) The simplification of the kernel of Tn,2 is done as

a(X∗
(1), X

∗
(2), X

∗
(3), X

∗
(4))a(Y ∗

(1), Y
∗

(2), Y
∗

(3), Y
∗

(4))
= 2I(|X∗

(1) −X∗
(2)| + |X∗

(3) −X∗
(4)| − |X∗

(1) −X∗
(3)| − |X∗

(2) −X∗
(4)| > 0,

|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) | > 0) +
2I(|X∗

(1) −X∗
(2)| + |X∗

(3) −X∗
(4)| − |X∗

(1) −X∗
(3)| − |X∗

(2) −X∗
(4)| < 0,

|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) | < 0) − 1

= 2P (|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) | < 0) − 1

= ã((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ), (X∗
(3), Y

∗(2)
(3) ), (X∗

(4), Y
∗(2)

(4) )) (33)

where I(·) is an indicator function. Now define, for c = 0, . . . , 4,

ãc((x∗
(1), y

∗(2)
(1) ), . . . , (x∗

(c), y
∗(2)
(c) ))

= E[ã((x∗
(1), y

∗(2)
(1) ), . . . , (x∗

(c), y
∗(2)
(c) ), (X∗

(c+1), Y
∗(2)

(c+1)), . . . , (X
∗
(4), Y

∗(2)
(4) ))]

and, ξc = V ar[ãc((X(1), Y
∗(2)

(1) ), . . . , (X(c), Y
∗(2)

(c) ))].
In equation (33), |Y ∗(2)

(1) − Y
∗(2)

(3) | and |Y ∗(2)
(2) − Y

∗(2)
(4) | can be written into following two

inequalities as |Y ∗(2)
(1) − Y

∗(2)
(3) | ≤ |Y ∗(2)

(1) − Y
∗(2)

(2) | + |Y ∗(2)
(2) − Y

∗(2)
(3) | and

|Y ∗(2)
(2) − Y

∗(2)
(4) | ≤ |Y ∗(2)

(2) − Y
∗(2)

(3) | + |Y ∗(2)
(3) − Y

∗(2)
(4) |. Then,

P (Y ∗(2)
(2) > Y

∗(2)
(3) , Y

∗(2)
(1) > Y

∗(2)
(4) )

= P (Y ∗(2)
(2) > Y

∗(2)
(3) , Y

∗(2)
(1) > Y

∗(2)
(4) , Y

∗(2)
(3) > Y

∗(2)
(1) )+P (Y ∗(2)

(2) > Y
∗(2)

(3) , Y
∗(2)

(1) > Y
∗(2)

(4) , Y
∗(2)

(3) ≤
Y

∗(2)
(1) ) = 1

4! × 6 = 1
4 . Similarly, P (Y ∗(2)

(2) > Y
∗(2)

(3) , Y
∗(2)

(1) ≤ Y
∗(2)

(4) ) is calculated as 1
4 .

Then, P (Y ∗(2)
(2) < Y

∗(2)
(3) ) = 1

2 = P (Y ∗(2)
(2) > Y

∗(2)
(3) ).

Finally we obtain 2P (|Y ∗(2)
(1) −Y

∗(2)
(2) | + |Y ∗(2)

(3) −Y
∗(2)

(4) | − |Y ∗(2)
(1) −Y

∗(2)
(3) | − |Y ∗(2)

(2) −Y
∗(2)

(4) | <
0) = 2 min

(
1
2 ,

1
2

)
= 1. Therefore,

E[ã((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ), (X∗
(3), Y

∗(2)
(3) ), (X∗

(4), Y
∗(2)

(4) ))] = 0.
On the other hand, the expression of ξ1 is same as
cov[ã((X∗

(1), Y
∗(2)

(1) ), (X∗
(2), Y

∗(2)
(2) ), (X∗

(3), Y
∗(2)

(3) ), (X∗
(4), Y

∗(2)
(4) ))] which equals

{1 + 4P [Y ∗(2)
(2) > Y

∗(2)
(3) , Y

∗(2)
(5) > Y

∗(2)
(6) ] − 2P [Y ∗(2)

(2) > Y
∗(2)

(3) ] − 2P [Y ∗(2)
(5) > Y

∗(2)
(6) ]}.

For four distinct numbers (i1, i2, i3, i4) with 1 ≤ i1 ̸= i2 ̸= i3 ̸= i4 ̸= 7 it is easy to
verify that
P [Y ∗(2)

(i1) > Y
∗(2)

(i2) > Y
∗(2)

(i3) > Y
∗(2)

(i4) ] = 6
4! = 1

4 and furthermore P [Y ∗(2)
(i1) > Y

∗(2)
(i2) ] = 1

2 .
Then ξ1 = 1 + 4 · 1

4 − 2 · 1
2 − 2 · 1

2 = 0.
Consequently, the computation of ξ2 becomes necessary to verify whether it is equal to
0 or not. ξ2 is evaluated further as {1 + 4P [Y ∗(2)

(2) > Y
∗(2)

(3) , Y
∗(2)

(2) > Y
∗(2)

(5) ] − 2P [Y ∗(2)
(2) >

Y
∗(2)

(3) ] − 2P [Y ∗(2)
(2) > Y

∗(2)
(5) ]} which equals 4 × 5 × 6 × P [Y ∗(2)

(2) > Y
∗(2)

(3) > Y
∗(2)

(5) > Y
∗(2)

(6) >

Y
∗(2)

(4) > Y
∗(2)

(1) ] + 4 × 5 × 6 × P [Y ∗(2)
(2) > Y

∗(2)
(5) > Y

∗(2)
(3) > Y

∗(2)
(6) > Y

∗(2)
(4) > Y

∗(2)
(1) ] =
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2 × 4×5×6
6! = 1

3 > 0. So ξ2 > 0, which naturally implies that the order of degeneracy of
Tn,2 is 1.

(ii) It is to be noted that (|X∗
(i) −X∗

(j)|+ |X∗
(k) −X∗

(l)|− |X∗
(i) −X∗

(k)|− |X∗
(j) −X∗

(l)|)(|Y
∗(2)

(i) −
Y

∗(2)
(j) |+|Y ∗(2)

(k) −Y ∗(2)
(l) |−|Y ∗(2)

(i) −Y ∗(2)
(k) |−|Y ∗(2)

(j) −Y ∗(2)
(l) |) = Op( log n

n
), 1 ≤ i < j < k < l ≤ n

by Result 5.1 originally introduced by Bairamov et al. (2010).
The distribution function of (|ϵ∗(2)

(i) − ϵ
∗(2)
(j) | + |ϵ∗(2)

(k) − ϵ
∗(2)
(l) | − |ϵ∗(2)

(i) − ϵ
∗(2)
(k) | − |ϵ∗(2)

(j) −

ϵ
∗(2)
(l) |) is

� ∞

−∞

{
Hϵ∗

(
y∗ + t

2

)
−Hϵ∗

(
y∗ − t

2

)}
dHϵ∗(y∗), denoted by H∗

ϵ∗(2)(t). Also the

distribution function of ϵ∗(2) is approximately equal to the distribution function of
Y ∗(2). One can derive that a(X∗

(i), X
∗
(j), X

∗
(k), X

∗
(l))a(Y ∗(2)

(i) , Y
∗(2)

(j) , Y
∗(2)

(k) , Y
∗(2)

(l) ) −→ 0 in
probability for 1 ≤ i < j < k < l ≤ n under H0. Consequently a final conclusion
becomes inevitable that Tn,2

P−→ 0 as n → ∞.

(iii) Due to Serfling (1981)’s theorem on the asymptotic distribution of a degenerate U-
statistic presented by Theorem 5, it is quite straightforward to derive the limiting
distributional form of n(Tn,2 − E(Tn,2)) under H0.

(iv) To furnish the elaborate proof regarding the asymptotic distribution of n(Tn,2−E(Tn,2))
under Hn, Theorem 6 by Gregory (1977) is required.

Proof of Theorem 9

In similar way to the proof of Theorem 8, Theorem 9 can also be proved.
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Appendix 2
Table 2: Powers of Tn,1, Tn,2 and Tn,3 for Example 1 for complete and missing
cases using N-W and ILLS imputation

Powers of test statistics in MCAR setup using NW estimation Powers of test statistics in MCAR setup using ILLS

γ No missing 5% missing 10% missing 20% missing 5% missing 10% missing 20% missing

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

0 0.042 0.05 0.05 0.053 0.05 0.05 0.05 0.05 0.05 0.054 0.05 0.05 0.047 0.05 0.05 0.05 0.05 0.05 0.046 0.05 0.05

1 0.1 0.25 0.095 0.103 0.06 0.188 0.156 0.064 0.12 0.157 0.087 0.087 0.157 0.129 0.143 0.108 0.16 0.123 0.091 0.252 0.124

2 0.201 0.537 0.166 0.18 0.085 0.474 0.355 0.1 0.249 0.343 0.143 0.148 0.366 0.309 0.284 0.205 0.371 0.268 0.161 0.647 0.209

3 0.347 0.742 0.276 0.286 0.139 0.796 0.604 0.148 0.468 0.579 0.206 0.241 0.628 0.632 0.436 0.341 0.668 0.465 0.261 0.92 0.33

4 0.521 0.859 0.436 0.415 0.23 0.969 0.816 0.238 0.695 0.789 0.273 0.344 0.84 0.845 0.579 0.501 0.909 0.652 0.386 0.995 0.45

5 0.691 0.95 0.606 0.554 0.356 0.997 0.938 0.381 0.877 0.92 0.325 0.501 0.951 0.957 0.691 0.661 0.984 0.818 0.523 1 0.613

6 0.827 0.975 0.759 0.686 0.483 1 0.985 0.5 0.968 0.978 0.359 0.66 0.99 0.989 0.777 0.796 1 0.904 0.658 1 0.766

7 0.918 0.988 0.866 0.798 0.628 1 0.998 0.63 0.996 0.995 0.391 0.758 0.999 0.998 0.85 0.892 1 0.953 0.775 1 0.869

8 0.967 0.996 0.943 0.882 0.758 1 1 0.753 1 0.999 0.411 0.84 1 0.998 0.902 0.951 1 0.974 0.866 1 0.957

9 0.989 0.999 0.982 0.938 0.852 1 1 0.851 1 1 0.421 0.898 1 1 0.934 0.981 1 0.986 0.927 1 0.991

10 0.997 0.999 0.996 0.97 0.924 1 1 0.913 1 1 0.42 0.948 1 1 0.96 0.993 1 0.994 0.964 1 1
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Table 3: Powers of Tn,1, Tn,2 and Tn,3 for Example 2 for complete and missing
cases using N-W and ILLS imputation

Powers of test statistics in MCAR setup using N-W estimation Powers of test statistics in MCAR setup using ILLS

γ No missing 5% missing 10% missing 20% missing 5% missing 10% missing 20% missing

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.044 0.05 0.05 0.05 0.05 0.05

1 0.059 0.084 0.066 0.063 0.083 0.067 0.085 0.065 0.061 0.065 0.058 0.051 0.066 0.067 0.068 0.057 0.069 0.067 0.055 0.058 0.054

2 0.08 0.149 0.09 0.085 0.148 0.088 0.146 0.073 0.077 0.087 0.06 0.051 0.094 0.09 0.097 0.073 0.086 0.089 0.066 0.064 0.06

3 0.106 0.221 0.117 0.112 0.206 0.104 0.231 0.08 0.093 0.115 0.067 0.055 0.13 0.119 0.126 0.092 0.104 0.118 0.08 0.069 0.064

4 0.138 0.31 0.142 0.145 0.29 0.124 0.338 0.103 0.113 0.149 0.069 0.056 0.175 0.154 0.17 0.115 0.128 0.141 0.095 0.072 0.072

5 0.176 0.386 0.173 0.184 0.396 0.151 0.46 0.121 0.132 0.189 0.079 0.056 0.228 0.205 0.222 0.141 0.157 0.173 0.112 0.075 0.08

6 0.22 0.478 0.206 0.229 0.488 0.182 0.586 0.146 0.15 0.235 0.09 0.057 0.289 0.243 0.271 0.172 0.189 0.201 0.131 0.083 0.085

7 0.27 0.573 0.263 0.28 0.57 0.211 0.704 0.181 0.18 0.287 0.106 0.063 0.357 0.289 0.327 0.206 0.227 0.242 0.152 0.091 0.091

8 0.325 0.651 0.316 0.336 0.64 0.244 0.803 0.194 0.207 0.343 0.122 0.064 0.43 0.332 0.374 0.244 0.259 0.283 0.176 0.098 0.098

9 0.383 0.712 0.365 0.395 0.692 0.287 0.879 0.213 0.245 0.403 0.136 0.069 0.506 0.382 0.446 0.286 0.29 0.321 0.201 0.106 0.107

10 0.445 0.745 0.437 0.458 0.72 0.325 0.932 0.238 0.288 0.465 0.146 0.072 0.581 0.444 0.501 0.331 0.327 0.365 0.229 0.113 0.112
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Abstract
A Reliability Demonstration Test (RDT) demonstrates whether a product has met a

certain reliability requirement with a specific confidence. This paper deals with construction
of RDTs for a two-component parallel system subject to constant-stress partially accelerated
life testing (CSPALT) using periodic mode of inspection and Weibull life distribution. The
data from periodic inspection consist of number of failures of systems due to each component
in each inspection period. In CSPALT the test specimens are allocated to two test chambers
with test items running at normal operating condition in one and at accelerated condition in
the other till the termination of the experiment. The optimal test plan consists in obtaining
optimal number of allocations in each test chamber and optimal inspections points. RDTs
based on optimal test plan are carried out for mean lives of components as well as the system.
A numerical example is presented to illustrate the method developed.

Key words: Reliability demonstration tests; Partially accelerated life tests; Periodic inspec-
tion; Two-component parallel system; Weibull life distribution; D-optimality criterion.

1. Introduction

Accelerated life tests (ALTs) facilitate bringing about early failures in highly reliable
items lasting for several years and hence obtaining reliability information about them in
timely manner. This in turn helps the manufacturer to sustain in competitive market where
technology is constantly changing with change in consumers’ tastes. The book by Nelson
(2009) gives a detailed account of Accelerated Tests. The data from a periodic inspection
referred to as “grouped data” or “interval data” comprises number of failures in each inspec-
tion period. In contrast to continuous inspection wherein exact failure times of the test units
are observed, periodic inspection requires less testing effort and is administratively conve-
nient as compared to continuous inspection. In the literature the periodic inspection has
been used by many authors, for example, Kulldorff (1961); Ehrenfeld (1962); Nelson (1977);
Archer (1982); Flygare et al. (1985); Meeker (1986); Yum and Choi (1989); Seo and Yum
(1991); Ahmad et al. (1994); Islam and Ahmad (1994); Ahmad and Islam (1996); Ahmad
et al. (2006). A PALT is modelled using an acceleration factor (AF) and a life distribution,
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where AF is defined as the ratio of a reliability measure, say mean life, at use condition to
that at accelerated condition. AF= k (say) means that the unit under consideration runs k
times longer at normal operating condition than at accelerated condition. In CSPALT the
test specimens are allocated to two test chambers with test items running at normal oper-
ating condition in one and at accelerated condition in the other till the termination of the
experiment. ALTs have been studied extensively in the literature see for example, Srivastava
(2017) and Chen et al. (2018).

The theory of testing statistical hypotheses provides the tools for reliability demon-
stration. If either the life distribution or its parameters are unknown, then the problem of
reliability demonstration is that of obtaining suitable data and using them to test the null
hypothesis that R(t0)≥R0 against the alternative that R(t0) < R0, where t0 is the specified
time point and R0 is desired reliability. We wish to test whether the reliability of the device
at age t0, R(t0) satisfies the requirement that R(t0)≥R0. Nelson (1977) has provided the
optimal demonstration tests with grouped inspection data from an exponential distribution
and has also explained how to use the results for a Weibull distribution with known shape pa-
rameter. Optimal demonstration tests with grouped inspection data for logistic, log-logistic,
normal/Gaussian, and log-normal distributions have been obtained Wei and Bau (1987).

The present paper deals with formulation of reliability demonstration tests for a two-
component parallel system subject to CSPALT using periodic mode of inspection and Weibull
life distribution. The Weibull life distribution incorporates various failure rates-increasing,
decreasing and constant and is therefore of importance in industries manufacturing electronic
and mechanical components. It adequately fits the life of several types of capacitors and
resistors, such as electrolytic aluminium and tantalum capacitors and carbon film resistors
(Yang, 2007; Shaw, 1987).

2. Notation

δ Weibull shape parameter
µ1 Weibull scale parameter for component 1
µ2 Weibull scale parameter for component 2
λ1 Exponential Scale parameter for component 1
λ2 Exponential scale parameter for component 2
A Acceleration Factor, A > 1
R (t) Reliability function
n Total number of two-component parallel systems
w1j, wA1j The number of systems failing due to component 1 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
w2j, wA2j The number of systems failing due to component 2 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
P1j, PA1j The probability of failure of a system due to component 1 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
P2j, PA2j The probability of failure of a system due to component 2 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
N(0, 1) Standard normal distribution
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Figure 1: Structure of periodic inspection in chamber 1

Figure 2: Structure of periodic inspection in Chamber 2

3. Formulation of likelihood function

n independent parallel systems each with two independent components are put to test
under CSPALT. Out of n systems n1 systems are put to test in test chamber 1 where they are
run under normal operating condition, and n2 systems are put to test in test chamber 2 where
they are run at accelerated condition. The systems are examined for failures periodically at
optimally spaced inspection t1, t2, ... , tk+1. Let, t0 = 0 and tk+1 = ∞. Define ρ as the
proportion of units that are allocated in chamber 1, and 1−ρ as the proportion of units that
are allocated in chamber 2.

The structures of periodic inspection of systems at chamber 1 and chamber 2 are
displayed in Figure 1 and Figure 2, respectively.

Assume that the lifetimes of test units are iid as Weibull with shape parameter δ
known and scale parameter µ unknown. That is, the pdf, cdf, and reliability function of
lifetime T at normal operating condition are:

f (t) = µδ(µt)δ−1e−(µt)δ

, t ≥ 0 , (1)

F (t) = 1 − e−(µt)δ

, t ≥ 0 , (2)
and

F (t) = e−(µt)δ

, t ≥ 0 , (3)
respectively, and the pdf, cdf, and reliability function of lifetime T at accelerated operating
condition are given as

f (t) = Aµδ(µt)δ−1e−A(µt)δ

, t ≥ 0 , (4)

F (t) = 1 − e−A(µt)δ

, t ≥ 0 , (5)
and

F (t) = e−A(µt)δ

, t ≥ 0 , (6)
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Assuming transformation times yj = tj
δ, j = 1, . . . , k + 1, are iid from an exponential

distribution with failure rate λ = µδ.

So the Weibull distribution reduces to the exponential distribution with pdf, cdf, and
reliability function under accelerated condition as:

f (y) = Aλe−Aλy, y > 0 , (7)

F (y) = 1 − e−Aλy, y > 0 , (8)
and

F (y) = e−Aλy, y > 0 , (9)

respectively. At normal operating condition, A = 1 in the above equations. The
probability of failure of a system due to component 1 under normal operating condition in
(yj−1, yj] , j = 1, 2, . . . k + 1,

P1j =
ˆ yj

yj−1

F2 (y) f1 (y) dy ,

giving

P1j = e−λ1yj−1 − e−λ1yj +
λ1
(
e−(λ1+λ2)yj − e−(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k + 1. (10)

The probability of failure of a system due to component 2 under normal operating condition
in (yj−1, yj] , j = 1, 2, . . . k + 1,

P2j =
ˆ yj

yj−1

F1 (y) f2 (y) dy ,

giving

P2j = e−λ2yj−1 − e−λ2yj +
λ2
(
e−(λ1+λ2)yj − e−(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k + 1. (11)

The probability of failure of a system due to component 1 under accelerated condition in
(yj−1, yj] , j = 1, 2, . . . k + 1,

PA1j =
ˆ yj

yj−1

F2 (y) f1 (y) dy ,

giving

PA1j = e−Aλ1yj−1 −e−Aλ1yj +
λ1
(
e−A(λ1+λ2)yj − e−A(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k+1. (12)

The probability of failure of a system due to component 2 under accelerated condition in
(yj−1, yj] , j = 1, 2, . . . k + 1,

PA2j =
ˆ yj

yj−1

F1 (y) f2 (y) dy ,
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giving

PA2j = e−Aλ2yj−1 −e−Aλ2yj +
λ2
(
e−A(λ1+λ2)yj − e−A(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k+1. (13)

At stress level, the grouped data wij, j = 1, 2, . . . , k + 1 are multinomially distributed with
parameters ni and Pij, j = 1, 2, . . . , k + 1. The likelihood function of parallel system for
independent components is then given by

L (λ1, λ2, A) = L1L2, (14)

where L1 is the likelihood corresponding to systems’ failures in chamber 1 (normal operating
condition) is:

L1 = n1!
k+1∏

j=1
(w1j + w2j)!

−1 k+1∏
j=1

P
w1j

1j P
w2j

2j

 ,

L2 is the likelihood systems’ failures in chamber 2 (accelerated operating condition) is:

L2 = n2!
k+1∏

j=1
( wA1j + wA2j)!

−1 k+1∏
j=1

P
wA1j

A1j P
wA2j

A2j

 ,

L = L1L2 ,

From properties of Multinomial Distribution,

w1j + w2j = n1j, and, wA1j + wA2j = n2j,∑k+1
j=1 (P 1j + (P 2j) = 1, and, ∑k+1

j=1 (P A1j + PA2j) = 1 ,

Thus, the log-likelihood function is a function of unknown parameters λ1, λ2, and A
given as:

lnL(λ1, λ2, A) = lnL1 + lnL2.

lnL(λ1, λ2, A)

=ln


n1!

k+1∏
j=1

(w1j + w2j)!
−1k+1∏

j=1
P

w1j

1j P
w2j

2j


 ·

n2!
k+1∏

j=1
( wA1j + wA2j)!

−1k+1∏
j=1

P
wA1j

A1j P
wA2j

A2j





= ln (n1!) + ln (n2!) −
k+1∑
j=1

ln(w1j + w2j)! −
k+1∑
j=1

ln (wA1j + wA2j) !

+
k+1∑
j=1

w1jln(P 1j) +
k+1∑
j=1

w2jln (P2j) +
k+1∑
j=1

wA1jln(P A1j) +
k+1∑
j=1

wA2jln(P A2j)
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=
k+1∑
j=1

w1jln(P 1j) +
k+1∑
j=1

w2jln(P 2j) +
k+1∑
j=1

wA1jln(P A1j) +
k+1∑
j=1

wA2jln(P A2j) + C, (15)

where C is a constant independent of parameters. Maximum Likelihood (ML Estimates
of λ1, λ2, and A are obtained by maximizing lnL (λ1, λ2, A) using NMaximize option of
Mathematica 10 software package.

If λ̂ is the ML estimate for λ = µδ in the transformed problem, then µ̂ = λ̂1/δ is the
ML estimate for µ.

4. Fisher information matrix

The Fisher Information Matrix (Nelson, 1977) is given by,
F = nρF1 + n (1 − ρ) F2,

where,

Fi =


E
[
−∂2lnLi

∂λ1
2

]
E
[
− ∂2lnLi

∂λ1∂λ2

]
E
[
−∂2lnLi

∂λ1∂A

]
E
[
− ∂2lnLi

∂λ1∂λ2

]
E
[
−∂2lnLi

∂λ2
2

]
E
[
−∂2lnLi

∂λ2∂A

]
E
[
−∂2lnLi

∂λ1∂A

]
E
[
−∂2lnLi

∂λ2∂A

]
E
[
−∂2lnLi

∂A2

]
 , i = 1, 2. (16)

5. Optimization problem

The optimum plan consists in determining optimum allocation ρ and optimal in-
spection times using D-optimality which consists in maximizing the determinant of Fisher
information matrix which is the same as the reciprocal of the asymptotic variance-covariance
matrix. The volume of the asymptotic joint confidence region of parameters, say, (µ, δ) is
proportional to the square root of the determinant of the inverse of the Fisher information
matrix, |F −1|1/2, at a fixed confidence level. In other words, it is inversely proportional to
|F |1/2. Consequently, a smaller value of the determinant would correspond to a higher (joint)
precision of the estimators of µ, δ. The D-optimality criterion is therefore preferred to other
optimality criteria existing in the literature such as A-optimality criterion, C-optimality
or variance-optimality criterion. Thus, the optimization problem for determining optimal
allocation and two inspection points y1 and y2 with y3 specified is:

Maximize |F |

s.t.0 < ρ < 1, 0 < y1 < y2 < y3. (17)
Using transformed problem tj = yj

δ, j =1, 2, 3, we get inspection points t1 and t2 with t3
specified.

6. Reliability demonstration testing

In the present section, reliability demonstration testing for the mean life of the com-
ponents and the system comprising these components has been presented. The acceptance
of the null hypothesis in Section 6.1 and Section 6.2 corresponds to a demonstration of mean
life of at least the specified value with confidence 100((1 − α1)%), where α1 is the probability
of committing Type-I error.
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6.1. Reliability demonstration for components

For component i, i = 1, 2, the objective is to test:

H0i : 1
µ i

≥ 1
µ i0

, versusH1i : 1
µ i

<
1
µ i0

, (18)

where µi = λi
1/δ and µi0 = λi0

1/δ (18) is equivalent to testing

H0i : 1
µδ

i
≥ 1

µδ
i0

, versus H1i : 1
µδ

i
< 1

µδ
i0

,

or,

H0i : 1
λ i

≥ 1
λ i0, versus H1i : 1

λ i
< 1

λ i0,

where 1
λ i0 is a specified mean life of component i, and 1

λ̂ i
is estimated value of 1

λi
.

Under H0i, the test statistic ((Nelson, 1977))

Ti =
1
λ̂i

− 1
λi0√

est.var
(
1/ λ̂i

) ∼ N (0, 1) as n → ∞ . (19)

6.2. Reliability demonstration test for system

The time to failure of a two-component parallel structure is not Weibull distributed,
even if both components have Weibull distributed times to failure.

The MTTF (mean time to failure) of the 2-component parallel system is,

MTTF =
ˆ ∞

0
R (t) dt =

Γ
(

1
δ

)
δ

(
1

λ1
1/δ

+ 1
λ2

1/δ
− 1

(λ1 + λ2)1/δ

)
.

Under H03: MTTF≥ MTTF 0 versus H13 : MTTF < MTTF 0 the test statistic
(Nelson, 1977),

Ts = (Est.MTTF − MTTF 0)√
Est.variance of Est.MTTF

∼ N (0, 1) as n → ∞, (20)

where

Est.MTTF = Γ( 1
δ )

δ

(
1

λ̂
1/δ
1

+ 1
λ̂

1/δ
2

− 1

(λ̂1+λ̂2)1/δ

)
= h(say).

h1 = dh

dλ1
, h2 = dh

dλ2
, h3 = dh

dA
,

h =

h1
h2
h3

 , hT = [h1 h2 h3]

Est.variance of Est.MTTF = hT F −1h.
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7. Numerical example

Let the total number of inspection k = 5, λ1 = 0.1 and λ2 = 0.5, inspection times
y0 = 0, y5 = 30, y6 = ∞ , acceleration factor A = 1.7, for n = 35 items put to test. The
optimal allocation ρ = 0.521892, and times inspection times y1 = 2,y2 = 4,y3 = 8, and y4 =
16. The simulated data is depicted in Table 1.1.

Table 1: Simulated data

Intervals Chamber 1 Chamber 2
Component 1 Component 2 Component 1 Component 2

(0, 2] 3 1 0 3
(2, 4] 3 0 2 5
(4, 8] 2 3 0 2
(8,16] 3 0 0 4
(16,30] 2 0 0 1
(30, ∞) 1 0 0 0

7.1. Hypothesis testing problem for component 1

H01 : 1
λ1

≥ 10 versus H11 : 1
λ1

< 10

Under H01, the test statistic:

T1 = −0.786602

Thus accept H01 at 5% level of significance.

7.2. Hypothesis testing Problem for component 2

H02 : 1
λ2

≥ 2 versus H12 : 1
λ2

< 2

Under H02, the test statistic:

T2 = 2.71621

Thus, accept H02 at 5% level of significance.

7.3. Hypothesis testing problem for the 2-component parallel system

Under H03: MTTF≥ 5 versus H13 : MTTF < 5 the test statistic,

Ts = 1.04019

Thus, accept H03 at 5% level of significance. Thus, components as well as the system
meet the specified reliability requirements.
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8. Conclusion

The paper deals with reliability demonstration tests for a two-component parallel
system with subject to CSPALT under periodic inspection using Weibull life distribution.
The optimal plan consists in determining optimal allocation and optimal inspection times
using D-optimality criterion. The method proposed is illustrated using a numerical example.

The future scope of RDTs under normal operating or accelerated conditions is vast
and still unexploited.

These tests can be also constructed for two-component parallel systems with de-
pendent components. RDTs can also be formulated for other reliability systems such as
series-parallel, parallel-series, and k-out-of-n system, etc. Conducting RDTs for small sam-
ple size for various reliability systems is still an open problem. Parametric approach has
been used in the present paper. The tests can also be formulated using Non-parametric and
Bayesian approaches.
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Abstract
In this paper, the reliability estimation of single component stress-strength model is

studied with strength(X) and stress(Y) of the component follow Lomax exponential distri-
bution. The maximum likelihood and Bayesian estimation methods are applied to derive
estimators of reliability. The Bayesian estimators for reliability are constructed under dif-
ferent loss functions such as squared error and linex loss functions with non-informative and
gamma priors using Lindley’s approximation technique. The simulation experiment is con-
ducted to estimate the mean squared error of the estimators which enable the comparison of
different estimators. The construction of asymptotic confidence interval of reliability is also
constructed. The real data analysis is done to illustrate the developed procedures.

Key words: Lomax exponential distribution (LED); Stress-strength reliability; maximum
likelihood estimation; Bayesian inference; Lindley’s approximation technique.

1. Introduction

In the recent years there has been growing interest in defining new generators for
univariate continuous distributions by introducing one or more additional shape parameters
to the baseline distribution. Some well-known generators are beta-G and gamma-G due to
Eugene and Famoye (2002) and Zografos and Balakrishnan (2009), respectively. Torabi and
Montazeri (2014) introduced the logistic-G family. Recently, Cordeiro and Pescim (2014)
studied a new family of distributions based on the Lomax distribution. The probability
density function (pdf) and cumulative distribution function (cdf) of Lomax-G family with
two additional parameters α and β are given by

f (x) = αβαg (x)
(
[1 − G (x)] {β − log [1 − G (x)]}α+1

)−1
, x > 0, α, β > 0

and
F (x) = 1 − βα (β − log [1 − G (x)])−α , x > 0, α, β > 0

where g(x) and G(x) are the pdf and cdf of parent distribution. The parameters α and β
are the shape and scale parameters of the distribution, respectively.
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In this paper, the estimation of stress-strength reliability is considered when X and Y are
independently distributed Lomax exponential distribution (LED) which was introduced by
Ieren and Kuhe (2018) which is a new generalization of exponential distribution. The LED
is constructed by Cordeiro and Pescim (2014) using Lomax-G family. The general form
of cumulative distribution function (cdf) and probability density function (pdf) of Lomax
G-family with baseline distribution G is given below:
The cumulative distribution function (cdf) and probability density function (pdf) are given
by

f (x) = αβαg (x)
(
[1 − G (x)] {β − log [1 − G (x)]}α+1

)−1
, x > 0, α, β > 0

and
F (x) = 1 − βα (β − log [1 − G (x)])−α , x > 0, α, β > 0

where g(x) and G(x) are the pdf and cdf of baseline distribution. The parameters α and β
are the shape and scale parameters of the distribution, respectively.
In this paper, the problem of estimation of stress-strength reliability is considered when X
and Y are independently distributed Lomax exponential distribution (LED) due to Ieren
and Kuhe (2018) with exponential distribution as baseline distribution. Then, the cdf and
pdf of LED are given by

F (x) = 1 − βα (β + λx)−α , α > 0, x > 0, β > 0, λ > 0

and
f (x) = αλβ α (β + λx)−(α+1) , α > 0, x > 0, β > 0, λ > 0

It is denoted by LED(α, β, λ).
Some particular cases of Lomax exponential distribution are as given below:

1. If λ=1 and β=1, then LED is Pareto type-II distribution.

2. LED is Lomax standard exponential distribution, when λ=1.

3. When β=1, LED is generalized Pareto distribution.

The main focus of the paper is to study the problem of estimating stress-strength reliabil-
ity when stress and strength variables follow LED. In the literature several authors have
studied the estimation of stress-strength reliability for different life time distributions. Awad
and Gharraf (1986) considered the estimation of R for Burr distribution. Mokhlis (2005)
and Panahi and Asadi (2011) estimated the stress-strength reliability for Burr type-III and
Lomax distributions respectively. Abravesh and Mostafaiy (2019) studied the classical and
Bayesian estimation of stress-strength reliability based on type II censored sample from
Pareto distribution.
The rest of the paper is organised as below. Section 2 deals with derivation of stress-strength
reliability when strength X and stress Y follow LED. Maximum likelihood estimation of R
and its asymptotic confidence intervals are given in Section 3. In Section 4, the Bayesian
estimator of R is presented. The real data analysis is considered in Section 5. Section 6
contains a simulation study and the conclusions are presented in Section 7.
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2. Stress-strength reliability

Let X and Y be two independent random variables having LED(α1, β, λ) and LED(α2,
β, λ) respectively.
Then, the stress-strength reliability is given by

R = P (X > Y )
=
´∞

0 F (x) f (x) dx

= α2

α1 + α2
(1)

3. Maximum likelihood estimation (MLE) of reliability

Let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Ym) be independent random samples
from LED(α1, β, λ) and LED(α2, β, λ), respectively. Then the likelihood function of α1,
α2, β and λ given

(
x, y

)
is

L
(
α1, α2, β, λ|x, y

)
=

n∏
i=1

α1β
α1λ (β + λxi)−(α1+1)

m∏
j=1

α2β
α2λ (β + λyj)−(α2+1) (2)

and the log-likelihood function is

log L = n log α1 + m log α2 + (nα1 + mα2) log β + (n + m) log λ − (α1 + 1)∑n
i=1 log (β + λxi) −

(α2 + 1)∑m
j=1 log (β + λyj)

(3)
The likelihood equations are

n

α1
+ n log β −

n∑
i=1

log (β + λxi) = 0 (4)

m

α2
+ m log β −

m∑
j=1

log (β + λyj) = 0 (5)

nα1 + mα2

β
− (α1 + 1)

n∑
i=1

(
1

(β + λxi)

)
− (α2 + 1)

m∑
j=1

(
1

(β + λyj)

)
= 0 (6)

and
n + m

λ
− (α1 + 1)

n∑
i=1

(
xi

(β + λxi)

)
− (α2 + 1)

m∑
j=1

(
yj

(β + λyj)

)
= 0 (7)

The above equations do not yield solution in closed form. Hence, a popular iterative tech-
nique, namely, Newton Raphson technique is used.
Using the invariance property of MLE, the MLE of R is given by

R̂ = α̂2

α̂1 + α̂2
.
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3.1. Asymptotic distribution of R

Under general regularity conditions, the asymptotic distribution of
(
θ̂ − θ

)
is mul-

tivariate Np+4
(
0, I (θ)−1

)
distribution, where I (θ) is the expected information matrix and

θ = [α1, α2, β, λ]⊺. Here, I (θ)−1can be approximated by the inverse of observed information
matrix I

(
θ̂
)−1

evaluated at θ̂. This distribution is used to construct the 100(1-α)% confi-
dence interval for each parameters.
Asymptotic confidence intervals of the parameters are given by

α1 ± Zα
2

√
I−1

11 , α2 ± Zα
2

√
I−1

22 ,

β ± Zα
2

√
I−1

33 and λ ± Zα
2

√
I−1

44

The asymptotic confidence interval of R is

R̂ ± Zα
2

√
AV

(
R̂
)

,

where

AV
(
R̂
)

=
[

∂R

∂α1

]2

I−1
11 +

[
∂R

∂α2

]2

I−1
22 .

4. Bayesian estimation of R

In this section, the Bayesian estimation of R under different loss functions and priors is
presented. The non-informative and gamma priors are considered to obtain Bayes estimator
of R. The prior distribution of α1, α2, β and λ are gamma (c1, d1), gamma (c2, d2), gamma
(c3, d3) and gamma (c4, d4), respectively.
The joint prior distribution of α1, α2, β and λ is given by

g1 (α1, α2, β, λ) = g (α1) g (α2) g (β) g (λ) (8)

where
g (α1) = dc1

1
Γc1

exp (−d1α1) αc1−1
1 , α1 > 0, c1, d1 > 0 ,

g (α2) = dc2
2

Γc2
exp (−d2α2) αc2−1

2 , α2 > 0, c2, d2 > 0 ,

g (β) = dc3
3

Γc3
exp (−d3β) βc3−1, β > 0, c3, d3 > 0

and
g (λ) = dc4

4
Γc4

exp (−d4λ) λc4−1, λ > 0, c4, d4 > 0

If, c1 = c2 = c3 = c4 = d1 = d2 = d3 = d4 = 0, then it reduces to non-informative prior.
The posterior distribution is

π (α1, α2, β, λ) = L (α1, α2, β, λ) g (α1, α2, β, λ)´∞
0

´∞
0

´∞
0

´∞
0 L (α1, α2, β, λ) g (α1, α2, β, λ) dα1 dα2 dβ dλ
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π (α1, α2, β, λ) = G´∞
0

´∞
0

´∞
0

´∞
0 G dα1 dα2 dβ dλ

(9)

where

G = exp (−d1α1) αn+c1−1
1 exp (−d2α2) αm+c2−1

2 exp (−d3β) exp (−d4λ) βnα1+mα2+c3−1

λn+m+c4−1∏n
i=1 (β + λxi)−(α1+1)∏m

j=1 (β + λyj)−(α2+1)

The posterior distribution of R is non-tractable. Hence, the Lindley’s approximation tech-
nique is used to derive Bayes estimator of R.
For four parameter case, the Lindley’s approximation to Bayes estimator of R under squared
error loss function is given by

R̂S = u + (u1a1 + u2a2 + u3a3 + u4a4 + a5 + a6) +
1
2 [A (u1σ11 + u2σ12 + u3σ13 + u4σ14)] +
1
2 [B (u1σ21 + u2σ22 + u3σ23 + u4σ24)] +
1
2 [C (u1σ31 + u2σ32 + u3σ33 + u4σ34)] +
1
2 [D (u1σ41 + u2σ42 + u3σ43 + u4σ44)] ,

(10)

where,u = R̂, ui, i = 1, 2, 3, 4 and uij, i, j = 1, 2, 3, 4 are the first and second order
derivatives of R, σij, i, j = 1, 2, 3, 4 is the (i, j)th element in the inverse of the matrix [-
Lij], Lij and Lijk are the second and third order derivatives of log-likelihood function and
ρi, i = 1, 2, 3, 4 is the first order differentiation of log of prior with respect to α1, α2, β and
λ.
Here,

ai = ρ1σi1 + ρ2σi2 + ρ3σi3 + ρ4σi4, i = 1, 2, 3, 4. ,

a5 = u12σ12 + u13σ13 + u14σ14 + u23σ23 + u24σ24 ,

a6 = 1
2 (u11σ11 + u22σ22 + u33σ33 + u44σ44) ,

A = σ11L111 + 2σ12L121 + 2σ13L131 + 2σ14L141 + 2σ23L231 + 2σ24L241+
σ22L221 + σ33L331 + 2σ34L341 + σ44L441 ,

B = σ11L112 + 2σ12L122 + 2σ13L132 + 2σ14L142 + 2σ23L232 + 2σ24L242+
σ22L222 + σ33L332 + 2σ34L342 + σ44L442 ,

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ14L143 + 2σ23L233 + 2σ24L243+
σ22L223 + σ33L333 + 2σ34L343 + σ44L443 ,

and
D = σ11L114 + 2σ12L124 + 2σ13L134 + 2σ14L144 + 2σ23L234 + 2σ24L244+

σ22L224 + σ33L334 + 2σ34L344 + σ44L444 .

According to our case,

R̂S = u + (u1a1 + u2a2 + a6) + 1
2 [A (u1σ11) + B (u2σ22)] +

1
2 [C (u1σ31 + u2σ32) + D (u1σ41 + u2σ42)] ,

(11)

where
a1 = ρ1σ11 + ρ3σ13 + ρ4σ14, a2 = ρ2σ22 + ρ3σ23 + ρ4σ24

a5 = +u14σ14 + u23σ23 + u24σ24 ,
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a6 = 1
2 (u11σ11 + u22σ22 + u33σ33 + u44σ44) ,

A = σ11L111 + σ22L221 + σ33L331 + 2σ34L341 + σ44L441,

B = σ22L222 + σ33L332 + 2σ34L342 + σ44L442 ,

C = 2σ13L133 + 2σ14L143 + 2σ23L233 + 2σ24L243 + σ33L333 + 2σ34L343 + σ44L443 ,

D = 2σ13L134 + 2σ14L144 + 2σ23L234 + 2σ24L244 + σ33L334 + 2σ34L344 + σ44L444 ,

u = α̂2

α̂1 + α̂2
, u1 = −α̂2

(α̂1 + α̂2)2 , u2 = α̂1

(α̂1 + α̂2)2 , u3 = u4 = 0,

u11 = 2α̂2

(α̂1 + α̂2)3 , u22 = −2α̂1

(α̂1 + α̂2)3 , u12 = u21 = α̂2 − α̂1

(α̂1 + α̂2)3 ,

ρ1 = c1 − 1
α̂1

− d1, ρ2 = c2 − 1
α̂2

− d2, ρ3 = c3 − 1
β̂

− d3, ρ4 = c4 − 1
λ̂

− d4 ,

L11 = − n

α̂2
1
, L22 = − m

α̂2
2
,

L13 = L31 = −
n∑

i=1

(
1

β̂ + λ̂xi

)
+ n

β̂
,

L23 = L32 = −
m∑

j=1

(
1

β̂ + λ̂yj

)
+ m

β̂
,

L14 = L41 = −
n∑

i=1

(
xi

β̂ + λ̂xi

)
,

L24 = L42 = −
m∑

j=1

(
yj

β̂ + λ̂yj

)
,

L33 = −(nα̂1 + mα̂2)
β̂2

+ (α̂1 + 1)
n∑

i=1

 1(
β̂ + λ̂xi

)2

+ (α̂2 + 1)
m∑

j=1

 1(
β̂ + λ̂yj

)2

 ,

L44 = −(n + m)
λ̂2

+ (α̂1 + 1)
n∑

i=1

 x2
i(

β̂ + λ̂xi

)2

+ (α̂2 + 1)
m∑

j=1

 y2
j(

β̂ + λ̂yj

)2

 ,

L34 = L43 = (α̂1 + 1)
n∑

i=1

 xi(
β̂ + λ̂xi

)2

+ (α̂2 + 1)
m∑

j=1

 yj(
β̂ + λ̂yj

)2

 ,

L111 = 2n

α̂2
1
, L222 = 2m

α2
2

,

L134 = L413 = L314 = L341 = L431 = L143 =
n∑

i=1

 xi(
β̂ + λ̂xi

)2

 ,
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L244 = L424 = L442 =
m∑

j=1

 y2
j(

β̂ + λ̂yj

)2

 ,

L234 = L423 = L324 = L342 = L432 = L243 =
m∑

j=1

 yj(
β̂ + λ̂yj

)2

 ,

L144 = L414 = L441 =
n∑

i=1

 x2
i(

β̂ + λ̂xi

)2

 ,

L334 = L343 = L433 = − (α̂1 + 1)
n∑

i=1

 xi(
β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 yj(
β̂ + λ̂yj

)3

 ,

L344 = L434 = L443 = − (α̂1 + 1)
n∑

i=1

 x2
i(

β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 y2
j(

β̂ + λ̂yj

)3

 ,

L111 = 2n

α̂2
1
, L222 = 2m

α̂2
2

,

L134 = L413 = L314 = L341 = L431 = L143 =
n∑

i=1

 xi(
β̂ + λ̂xi

)2

 ,

L244 = L424 = L442 =
m∑

j=1

 y2
j(

β̂ + λ̂yj

)2

 ,

L234 = L423 = L324 = L342 = L432 = L243 =
m∑

j=1

 yj(
β̂ + λ̂yj

)2

 ,

L144 = L414 = L441 =
n∑

i=1

 x2
i(

β̂ + λ̂xi

)2

 ,

L334 = L343 = L433 = − (α̂1 + 1)
n∑

i=1

 xi(
β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 yj(
β̂ + λ̂yj

)3

 ,

L344 = L434 = L443 = − (α̂1 + 1)
n∑

i=1

 x2
i(

β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 y2
j(

β̂ + λ̂yj

)3

 ,

L133 = L313 = L331 =
n∑

i=1

 1(
β̂ + λ̂xi

)2

− n

β̂2
,
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L233 = L323 = L332 =
m∑

j=1

 1(
β̂ + λ̂yj

)2

− m

β̂2
,

L333 = 2 (nα̂1 + mα̂2)
β̂3

− 2 (α̂1 + 1)
n∑

i=1

 1(
β̂ + λ̂xi

)3

− 2 (α̂2 + 1)
m∑

j=1

 1(
β̂ + λ̂yj

)3

 ,

and

L444 = 2 (n + m)
λ̂3

− (α̂1 + 1)
n∑

i=1

 2x3
i(

β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 2y3
j(

β̂ + λ̂yj

)3

 ,

Under linex loss function,

R̂L = −1
δ

log
(

v + (v1a1 + v2a2 + a6) + 1
2 [A (v1σ11) + B (v2σ22)] +

1
2 [C (v1σ31 + v2σ32) + D (v1σ41 + v2σ42)]

)
, (12)

where
v = exp

(
−δ

α̂2

α̂1 + α̂2

)
, v1 = δ exp

(
−δ

α̂2

α̂1 + α̂2

)
α̂2

(α̂1 + α̂2)2 ,

v2 = −δ exp
(

−δ
α̂2

α̂1 + α̂2

)
α̂1

(α̂1 + α̂2)2 ,

v11 = −δα̂2 exp
(

−δ
α̂2

α̂1 + α̂2

)[
α̂2 (δ + 2) + 2α̂1

(α̂1 + α̂2)4

]
,

v12 = v21 = δ exp
(

−δ
α̂2

α̂1 + α̂2

)[
α̂2

1 − α̂2
2 − δα̂1α̂2

(α̂1 + α̂2)4

]
and

v22 = δα̂1 exp
(

−δ
α̂2

α̂1 + α̂2

)[
α̂1 (δ + 2) + 2α̂2

(α̂1 + α̂2)4

]
.

5. Real data analysis

In this section, two real data sets are analysed to illustrate the proposed estimation
methods. These data sets are initially used by Nelson (1982). The data sets represent times
to breakdown of an insulating fluid between electrodes at different voltage. The failure times
(in minutes) for an insulating fluid between two electrodes subject to a voltage of 34kV and
36kV are presented as data set 1 and data set 2, respectively.
Data set 1 (X): 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06,
31.75, 32.52, 33.91, 36.71, 72.89.
Data set 2 (Y): 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77,
25.50.

To check the fitness for the two data sets, -logL, Akaike information criteria (AIC),
Bayesian information criteria (BIC), Akaike information criteria corrected (AICc), Kolmogrov-
smirnov (K-S) and Anderson-Darling (A-D) statistics with corresponding p-values are com-
puted and the results for both data sets are given in the Tables below.
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Table 1: Estimates of the parameters with corresponding standard error and the
values of -logL, AIC, AICc, BIC, K-S and A-D statistics for different distributions
for data set 1

Name of the distribution Estimates of parameters -logL AIC AICc BIC K − S
(p − value)

A − D
(p − value)

Lomax Exponential
α = 2.0302(1.6632)
β = 5.1863(11.6778)
λ = 0.3101(0.8155)

68.4234 140.8468 142.4468 143.683 0.12654
(0.5029)

0.32203
(0.9198)

Weibull α = 0.7956(0.1561)
β = 0.1752(0.0380) 69.1296 142.2592 143.0092 144.1481 0.1613

(0.336)
0.3918
(0.8552)

Exponentiated exponential α = 0.6825(0.1941)
β = 0.0535(0.0180) 69.3980 142.796 143.546 144.684 0.1886

(0.2292)
0.5057
(0.7388)

Table 2: Estimates of the parameters with corresponding standard error and the
values of -logL, AIC, AICc, BIC, K-S and A-D statistics for different distributions
for data set 2

Name of the distribution Estimates of parameters -logL AIC AICc BIC K − S
(p − value)

A − D
(p − value)

Lomax Exponential
α = 3.0369(2.889)
β = 8.5039(3.124)
λ = 0.8991(1.182)

36.9792 79.9583 81.5584 77.794 0.14339
(0.4938)

0.45395
(0.7915)

Weibull α = 0.8891(0.1635)
β = 0.2738(0.1151) 38.0125 81.3828 83.5646 80.7989 0.1917

(0.2941)
0.6271
(0.6199)

Exponentiated exponential α = 1.9271(0.5985)
β = 0.3875(0.0954) 41.4606 86.9212 87.6712 88.810 0.1979

(0.2724)
1.3637
(0.2125)

The estimate of reliability using MLE is 0.7042. Bayes estimates under different priors
and loss functions are presented in Table 3.

Table 3: MLE and the Bayes estimates under different loss functions with dif-
ferent priors.

Bayes estimaes
Non informative prior Gamma prior

MLE R̂S R̂L R̂L1 Prior 1 Prior 2
R̂S R̂L R̂L1 R̂S R̂L R̂L1

λ unknown 0.7042 0.7248 0.7247 0.7248 0.7312 0.7312 0.7312 0.7489 0.7591 0.7467
λ known 0.7046 0.7253 0.7252 0.7253 0.7343 0.7344 0.7343 0.8528 0.8583 0.8477

R̂L1 refers to linex loss function with loss parameter δ = −0.5.

6. Simulation study

A simulation study of 10000 observations is conducted by generating samples of dif-
ferent sizes such as (n, m) = (5, 5), (5, 10), (10, 10), (10, 15), (20, 20), (20, 25), (30, 30),
(30, 35) and (40, 40). The true values of R which are considered under simulation study are
0.57142 and 0.47058. The parameter values of the prior distribution for squared error and
linex loss functions are c1 = 1, d1 = 0.8, c2 = 2, d2 = 0.4, c3 = 5, d3 = 0.2, c4 = 1, d4 = 2
(prior1) and c1 = 4, d1 = 3, c2 = 3, d2 = 0.9, c3 = 5, d3 = 5, c4 = 1 and d4 = 2 (prior
2). The values of loss parameters under linex loss function are 0.5 and -0.5. The proposed
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estimators are compared using mean squared error (MSE) criteria. The MLEs and Bayes
estimates with corresponding MSEs are given in the Tables given in annexure.

7. Conclusions

The estimation of stress-strength reliability (R) is considered, when stress and strength
variables follow LED. The maximum likelihood and Bayesian estimation methods are used to
estimate stress-strength reliability. MLEs are derived. Bayes estimators under different loss
functions such as squared error and linex loss functions with gamma and non-informative
priors are obtained. The Lindley’s approximation technique is used to approximate the Bayes
estimator of R. The real data analysis is conducted to illustrate the developed estimation
procedures. A simulation experiment is conducted to study the performance of estimators
which are derived in the paper and it reveals that Bayes estimator with non-informative
prior is better when compared to MLEs. However, the Bayes estimator with gamma prior
is better than that the non-informative prior. The gamma prior under linex loss function is
better than the squared error loss function. Specially, the linex with loss parameter -0.5 is
better than all.
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ANNEXURE

Table 4: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.47058, α1 = 4.5, α2 = 4, β = 0.25, λ = 1, c1 = 1, d1 = 0.8, c2 =
2, d2 = 0.4, c3 = 5, d3 = 0.2, c4 = 1 and d4 = 2

Bayes estimates
Sample Size R̂ Non-informative prior Gamma prior

n, m R̂S R̂L R̂L1 R̂S R̂L R̂L1
0.475778 0.476434 0.476434 0.476432 0.469151 0.469537 0.468764
(0.00935) (0.00921) (0.00921) (0.00921) (0.01326) (0.01319) (0.01333)
0.484687 0.484751 0.484751 0.484752 0.498398 0.498469 0.498328
(0.00761) (0.00759) (0.00758) (0.00756) (0.00568) (0.00567) (0.00568)
0.509822 0.518294 0.518835 0.517758 0.627643 0.631826 0.623797
(0.00386) (0.00289) (0.00283) (0.00294) (0.00342) (0.00392) (0.00298)
0.491192 0.49118 0.49119 0.49128 0.502418 0.502452 0.502386
(0.00646) (0.00645) (0.00646) (0.00648) (0.00482) (0.004812) (0.00482)
0.499716 0.502127 0.501969 0.501969 0.5360198 0.536513 0.535539
(0.00516) (0.004826) (0.004848) (0.00484) (0.001302) (0.00127) (0.001336)
0.493795 0.493784 0.493785 0.493784 0.502259 0.502278 0.502241
(0.00604) (0.006042) (0.006043) (0.006042) (0.00481) (0.00485) (0.004810)
0.498063 0.499178 0.499253 0.499104 0.517388 0.513875 0.517221
(0.00539) (0.005233) (0.005222) (0.005243) (0.002941) (0.002923) (0.002959)
0.495227 0.495219 0.495217 0.494567 0.501950 0.501961 501939

(0.005814) (0.005815) (0.005816) (0.005834) (0.002838) (0.002837) (0.002840)
0.497783 0.498424 0.498467 0.49838 0.510512 0.510596 0.510428

(0.005431) (0.005337) (0.005331) (0.005343) (0.002721) (0.002711) (0.002731)

Table 5: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.47058, α1 = 4.5, α2 = 4, β = 0.25, λ = 1, c1 = 4, d1 = 3,c2 = 3, d2 =
0.9, c3 = 5, d3 = 5, c4 = 1 and d4 = 2

Bayes estimator
Gamma prior

Samplesize
n, m

R̂S MSE
(
R̂S

)
R̂L MSE

(
R̂L

)
R̂L1 MSE

(
R̂L1

)
5, 5 0.497594 (0.001201) 0.497486 (0.001202) 0.497486 (0.001199)

10,10 0.496694 (0.0006817) 0.496698 (0.0006819) 0.4966903 (0.0006815)
20, 20 0.495962 (0.0006442) 0.495967 (0.0006445) 0.4959559 (0.0006439)
30, 30 0.493617 (0.000531) 0.493629 (0.000532) 0.493605 (0.0005305)
40, 40 0.491194 (0.000427) 0.491219 (0.000429) 0.49117 (0.000426)
50, 50 0.490183 (0.000419) 0.491835 (0.000422) 0.490092 (0.000418)
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Table 6: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.57142, α1 = 1.5, α2 = 2, β = 0.05, λ = 1, c1 = 1.5, d1 = 0.8, c2 =
2, d2 = 0.4, c3 = 5, d3 = 0.2, c4 = 1 and d4 = 2

Bayes estimates
Sample Size R̂ Non-informative prior Gamma prior

n, m R̂S R̂L R̂L1 R̂S R̂L R̂L1
0.512716 0.508545 0.608551 0.608536 0.608231 0.608375 0.608084

(0.008113) (0.001532) (0.001531) (0.001532) (0.001415) (0.001414) (0.001416)
0.598296 0.594557 0.594561 0.594554 0.592429 0.592497 0.592359

(0.001438) (0.001177) (0.001178) (0.001176) (0.000554) (0.000556) (0.000552)
0.584903 0.582614 0.582616 0.582613 0.584997 0.585012 0.584972

(0.001183) (0.001032) (0.001032) (0.001031) (0.000508) (0.000509) (0.000507)
0.585307 0.584972 0.581633 0.581278 0.580119 0.580272 0.581965

(0.000615) (0.000230) (0.000226) (0.000234) (0.000139) (0.000136) (0.000123)
0.579466 0.57843 0.571844 0.571843 0.566447 0.56646 0.466435

(0.001084) (0.00098) (0.000973) (0.000981) (0.000118) (0.000125) (0.000111)
0.578644 0.573740 0.573672 0.573808 0.572867 0.573873 0.573863

(0.000789) (0.000538) (0.000536) (0.000542) (0.000110) (0.000111) (0.000109)
0.576447 0.571814 0.572679 0.565506 0.569978 0.569784 0.569989

(0.000671) (0.000411) (0.000407) (0.000415) (0.000040) (0.000039) (0.000040)

Table 7: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.57142, α1 = 1.5, α2 = 2, β = 0.05, λ = 1, c1 = 4, d1 = 3,c2 = 3, d2 =
0.9, c3 = 5, d3 = 5, c4 = 1 and d4 = 2

Bayes estimator
Gamma prior

Samplesize
n, m

R̂S MSE
(
R̂S

)
R̂L MSE

(
R̂L

)
R̂L1 MSE

(
R̂L1

)
5, 5 0.614573 (0.001506) 0.614682 (0.001492) 0.614325 (0.001485)

10,10 0.591334 (0.0008835) 0.596698 (0.0008829) 0.5966903 (0.0008821)
20, 20 0.583426 (0.0007566) 0.582466 (0.0007545) 0.581345 (0.0007536)
30, 30 0.581215 (0.0005104) 0.581103 (0.0005102) 0.579996 (0.0005009)
40, 40 0.579855 (0.0004551) 0.578847 (0.0004545) 0.577634 (0.0004495)
50, 50 0.574673 (0.0002486) 0.573321 (0.0002465) 0.572589 (0.0002355)



Statistics and Applications {ISSN 2454-7395 (online)}
Volume 22, No. 1, 2024 (New Series), pp 241–261
http://www.ssca.org.in/journal

Bayesian Inference for Glioma Data Using Generalized
Burr X-G (GBX-G) Family with R and Stan

Devashish, Shazia Farhin, and Athar Ali Khan
Department of Statistics and Operations Research

Aligarh Muslim University, Aligarh - 202002, India

Received: 17 April 2023; Revised: 29 August 2023; Accepted: 03 September 2023

Abstract
Bayesian modeling of generalized distributions is currently highly appreciated due to

the impressive growth in computational capabilities and software accessibility. This work
attempts to fit the Bayesian inference methods for the generalized Burr X-G (GBX-G) family.
On the basis of the GBX-G family, three distributions— the generalized Burr X-Weibull, the
generalized Burr X-Exponential and the generalized Burr X-Lomax are analysed and fitted
to censored survival data of malignant glioma patients using the probabilistic programming
language STAN. In order to apply censored mechanisms throughout using STAN, codes
are developed. Finally, a comparison has been made between the models through the use of
Watanabe Akaike information criteria and leave one out cross-validation information criteria
and conclusion has been given regarding the Bayesian model fitting of the glioma dataset.

Key words: Generalized Burr X-G (GBX-G) family; Bayesian survival modelling; Censored
data; MCMC; LOOIC and WAIC methods.

1. Introduction

The time until an event occurs is the outcome variable of interest in a group of
statistical techniques for data analysis called survival analysis. In the literature, there are
many models that may be used to analyse lifetime data. Burr X (BX) distribution and
it’s generalization has been a part of research interest for survival data analysis for a long
period of time. Burr (1942) introduced the Burr X (BX) distribution and later Yousof et al.
(2017) defined Burr X-G (BX-G) family of distributions and also discussed it’s application
in analysing lifetime data. Also several other extended forms of the Burr X-G family were
studied such as the transmuted Burr X-G (TBX-G) family and the truncated Burr X-G
family of distributions that have been proposed and discussed by Al-Babtain et al. (2021) and
Bantan et al. (2021) respectively. Apart from this Akhtar and Khan (2014) has conducted
Bayesian analysis of generalized log-Burr family using R.

Based on the Burr X (BX) distribution, Aldahlan et al. (2021) created a new class
of continuous distributions known as the generalised Burr X-G (GBX-G) family, studied its
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mathematical properties, such as explicit expressions for the quantile and generating func-
tions, ordinary and incomplete moments, order statistics, etc., and provided its applications
to real data sets. The GBX-G family’s versatility in accommodating various forms of the
hazard rate function (for details see Aldahlan et al. (2021)) turns into the driving force
behind our work. The three GBX-G family-based models have been taken into considera-
tion namely generalized Burr X-Exponential (GBXEx) Model, generalized Burr X-Weibull
(GBXW) Model, and generalized Burr X-Lomax (GBXLx) Model in order to fit a real cen-
sored survival data named glioma which was initially discussed by Grana et al. (2002),
under the Bayesian setup.

The comprehensive Bayesian inference-supporting probabilistic programming lan-
guage STAN Carpenter et al. (2017) in R R Core Team (2021) is used to fit the aforemen-
tioned models. In Bayesian analysis, the computer language STAN is most typically used
as a Hamiltonian Monte Carlo (HMC) sampler Duane et al. (1987); Brooks et al. (2011).
Statistical models are defined using STAN. For Bayesian analysis, STAN predominantly
uses the No-U-Turn sampler (NUTS) Hoffman et al. (2014) to obtain posterior simulation.
We have also assessed and chosen the most appropriate model for the glioma data using the
Watanabe-Akaike information criteria, or widely applicable information criteria (WAIC) and
the Leave-One-Out information criteria (LOOIC). LOOIC and WAIC are two techniques for
assessing the accuracy of pointwise out-of-sample predictions using a fitted Bayesian model
and the log-likelihood evaluated at the posterior simulations of the parameter values, see
Vehtari et al. (2017).
The article is structured as follows:
1. Explanation of PDF, CDF and hazard function for GBX-G family and all three models
GBXEx, GBXW, and GBXLx of it (Section 2).
2. Explanation of the glioma data set and it’s structure for STAN (Section 3).
3. Analysis under Bayesian approach by providing Likelihood, prior and posterior for all
three models (Section 4).
4. Implementation and model fitting using STAN (Section 4.5).
5. Numeric as well as graphic results and interpretation of Bayesian analysis for the glioma
data set (Section 4.8 - Section 4.12).
6. Bayesian Model comparison for the glioma data set (Section 5).
7. Conclusion (Section 6).

2. Generalized Burr X-G (GBX-G) family

A continuous random variable T is said to have the GBX-G family that is T ∼ GBX-
G(α, β, η), if it has following probability density function (PDF), cumulative distribution
function (CDF), survival function, and hazard function respectively, see (Aldahlan et al.,
2021)-

fT (t, α, β, η) = 2αβg(t, η)G(t, η)2α−1

[1 − G(t, η)α]3 exp(−[ G(t, η)α

1 − G(t, η)α
]2)

×(1 − exp(−[ G(t, η)α

1 − G(t, η)α
]2))β−1

(1)

FT (t, α, β, η) = (1 − exp(−[ G(t, η)α

1 − G(t, η)α
]2))β (2)
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ST (t, α, β, η) = 1 − (1 − exp(−[ G(t, η)α

1 − G(t, η)α
]2))β (3)

hT (t, α, β, η) = fT (t, α, β, η)
ST (t, α, β, η) (4)

Where α and β are positive shape parameters and η is parameter vector.

2.1. Generalized Burr X-exponential (GBXEx) model

Let the PDF g(t) = λe–λt, for t > 0, of the exponential distribution with scale
parameter λ, λ>0. Then, the probability density function (PDF), cumulative distribution
function (CDF), survival function of the GBXEx model becomes

f(t) = 2αβλe–λt(1 − e–λt)2α−1

[1 − (1 − e–λt)α]3 exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2)

×(1 − exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2))β−1

(5)

F (t) = (1 − exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2))β (6)

S(t) = 1 − (1 − exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2))β (7)

Also, using above expressions the hazard function can be obtained as-

h(t) = f(t)
S(t) (8)

Here the random variable T will be denoted as T ∼ GBXEx(α, β, λ).

Random number generation - For random number generation of time variable
from any survival model we will equate Survival function, S(t) to u, where U is a Uniform(0,1)
variate and solve this equation for the value of t. Gelman et al. (2013) explained this method
to generate the random numbers. Farhin et al. (2022) used this method recently.
The random number generation from GBXEx model is obtained by -

t = −1
λ

log(1 − ( (−log(1 − (1 − u)1/β))1/2

1 + (−log(1 − (1 − u)1/β))1/2 )1/α) (9)

2.2. Generalized Burr X-Weibull (GBXW) model

Let the PDF g(t) = aλxλ−1e−axλ , for t > 0, of the Weibull distribution with pa-
rameters λ and a, λ>0, a>0. Thus, the probability density function (PDF), cumulative
distribution function (CDF), survival function of the GBXW model becomes

f(t) = 2αβaλtλ−1e−atλ(1 − e−atλ)2α−1

[1 − (1 − e−atλ)α]3 exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2)

×(1 − exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2))β−1

(10)
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F (t) = (1 − exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2))β (11)

S(t) = 1 − (1 − exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2))β (12)

Also, using above expressions the hazard function can be obtained as-

h(t) = f(t)
S(t) (13)

Here the random variable T will be denoted as T ∼ GBXW(α, β, a, λ).

Also, the generation of random numbers from GBXW model is obtained by -

t = λ × (−log(1 − ( (−log(1 − (1 − u)1/β))1/2

1 + (−log(1 − (1 − u)1/β))1/2 )1/α))1/a (14)

2.3. Generalized Burr X-Lomax (GBXLx) model

Let the PDF g(t) = a/λ[1 + t/λ]−a−1, for t > 0, of the Lomax distribution with
parameters λ and a, λ>0, a>0. Thus, the probability density function (PDF), cumulative
distribution function (CDF), survival function of the GBXLx model is given by

f(t) = 2αβa/λ[1 + t/λ]−a−1(1 − [1 + t/λ]−a)2α−1

[1 − (1 − [1 + t/λ]−a)α]3 exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2)

×(1 − exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2))β−1

(15)

F (t) = (1 − exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2))β (16)

S(t) = 1 − (1 − exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2))β (17)

Also, using above expressions the hazard function can be obtained as-

h(t) = f(t)
S(t) (18)

Here the random variable T will be denoted as T ∼ GBXLx(α, β, a, λ). The generation of
random numbers from GBXLx model is obtained by-

t = λ × ((1 − ( ((1 − (1 − u)1/β))1/2

1 + (−log(1 − (1 − u)1/β))1/2 )1/α)−1/a − 1) (19)
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3. Data: malignant glioma pilot study

On malignant glioma patients receiving pretargeted adjuvant radioimmunotherapy
with yttrium-90-biotin, Grana et al. (2002) did a non-randomized pilot research and evalu-
ated overall survival and the time to relapse. In this study, 37 high-grade glioma patients,
17 with grade III glioma and 20 with glioblastoma (GBM) were enrolled in a controlled
open non-randomized study. Among them, 19 patients were treated with adjuvant radioim-
munotherapy (RIT) and 18 were represented as the Control group. The survival time for
each patient alongwith other helpful information such as gender, histology, age, etc. had
been recorded. There are 14 censored observations out of 37 in the dataset.
This complete data set can be accessed through the R R Core Team (2021) package coin
Zeileis et al. (2008) with the name glioma.
The discription of variables of glioma data set are given below:
no.: patient number.
age: patient age in years.
sex: a factor indicating patient’s gender with levels ”M” for Male and ”F” for Female.
histology: a factor with levels ”Grade3” (grade III glioma) and ”GBM” (grade IV or
glioblastoma).
group: a factor with levels ”RIT”(radioimmunotherapy) and ”Control”.
event: censoring status indicator: FALSE for right-censored values and TRUE otherwise.
time: survival time in months.

3.1. Data creation for computation in stan

The model matrix x, a number of predictors M, and details of the censoring and
response variable are needed for data production. N is the number of observations that are
stated. Censoring is considered, with 0 being censored values and 1 denoting uncensored
values. Finally, a listed form of data named ’datg’ is created by combining all of these
operations.

library(coin)
library(survival)
data("glioma")
glioma
help(glioma)
head(glioma)
y=glioma$time
x1=glioma$age
x2=as.numeric(glioma$sex)
#0=Female, 1=Male
x2=as.numeric(x2==2)
x3=as.numeric(glioma$histology)
#0=GBM, 1=Grade3
x3=as.numeric(x3==2)
x4=as.numeric(glioma$group)
#0=Control, 1=RIT
x4=as.numeric(x4==2)
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#0=censored, 1=observed
censor=as.numeric(glioma$event)
x=cbind(1,x1,x2,x3,x4)
N=nrow(x)
M=ncol(x)
datg=list(y=y,censor=censor,x=x,N=N,M=M)

4. Analysis using Bayesian mechanism

In Bayesian analysis, in accordance with Bayes Theorem, we look for the posterior
distribution which is the exact parameter distribution, by combining likelihood or data with
the prior distribution of the parameter. The likelihood of the data and the prior distribution
or the prior belief about the model’s parameters must be established before the Bayesian
regression model can be built.

4.1. Likelihood

Following Collett (2015), The right censored data can be formulated using the fol-
lowing joint likelihood function-

L =
n∏

i=1
h(ti)γiS(ti) (20)

And, the log-likelihood can be re-written as an alternative to the above form as-

logL =
n∑

i=1
(γi(logh(ti) + logS(ti))) (21)

Here γi is the censoring indicator such that γ = 1 if the observation is not censored and γ
= 0 if the observation is censored. To obtain the likelihood of GBXEx, GBXW and GBXLx
survival models, the survival function S(ti) and the hazard function h(ti) of GBXEx, GBXW
and GBXLx models respectively can be sustituted in the equation 20.

4.2. Modeling information

Following Lawless (2011), We have introduced covariates using the log link function
in order to construct a regression model.

log(λi) = b1 + b2xi1 + b3xi2 + b4xi3 + b5xi4 (22)

λi = exp(b1 + b2xi1 + b3xi2 + b4xi3 + b5xi4) (23)
λi = exp(xib) (24)

Here b = [b1, b2, b3, b4, b5] are regression coefficients and xi’s are covariates of the data set
discussed in Section 3. In particular, b1 is the intercept, b2 is the coefficient of covariate (x1)
of Age, b3 is the coefficient of covariate (x2) of Sex, b4 is the coefficient of covariate (x3) of
Histology and b5 is the coefficient of covariate (x4) of Group.
In STAN the transformed parameter block of the stan model code contains above regression
model. These stan codes are discussed in Section 4.5.
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4.3. Prior

A prior probability distribution for parameters of the model needs to be specified be-
fore building the Bayesian regression model. In this article, for shape and scale parameters,
we have chosen a half-Cauchy prior, and for the regression coefficient, a regularizing prior.
We have opted for the Normal prior with mean 0, and standard deviation 5 for regression
coefficient as a regularizing prior. Regularizing prior reduces the rate of learning from the
data and prevents a model from becoming overexcited by it. Notably, it reduces the over-
fitting of the model to the data.
The half-Cauchy distribution with scale parameter 25, used as a noninformative prior distri-
bution for shape parameter. Taking 25 as the value of the scale parameter, the half-Cauchy
distribution becomes almost flat. Gelman (2006) support the use of half-Cauchy or uniform
prior for the regression coefficents. Khan and Khan (2018) and Farhin and Khan (2023)
explained the use of Gaussian prior for the regression coefficient and half-Cauchy prior for
the shape as well as the scale in detail.

4.4. Posterior

Here the Bayes Theorem is used to obtain the joint posterior distribution of parameter
θ = (α, β, a, b) = (α, β, a, b0, b1, ..., bp) given the data as

P (θ|t, X) ∝ L(t|θ, X)P (θ) (25)

Taking X as the matrix of covariates and assuming the parameters as independent, we have

P (α, β, a, b|t, X) ∝ P (t|α, β, a, b, X)P (α)P (β)P (a)P (b) (26)

Hence the joint posterior distribution of GBXEx Model, GBXW Model and GBXLx Model
can be obtained by sustituting priors and the likelihood of the corresponding models in
Equation 26.

4.4.1. Posterior density of GBXEx model

P (α, β, b|t, X) ∝ P (t|α, β, b, X)P (α)P (β)P (b)

∝
n∏

i=1

{
2αβexibe–exibt(1 − e–exibti)2α−1

[1 − (1 − e–exibti)α]3
exp(−[ (1 − e–exibti)α

1 − (1 − e–exibti)α
]2)

}γi

×
{

(1 − exp(−[ (1 − e–exibti)α

1 − (1 − e–exibti)α
]2))β−1

}γi

×
{

1 − (1 − exp(−[ (1 − e–exibti)α

1 − (1 − e–exibti)α
]2))β

}1−γi

× 2 × 25
π(α2 + 252) × 2 × 25

π(β2 + 252) ×
J∏

j=0

1
5
√

2π
exp

(
− 1

2 × 25b2
j

)
(27)
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4.4.2. Posterior density of GBXW model

P (α, β, a, b|t, X) ∝ P (t|α, β, a, b, X)P (α)P (β)P (a)P (b)

∝
n∏

i=1

2αβaexibti
exib−1e−ati

exib

(1 − e−ati
exib

)2α−1

[1 − (1 − e−ati
exib

)α]3
exp(−[ (1 − e−ati

exib

)α

1 − (1 − e−ati
exib

)α
]2)


γi

×

(1 − exp(−[ (1 − e−ati
exib

)α

1 − (1 − e−ati
exib

)α
]2))β−1


γi

×

1 − (1 − exp(−[ (1 − e−ati
exib

)α

1 − (1 − e−ati
exib

)α
]2))β


1−γi

× 2 × 25
π(α2 + 252) × 2 × 25

π(β2 + 252) × 2 × 25
π(a2 + 252) ×

J∏
j=0

1
5
√

2π
exp

(
− 1

2 × 25b2
j

)
(28)

4.4.3. Posterior density of GBXLx model

P (α, β, a, b|t, X) ∝ P (t|α, β, a, b, X)P (α)P (β)P (a)P (b)

∝
n∏

i=1

{
2αβa/exib[1 + ti/exib]−a−1(1 − [1 + ti/exib]−a)2α−1

[1 − (1 − [1 + ti/exib]−a)α]3

}γi

×
{

exp(−[ (1 − [1 + ti/exib]−a)α

1 − (1 − [1 + ti/exib]−a)α
]2) × (1 − exp(−[ (1 − [1 + ti/exib]−a)α

1 − (1 − [1 + ti/exib]−a)α
]2))β−1

}γi

×
{

1 − (1 − exp(−[ (1 − [1 + ti/exib]−a)α

1 − (1 − [1 + ti/exib]−a)α
]2))β

}1−γi

× 2 × 25
π(α2 + 252) × 2 × 25

π(β2 + 252) × 2 × 25
π(a2 + 252) ×

J∏
j=0

1
5
√

2π
exp

(
− 1

2 × 25b2
j

)
(29)

Now, to find marginal posterior distribution we need to solve a a high-dimensional
integral over all model parameters. Since it is difficult to derive the normalised joint posterior
distribution and the marginal distributions of the parameters analytically, we approximate
these integrals using Markov chain Monte Carlo (MCMC) methods. Thus, the estimates and
other pertinent findings are achieved using the MCMC simulation approach with the aid of
STAN.

4.5. Implementation using stan

STAN incorporates the use of the no-U-turn sampler (NUTS), an adaptive variant
of Hamiltonian Monte Carlo (HMC) sampling, to efficiently simulate from the posterior
distribution. HMC, which extends the capabilities of the Metropolis algorithm, is particularly
advantageous in high-dimensional models due to its improved effectiveness and speed. While
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Bayesian inference using Gibbs sampling (BUGS) is a commonly used approach, it often
faces challenges when confronted with large datasets or complex models, leading to lengthy
computation times or even failure to provide solutions. STAN, on the other hand, excels
in handling such scenarios, offering faster computations and requiring a reduced number of
iterations to achieve convergence when compared to BUGS (See Ashraf-Ul-Alam and Khan
(2021) and Gelman et al. (2013)).
In R, to execute the STAN code, the package rstan is necessary. A Stan programme has
six code blocks that are used for Bayesian modelling. Each block accommodates a list of
instructions for distinct tasks. These blocks are - Data block, Transformed data block,
Parameter block, Transformed parameter block, Model block, and Generated quantities
block. In the Appendix, the stan codes with all these blocks for GBXEx, GBXW, and
GBXLx models are provided.

4.6. Fitting the model using stan

The package rstan has a function named stan which is used to fit all the models based
on GBX-G family. STAN uses C++ compiler for sampling from the posterior distrbution of
the model parameters. All necessory codes for the numeric and graphical illustrations are
provided in upcoming sub sections.

4.6.1. Bayesian data visualization: key plots for analysis

Graphical summary is an improtant part for analysis to assess the model convergence
and communicate posterior related findings effectively. In this study, four plots are used
namely- Traceplot, Caterpiller plot, Posterior predictive density plot and Posterior density
plot. The traceplot provides a visual assessment of Markov Chain Monte Carlo (MCMC)
convergence and it can be seen by comparing several Markov chains in a single plot. The
Caterpiller plot shows the credible intervals or the quantiles for various parameters of the
model and can be used to see the statistical significance of various coeffcients of the model.
Posterior predictive checks (PPD plots) allow us to evaluate how well the model fits the
observed data by comparing the density of the predicted values produced using the posterior
predictive distribution of the specified model to the observed data. The posterior density plot
is a graphical representation of the posterior distribution of a parameter and is constructed
using simulated draws of the parameter from the posterior distribution. The R packages
Bayesplot Gabry et al. (2019) and ggplot2 Wickham and Wickham (2016) with rstan are
used to create these plots in this paper.

4.7. Running the GBXEx model using stan

#calling rstan package
require(rstan)
#fitting the model
GBXE=stan(model_code = MGXE,data=datg,iter=4000,chains = 4)
print(GBXE)
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4.8. Output summary and interpretaion

The results of Bayesian model fitting of GBXEx model are provided in Table 1. Also
graphs are provided for summaries of posterior density and model convergence. The coeff-
cients b[2] of age (x1) and b[3] of sex (x2) are negative which shows that the older patients
tends to have less survival probability then younger ones and the chances of survival for
female are greater than male. The coeffcient b[5] of group is positive which indicates the
chances of survival for patients who recieved the radioimmunotherapy (RIT) are greater than
patients of control group which is a clear indication of positive impact of radioimmunother-
apy on glioma patients. We can also see that the coeffcient b[4] of histology is positive which
indicates patients with Grade 3 glioma have higher survival rates than those with glioblas-
toma (GBM). Also, after observing the estimates summary, it can be observed that the 95%
credible intervals of b[4] and b[5] do not contain a value of zero, so the effect of coefficients
of histology (GBM and Grade3) and group (Control and RIT) is statistically significant.
Additionally, the summary table conatins the posterior estimates mean and se mean, the
standard deviation (sd), and the credible interval. Apart from this, the numerical summary
table also contain the n eff that is the effective number of samples which is a measure of the
number of independent samples from the posterior distribution and the Rhat or the potential
scale reduction factor, see (Gelman et al., 2013), which is a quantitative criterion to assess
convergence to the target distribution. In general n eff > 100 and Rhat < 1.1 is accept-
able for appropriate parameter estimates and model convergence, see (Gelman et al., 2013).
We can discern that the Rhat values for all parameters of the GBXEx model fall within
an acceptable range, signifying successful convergence of the Markov chains to the desired
distribution. The effective sample size is also reasonable. Using the Bayesplot package
Gabry et al. (2019) , posterior predictive density (PPD) charts are created to visually assess
the model. Posterior predictive density charts (Figure 2) depicts that the GBXEx model is
consistent with the current data. Trace plots are also provided (Figure 1) to indicate the
convergence of MCMC algorithm. Also, Figure 1 displays the caterpillar plot, wherein a
vertical line appears at the value zero. Notably, the credible intervals of coefficients b[4] and
b[5] lie on the right-hand side of the line, indicating that these intervals do not encompass the
value of zero. This finding serves as evidence of the statistical significance of these coefficients.

Table 1: Posterior estimates results of GBXEx model parameters

Parameters mean se mean sd 2.5% 25% 50% 97.5% n eff Rhat
b[1] 3.691 0.057 1.203 2.246 2.882 3.354 6.925 439 1.005
b[2] -0.013 0.000 0.009 -0.031 -0.019 -0.013 0.006 899 1.002
b[3] -0.284 0.008 0.245 -0.759 -0.444 -0.291 0.227 875 1.000
b[4] 0.962 0.010 0.307 0.431 0.758 0.940 1.627 967 1.003
b[5] 1.209 0.007 0.247 0.789 1.039 1.183 1.756 1418 1.001
alpha 4.652 0.155 4.223 0.122 0.972 3.576 14.582 747 1.004
beta 1.255 0.133 2.628 0.105 0.183 0.303 10.175 391 1.009
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Figure 1: (i) Traceplot for GBXEx model, four chains were displayed in two sepa-
rate runs; combining the two chains successfully indicates that MCMC algorithm has
converged to the target joint posterior distribution. (ii) Caterpillar plot for GBXEx
model.
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Figure 2: (i) Posterior density plot for GBXEx model. (ii) Posterior predictive density
plot of the GBXEx model to assess the convergence of model. The GBXEx’s posterior
predictive density adequately fits the data, according to the PPD plot.

4.9. Running the GBXW model using stan

GBXW=stan(model_code = MGXW,data=datg,iter=4000,chains = 4, init = "random")
print(GBXW)

4.10. Output summary and interpretaion

The results of Bayesian model fitting of GBXW model are provided in Table 2. The
Rhat values for model parameters are < 1.1, which depicts that the Markov chain converges
to the desired distribution. And, the n eff is more than 100 for all parameters of the model.
The PPD chart (Figure 4) of the GBXW model indicates a good fit of the posterior predic-
tive density with the data. It can also be seen that the coeffcients b[2] of age (x1) and b[3]
of sex (x2) are negative and the coeffcients b[4] of histology (x3) and b[5] of group (x4) are
positive. From the numeric summary of posterior estimates (Table 2) and the caterpillar
plot (Figure 3), it is observed that the 95% credible intervals do not encompass the value
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of zero for the coefficients of histology and group, which serves as evidence of the statistical
significance of these coefficients.

Table 2: Posterior estimates results of GBXW model parameters

Parameters mean se mean sd 2.5% 25% 50% 97.5% n eff Rhat
b[1] 0.500 0.112 3.827 -7.926 -1.967 0.971 6.993 1177 1.007
b[2] -0.013 0.000 0.010 -0.032 -0.019 -0.013 0.007 2105 1.000
b[3] -0.162 0.007 0.277 -0.696 -0.348 -0.166 0.372 1781 1.001
b[4] 0.966 0.006 0.302 0.417 0.763 0.948 1.612 2861 1.000
b[5] 1.208 0.005 0.254 0.756 1.036 1.190 1.760 2775 1.001
alpha 12.997 0.948 41.793 0.057 1.319 4.608 69.750 1945 1.003
beta 7.361 0.567 20.603 0.134 0.470 1.461 53.536 1319 1.003
a 0.859 0.072 1.671 0.086 0.168 0.292 6.352 539 1.010
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Figure 3: (i) Traceplot for GBXW model, four chains were displayed in two sepa-
rate runs; combining the two chains successfully indicates that MCMC algorithm has
converged to the target joint posterior distribution. (ii) Caterpillar plot for GBXW
model.
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Figure 4: (i) Posterior density plot for GBXW model. (ii) Posterior predictive density
plot of the GBXW model to assess the convergence of model. The GBXW’s posterior
predictive density adequately fits the data, according to the PPD plot.
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4.11. Running the GBXLx model using stan

GBXL=stan(model_code = MGXL,data=datg,iter=4000,chains = 4)
print(GBXL)

4.12. Output summary and interpretaion

The results of Bayesian model fitting of GBXLx model are provided in Table 3. The
Rhat values for model parameters are < 1.1, which depicts that the Markov chain converges
to the desired distribution. And, the n eff is more than 100 for all parameters of the model.
The PPD chart (Figure 6) for the GBXLx model indicates a good fit of the posterior pre-
dictive density with the data. It can also be seen that the coeffcients b[2] of age (x1) and
b[3] of sex (x2) are negative and the coeffcients b[4] of histology (x3) and b[5] of group (x4)
are positive. From the numeric summary of posterior estimates (Table 3) and the caterpillar
plot (Figure 5), it is observed that the 95% credible intervals do not encompass the value
of zero for the coefficients of histology and group, which serves as evidence of the statistical
significance of these coefficients.

Table 3: Posterior estimates results of GBXLx model parameters

Parameters mean se mean sd 2.5% 25% 50% 97.5% n eff Rhat
b[1] 3.916 0.251 4.042 -4.775 1.203 5.100 9.957 259 1.016
b[2] -0.013 0.000 0.009 -0.031 -0.019 -0.014 0.004 1453 1.002
b[3] -0.203 0.009 0.254 -0.692 -0.372 -0.204 0.304 815 1.004
b[4] 0.966 0.007 0.286 0.459 0.770 0.951 1.594 1541 1.005
b[5] 1.194 0.006 0.241 0.773 1.034 1.173 1.723 1655 1.002
alpha 12.687 1.891 45.047 0.129 1.830 5.370 63.206 568 1.007
beta 2.067 0.228 5.376 0.118 0.221 0.440 15.137 556 1.004
a 26.023 2.067 95.486 0.274 1.062 6.787 152.409 2134 1.001
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Figure 5: (i) Traceplot for GBXLx model, four chains were displayed in two sepa-
rate runs; combining the two chains successfully indicates that MCMC algorithm has
converged to the target joint posterior distribution. (ii) Caterpillar plot for GBXLx
model.



254 DEVASHISH, SHAZIA FARHIN AND ATHAR ALI KHAN [Vol. 22, No. 1

beta a

b[4] b[5] alpha

b[1] b[2] b[3]

25 50 75 100 125 1000 2000 3000

0.0 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 250 500 750 1000 1250

−5 0 5 10 −0.025 0.000 0.025 −1.0 −0.5 0.0 0.5

0 100 200 300 400 500

y
yrep

Figure 6: (i) Posterior density plot for GBXLx model. (ii) Posterior predictive density
plot of the GBXLx model to assess the convergence of model. The GBXLx’s posterior
predictive density adequately fits the data, according to the PPD plot.

5. Model comparison with Bayesian criteria

For the purpose of comparing the fitted models, we use criteria for model evaluation
and selection like the Leave One Out cross-validation Information Criteria (LOOIC) and the
Watanabe Akaike Information Criteria (WAIC) both of which are methods for estimating
pointwise out-of-sample prediction accuracy from a fitted Bayesian model Watanabe and
Opper (2010); Vehtari et al. (2018). There are simpler estimates of predictive accuracy
such as Akaike Information Criterion (AIC) and Deviance Information Criterion (DIC) but
LOOIC and WAIC are better as instead of using only point estimates both LOOIC and WAIC
use the pointwise log-likelihood of the full Bayesian posterior distribution. LOOIC and WAIC
are more advantageous as they account for model complexity more effectively and offer fully
Bayesian model comparison (See Vehtari et al. (2017)). LOOIC and WAIC quantifies the
predictive accuracy of a model by estimating the expected log pointwise predictive density
and in Stan, the generated quantities block computes these values. After fitting the model
through STAN, the LOOIC and WAIC values are obtained by utilizing an R package loo (see
Vehtari et al. (2018)) by calculating the log-likelihood assessed using posterior simulations of
the parameters. A better model fit is indicated by a lower value for these selection criterias.
Recently Ashraf-Ul-Alam and Khan (2021) and AbuJarad et al. (2022) used LOOIC and
WAIC as the basis of comparision of the Bayesian survival models.

Table 4: LOOIC and WAIC values for GBXEx, GBXLx, and GBXW models

Model LOOIC WAIC
GBXEx 190.9 190.2
GBXLx 191.8 191.2
GBXW 192.8 192.4

We can observe from Table 4 that the GBXEx model’s LOOIC and WAIC values are
the lowest of the three, demonstrating that it exhibits superior performance as a survival
model when compared to the other models applied to the glioma data.
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6. Conclusion

In present study, Bayesian paradigm was applied to the analysis of a censored survival
data using the GBXG family. The Rstan package of R is used to implement the simulation
and analytical approximation techniques. The covariates Histology and Group are signifi-
cant, and Markov chains for all models converge to the target distribution. The GBXEx
model stands out as the most suitable option for fitting the glioma data, as evidenced by
thorough comparisons of posterior predictive density plots, LOOIC, and WAIC. Additionally,
patients who received radioimmunotherapy (RIT) had higher survival rates than individuals
in the control group. Compared to patients with glioblastoma (GBM), patients with Grade
3 glioma had higher survival chances.
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APPENDIX

A. Stan code for GBXE model

MGXE="functions{
real gbxe_lpdf(real t, real alpha, real beta, real lambda){
real log_fe;
log_fe=log(2)+log(alpha)+log(beta)+exponential_lpdf(t|lambda)+
(2*alpha-1)*exponential_lcdf(t|lambda)-3*log
(1-(exponential_cdf(t,lambda))ˆalpha)-
((exponential_cdf(t,lambda))ˆalpha/(1-(exponential_cdf(t,lambda))
ˆalpha))ˆ2 + (beta-1)*log(1-exp(-((exponential_cdf(t,lambda))ˆalpha
/(1-(exponential_cdf(t,lambda))ˆalpha))ˆ2));
return log_fe;

}
real gbxe_lccdf(real t, real alpha, real beta, real lambda){
real log_ccfe;
log_ccfe=log(1-(1-exp(-((exponential_cdf(t,lambda))ˆalpha/
(1-(exponential_cdf(t,lambda))ˆalpha))ˆ2))ˆbeta);
return log_ccfe;

}
real surv_gbxe_lpdf(vector t, vector d, real alpha,
real beta, vector lambda){vector[num_elements(t)] llk_gbxe;
real prob;
for(i in 1:num_elements(t)){
llk_gbxe[i]=log_mix(d[i],gbxe_lpdf(t[i]|alpha,beta,lambda[i]),
gbxe_lccdf(t[i]|alpha,beta,lambda[i]));

}
prob=sum(llk_gbxe);
return prob;

}
}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] censor;
int M;
matrix[N,M] x;

}
parameters{
vector[M] b;
real<lower=0> alpha;
real<lower=0> beta;

}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*b;
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for(i in 1:N){
lambda[i]=exp(-linpred[i]);

}
}
model{
//priors
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(beta|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(b|0,5);
//liklihood
target+=surv_gbxe_lpdf(y|censor,alpha,beta,lambda);

}
generated quantities{
vector[N] log_lik;
vector[N] yrepgbxe;
for(n in 1:N) log_lik[n]=log_mix(censor[n],
gbxe_lpdf(y[n]|alpha,beta,lambda[n]),
gbxe_lccdf(y[n]|alpha,beta,lambda[n]));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepgbxe[n]=-1/lambda[n]*
log(1-(((-log(1-(1-u)ˆ(1/beta)))ˆ(1/2))/
(1+(-log(1-(1-u)ˆ(1/beta)))ˆ(1/2)))ˆ(1/alpha));

}
}"

B. Stan code for GBXW model

MGXW="functions{
real gbxw_lpdf(real t, real alpha, real beta,real a, real lambda){
real log_fw;
log_fw=log(2)+log(alpha)+log(beta)+weibull_lpdf(t|a,lambda)+(2*alpha-1)
*weibull_lcdf(t|a,lambda)-3*log(1-(weibull_cdf(t,a,lambda))ˆalpha)-
((weibull_cdf(t,a,lambda))ˆalpha/(1-(weibull_cdf(t,a,lambda))ˆalpha))ˆ2
+(beta-1)*log(1-exp(-((weibull_cdf(t,a,lambda))ˆalpha/
(1-(weibull_cdf(t,a,lambda))ˆalpha))ˆ2));
return log_fw;

}
real gbxw_lccdf(real t, real alpha, real beta,real a, real lambda){
real log_ccfw;
log_ccfw=log(1-(1-exp(-((weibull_cdf(t,a,lambda))ˆalpha/
(1-(weibull_cdf(t,a,lambda))ˆalpha))ˆ2))ˆbeta);
return log_ccfw;

}
real surv_gbxw_lpdf(vector t, vector d, real alpha, real beta,real a,
vector lambda){vector[num_elements(t)] llk_gbxw;
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real prob;
for(i in 1:num_elements(t)){
llk_gbxw[i]=log_mix(d[i],gbxw_lpdf(t[i]|alpha,beta,a,lambda[i]),
gbxw_lccdf(t[i]|alpha,beta,a,lambda[i]));

}
prob=sum(llk_gbxw);
return prob;

}
}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] censor;
int M;
matrix[N,M] x;

}
parameters{
vector[M] b;
real<lower=0> alpha;
real<lower=0> beta;
real<lower=0> a;

}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*b;
for(i in 1:N){
lambda[i]=exp(linpred[i]);

}
}
model{
//priors
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(beta|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(b|0,5);
//liklihood
target+=surv_gbxw_lpdf(y|censor,alpha,beta,a,lambda);

}
generated quantities{
vector[N] log_lik;
vector[N] yrepgbxw;
for(n in 1:N) log_lik[n]=log_mix(censor[n],
gbxw_lpdf(y[n]|alpha,beta,a,lambda[n]),
gbxw_lccdf(y[n]|alpha,beta,a,lambda[n]));
{real u;
u=uniform_rng(0,1);
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for(n in 1:N) yrepgbxw[n]=lambda[n]*
(-log(1-(((-log(1-(1-u)ˆ(1/beta)))ˆ(1/2))/
(1+(-log(1-(1-u)ˆ(1/beta)))ˆ(1/2)))ˆ(1/alpha)))ˆ(1/a);

}
}"

C. Stan code for GBXLx model

MGXL="functions{
real gbxl_lpdf(real t, real alpha, real beta,real a, real lambda){
real log_fl;
log_fl=log(2)+log(alpha)+log(beta)+pareto_type_2_lpdf(t|0,lambda,a)
+(2*alpha-1)*pareto_type_2_lcdf(t|0,lambda,a)-
3*log(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha)-
((pareto_type_2_cdf(t,0,lambda,a))ˆalpha/
(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha))ˆ2+(beta-1)*
log(1-exp(-((pareto_type_2_cdf(t,0,lambda,a))ˆalpha/
(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha))ˆ2));
return log_fl;

}
real gbxl_lccdf(real t, real alpha, real beta,real a, real lambda){
real log_ccfl;
log_ccfl=log(1-(1-exp(-((pareto_type_2_cdf(t,0,lambda,a))ˆalpha/
(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha))ˆ2))ˆbeta);
return log_ccfl;

}
real surv_gbxl_lpdf(vector t, vector d, real alpha, real beta,
real a, vector lambda){
vector[num_elements(t)] llk_gbxl;
real prob;
for(i in 1:num_elements(t)){
llk_gbxl[i]=log_mix(d[i],gbxl_lpdf(t[i]|alpha,beta,a,lambda[i]),
gbxl_lccdf(t[i]|alpha,beta,a,lambda[i]));

}
prob=sum(llk_gbxl);
return prob;

}
}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] censor;
int M;
matrix[N,M] x;

}
parameters{
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vector[M] b;
real<lower=0> alpha;
real<lower=0> beta;
real<lower=0> a;

}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*b;
for(i in 1:N){
lambda[i]=exp(linpred[i]);

}
}
model{
//priors
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(beta|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(b|0,5);
//liklihood
target+=surv_gbxl_lpdf(y|censor,alpha,beta,a,lambda);

}
generated quantities{
vector[N] log_lik;
vector[N] yrepgbxl;
for(n in 1:N) log_lik[n]=log_mix(censor[n],
gbxl_lpdf(y[n]|alpha,beta,a,lambda[n]),
gbxl_lccdf(y[n]|alpha,beta,a,lambda[n]));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepgbxl[n]=lambda[n]*((1-
(((-log(1-(1-u)ˆ(1/beta)))ˆ(1/2))/
(1+(-log(1-(1-u)ˆ(1/beta)))ˆ(1/2)))ˆ(1/alpha))ˆ(-1/a)-1);

}
}"
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Abstract
The area under the curve (AUC) gives an overall summary measure of the performance

of the Receiver Operating Characteristic (ROC) curve. AUC summarizes the entire area
under the curve. Sometimes clinical studies need to focus on the area with low FPR and
high TPR rates. To find the area of portion of an ROC curve, partial AUC (pAUC) came
into use. The seminal works on estimating the pAUC was in the framework of Bi-normal
ROC curve. However, in a real-life scenario, we may come across non-normality, and the
data may be of multi-class. In such cases the existing methodology of binormal ROC curve
will not be of use and this creates the need to bring out a new methodology for estimating
the pAUC under non-normal data. In this paper we made an attempt to address the above
point and derived the expressions for the pAUC of multi-class ROC curve. Further estimating
the partial AUC has been carried out by means of asymptotic confidence intervals of the
false positive rates. Adding to this the constraint on TPR has been considered to elicit the
focused area of the ROC curve and termed it as two-way pAUC (TpAUC). Good amount of
simulations and two real datasets have been considered for necessary illustrations.

Key words: AUC; Exponential; Multi-class; pAUC; ROC; TpAUC.

AMS Subject Classifications: 62P10

1. Introduction

The Receiver Operating Characteristic (ROC) curve is the popular classification tool
to evaluate the performance of a diagnostic test/marker. ROC curve was first used for signal
detection during World War II (Peterson et al., 1954; Tanner and Swets, 1954). ROC curve
analysis was introduced into diagnostic medicine by Lusted (1971), and its applications
can be seen in several clinical domains that rely extensively on screening and diagnostic
procedures, laboratory testing, epidemiology, radiology, etc.(Obuchowski, 2003).

ROC curve is generated using the coordinate pairs, namely the false positive rates
(FPRs) and true positive rates (TPRs), which are usually referred as intrinsic measures. Out
of these thresholds, one has to choose a threshold that can give better accuracy with reason-
able values of false positives and true positives. AUC is the summary measure of the ROC
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curve, which is used to determine the performance/accuracy of a diagnostic test/marker.
AUC has a theoretical value lies between 0 and 1. An AUC of 0.5 indicates that the classi-
fication is random, the accuracy of a diagnostic test or procedure will increase as the value
of AUC gets closer to 1.

Let us assume that H denote the population 1 with distribution function F and D be
the population 2 with distribution function G; then the ROC form is given as

y(t) = G(F −1
0 (t)), 0 ≤ t ≤ 1 (1)

where, G(x) =
´∞

x
g(x)dx and F0(y) =

´∞
y

f(y)dy; g(x) and f(y) is the density functions of
H and D populations respectively. The probability of detecting/ identifying a subject with
condition is called as the TPR = P (S > t/D), and the probability of classifying a subject
is FPR = P (S > t/H). Here S denotes the data value or score observed from a subject and
t is the threshold. Each data point in the ROC serves as a threshold point, with which one
can calculate the TPRs and FPRs. Yet there is a need to determine the optimal threshold
among the set of all possible thresholds, which is done by using Youden’s J index. The
optimal threshold is determined by taking the maximum value of Youden’s J index from a
vector of values obtained from (2). Now, the FPR and TPR values corresponding to this
optimal threshold have to be considered as the optimal FPR and TPR.

J = maximum (TPR(t) − FPR(t)) (2)

which is the maximum distance between the curve and the chance line. With this optimal
threshold, the subjects will be classified with the atmost accuracy and can also be used to
assign the status of unspecified subjects. When J = 1, the test is perfect, meaning there are
no false positives or negatives.
The AUC of an ROC curve is defined as

AUC =
ˆ 1

0
ROC(t) dt

AUC is defined as the average TPR value for all possible TNR (1-FPR) values, which will
consider the entire area under the curve (Obuchowski, 2003; Zhou et al., 2009; McClish,
1989; Obuchowski and Bullen, 2018). Analyzing the entire ROC curve involves both strict
and lax thresholds; hence, considering a portion of ROC curve will be more meaningful in
some instances, and such portion is named as partial AUC (pAUC) (see Figure 2). From
Figure 1, we can see that the lax threshold provides high TPRs and high FPRs, which are
not a region of interest for clinical studies. Since most clinical studies involve living subjects,
the FPR must be reasonably low. However, the strict threshold provides low FPR and TPR
values, which also does not indicate better classification. Hence, this generates the need to
speak about the portion of the ROC curve above the strict thresholds and below the lax
thresholds, which is shown in Figure 2 for some arbitrary values of c1 and c2 from the set of
FPRs. pAUC is now employed in numerous medical applications and has gained popularity,
particularly in screening research (Ricamato and Tortorella, 2011).

The pAUC consider the area of the ROC space where data have been observed or
that correspond to clinically significant TPR or TNR values. For example, only the lower
tail of the ROC curve is of interest for cancer screening because the FPR must be minimal to
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be acceptable (Zhang et al., 2018). Baker and Pinsky (2001) also pointed out that low FPR
needs to be maintained in cancer screening studies, which is important because it will avoid
costly biopsies. In such cases, analyzing a restricted portion will be more meaningful than
analyzing the entire area of the ROC curve. Seminal work on pAUC was done by McClish
(1989), where a method of analyzing the portion of the ROC curve was proposed and also
gave a transformation to obtain the standardized pAUC value. Thompson and Zucchini
(1989) introduced the method to estimate the partial area under the binormal ROC curve
over any specified region of interest. Later, Jiang et al. (1996) adopted the methodology
of McClish’s work and extended it to describe the partial area index for highly sensitive
diagnostic test. Hillis and Metz (2012) derived analytic expressions to estimate the pAUC
under the assumption of a latent binormal model.

Figure 1: ROC curve depicting strict, moderate and lax thresholds

Figure 2: A typical plot of pAUC between a fixed range of FPR

In practice, diagnostic tests with high FPR lead to enormous economic expenses
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because a significant fraction of healthy individuals would use up the limited supply of med-
ical treatments. Furthermore, when diagnosing a fatal disease, failure to correctly identify
severely ill patients (poor TPR) will result in severe ethical ramifications. Therefore, in such
cases, it is necessary to simultaneously maintain FPR and TPR at low and high levels, re-
spectively. So here, we have introduced a method to estimate the partial area by considering
the constraints on both FPR and TPR simultaneously, which is termed as Two-Way pAUC
(TpAUC). A diagrammatic representation of TpAUC is given in Figure 3 which considered
the area of the ROC curve with FPR range (c1,c2) and minimum TPR of d0, it can be
denoted as TpAUC(c1,c2,d0).

In literature, the works mainly focus on estimating the partial area of the binormal
ROC curve, which can only be used when the data consists of two classes and follows nor-
mality. However, in a real-life scenario, we may come across non-normality, and the data
may be of multi-class. In such cases the existing methodology of binormal ROC curve will
not be of use and this creates the need to bring out a new methodology for estimating the
pAUC under non-normal data. Estimation of AUC under the multi-class classification where
data tend to follow normal distribution was addressed by Gönen (2013); Cheam and Mc-
Nicholas (2016); Siva and Vishnu (2022). Recently Arunima and Vishnu (2022) proposed
gamma mixture ROC curve to classify the multi-class data where the population follows
gamma distributions, in which the gamma variate is transformed into normal by using the
Wilson-Hilferty transformation. In this paper we have considered one of the well-known life
time distribution; the exponential distribution and the partial area estimation of multi-class
exponential ROC is discussed in detail. The study is supported with simulated and real
datasets. Before we detail out the proposed methodology, a gentle introduction on Multi-
class Exponential ROC Curve is given. Thereafter, along with the proposed methodology,
the numerical illustrations are discussed in subsequent sections.

1.1. Multi-class exponential ROC curve

Let us assume that population 1, H ∼ exp(θ0) and population 2 has two sub popula-
tions namely D1 and D2 such that, D1 ∼ exp(θ1) and D2 ∼ exp(θ2). Then the expressions for
intrinsic measures of mixture Exponential ROC (mEROC) are defined Arunima and Vishnu
(2023) as below.
FPR of the mEROC (mFPR) is given as

mFPR = π1FPR1 + π2FPR2

where
FPR1 = x(t1) = P (S > t1 | H) = e−θ0t1 (3)
FPR2 = x(t2) = P (S > t2 | D1) = e−θ1t2 (4)

where πis are mixing proportions/weights; t1 and t2 are the respective threshold values for
the classification of (H, D1) and (D1, D2) respectively. From (3) and (4) we can write t1 and
t2 as

t1 = − log(x(t1))
θ0

; t2 = − log(x(t2))
θ1

(5)

TPR of mEROC (mTPR) is given as
mTPR = π1TPR1 + π2TPR2
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where

TPR1 = y(t1) = P (S > t1 | D1) = e−θ1t1 (6)
TPR2 = y(t2) = P (S > t2 | D2) = e−θ2t2 (7)

substituting (5) in (6) and (7) we will get the mEROC curve which be written as,

mEROC = π1x(t1)β1 + π2x(t2)β2

where β1 = θ1
θ0

and β2 = θ2
θ1

.
accuracy can be expressed notationally as

mAUC =
ˆ 1

0
ROC(t) dt = π1

θ0

θ0 + θ1
+ π2

θ1

θ1 + θ2

2. Proposed methodology - partial area of mEROC curve

Let c1 and c2 denote any two arbitrary FPR values, then pAUC for mEROC can be
defined as

mA(c1,c2) = π1A1(c1,c2) + π2A2(c1,c2)

where A1(c1,c2) and A2(c1,c2) are the partial areas of H & D1 and D1 & D2 respectively. which
is defined as

A1(c1,c2) =
ˆ c2

c1

TPR1(t) FPR′
1(t) dt =

ˆ c2

c1

e−θ1t e−θ0t (−θ0) dt

= θ0

θ1 + θ0

[
e−(θ0+θ1)c2 − e−(θ0+θ1)c1

]
and

A2(c1,c2) =
ˆ c2

c1

TPR2(t) FPR′
2(t) dt =

ˆ c2

c1

e−θ2t e−θ1t (−θ1) dt

= θ1

θ2 + θ1

[
e−(θ1+θ2)c2 − e−(θ1+θ2)c1

]
The area (A+B) in Figure 3 indicates the pAUC between the FPR range c1 and c2. To this,
one more additional constraint is added in the form of d0. The area generated between c1,
c2 and d0 is termed as the two-way pAUC and denoted by mTpAUC(c1,c2,d0). Here c2 is the
upper limit of FPR; d0 is the lower limit of TPR, c1 is the corresponding FPR value at d0.
The area encapsulated between the triplet combination (c1, c2, d0) is indicated as B in Figure
3 and it can be obtained as

mTpAUC(c1,c2,d0) = Area (A + B) − Area A

= mA(c1,c2) − [c2 − c1]d0

In the above expression the constants c1, c2 and d0 are to be estimated. To do so we
need to employ two ways; one is arbitrarily choosing the values and the other is to estimate
them using the method of asymptotic confidence interval. Below we describe the way of
determining the c1, c2 and d0.
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Figure 3: Depicting the area of A and B

Method I

In this method the c2 and d0 will be chosen arbitrarily and c1 can be obtained from d0.
Instead of choosing arbitrarily one can impute using the knowledge from previous studies.
In general clinicians prefer to have reasonably law FPR and moderate/high TPR.

Method II

Here we introduce the asymptotic confidence interval approach to define c2 and d0. For
which the asymptotic confidence intervals are defined and respective variances for mFPR
and mTPR are derived. The upper limit of mFPR will be taken as c2 and lower limit of
mTPR will be the d0; the corresponding mFPR value is taken as c1.

Asymptotic confidence intervals for mTPR and mFPR

The 100(1 − α)% asymptotic confidence interval for mTPR is

mTPR ± Z1−( α
2 )

√
V ar(mTPR)

where Z1− α
2

is the 1 − α
2 standard normal percentile and by delta method (Miller Jr, 1981),

we can obtain variance of mTPR.

V ar(mTPR) = π1V ar(TPR1) + π2V ar(TPR2)
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where

V ar(TPR1) =
(

∂TPR1

∂θ0

)2

V ar(θ0) +
(

∂TPR1

∂θ1

)2

V ar(θ1)

=

e
−θ1

(ln(θ0)−ln(θ1))
θ0−θ1 [θ1 (θ0 − θ1 − θ0(ln(θ0) + ln(θ1))]

θ0(θ0 − θ1)2


2

θ0
2

n0

+

e
−θ1

(ln(θ0)−ln(θ1))
θ0−θ1 [θ1 − θ0ln(θ0) − θ0 + θ0ln(θ0)]

(θ0 − θ1)2


2

θ1
2

n1

V ar(TPR2) =
(

∂TPR2

∂θ1

)2

V ar(θ1) +
(

∂TPR2

∂θ2

)2

V ar(θ2)

=

e
−θ2

(ln(θ1)−ln(θ2))
θ1−θ2 [θ2 (θ1 − θ2 − θ1(ln(θ1) + ln(θ2))]

θ1(θ1 − θ2)2


2

θ1
2

n0

+

e
−θ2

(ln(θ1)−ln(θ2))
θ1−θ2 [θ2 − θ1ln(θ1) − θ1 + θ1ln(θ1)]

(θ1 − θ2)2


2

θ2
2

n1

For the method II we choose d0 as lower limit of mTPR

d0 = mTPR − Z1−( α
2 )

√
V ar(mTPR) (8)

then c1 will be the corresponding FPR of the d0.

Similarly, 100(1 − α)% asymptotic confidence interval for mFPR is,

mFPR ± Z1−( α
2 )

√
V ar(mFPR)

V ar(mFPR) = π1V ar(FPR1) + π2V ar(FPR2)

where

V ar(FPR1) =
(

∂FPR1

∂θ0

)2

V ar(θ0) +
(

∂FPR1

∂θ1

)2

V ar(θ1)

=

e
−θ0

(ln(θ0)−ln(θ1))
θ0−θ1 [θ0 − θ1ln(θ0) − θ1 + θ1ln(θ1)]

(θ0 − θ1)2


2

θ0
2

n0

+

e
−θ0

(ln(θ0)−ln(θ1))
θ0−θ1 [θ0 (θ1 − θ0 + θ1ln(θ0) + θ1ln(θ1))]

θ1(θ0 − θ1)2


2

θ1
2

n1
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and

V ar(FPR2) =
(

∂FPR2

∂θ1

)2

V ar(θ1) +
(

∂FPR2

∂θ2

)2

V ar(θ2)

=

e
−θ1

(ln(θ1)−ln(θ2))
θ1−θ2 [θ1 − θ2ln(θ1) − θ2 + θ2ln(θ2)]

(θ1 − θ2)2


2

θ1
2

n1

+

e
−θ1

(ln(θ1)−ln(θ2))
θ1−θ2 [θ1 (θ2 − θ1 + θ2ln(θ1) + θ2ln(θ2))]

θ2(θ1 − θ2)2


2

θ2
2

n2

then the value of c2 will be

c2 = mFPR + Z1− α
2

√
V ar(mFPR) (9)

3. Numerical illustrations

For illustrating the proposed work both simulated and real datasets are considered
and the results are tabulated accordingly.

3.1. Simulated datasets

Exponential random samples of size n = (25, 50, 100, 200) are generated with different
parameter combinations. The moderate and better classification scenarios will be demon-
strated using the parameter combinations given in Table 1. Methods I and II are used to
estimate the partial area on the samples that were generated.

For illustration purpose, we have chosen different parameter combinations of θ0 and θ1
and calculated the partial area by taking c2 = 0.5 and d0 = 0.65 (one may choose any values
for c2 and d0 according to prior knowledge on the study). The results for each parameter
combination with respective sample sizes are reported in Tables 1 and 2 and respective ROC
curves are given in Figure 4. From Table 1, consider n=100 in set A, the overall m̂AUC is
observed to be 86.71%, with true positives about 76.61% and false positives of 13.40%, which
indicates comparatively a better accuracy. In similar lines, in set B for n=100, the overall
m̂AUC is observed to be 68.27%, with true positives about 51.19% and false positives of
27.84%, which indicates a moderate accuracy. Table 2 gives the results pertaining to partial
area for method I, and we can observe that, let say for n=100 for set A the values for d0
and c2 are chosen as 0.65 and 0.5 respectively, ĉ1 is the corresponding mFPR at d0 which is
about 0.0816 provides mpAUC (m̂A) and ̂mTpAUC about 0.3786 and 0.1066 respectively.
And for n=100 in set B, the corresponding mFPR at d0 which is about 0.3911 provides
mpAUC (m̂A) and ̂mTpAUC about 0.1496 and 0.0788 respectively. Here we can see that
within a fixed range of mFPR and mTPR the m̂AUC, m̂A(c1,c2) and ̂mTpAUC(c1,c2,d0) are
proportional to each other. For better understanding the ̂mTpAUC for n=100 of sets A and
B using method II are depicted in Figures 5.
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Table 3: Partial area estimates of simulated datasets using method II

V ar(m̂FPR) V ar(m̂TPR) d̂0 ĉ1 ĉ2 m̂A(c1,c2) ̂mTpAUC(c1,c2,d0)

Set A: θ̂0=0.99; θ̂1=0.3; θ̂2=0.01

0.00179 0.00206 0.68016 0.09353 0.21719 0.09823 0.01412
0.00096 0.00094 0.70578 0.10191 0.19527 0.07232 0.00642
0.00048 0.00046 0.72367 0.10988 0.17725 0.05133 0.00258
0.00025 0.00025 0.73621 0.11354 0.16539 0.03902 0.00084

Set B: θ̂0=0.99; θ̂1=0.6 θ̂2=0.2

0.00314 0.00302 0.41063 0.15767 0.35576 0.24532 0.16397
0.00118 0.00152 0.45334 0.17771 0.30952 0.15247 0.09272
0.00075 0.00116 0.46747 0.18847 0.29418 0.11795 0.06854
0.00046 0.00070 0.47924 0.20080 0.28167 0.08965 0.05089
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Figure 4: ROC curve for simulated datasets

Coming to method II, from Table 3, we can observe that for n=100 in set A, by using
the equations (8) and (9) the obtained value are d̂0 = 0.7237, ĉ2 = 0.1773 and the respective
m̂FPR at d̂0 is ĉ1 = 0.1099, and provides m̂A(c1,c2) and ̂mTpAUC(c1,c2,d0) of about 0.05133
and 0.00258 respectively. Similarly for n=100 in set B, the obtained value of d̂0, ĉ1 and ĉ2

are 0.46747, 0.18847 and 0.29418 which provides m̂A(c1,c2) and ̂mTpAUC(c1,c2,d0) of about
0.1179 and 0.06854 respectively.

3.2. Real datasets

To demonstrate the proposed methodology two real datasets are considered and their
results are tabulated accordingly with respective ROC curves in Figure 7.
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(a) Set A (b) Set B

Figure 5: TpAUC for set A and B for n=100

Data 1: Irradiated mice data

Irradiated mice data from Elandt-Johnson and Johnson (1980) is considered; the
variable of interest is the time at the death of 99 mice. The p-value of Kolmogorov-Smirnov
test for exponential distribution is 0.43 (test statistic (D)=0.113) which indicates that the
data follows exponential distribution.
The density plot of the irradiated mice data is given in the Figure 6(a), and is very clear
that there exists multi-modality which indicates the presence of sub-populations, i.e., the
data is of multi-class. By using EM algorithm we identified that there are three classes and
the estimated the parameters of the respective populations are θ̂0 = 0.3954, θ̂1 = 0.0279
and θ̂2 = 0.0201. The proposed methodology is used to classify the data and the results are
tabulated in the Tables 4 and 5.
It is observed that with thresholds t̂1 = 12.8556 and t̂2 = 417.2446, the overall m̂AUC is
about 0.7267, this indicates that the mEROC curve has accuracy about 72%, with false
positives of 24% and true positives of 69%. This means to that a subject can be classified
in the following manner.

It is classified as =


P1, if S ≤ 12.8556
P2, if 12.8556 < S ≤ 417.2446
P3, if S > 417.2446

where P1, P2 and P3 are the three respective classes. For method I, the d0 and c2 is taken
as 0.6 and 0.4 respectively, and ĉ1 which is the corresponding m̂FPR at d0 is 0.206488.
Altogether, method I results m̂A and ̂mTpAUC as 0.1873 and 0.0711 respectively. Coming
to method II, by using equations (8) and (9) the obtained value for d̂0 and ĉ2 are about 0.6948
and 0.2837, ĉ1 which is the corresponding m̂FPR at d̂0 is obtained as 0.2516. By method
results the m̂A and ̂mTpAUC are 0.0381 and 0.0158 respectively. Since, the difference
between c2 and c1 is too small, the TpAUC portion on the mEROC curve is difficult to
depict. However, the TpAUC is shown for breast cancer data (Figure 8).
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Figure 6: Density plots of real datasets

Data 2: Breast Cancer data

The real dataset represent the survival times of 121 patients with breast cancer ob-
tained from a large hospital in a period from 1929 to 1938 (Lee and Wang, 2003). The p-value
of K-S test for exponential distribution is 0.06024 (test statistics (D)=0.12031) which indi-
cates that the data follows exponential distribution. The estimation is done by using both
the methods and respective results are shown in Tables 4 and 5.

The density plot of the breast cancer data is given in Figure 6 (b), and is very clear
that there exists multi-modality which indicates the presence of sub-populations. By using
EM algorithm we identified that there are three classes and the estimated the parameters
of the respective populations are θ̂0 = 0.4010, θ̂1 = 0.0280 and θ̂2 = 0.0202. The optimal
thresholds, t̂1 and t̂2 are 7.7311 and 44.6911, which gives accuracy about 75.26% with false
positive rates about 20.63% and true positives of 63.93%. This means to that a subject can
be classified in the following manner

It is classified as =


P1, if S ≤ 7.7311
P2, if 7.7311 < S ≤ 44.6911
P3, if S > 44.6911

where P1, P2 and P3 are the three respective classes with low, medium and high survival
rate respectively.

For method I, the d̂0 and ĉ2 are taken as 0.6 and 0.5 and the ĉ1 corresponding to d̂0 is
obtained as 0.1986, which results m̂A and ̂mTpAUC about 0.1935 and 0.01266. By method
II the values obtained for d̂0 and ĉ2 are about 0.6123 and 0.2837, the corresponding ĉ1 to
d̂0 is 0.2142, altogether results m̂A and ̂mTpAUC of 0.0509 and 0.0084 respectively. The
TpAUC for breast cancer data is depicted in Figure 8.
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Figure 7: ROC curves for real datasets

Table 4: ROC curve measures of real datasets

π̂1 π̂2 t̂1 t̂2 m̂FPR m̂TPR V ar(m̂FPR) V ar(m̂TPR) Ĵ m̂AUC

Mice data

0.4998 0.5002 12.8556 417.2446 0.2435 0.6973 0.000333 0.000308 0.45378 0.726739

Breast Cancer data

0.4999 0.5001 7.7311 44.6911 0.20627 0.6393 0.000371 0.000286 0.432985 0.752647

Table 5: Partial area estimates of real datasets

Dataset Method d̂0 ĉ1 ĉ2 m̂A(c1,c2) ̂mTpAUC(c1,c2,d0)

Mice I 0.6 0.206488 0.4 0.187254 0.071147
II 0.69483 0.251559 0.283712 0.038135 0.015794

Breast
Cancer

I 0.6 0.19857 0.5 0.193517 0.012659
II 0.61229 0.214157 0.283665 0.050896 0.008337

4. Summary

In this work, we made an attempt to explain the need and importance of analyzing
a portion of the ROC curve for multi-class non-normal data. Methodological descriptions
are given in detail for one-way and two-way pAUC. Expressions for mpAUC and mTpAUC
are also derived, and the terms d0 and c2 involved in these expressions are obtained using
asymptotic confidence intervals of mFPR and mTPR. Two real datasets and considerable
simulations are used to demonstrate the proposed work. From the results it is observed
that for a multi-class ROC curve, whose area is maximum (minimum), the areas within the
mFPR range and mTpAUC will also have a larger (smaller) portion in the entire area.
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Figure 8: Two way pAUC for Breast Cancer data
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Abstract
In this paper we study the status of four non isomorphic Latin Square Designs (LSDs)

of order four while finding out the optimal covariate matrices underlying the LSDs with and
without Neighbor Effects (NEs). In these LSDs we consider the four sided NEs viz., left-
sided, right-sided, top-sided and bottom-sided in the presence of covariates’ effects. We
utilize a circular model as was introduced by Kunert. Without NEs each of the four LSDs
has six optimal covariate matrices whereas in the presence of the four-sided NEs the results
are not as expected, for all the four LSDs.

Key words: Non isomorphic LSDs; Optimal designs for covariates effects; Neighbor effects;
Circular models.

AMS Subject Classifications: 62K10

1. Introduction

As we know, there is a long history of use of ANCOVA Models for effective data
analysis involving standard and non-standard experimental designs. Troya (1982a, 1982b)
introduced the concept of Optimal Covariates Designs and presented optimality results in
the context of CRDs. Inspired by Troya’s formulation of optimality problems involving
covariates effects, Das et al. (2003) got interested in this area of research and provided
some combinatorial solutions. That was a modest beginning and much of the contents of
the Monograph on Optimal Covariate Designs by Das et al. (2015) were motivated and
inspired by 2003 paper. Prominent contributors in this area of research found their place
and citations in the list of references of the monograph. This fascinating topic still holds
rich rewards for serious researchers.

The first author (Sapam) got interested in this area of research and the recent works
by Sapam et al. (2021) hold the key references for this paper. Optimal Covariate Designs
(OCDs) are the designs which provide optimal or most efficient estimation of the covariates’
effects in terms of the parameters in an assumed linear model. Lopes Troya (1982a, 1982b),
Das et al. (2003), Shah and Sinha (1989), Dutta et al. (2014) are some of the related
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references on the OCDs. Sapam et al. (2021) focused on OCDs incorporating the neigh-
bor effects in four directions viz., left-sided, right-sided, top-sided and bottom sided in the
assumed linear model in different RBD set ups. Sinha and Dutta (2017) worked on three dif-
ferent seasons of LSDs of order four without any NEs. We consider the four non-isomorphic
LSDs across the three seasons, as considered in Sinha and Dutta (2017), with and without
NEs. We crosscheck the earlier results and provide a few optimal matrices in the presence of
the NEs. The notions of NEs are widely studied in the literature; some relevant references
are Bailey (2003), Jaggi et al. (2007), Jaggi et al. (2018), Varghese et al. (2014), Sapam et
al. (2019a, 2019b).

As the readers can realize, this area of research blends (block) designs [such as CRDs,
RBDs, LSDs, GLSDs, BIBDs, etc.) and neighbour effects (introduced through what are
known as circular models) and on the top, there are combinatorial arrangements of (+1/ −
1)’s. Most of the reference papers bear testimony to the authors’ interest in these areas.
An interested reader will benefit by reading Das et al. (2003) before proceeding to venture
in complicated set-ups. Not to obscure the essential steps of reasoning and understanding,
we describe the linear model in simple terms with quantitative covariates and with/without
neighbour effects. Since we will be primarily dealing with LSDs in this paper, we restrict to
the LSD of order 4 shown in Table 1. There are altogether 4 × 4 = 16 plots and we have
an LSD laid out there. We describe the linear model for some special plots - covering all
diverse positions of the treatments - with/without neighbour effects of the treatments [in all
the four positions].

Confining to LSD - S-1, wrt the treatment 1 in the first row and first column, the
model specifications is as follows.

y(1,1;1)= µ+ρ1+γ1+ τ1 +e11
y(1,1;1)= µ+ρ1+γ1+ τ1 +LN4 + RN2 + TN4 + BN2+e11

The parameters involved in the model are obvious. In linear model with four-sided
neighbor effects, we have inserted LN, RN, TN and BN effects on the (Direct) Effects (’s) of
the treatments.

In order that the readers can accompany and comprehend the thought process we
refer to Das et al. (2003) wherein the conditions for existence of OCDs has been explicitly
laid down.

2. LSDs of order 4 with covariates without neighbor effects

Taking the four treatments 1, 2, 3, 4 let us perform the complete enumeration principle
to obtain all the possible forms of Standard Latin Squares. The following four non-isomorphic
Standard Latin Square designs viz., S-1, S-2, S-3, S-4 are the only possible LSDs. The matrix
X is the general form of covariate matrix wrt the four LSDs.

There should be three conditions for all optimal X- matrices wrt each of the above
LSDs, viz., S-1, S-2, S-3 and S-4 without any neighbor effects, the elements of X-matrices
being (+1/-1):
(i) Row totals of the optimal X - matrices = 0
(ii) Column totals of the optimal X - matrices = 0
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(iii) Each treatment totals of the optimal X - matrices = 0
Table 1: Four non-isomorphic Standard Latin Square designs

LSDs
1 2 3 4
2 1 4 3

S-1 3 4 1 2
4 3 2 1
1 2 3 4
2 3 4 1

S-2 3 4 1 2
4 1 2 3
1 2 3 4
2 1 4 3

S-3 3 4 2 1
4 3 1 2
1 2 3 4
2 4 1 3

S-4 3 1 4 2
4 3 2 1

Table 2: General X-matrix

a b c d
e f g h
i j k l
m n o p

Sinha and Dutta (2017) studied the LSDs of order 4 in 3 Different SEASONS, viz.,
S-1, S-2, S-3 and worked out forms of some optimal covariate matrices in the absence of
neighbor effects. Below we are showing six optimal covariate matrices for each of S-1, S-2,
S-3 and for another additional design S-4 as well. We denote the six optimal X-matrices by
S-1C1 to S-1C6 wrt S-1 design, with the same notation S-2C1 to S-2C6 wrt S-2 design and
so on.

3. LSDs S-1, S-2, S-3 and S-4 with covariates in the presence of neighbor
effects

The following conditions should hold in the presence of the four-sided neighbor effects
viz., Left Neighbor (LN), Right Neighbor (RN), Top Neighbor (TN) and Bottom Neighbor
(BN), involving the elements (+1/-1) of each of the X-matrices for the LSDs.

(i) row sum of the optimal X - matrices = 0
(ii) column sum of the optimal X - matrices = 0
(iii) each treatment sum of the optimal X - matrices = 0
(iv) sum of covariate-values of the optimal X - matrices corresponding to the LN of each
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Table 3: Six optimal covariates matrix of S-1

1 -1 1 -1
1 -1 1 -1

S-1C1 -1 1 -1 1
-1 1 -1 1
1 -1 -1 1
-1 1 1 -1

S-1C2 1 -1 -1 1
-1 1 1 -1
1 1 -1 -1
-1 -1 1 1

S-1C3 1 1 -1 -1
-1 -1 1 1
1 -1 1 -1
-1 1 -1 1

S-1C4 -1 1 -1 1
1 -1 1 -1
1 -1 1 -1
1 -1 1 -1

S-1C5 -1 1 -1 1
-1 1 -1 1
1 1 -1 -1
-1 -1 1 1

S-1C6 1 1 -1 -1
-1 -1 1 1

treatment = 0
(v) sum of covariate-values of the optimal X - matrices corresponding to the RN of each
treatment =0
(vi) sum of covariate-values of the optimal X - matrices corresponding to the TN of each
treatment =0
(vii) sum of covariate-values of the optimal X - matrices corresponding to the BN of each
treatment = 0.

When we consider the four-sided neighbor effects for each of the designs S-1, S-2, S-3
and S-4, the above 6 × 4 =24 covariate matrices [optimal in the absence of neighbor effects
(NEs)] do not all satisfy all the properties listed in (i)-(vii). The designs S-1 and S-2 has
each six optimal covariate matrices in the presence of four-sided NEs, viz., S-1C1, S-1C2,
S-1C3, S-1C4, S-1C5, S-1C6 and S-2C1, S-2C2, S-2C3, S-2C4, S-2C5 and S-2C6, satisfying
all the conditions (i)- (vii) mentioned above for being optimal X -matrices in the presence
of all the four-sided NEs. On the other hand, the designs S-3 and S-4 there is not even a
single optimal X-matrix in the presence of four sided neighbor effects.
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Table 4: Six optimal covariates matrix of S-2

1 1 -1 -1
-1 -1 1 1

S-2C1 1 1 -1 -1
-1 -1 1 1
1 -1 1 -1
-1 1 -1 1

S-2C2 -1 1 -1 1
1 -1 1 -1
1 -1 -1 1
-1 1 1 -1

S-2C3 1 -1 -1 1
-1 1 1 -1
1 -1 1 -1
1 -1 1 -1

S-2C4 -1 1 -1 1
-1 1 -1 1
1 1 -1 -1
-1 1 1 -1

S-2C5 -1 -1 1 1
1 -1 -1 1
1 -1 -1 1
1 1 -1 -1

S-2C6 -1 1 1 -1
-1 -1 1 1

4. Existence and non-existence of optimal X-matrices with/without NEs:
Status of the LSDs S-1 and S-4

Consider the LSD S-1 in the presence of four sided NEs and examine all the eight
combinations corresponding to the choices of (b,e,f), setting a=1. If there exists a solution
satisfying the above conditions (i)- (vii) with the solution space [1,-1], an optimal X- matrix
will be available in the presence of four-sided neighbor effects.

Case1: b=e=f=1: no solution,
Case 2: b= -1, e=f=1: no solution,
Case 3: b=f= -1, e=1: two solutions viz., S-1C1 & S-1C5,
Case 4: e= -1, b=f=1: no solution,
Case 5: f= -1, b=e=1: no solution,
Case 6: b=e= -1, f=1: two solutions, viz., S-1C2 & S-1C4,
Case 7: e=f= -1, b=1: one solution, viz., S-1C3 & S-1C6,
Case 8: b=e=f= -1: no solution.

Therefore, total number of optimal X- matrices obtained wrt S-1 is six [viz., S-1C1,
S-1C2, S-1C3, S-1C4, S-1C5, S-1C6] in the presence of four-sided NEs.
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Table 5: Six optimal covariates matrix of S-3

1 1 -1 -1
-1 -1 1 1

S-3C1 1 1 -1 -1
-1 -1 1 1
1 1 -1 -1
-1 -1 1 1

S-3C2 -1 -1 1 1
1 1 -1 -1
1 -1 -1 1
-1 1 1 -1

S-3C3 1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1

S-3C4 -1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 -1 1 -1

S-3C5 -1 1 -1 1
-1 1 -1 1
1 -1 -1 1
1 -1 -1 1

S-3C6 -1 1 1 -1
-1 1 1 -1

Next, consider LSD S-4 in the presence of four sided NEs. If there exists a solution
satisfying the above conditions (i)- (vii) with the solution space [1,-1], an optimal X- matrix
exists. WOLG, using the notations of the general covariate matrix given above, we set,
a=1 and examine all the eight combinations corresponding to the choices of (b, e, f). The
following are the cases:
Case1: b=e=f=1; there is no solution [since, treatment 2 sum cannot be zero]
Case 2: b=e=1, f=-1; there is no solution [since, 2nd column sum cannot be zero]
Case 3: b=f=1, e= -1; there is no solution, [since, LN of Tr. 1 sum cannot be zero]
Case 4: b=1, e=f= -1; there is no solution, [since, LN of Tr. 1 sum cannot be zero]
Case 5: b= -1, e=f=1; there is no solution, [since, LN of Tr. 1 sum cannot be zero]
Case 6: b= -1, e= -1, f=1; there is no solution, [here two subcases arise: in one case TN of
Tr1 sum is not equal to zero and in another subcase LN of Tr. 1 sum is not equal to zero]
Case 7: b= -1, e=1, f= -1; there is no solution, [since, LN of Tr. 2 sum is not equal to zero]
Case 8: b= e= f= -1; there is no solution [since, 2nd column sum cannot be zero].

This shows that there is not even a single optimal X- matrix in the presence of four
sided NEs for the LSD S-4. Further, consider the LSD S-4 without NEs. If there exists a
solution satisfying the above conditions (i)- (iii) of section 2 with the solution space [1,-1], an
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Table 6: Six optimal covariates matrix of S-4

1 1 -1 -1
-1 1 -1 1

S-4C1 1 -1 1 -1
-1 -1 1 1
1 1 -1 -1
-1 -1 1 1

S-4C2 -1 -1 1 1
1 1 -1 -1
1 -1 1 -1
1 1 -1 -1

S-4C3 -1 -1 1 1
-1 1 -1 1
1 -1 -1 1
-1 1 1 -1

S-4C4 1 -1 -1 1
-1 1 1 -1
1 -1 1 -1
-1 1 -1 1

S-4C5 -1 1 -1 1
1 -1 1 -1
1 -1 -1 1
1 -1 -1 1

S-4C6 -1 1 1 -1
-1 1 1 -1

optimal X- matrix exists. WOLG, using the notations of the general covariate matrix given
above, we set, a=1 and examine all the eight combinations corresponding to the choices of
(b, e, f).
Case1: b=e=f=1; there is no solution [since, treatment 2 total cannot be zero].
Case 2: b=e=1, f=-1; there is no solution [since, second column total cannot be zero].
Case 3: b=f=1, e= -1; there is one solution, viz., S-4C1
Case 4: b=1, e=f= -1; there is one solution, viz., S-4C2
Case 5: b= -1, e=f=1; there is one solution, viz., S-4C3
Case 6: b= -1, e= -1, f=1; there are two solutions, viz., S-4C4 and S-4C5
Case 7: b= -1, e=1, f= -1; there is one solution, viz., S-4C6
Case 8: b= e= f= -1; there is no solution [since, 1st column sum cannot be zero]
These eight cases show the existence of six optimal X-matrices in the absence of NEs wrt
S-4 design.

5. Concluding remarks

In the study of four non isomorphic LSDs of order four with and without NEs we can
summarize that in the absence of NEs, for each of the designs S-1, S-2, S-3 and S-4 of LSD
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of order 4, we can find out all the possible (six) optimal X-matrices. On the other hand, in
all the four LSDs, these optimal matrices fail to be optimal when we incorporate the four
sided NEs. Only for the designs S-1 and S-2 all the six optimal X-matrices continue to be so
even in the presence of NEs. The other two LSDs S-3 and S-4 has no X-matrix. Now we can
sum up in the following table as Annexure I and II, the reasons of disqualification and their
corresponding optimal X-matrices with respect to the design S-4 in the presence of neighbor
effects.
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ANNEXURE I
Table 7: Reasons for disqualification of the X-matrices in the presence of NE

wrt S-4

Sl no. X- matrices* Reasons for disqualification in the presence of NEs
1 1 1 -1 -1 LN=RN=2 for Treatment 1

-1 1 -1 1
1 -1 1 -1
-1 -1 1 1

2 1 1 -1 -1 LN= - 4 and RN= 4 for Treatment 1
-1 -1 1 1
-1 -1 1 1
1 1 -1 -1

3 1 -1 1 -1 LN= -2 and RN =2 for Treatment 1
1 1 -1 -1
-1 -1 1 1
-1 1 -1 1

4 1 -1 -1 1 LN = 4 and RN = -2 for Treatment 1
-1 1 1 -1
1 -1 -1 1
-1 1 1 -1

5 1 -1 1 -1 TN of Tr1 = 4 and BN = - 4
-1 1 -1 1
-1 1 -1 1
1 -1 1 -1

6 1 -1 -1 1 LN= 4 and RN = 4 wrt Tr. 2
1 -1 -1 1
-1 1 1 -1
-1 1 1 -1

X- Matrices* are without NEs
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ANNEXURE II

The design S-4 in the presence of four sided the neighbor effects the above six covariate
matrices wrt S-4, we can see that there is no optimal matrix. The reasons are shown as below.

Table 8: Reasons for disqualification of the X-matrices in the presence of four-
sided NEs wrt S-4C1 to S-4C6

Sl no. Treatments LN effects RN effects
1 1 -1+1+1+1= 2 1+1+1-1 = 2

S-4C1 2 1+1+1-1 = 2 -1+1+1+1= 2
3 1-1-1-1 = -2 -1-1-1+1= -2
4 -1-1-1+1 =-2 1-1-1-1 = -2

2 1 -1-1-1-1 = -4 1+1+1+1 = 4
S-4C2 2 1+1+1+1 = 4 -1 -1 -1 -1 = -4

3 1+1+1+1 = 4 -1 -1 -1 -1 = -4
4 -1 -1 -1 -1 = -4 1+1+1+1 = 4

3 1 -1 + 1 - 1 - 1 = -2 -1 - 1 + 1 - 1 = -2
S-4C3 2 1 - 1 + 1 + 1 = 2 1 + 1 - 1 + 1 = 2

3 -1 - 1 + 1 - 1 = -2 -1 + 1 - 1 - 1 = -2
4 1 + 1 - 1 + 1 = 2 1 - 1 + 1 + 1 = 2

4 1 1+1+1+1 =4 -1 -1 -1 -1 =4
S-4C4 2 1 -1 - 1 +1 =0 -1 +1 +1 -1 =0

3 -1 +1 +1-1 =0 1 -1 -1 +1 =0
4 -1 -1 -1 -1 = -4 1+ 1+1+1 = 4

5 1 1 -1 -1 +1 =0 -1 +1 +1 -1 = 0
S-4C6 2 1+1 +1+1= 4 -1 -1 -1 -1 = - 4

3 -1 -1 -1 -1 = - 4 1+ 1+1+1 = 4
4 -1 +1 +1 -1 = 0 1 - 1 -1 +1 = 0

Treatments TN effects BN effects
6 1 1+1+1+1 = 4 -1 -1 -1 -1 = - 4

S-4C5** 2 -1+1+1 -1 = 0 1 - 1 - 1 +1 = 0
3 1 - 1 -1 + 1 = 0 -1 +1 +1 -1 = 0
4 -1 -1 -1 -1 = - 4 1 +1 + 1+1 =4

In the case of S-4C5** conditions for both LN and RN effects for each treatment are
satisfied whereas for Top Neighbor (TN) and Bottom Neighbor (BN) effects conditions are
not satisfied, hence we take up only TN and BN effects in the Sl no. 6.
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Abstract
Considering the high infection rate and bed scarcity in hospitals amidst the COVID-

19 pandemic it is necessary to find out an optimal lockdown schedule for minimizing infection
rate as well as maintaining economic sustainability. This paper proposes an effective com-
partmental model SEIRDVIm and yields an optimal lockdown schedule using classical and
quantum knapsack algorithms. When the available bed count falls below a certain thresh-
old, the city goes into lockdown mode, and vice versa. The R2 value of SEIRDVIm is
0.8797 and the Mean Squared Error (RMSE) is 34.59. The proposed model yields better
results compared to the classical SEIR model. Variation of infected with vaccination rate
and effectiveness of vaccination is demonstrated. Using 10 predictors it is found that for 60
days, quantum-assisted lockdown yields a death toll of 15062 compared to 20123 in classical
knapsack induced lockdown.

Key words: SEIRDVIm model; Death rate; Knapsack problem; Lockdown schedule; Mean
Squared Error; R-squared (R2).

AMS Subject Classifications: 62K05, 05B05

1. Introduction

In December 2019 the outbreak of the novel severe acute respiratory syndrome Coro-
navirus called SARS-CoV-2 started locally in Wuhan, China, and rapidly spread all over the
world. As reported 65.8 lakh deaths all over the world on 23rd October 2022. For deciding
public policy several epidemic models have been used by the nation during the past few
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years, see Ferguson et al. (2020). It is important to understand the impact of precautionary
measures and medical intervention on multiple variants. The impact of effective vaccination
in to fight against COVID-19 is tremendous. Vaccination production and proper distribution
are important. Future prediction on pandemic significantly dominates vaccine distribution.
For studying the effect of vaccination, additional compartments have been added to the ex-
isting models to analyze the effectiveness of vaccination. Matrajt et al. (2021) studied the
effectiveness of vaccination for allocating vaccines properly. In the past also several analyses
have been done on vaccination at the time of previous outbreaks, see Feng et al. (2011),
Scherer and McLean (2002) and Chowell et al. (2019). For studying the spread of a disease
in a population, SIR-based epidemic models are widely used, see Cooper et al. (2020), Kuhl
and Kuhl (2021), and others. An extended SEIR-based model to predict the future trend
of COVID-19 has been proposed by Lal et al. (2021). The main framework of the study by
Davies et al. (2020) is the transmission of disease using age-based modeling. In research it
is discussed the population behavior a level of caution and sense of safety while considering
vaccine efficacy, see Usherwood et al. (2021).

This paper proposes an effective compartmental model SEIRDVIm and yields an
optimal lockdown schedule using classical and quantum knapsack algorithms. When the
available bed count falls below a certain threshold, the city goes into lockdown mode, and
vice versa. The novel contributions of this research article are as follows:

Proposed a new compartmental model SEIRDVIm for designing an optimal lockdown
schedule using the quantum knapsack algorithm by maximizing the objective function, avail-
able bed capacity and minimizing the death and then converting the objective function into
an energy function using binary quadratic model (bqm). Then minimize the same by D-Wave
Quantum Annealer.

This paper is represented as follows. Section 1 illustrates the introduction. The newly
proposed model SEIRDVIm is discussed in Section 2. Section 3 highlights the result of the
evolution of the proposed model with lockdown optimization using classical and quantum
knapsack. Section 4 provides the discussion of the work and at last section 5 concludes the
paper.

2. Methods

The proposed SEIRDVIm model in Figure 1 divides the population into susceptible
(S), exposed (E), infected incompletely vaccinated (Iiv), infected completely vaccinated
(Icv), recovered (R), vaccinated (V ), Immunized (Im), and deceased (D).

SEIRDVIm model is described by eight linear differential equations. Variation of eight
compartments S, E, Iiv, Icv, R, V , Im, and D with time (t) are depicted in equations 1 to
8. The assumptions of the model are:

I. The population is fixed.

II. After being completely vaccinated, a person can become infected with a lower rate of
infection.

III. After complete and successful vaccination, immunity may be gained at rate η.
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Figure 1: SEIRDVIm model

The differential equations 1 to 8 of the model are given below:

dS

dt
= −βS

(IIV + ICV )
N

− σS + µIm (1)

dE

dt
= −βS

(IIV + ICV )
N

− δE + δ′E (2)

dIIV

dt
= −δE − (1− α)γIV IIV − αρIV IIV (3)

dICV

dt
= −δ′E − (1− α)γCV ICV − αρCV ICV + (1− η) V

N
(4)

dR

dt
= (1− α)γCV ICV + (1− α)γIV IIV (5)

dD

dt
= αρCV ICV + αρIV IIV (6)

dv

dt
= σ

S

N
− V

N
(7)

dIm

dt
= η

V

N
− µIm (8)
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The parameters of the equations are described in Table 1, see Lobinska et al. (2022)
and Rella et al. (2021).

Table 1: Parameters of the model

Parameter Value
Transmission of disease β {0.0155, 0.18}
Infection rate δ 1.1
Infection rate after vaccination δ′ 0.5
Death rate after incomplete vaccination ρIV 0.2
Death rate after complete vaccination ρCV 0.01
Recovery rate after incomplete vaccination γIV 0.076
Recovery rate after complete vaccination γCV 0.79
Fatality rate α 0.05
Vaccination rate σ {0.3, 0.8}
Vaccine effectiveness η {0.2, 0.7}

3. Results

The newly proposed SEIRDVIm model is used to run for 51 days. The time frame is
divided into intervals of five days. SEIRDVIm model is used to run for each interval of time
for each of the five cities. SEIRDVIm model in Figure 2 depicts the variation of incompletely
vaccinated people with vaccination rate and effectiveness of vaccination. The vaccination
rate has varied from 0.3 to 0.8 with effectiveness 0.2 to 0.7. From Figure 3, the Variation of
infection with completely vaccinated with vaccination rate and effectiveness is seen. Figure
4 exhibits the variation of death with a product of vaccination rate and effectiveness. As the
product increases total death count decreases. Figure 5 depicts the comparison of the total
infected in the simulation result and the actual data value. The registry data of the United
States is collected in the period of 1st March 2020 to 23rd March 2020, see Liu et al. (2021)
and Alamo et al. (2020). The data set is used for validation of the model.

Figure 2: Variation of infected incompletely vaccinated with vaccination rate
and effectiveness
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Figure 3: Variation of infection with completely vaccinated with vaccination rate
and effectiveness

Figure 4: Variation of Death with effective vaccination

Figure 5: Comparison on total infected with actual data and simulated results
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In order to analyze the model, R-squared (R2) and Mean Squared Error (RMSE)
are used for comparison. R-squared (R2) is a statistical measure of how close the simulation
result matches the actual data. The higher the value of R-squared (R2), the better the model
fits the actual data. Equations 9 and 10 describe R-squared (R2) and Mean Squared Error
(RMSE).

R2 =
∑(simulated result− actual value)2∑(actual value−Mean value)2 = 0.8797 (9)

The RMSE value calculates the error between the simulated result value and the real
data. The more the RMSE value closes to 0, the better the result, see Lucas (2014).

RMSE =

√∑N
i=1(simulated value i− actual value i)2

N
= 34.59 (10)

Table 2: Comparison of Models

Parameter Classical SEIR, Liu et al. (2021) Proposed Model SEIRDVIm
R2 0.60624 0.8979
RMSE 4132.2348 34.59

3.1. Model 1: Lockdown using classical knapsack

Lockdown state is represented by 0 and open state is represented by 1. Figure 6
depicts the scenario when the city is in open or closed states.

Figure 6: Lockdown in cities

3.1.1. Lockdown and open state for five cities

We are using the same parameters as in the SEIRDVIm model with no lockdown
scenario as in Table 1. The classical knapsack algorithm is applied every five days to obtain
the optimal lockdown schedule. We consider bed capacity as cost and the number of infected
as weight. The knapsack will contain only the open cities. The cities are selected in such a
way that the number of available beds is maximized and death will be minimized. Figure 7
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describes the classical knapsack-imposed lockdown schedule. The variation of bed capacity
for each city with the number of days in lockdown is portrayed in Figure 8.

Figure 7: Lockdown schedule using classical knapsack

Figure 8: Variation of available bed capacities for five cities with number of days
in lockdown

It is reflected in the result that for classical knapsack-imposed lockdown, the total
death is 20123 after 60 days, where 356169 have been recovered and 7060317 have been
vaccinated.No real data is used to derive the lockdown schedule.

3.2. Model 2: Lockdown using quantum knapsack

For deriving an optimal lockdown schedule in quantum, we need to transfer the
objective, i.e. maximizing available bed capacity and minimizing the death into an energy
function using a binary quadratic model (bqm). Then we minimize the energy function by D-
Wave Quantum Annealer. Lucas (2014) described the quantum algorithm for the knapsack
problem. The Quantum algorithm for the knapsack problem is built by using the algorithm
Q-Knapsack (cityindex, cityGDP , cityinfected, citybedCapacity) where cityGDP represents the GDP
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of each city, cityinfected is the number of infected in the city, and citybedCapacity represents the
hospital bed capacity of each city. See Annexure for algorithm 1 of quantum knapsack
algorithm for generating binary quadratic model, from which lockdown schedule is obtained
based on closed and open cities sample set.

For deriving optimal an lockdown schedule using quantum knapsack we are using the
same parameters as described in Table 1. Figure 9 depicts the lockdown schedule as time is
divided into five-days intervals.

Figure 9: Quantum imposed lockdown schedule

Using the same rule, we are putting the cities in the knapsack such that available bed
increases and death decreases. The cities that are not in knapsack need to be in lockdown.
Algorithm 2 describes the quantum algorithm for lockdown. Figure 10 shows the variation
of bed capacity for each city with a number of days in lockdown.

Figure 10: variation of bed capacity with number of days in lockdown

It is reflected in the result that for quantum-imposed lockdown the total number
of deaths is 15062 after 60 days, where 192804 have been recovered and 7230041 have been
vaccinated. Figure 11 depicts the comparison of infected who are incompletely vaccinated by
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classical knapsack-imposed lockdown and Quantum knapsack-imposed lockdown. Algorithm
2 describes the algorithm of quantum-imposed lockdown, see Annexure for Algorithm 2.

Figure 11: Comparison of infected who are incompletely vaccinated by classical
knapsack-imposed lockdown and quantum knapsack-imposed lockdown

Figure 12: Comparison of dead by no lockdown, classical knapsack-imposed
lockdown and quantum knapsack-imposed lockdown

In Figure 12, a comparison of the death count is done between no lockdown, classical
knapsack-assisted lockdown, and quantum knapsack-assisted lockdown algorithm. It is re-
flected from the result that quantum causes 15062 total deaths whereas in classical knapsack
death count is 20123.
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4. Discussion

This paper fulfills the objective by validating the proposed model with real data. The
model fits better and the root mean square error concerning actual data is lesser compared to
the classical SEIR model. The model shows the effectiveness of vaccination by showing the
variation of infected and death with vaccination rate. It is observed that number of infected
is much lesser in complete vaccination compared to incomplete vaccination. An optimal
lockdown schedule is derived by applying a quantum knapsack algorithm and it is found
that compared with classical knapsack-based lockdown quantum assisted lockdown results
in lesser death. For 60 days, quantum-assisted lockdown yields a death toll of 15062 compared
to 20123 in classical knapsack-induced lockdown. Compared to classical, quantum knapsack
implements a lockdown schedule more efficiently so that the number of infections decreases
resulting increase in available bed capacity and thus number of deaths. Because of this,
the death toll of quantum-assisted method is much smaller compared to classical Knapsack
algorithm. However, the paper has the limitations that the exact date of obtaining predictor
values is not known. Despite this limitation, the SEIRDVIm model can predict the possible
infected and death as well as help to decide on lockdown.

5. Conclusion

In this paper, our objective is to propose an effective compartmental model SEIRDVIm
considering complete and partially vaccinated populations with immunized as a separate
compartment. The model yields better results compared to the classical SEIR model in terms
of R2 and RMSE values. This model yields an optimal lockdown schedule using classical
and quantum knapsack algorithms. It is reflected in the result that for 60 days, quantum-
based lockdown resulted death toll of 15062 compared to 20123 in classical knapsack-induced
lockdown.
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ANNEXURE

Algorithm 1: An algorithm to obtain Binary Quadratic Model for Quantum Knapsack
Require: cityindex, cityGDP , cityinfected, citybedCapacity

bqm : Binary Quadratic Model
lagrange← max(cityvalue)
xsize ← length(cityinfected)
yindexmax : maximum index in y
for k ← 1, xsize do

bqm.setLinear(cityindexk
, lagrange ∗ (cityinfectedk

)2 − cityGDPk
))

end for

for i← 1, xsize do
for j ← i + 1, xsize do

bqm.setQuadratic[cityindexi
, cityindexj

] ← 2(lagrange ∗ cityinfectedi
∗ cityinfectedj

)
end for

end for

for k ← 1, yindexmax do
bqm.setLinear(’y’ + string(k), lagrange ∗ (yk)2)

end for

for i← 1, yindexmax do
for j ← i + 1, yindexmax do

bqm.setQuadratic[yi, yj] ← 2 ∗ lagrange ∗ yi ∗ yj

end for
end for

for i← 1, xsize do
for j ← i + 1, yindexmax do

bqm.setQuadratic[cityindexi
, yj] ← −2 ∗ lagrange ∗ cityinfectedi

∗ yj

end for
end for
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Algorithm 2: An algorithm to lockdown city based on Binary Quadratic Model from
Quantum Knapsack
Require: bqm : Binary Quadratic Model for Quantum Knapsack

Get OpenCity & ClosedCity sampleset from bqm based on bed Capacity threshold.
for each city do

if cityindex is in OpenCities then LockdownList ← 1
else LockdownList ← 0
end if

end for
return LockdownList
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Abstract
A time-dependent solution of the two-dimensional state M/M/2 queueing system with

multiple vacation, feedback, catastrophes and balking is obtained in this study. Inter-arrival
and service times follow an exponential distribution with parameters λ and µ respectively.
Both the servers go on vacation with probability one when there are no units in the system.
All the units are ejected from the system when catastrophes occur and the system becomes
temporarily unavailable. The system reactivates when new units arrive. Occurrence of
catastrophes follow Poisson distribution with rate ξ. The units come and wait in the queue
for service; the served units either leave the system or rejoin immediately at the early end
of the queue to receive satisfactory service, known as feedback. Laplace transform approach
has been used to find the time-dependent solution. The efficiency of a queuing system has
been verified by evaluating some key measures along with “total expected cost” and “total
expected profit”. Numerical analyses have been done by using Maple software.

Key words: Time-dependent solution; Two-dimensional state model; Balking; Catastrophes;
Feedback; Multiple vacation.
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1. Introduction

In the present study, the two-dimensional state model has been used to simplify the
complicated transient analysis of some queueing problems. This model is used to study the
queueing system more categorically for arrivals and departures. The idea of two-dimensional
state for the M/M/1 queue was first given by Pegden and Rosenshine (1982). After that,
two-dimensional state model has received considerable attention by many researchers to
analyse various queuing systems.

Various studies have been conducted to evaluate different performance measures to
verify the robustness of the system in which a server takes a break for a random period of
time i.e. vacation. When the server returns from a vacation and finds the queue empty, it
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immediately goes on another vacation and if it finds at least one waiting unit, then it will
commence service according to the prevailing service policy, i.e. multiple vacation. Different
queueing systems with multiple vacation have been extensively investigated and effectively
used in several fields including industries, computer & communication systems, telecommu-
nication systems etc. Different types of vacation policies are available in literature such as
single vacation, multiple vacation and working vacations. Researches on vacation models
have grown tremendously in the last several years. Cooper (1970) was the first to study the
vacation model and determined the mean waiting time for a unit arrive at a queue served
in cyclic order. Doshi (1986) and Ke et al. (2010) have done outstanding researches on
queueing system with vacations and released some excellent surveys. Xu and Zhang (2006)
considered the Markovian multi-server queue with a single vacation (e, d)-policy. They also
formulated the system as a quasi-birth-and-death process and computed the various station-
ary performance measures. Altman and Yechiali (2006) studied the customer’s impatience
in queues with server vacations. Kalidass et al. (2014) obtained the time-dependent solution
of a single server queue with multiple vacations. Ammar (2015) analysed M/M/1 queue with
impatient units and multiple vacations. Sharma and Indra (2020) investigated the dynamic
aspects of a two-dimensional state single server Markovian queueing system with multiple
vacations and reneging.

Also, units may be served repeatedly for many reasons, e.g. when a unit is unsatisfied
with a service, the unit may try for a satisfactory service. For example, we visit to the online
shopping store and order a full-sleeve jacket but when we receive the order it turn out
to be half-sleeve jacket. Since we are unsatisfied with the service, so we go for a return
policy or exchange policy provided by the shopping store and to receive satisfactory service.
Many researchers have been attracted to the study of queues with feedback as large number
of applications have been found in many areas including production systems, post offices,
supermarkets, hospital management, financial sectors, ticket offices, grocery stores, ATMs
and so forth. Takacs (1963) determined the distribution of the queue size and the first
two moments of the distribution for a queue with feedback. D’Avignon and Disney (1976)
studied the non-Markovian queue with a state-dependent feedback mechanism. Disney et al.
(1980) investigated a number of random processes that occur in queues with instantaneous
Bernoulli feedback. Choudhury and Paul (2005) derived two phases of heterogeneous services
with Bernoulli feedback systems. Chowdhury and Indra (2020) analysed two-node tandem
queue with feedback.

Queueing systems with catastrophes are getting a lot of attention nowadays and may
be used to solve a wide range of real-world problems. Catastrophes may occur at any time,
resulting in the loss of all the units and the deactivation of the service centre, because they
are totally unpredictable in nature. Such types of queues with catastrophes play an im-
portant role in computer programs, telecommunication, ticket counter etc. For example,
virus or hacker attacking a computer system or program causing the system fail or become
idle. Chao (1995) obtained steady-state probability of the queue size and a product form
solution of a queueing network system with catastrophes. Krishna Kumar et al. (2007) ob-
tained time-dependent solution for M/M/1 queueing system with catastrophes. Kalidass
et al. (2012) derived explicit closed form analytical expressions for the time-dependent prob-
abilities of the system size. Dharmaraja and Kumar (2015) studied Markovian queueing
system with heterogeneous servers and catastrophes. Chakravarthy (2017) studied delayed
catastrophic model in steady state using the matrix analytic method. Suranga Sampath and
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Liu (2018) studied an M/M/1 queue with reneging, catastrophes, server failures and repairs
using modified Bessel function, Laplace transform and probability generating function ap-
proach. de Oliveira Souza and Rodriguez (2021) worked on fractional M/M/1 queue model
with catastrophes.

Queues with balking have a wide range of practical applications in everyday life.
Balking occurs if units avoid joining the queue, when they perceive the queue to be too long.
Long queues at cash counters, ticket booths, banks, barber shops, grocery stores, toll plaza
etc. Kumar et al. (1993) obtained time-dependent solution of an M/M/1 queue with balking.
Zhang et al. (2005) analysed the M/M/1/N queueing system with balking, reneging, and
server vacation. Sharma and Kumar (2012) used a single-server Markovian feedback queuing
system with balking.

With above concepts in mind, we analyse a two-dimensional state M/M/2 queueing
model with multiple vacation, feedback, catastrophes and balking.

Out of the many physical situations, one can be in the post office, where an unit
arrives to receive the service and is unsatisfied by the service, then it re-joins at the early
end of the queue to receive satisfactory service; may be considered as feedback unit. On
arrival, if the unit finds a long queue and decides not to join; may be considered as balking
unit and if the computer system fails due to virus or any other reason; may be considered
as occurrence of catastrophes. After service completion, the server may take a break, when
he finds an empty queue.

The paper has been structured as follows. In Section 2, the model assumptions,
notations and description are given. In Section 3 the differential-difference equations to find
out the time-dependent solution are given and Section 4 describes important performance
measures. Section 5 investigates the total expected cost function and total expected profit
function for the given queueing system. In Section 6, we present the numerical results in
the form of tables and graphs to illustrate the impact of various factors on performance
measures. The last Section contains discussion on the findings and suggestions for future
work.

2. Model assumptions, notations and description

• Arrivals follow Poisson distribution with parameter λ.

• There are two homogeneous servers and the service times at each server follow an
exponential distribution with parameter µ.

• The vacation time of the server follows an exponential distribution with parameter w.

• After completion of the service, the dissatisfied units rejoin at the early end of the
queue to receive service with probability q.

• On arrival a unit either decides to join the queue with probability β or not to join the
queue with probability 1-β.

• Occurrence of catastrophes follows Poisson distribution with parameter ξ.
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• Various stochastic processes involved in the system are statistically independent of
each other.

Initially, the system starts with zero units and the server is on vacation, i.e.

P0,0,V (0) = 1 , P0,0,B(0) = 0 (1)

δi,j =
{

1 ; for i = j

0 ; for i ̸= j
(2)

j∑
i

= 0 for j < i

The two-dimensional state model
Pi,j,V (t)=The probability that there are exactly i arrivals and j departures by time t and
the server is on vacation.
Pi,j,B(t)=The probability that there are exactly i arrivals and j departures by time t and
the server is busy in relation to the queue.
Pi,j(t)=The probability that there are exactly i arrivals and j departures by time t.

3. The differential-difference equations for the queueing model under study

d

dt
Pi,i,V (t) = −λβPi,i,V (t) + qµPi,i−1,B(t)(1 − δi,0) + ξ(1 − Pi,i,V (t)) i ≥ 0 (3)

d

dt
Pi+1,i,B(t) = −(λβ +qµ+ξ)Pi+1,i,B(t)+2qµPi+1,i−1,B(t)(1−δi,0)+wPi+1,i,V (t) i ≥ 0 (4)

d

dt
Pi,j,V (t) = −(λβ + w + ξ)Pi,j,V (t) + λβPi−1,j,V (t) i > j ≥ 0 (5)

d

dt
Pi,j,B(t) = −(λβ + 2qµ + ξ)Pi,j,B(t) + λβPi−1,j,B(1 − δi−1,j)(t) + 2qµPi,j−1,B(t)(1 − δj,0)

+wPi,j,V (t) i > j + 1 (6)
The preceding equations (3) to (6) are solved by taking the Laplace transforms together with
initial conditions:

P̄0,0,V (s) = ξ + s

s(s + λβ + ξ) (7)

P̄i,0,V (s) = (λβ)i(ξ + s)
s(s + λβ + ξ)(s + λβ + w + ξ)i

i > 0 (8)

P̄i,i,V (s) = qµ

s + λβ + ξ
Pj,j−1,B(s) i > 0 (9)

P̄i,0,B(s) = w(λβ)i(ξ + s)
s(s + λβ + ξ)(s + λβ + w + ξ)(s + λβ + qµ + ξ)(s + λβ + 2qµ + ξ)i−1 +
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+w(λβ)i ∑i−1
m=1

1
s(s + λβ + ξ)(s + λβ + w + ξ)m+1(s + λβ + qµ + ξ)(s + λβ + 2qµ + ξ)i−m

i ≥ 1

(10)
P̄i+1,i,B(s) = 2qµ

s + λβ + qµ + ξ
Pi+1,i−1,B(s)

+ qµwλβ

(s + λβ + ξ)(s + λβ + w + ξ)(s + λβ + qµ + ξ)Pi,i−1,B(s) i > 0 (11)

P̄i,j,V (s) = (qµ)
(s + λβ + w + ξ)

(λβ)i−j

(s + λβ + w + ξ)i−j
Pj,j−1,B(s) i > j ≥ 1 (12)

P̄i,j,B(s) = λβ

s + λβ + 2qµ + ξ
Pi−1,j,B(s) + 2qµ

s + λβ + 2qµ + ξ
Pi,j−1,B(s) + qµ

s + λβ + ξ

w

s + λβ + 2qµ + ξ

(λβ)i−j

(s + λβ + w + ξ)i−j
Pj,j−1,B(s) i > j + 1, j > 0 (13)

It is seen that
∞∑

i=0

i∑
j=0

[P̄i,j,V (s) + P̄i,j,B(s)(1 − δi,j)] = 1
s

(14)

and hence
∞∑

i=0

i∑
j=0

[P̄i,j,V (t) + P̄i,j,B(t)(1 − δi,j)] = 1 (15)

a verification.

4. Performance measures

(a) The Laplace transform of Pi.(t) the probability that exactly i units arrive by time
t; when initially there are no units in the system is given by

P̄i.(s) =
i∑

j=0
[P̄i,j,V (s) + P̄i,j,B(s)(1 − δi,j)] =

i∑
j=0

P̄i,j(s) = (λβ)i

(s + λβ)i+1 (16)

and its inverse Laplace transform is

Pi.(t) = e−λβt(λβt)i

i! (17)

The arrivals follow a Poisson distribution as the probability of the total number of arrivals
is not affected by vacation time of the server.
(b) P.j(t) is the probability that exactly j units have been served by time t. In terms of
Pi,j(t) we have

P.j(t) =
∞∑

i=j

Pi,j(t) (18)

(c)The probability of exactly n units in the system at time t, denoted by Pn(t), can be
expressed in terms Pij(t) as

Pn(t) =
∞∑

j=0
Pj+n,j(t) (19)
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(d) The Laplace transform of mean number of arrivals by time t is
∞∑

i=0
iP̄i.(s) = λβ

s2 (20)

and inverse of the mean number of arrivals by time t is
∞∑

i=0
i Pi.(t) = λt (21)

(e) The mean number of units in the queue is calculated as follows

QL(t) =
∞∑

n=0
nPV (t) +

∞∑
n=2

(n − 2)PB(t) (22)

where n = i − j.

5. Cost function and profit function

For the given queueing system, the following notations have been used to represent
various costs to find out the total expected cost and total expected profit per unit time
Let
CH : Cost per unit time for unit in the queue.
CB: Cost per unit time for a busy server.
Cµ: Cost per service per unit time.
CV : Cost per unit time when the server is on vacation.
Cµ−q: Cost per unit time when a unit rejoins at the early end of the queue as a feedback
unit.
If I is the total expected amount of income generated by delivering a service per unit time
then
a) Total expected cost per unit at time t is given by

TC(t) = CH ∗ QL(t) + CB ∗ PB(t) + CV ∗ PV (t) + µ ∗ (Cµ + Cµ−q) (23)

b) Total expected income per unit at time t is given by

TEI(t) = I ∗ µ ∗ (1 − PV (t)) = I ∗ µ ∗ PB(t) (24)

c) Total expected profit per unit at time t is given by

TEP (t) = TEI(t) − TC(t) (25)

6. Numerical results

6.1. Numerical validity check

1. For the state when the server is on vacation

PV (t) =
i∑

j=0
Pi,j,V (t) (26)
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2. For the state when the server is busy in relation to the queue

PB(t) =
i−1∑
j=0

Pi,j,B(t) (27)

3. The probability Pi.(t) that exactly i units arrive by time t is

Pi.(t) =
i∑

j=0
Pi,j(t) =

i∑
j=0

Pi,j,V (t) +
i−1∑
j=0

Pi,j,B(t) (28)

4. A numerical validity check of inversion of P̄i,j(s) is based on the relationship

Pr{i arrivals in (0, t)} = e−(λβt) ∗ (λβt)i

i! =
i∑

j=0
Pi,j(t) = Pi.(t) (29)

The probabilities of this model shown in last column of Table 1 given below are consistent
to the last column of “Pegden and Rosenshine (1982)”

Table 1: Numerical validity check of inversion P̄i,j(s)

λ µ t i w q ξ β e−(λt)∗(λt)i

i!
∑i

j=0 Pi,j,V (t) ∑i−1
j=0 Pi,j,B(t) ∑i

j=0 Pi,j(t)
1 2 3 1 1 1 0 1 0.149361 0.12688 0.02247 0.14936
1 2 3 3 1 1 0 1 0.224041 0.14971 0.07433 0.22404
1 2 3 5 1 1 0 1 0.100818 0.05262 0.04818 0.10081
2 2 3 1 1 1 0 1 0.014871 0.01263 0.00223 0.01487
2 2 3 3 1 1 0 1 0.089234 0.05962 0.02960 0.08923
2 2 3 5 1 1 0 1 0.160622 0.08384 0.07677 0.16062
1 2 4 1 1 1 0 1 0.073261 0.06443 0.00882 0.07326
1 2 4 3 1 1 0 1 0.195366 0.14187 0.05349 0.19536
1 2 4 5 1 1 0 1 0.156292 0.09401 0.06227 0.15629
2 2 4 1 1 1 0 1 0.002682 0.00236 0.00032 0.00268
2 2 4 3 1 1 0 1 0.028625 0.02078 0.00783 0.02862
2 2 4 5 1 1 0 1 0.091602 0.05510 0.03650 0.09160
2 4 4 5 1 1 0 1 0.091602 0.07219 0.01940 0.09160
1 2 4 4 1 1 0 1 0.195366 0.12931 0.06605 0.19536
1 2 3 6 1 1 0 1 0.050409 0.02299 0.02741 0.05040

Table 2: Probabilities of exactly n units in the system at time t

n t = 1 t = 2 t = 3 t=4 t = 5
0 0.3064059 0.2756176 0.2194939 0.1313295 0.0614414
1 0.3512870 0.3112144 0.2199253 0.1139011 0.0462964
2 0.1935174 0.1626266 0.0998428 0.0447517 0.0158779
3 0.0917319 0.0804006 0.0421561 0.0161968 0.0049851
4 0.0368324 0.0375051 0.0167183 0.0053778 0.0014074
5 0.0123808 0.0160725 0.0061926 0.0016003 0.0003411
6 0.0033284 0.0059066 0.0020629 0.0004081 0.0000646
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Table 3: Probabilities of exactly j departures by time t

j t = 1 t = 3 t = 5 t=7 t = 10
0 0.67968674 0.099509402 0.007046060 0.000420927 0.00016181
1 0.17711300 0.081454841 0.009095394 0.000581746 0.00005037
2 0.09298400 0.117972870 0.018124103 0.001391221 0.00005942
3 0.03598100 0.140843910 0.031453844 0.003012981 0.00008380
4 0.01081200 0.140978350 0.047484726 0.005811690 0.00014277
5 0.00259600 0.119261779 0.061887004 0.009825172 0.00026424
6 0.00050430 0.084578352 0.068296881 0.014198767 0.00046744

6.2. Sensitivity analysis

This part focuses on the impact of the arrival rate (λ), service rate (µ), vacation
rate (w), catastrophes rate (ξ), feedback probability (q) and balking probability (1-β) on
the probability when the server is on vacation (PV (t)), probability when the server is busy
(PB(t)), expected queue length (QL(t)), total expected cost (TC(t)), total expected income
(TEI(t)) and total expected profit (TEP (t)) at time t. To calculate the numerical results
for the sensitivity of the queueing system one parameter varied while keeping all the other
parameters fixed.

Impact of arrival rate: We examine the behaviour of the queueing system using mea-
sures of effectiveness along with cost and profit analysis by varying λ with time t, while
keeping all other parameters fixed; µ=5, w=2, β=0.5, ξ=0.0001, q=0.7, CH=10, CB=8,
CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 4, we observe that as the value of λ in-
creases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t) decreases.

Table 4: Measures of effectiveness versus λ

t λ PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 1.00 0.905411 0.094588 0.2173509 37.457268 47.2940 9.8367320
2 0.880912 0.119086 0.2429674 37.786922 59.5430 21.756078
3 0.878559 0.121412 0.2454781 37.818872 60.7060 22.887128
4 0.878264 0.121497 0.2455127 37.818423 60.7485 22.930077
5 0.877657 0.121202 0.2447627 37.805528 60.6010 22.795472
1 1.25 0.884191 0.115808 0.2722840 38.070259 57.9040 19.833741
2 0.855421 0.144572 0.3036798 38.470479 72.2860 33.815521
3 0.852827 0.147024 0.3064271 38.504598 73.5120 35.007402
4 0.852077 0.146782 0.3056222 38.490863 73.3910 34.900137
5 0.849575 0.145499 0.3023700 38.435567 72.7495 34.313933
1 1.50 0.863798 0.136201 0.3275511 38.684109 68.1005 29.416391
2 0.831169 0.168802 0.3646441 39.152702 84.4010 45.248298
3 0.828243 0.171206 0.3671780 39.182643 85.6030 46.420357
4 0.826167 0.170030 0.3638632 39.129707 85.0150 45.885293
5 0.818924 0.166270 0.3543160 38.967940 83.1350 44.167060

Impact of service rate: The behaviour of the queueing system using measures of
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Figure 1: Shows the variation of cost, income and profit at an arrival rate λ=1.00
with time t while keeping the other parameters fixed (µ=5, w=2, ξ=0.0001,
q=0.7, β=0.5)
Figure 2: Shows the variation of QL(t) with time t by varying arrival rate λ(=1.00,
1.25, 1.50) while keeping the other parameters fixed (µ=5, w=2, ξ=0.0001, q=0.7,
β=0.5)

effectiveness along with cost and profit analysis by varying µ with time t, while keeping all
other parameters fixed; λ=1, w=2, β=0.5, ξ=0.0001, q=0.7, CH=10, CB=8, CV =5, Cµ=4,
Cµ−q=2, I=100 and N=8. In Table 5, we observe that as the value of µ increases with time
t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t) decreases.

Table 5: Measures of effectiveness versus µ

t µ PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 3.75 0.885251 0.114748 0.220270 30.046939 43.03050 12.983561
2 0.845732 0.154266 0.247027 30.433058 57.84975 27.416692
3 0.840988 0.158983 0.248985 30.466654 59.61862 29.151971
4 0.840598 0.159163 0.248765 30.463944 59.68612 29.222181
5 0.840100 0.158760 0.247921 30.433790 58.78500 28.351210
1 4.25 0.894093 0.105906 0.218863 33.006343 45.01005 12.003707
2 0.861897 0.138101 0.244849 33.362783 58.69292 25.330142
3 0.858481 0.141490 0.247023 33.394555 60.13325 26.738695
4 0.858160 0.141601 0.246935 33.392958 60.18042 26.787467
5 0.857609 0.141250 0.246144 33.371485 59.60625 26.234765
1 4.75 0.901872 0.098127 0.217789 35.972266 46.61032 10.638059
2 0.875156 0.124842 0.243461 36.309126 59.29995 22.990824
3 0.872529 0.127443 0.245866 36.340849 60.53542 24.194576
4 0.872229 0.127532 0.245867 36.340071 60.57770 24.237629
5 0.871638 0.127221 0.245106 36.319018 59.95497 23.635957

Impact of vacation rate: We observe that the behaviour of the queueing system
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Figure 3: Shows the variation of cost, income and profit at a service rate µ=3.75
with time t while keeping the other parameters fixed (λ=1, w=2, ξ=0.0001,
q=0.7, β=0.5)
Figure 4: Shows the variation of QL(t) with time t by varying service rate µ(=3.75,
4.25, 4.75) while keeping the other parameters fixed (λ=1, w=2, ξ=0.0001, q=0.7,
β=0.5)

using measures of effectiveness along with cost and profit analysis by varying w with time
t, while keeping all other parameters fixed; λ=1, µ=5, q=0.7, β=0.5, ξ=0.0001, CH=10,
CB=8, CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 6 , we observe that as the value
of w increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t)
decreases.
Impact of catastrophes rate: We see that the behaviour of the queueing system using
measures of effectiveness, along with cost and profit analysis by varying ξ with time t, while
keeping all other parameters fixed; λ=1, µ=5, w=2, q=0.7, β=0.5, CH=10, CB=8, CV =5
and Cµ=4, Cµ−q=2, I=100, N=8. In Table 7, we observe that as the value of ξ increases
with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t) decreases.

Impact of feedback probability: We observe that the behaviour of the queueing
system using measures of effectiveness along with cost and profit analysis by varying q with
time t, while keeping all other parameters fixed; λ=1, µ=5, w=2, β=0.5, ξ=0.0001, CH=10,
CB=8, CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 8, we observe that as the value
of q increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t)
decreases.

Impact of joining probability: We observe that the behaviour of the queueing
system using measures of effectiveness along with cost and profit analysis by varying β with
time t, while keeping all other parameters fixed; λ=1, µ=5, w=2, q=0.7, ξ=0.0001, CH=10,
CB=8, CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 9, we observe that as the value
of β increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t)
decreases.
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Table 6: Measures of effectiveness versus w

t w PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 2.00 0.905411 0.094588 0.217350 37.457259 47.2940 9.8367410
2 0.880912 0.119086 0.242967 37.786918 59.5430 21.756082
3 0.878559 0.121412 0.245478 37.818871 60.7060 22.887129
4 0.878264 0.121497 0.245512 37.818416 60.7485 22.930084
5 0.877657 0.120202 0.244762 37.797521 60.1010 22.303479
1 2.25 0.900868 0.099131 0.200253 37.299918 49.5655 12.265582
2 0.878961 0.121037 0.218097 37.544071 60.5185 22.974429
3 0.877366 0.122605 0.219252 37.560190 61.3025 23.742310
4 0.877175 0.122587 0.219121 37.557781 61.2935 23.735719
5 0.876583 0.121276 0.218425 37.537373 60.6380 23.100627
1 2.50 0.897077 0.102922 0.185305 37.161811 51.4610 14.299189
2 0.877506 0.122492 0.197743 37.344896 61.2460 23.901104
3 0.876420 0.123552 0.198212 37.352636 61.7760 24.423364
4 0.876276 0.123486 0.198033 37.349598 61.7430 24.393402
5 0.875691 0.122168 0.197394 37.329739 61.0840 23.754261

Figure 5: Shows the variation of cost, income and profit at a vacation rate w=2.00
with time t while keeping the other parameters fixed (λ=1, µ=5, ξ=0.0001, q=0.7,
β=0.5)
Figure 6: Shows the variation of QL(t) with time t by varying vacation rate
w(=2.00, 2.25, 2.50) while keeping the other parameters fixed (λ=1, µ=5,
ξ=0.0001, q=0.7, β=0.5)

7. Discussion

Figure 1 shows the variation of cost, income and profit with time t by keeping λ
constant (=1.00). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) respectively then decreases slightly. The variation in queue length with
time t is represented in figure 2 by varying the arrival rate λ(=1.00, 1.25, 1.50). Queue
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Table 7: Measures of effectiveness versus ξ

t ξ PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 0.0001 0.905411 0.094588 0.217350 37.457259 47.2940 9.8367410
2 0.880912 0.119086 0.242967 37.786918 59.5430 21.756082
3 0.878559 0.121412 0.245478 37.818871 60.7060 22.887129
4 0.878264 0.121497 0.245512 37.818416 60.7485 22.930084
5 0.877657 0.121202 0.244762 37.797521 60.1010 22.303479
1 0.0002 0.905415 0.094584 0.217343 37.457177 47.2920 9.8348230
2 0.880920 0.119078 0.242956 37.786784 59.5390 21.752216
3 0.878567 0.121404 0.245466 37.818727 60.7020 22.883273
4 0.878273 0.121489 0.245501 37.818287 60.7445 22.926213
5 0.877666 0.120194 0.244751 37.797392 60.0970 22.299608
1 0.0003 0.905420 0.094579 0.217336 37.457092 47.2895 9.8324080
2 0.880928 0.119070 0.242945 37.786650 59.5350 21.748350
3 0.878576 0.121395 0.245455 37.818590 60.6975 22.878910
4 0.878282 0.121480 0.245489 37.818140 60.7400 22.921860
5 0.877675 0.120185 0.244740 37.797255 60.0925 22.295245

Figure 7: Shows the variation of cost, income and profit at a catastrophes rate
ξ=0.0001 with time t while keeping the other parameters fixed (λ=1, µ=5, w=2,
q=0.7, β=0.5)
Figure 8: Shows the variation of QL(t) with time t by varying catastrophes rate
ξ(=0.0001, 0.0002, 0.0003) while keeping the other parameters fixed (λ=1, µ=5,
w=2, q=0.7, β=0.5)

length values increases with increase in time up to t(=4.00, 3.00, 3.00) also then decreases
slightly. Hence we get the optimal value of t=1 when λ=1.00 and t=3 when λ=1.50 for
minimum cost and maximum profit respectively.

Figure 3 shows the variation of cost, income and profit with time t by keeping µ
constant (=3.75). The value of cost, income and profit increases with increase in t upto
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Table 8: Measures of effectiveness versus q

t q PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 0.55 0.888542 0.111457 0.2197238 37.531604 55.7285 18.196896
2 0.851890 0.148108 0.2461336 37.905650 74.0540 36.148350
3 0.847705 0.152266 0.2481621 37.938274 76.1330 38.194726
4 0.847350 0.152412 0.2479947 37.935993 76.2060 38.270007
5 0.846830 0.151029 0.2471729 37.914111 75.5145 37.600389
1 0.65 0.900287 0.099712 0.2179962 37.479093 49.8560 12.376907
2 0.872523 0.127475 0.2437086 37.819501 63.7375 25.917999
3 0.869757 0.130214 0.2460660 37.851157 65.1070 27.255843
4 0.869455 0.130306 0.2460511 37.850234 65.1530 27.302766
5 0.868872 0.128987 0.2452851 37.829107 64.4935 26.664393
1 0.75 0.910104 0.089895 0.2168165 37.437845 44.9475 7.5096550
2 0.888300 0.111698 0.2424285 37.759369 55.8490 18.089631
3 0.886247 0.113724 0.2450750 37.791777 56.8620 19.070223
4 0.885957 0.113804 0.2451474 37.791691 56.9020 19.110309
5 0.885330 0.112529 0.2444091 37.770973 56.2645 18.493527

Figure 9: Shows the variation of cost, income and profit at a feedback probability
q=0.55 with time t while keeping the other parameters fixed (λ=1, µ=5, w=2,
ξ=0.0001, β=0.5)
Figure 10: Shows the variation of QL(t) with time t by varying feedback proba-
bility q(=0.55, 0.65, 0.75) while keeping the other parameters fixed (λ=1, µ=5,
w=2, ξ=0.0001, β=0.5)

t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 4 by varying the service rate µ(=3.75, 4.25, 4.75). Queue length values
increases with increase in time up to t(=3.00, 3.00, 4.00) also then decreases slightly. Hence
we get the optimal value of t=1 when µ=3.75 and t=4 when µ=3.75 for minimum cost and
maximum profit respectively.
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Table 9: Measures of effectiveness versus β

t β PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 0.50 0.905411 0.094588 0.2173509 37.457268 47.2940 9.8367320
2 0.880912 0.119086 0.2429674 37.786922 59.5430 21.756078
3 0.878559 0.121412 0.2454781 37.818872 60.7060 22.887128
4 0.878264 0.121497 0.2455127 37.818423 60.7485 22.930077
5 0.877657 0.121202 0.2447627 37.805528 60.6010 22.795472
1 0.60 0.888367 0.111632 0.2612720 37.947611 55.8160 17.868389
2 0.860414 0.139580 0.2915200 38.333910 69.7900 31.456090
3 0.857871 0.142019 0.2942445 38.367952 71.0095 32.641548
4 0.857261 0.141876 0.2937015 38.358328 70.9380 32.579672
5 0.855314 0.140883 0.2911838 38.315472 70.4415 32.126028
1 0.70 0.871860 0.128139 0.3054014 38.438426 64.0695 25.631074
2 0.840733 0.159250 0.3402231 38.879896 79.6250 40.745104
3 0.837961 0.161701 0.3429228 38.912641 80.8505 41.937859
4 0.836564 0.161003 0.3408982 38.879826 80.5015 41.621674
5 0.831663 0.158467 0.3344632 38.770683 79.2335 40.462817

Figure 11: Shows the variation of cost, income and profit at a joining probability
β=0.50 with time t while keeping the other parameters fixed (λ=1, µ=5, w=2,
ξ=0.0001, q=0.7)
Figure 12: Shows the variation of QL(t) with time t by varying joining probability
β(=0.50, 0.60, 0.70) while keeping the other parameters fixed (λ=1, µ=5, w=2,
ξ=0.0001, q=0.7)

Figure 5 shows the variation of cost, income and profit with time t by keeping w
constant (=2.00). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 6 by varying the vacation rate w(=2.00, 2.25, 2.50). Queue length
values increases with increase in time up to t(=4.00, 3.00, 3.00) also then decreases slightly.
Hence we get the optimal value of t=1 when w=2.50 and t=3 when w=2.50 for minimum
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cost and maximum profit respectively.

Figure 7 shows the variation of cost, income and profit with time t by keeping ξ
constant (=0.0001). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 8 by varying the catastrophes rate ξ(=0.0001, 0.0002, 0.0003). Queue
length values increases with increase in time up to t(=4.00) then decreases slightly. Hence
we get the optimal value of t=1 when ξ=0.0003 and t=4 when ξ=0.0001 for minimum cost
and maximum profit respectively. Finally, the variation in rate of catastrophes shows the
minor effect on cost and profit.

Figure 9 shows the variation of cost, income and profit with time t by keeping q
constant (=0.55). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 10 by varying the feedback probability q(=0.55, 0.65, 0.75). Queue
length values increases with increase in time up to t(=3.00, 4.00, 4.00) also then decreases
slightly. Hence we get the optimal value of t=1 when q=0.75 and t=4 when q=0.55 for
minimum cost and maximum profit respectively.

Figure 11 shows the variation of cost, income and profit with time t by keeping β
constant (=0.50). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 12 by varying the joining probability β(=0.50, 0.60, 0.70). Queue
length values increases with increase in time up to t(=4.00, 3.00, 3.00) also then decreases
slightly. Hence we get the optimal value of t=1 when β=0.50 and t=3 when β=0.70 for
minimum cost and maximum profit respectively.

8. Conclusions and future work

The time-dependent solution for the M/M/2 queueing system with multiple vacation,
feedback, catastrophes and balking has been obtained using a two-dimensional state model.
Based on various performance measures, total expected cost and total expected profit, the
best optimal value is at t=1 when service rate=3.75 and t=3 when arrival rate=1.50 for
minimum cost and maximum profit respectively. Some key measures give a greater under-
standing of system model behaviour. This model finds its application in post office, computer
networks, supermarkets, hospital administrations, financial sector and many others.
As part of future study, this model may be examined further for Non-Markovian queues,
bulk queues, tandem queues etc.
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Abstract
This article introduces the Singh Maddala Dagum distribution as the sum of the quan-

tile functions of the Singh-Maddala and Dagum distributions. The distributional properties,
income inequality measures, and poverty measures of this distribution are derived. Poverty
measures such as the poverty gap ratio and the Foster-Greer-Thorbecke measure were con-
verted to quantile forms. The least squares method is used to estimate the parameters of
the proposed distribution, and the model is applied to two real datasets.

Key words: Singh-Maddala distribution; Dagum distribution; Quantile function; Income
inequality measures; Poverty measures.
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1. Introduction

The two equivalent techniques for modeling and analyzing statistical data are by using
the distribution functions and quantile functions. The quantile function for a real-valued and
continuous random variable X with distribution function F (x) is given as

Q(u) = F−1(u) = inf {x : F (x) ≥ u} , 0 ≤ u ≤ 1.

Even though Galton (1875) first proposed the formal concept of quantiles, the work of
Hastings et al. (1947) provided a notable advancement in depicting quantile functions to
represent distributions. Parzen’s (1979) paper and Tukey’s (1977) research on exploratory
data analysis stimulated the development of the quantile functions as a vital tool in statistical
analysis instead of the distribution functions.

The quantile function holds a number of characteristics that the distribution function
does not have. In particular, two quantile functions added together and two positive quan-
tile functions multiplied together are again quantile functions. Also, 1

Q(1−u) is the quantile
function of 1

X
, if Q(u) is the quantile function of X. For a comprehensive review of this

concept, one can refer to Nair et al. (2013), Gilchrist (2000), Sankaran and Dileep Kumar
(2018), and the references therein.
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Tarsitano (2004) used a general form of the Tukey lambda family of distributions
proposed by Ramberg and Schmeiser (1972), to provide a good start for quantile-based
income modeling. However, the model put forth by Tarsitano (2004) is not valid throughout
the parametric space. To solve this issue, Haritha et al. (2007) utilized the four-parameter
generalized lambda distribution proposed by Freimer et al. (1988) for income modeling.
Later, using the quantile function method, the Zenga measure and other measures of income
inequality were examined by Sreelakshmi and Nair (2014).

The objective of this paper is to introduce a new quantile function that is useful
for the analysis of income data. Since Singh-Maddala (SM) and Dagum distributions are
adaptable and frequently used in income modeling, we propose the Singh Maddala Dagum
(SMD) distribution derived from the sum of the quantile functions of the two models.

Singh and Maddala introduced the SM distribution in 1975 and refined it in 1976,
has received special attention among income distributions. The SM distribution is a special
case of the generalized beta 2 (GB2) distribution and is known as Burr XII or simply Burr
distribution. For a detailed study on the SM distribution, one could refer to Kleiber and
Kotz (2003),Shahzad and Asghar (2013b), and Kumar (2017). The distribution and quantile
functions of the SM distribution are given by

G(x) = 1 −
[
1 +

(
x

b

)a]−q

, x > 0, (1)

and
Q1(u) = b

[
(1 − u)− 1

q − 1
] 1

a
, 0 < u < 1, (2)

where all three parameters a, b, q are positive.

Dagum distribution proposed by Dagum (1977) is also a special case of GB2 distribu-
tion and is known as Burr III distribution. Dagum distribution has numerous applications
in the fields of reliability, meteorology, quality control, insurance, business failure data, and
income modeling. A detailed discussion of the Dagum distribution can be found in Kleiber
and Kotz (2003) and Shahzad and Asghar (2013a). Using the SM and Dagum distributions
Saulo et al. (2023) proposed parametric quantile regressions. The distribution and quantile
functions of the Dagum distribution are given by

H(x) =
[
1 +

(
x

b

)−a
]−p

, x > 0, (3)

and
Q2(u) = b

[
u− 1

p − 1
]− 1

a
, 0 < u < 1, (4)

where all three parameters a, b, p are positive.

The remaining portion of the article is structured as follows. We define SMD distri-
bution and its basic aspects in Section 2. Section 3 deals with some popular distributions
that belong to the proposed class or that result from pertinent transformations on the pro-
posed quantile function. Section 4 covers the distributional properties, such as skewness,
kurtosis, L-moments, order statistics, etc. Section 5 discusses the major income inequalities
and poverty measures of the proposed class. The inference method and its application to
real data are carried out in Section 6. Overall findings from the study are given in the final
Section 7.
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2. Singh Maddala Dagum (SMD) quantile function

If X and Y are two non-negative random variables with quantile functions Q1(u) and
Q2(u) respectively. Then

Q(u) = Q1(u) +Q2(u),

is again a quantile function. Likewise, the sum of two quantile density functions results in a
quantile density function. Now we define a new quantile function

Q(u) = b

[(
(1 − u)− 1

q − 1
) 1

a +
(
u− 1

p − 1
)− 1

a

]
, 0 < u < 1, a, b, p, q > 0, (5)

which is the sum of quantile functions in (2) and (4). The proposed class of distribution is
known as SMD distribution and its support is (0,∞). The quantile density function of the
SMD distribution is

q(u) = dQ(u)
du

= b

(1 − u)− 1
q

−1
(
(1 − u)− 1

q − 1
) 1

a
−1

aq
+
u− 1

p
−1
(
u− 1

p − 1
)− 1

a
−1

ap

 .
The density and distribution functions are not available in closed form for the family of
distributions given in (5). However, these can be computed by numerical inversion of the
quantile function. In terms of the distribution function, the density function f(x) of the
proposed class can be written as

f(x) = 1
b

 apq F (x)
1
p

+1(1 − F (x))
1
q

+1

pF (x)
1
p

+1[(1 − F (x))− 1
q − 1] 1

a
−1 + q(1 − F (x))

1
q

+1(F (x)− 1
p − 1)− 1

a
−1

 . (6)

The density function is plotted for various parameter combinations and is given in Figure 1.
For various parameter values, it can be seen that the family includes decreasing, unimodal,
positive, and negatively skewed models.

3. Members of the family

We can obtain several popular distributions from the suggested model (5) for various
parameter values and by utilizing some transformations given in Gilchrist (2000).
Case 1. b > 0, q > 0, a = 1 and p → 0
The quantile function of the suggested class tends to the Lomax distribution and is given as

Q(u) = b
[
(1 − u)− 1

q − 1
]
. (7)

Case 2. b > 0, a > 0, q = 1 and p → 0
The quantile function of the suggested class tends to the Fisk distribution and is given as

Q(u) = b
[
(1 − u)−1 − 1

] 1
a . (8)
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Figure 1: Plots of density function for different values of parameters

Case 3. b > 0, a = q and p → 0
The quantile function of the suggested class tends to the Paralogistic distribution and is
given as

Q(u) = b
[
(1 − u)− 1

a − 1
] 1

a
. (9)

On applying reciprocal transformation on (9), we get the inverse Paralogistic distribution
with quantile function

Q(u) = 1
Q(1 − u) = k

(
u− 1

a − 1
)− 1

a ,

where k = 1
b

and a are the parameters. Further details on paralogistic and inverse paralo-
gistic distributions can be found in Klugman et al. (2019).

The following theorems give the relationships between the random variables repre-
senting the SM, SMD, and Dagum distributions.

Theorem 1: If V ∼ SM(a, b, q) then the random variable,

U = V + b

{[
1 −

(
1 +

(
V
b

)a)−q
]− 1

p

− 1
}− 1

a

has SMD(a, b, p, q) distribution.

Proof:

Let S and R represent two random variables with distribution functions FS(x) and
FR(x) and quantile functions QS(u) and QR(u) respectively. Assume Q∗(u) = QS(u) +
QR(u), then the random variable that corresponds to the quantile function Q∗(u) is S +
QR (FS (S)) or R +QS (FR (R)) (Sankaran et al., 2016).

Let V ∼ SM(a, b, q) and W ∼ Dagum(a, b, p); then V + QW (FV (V )) has SMD(a, b, p, q)
distribution by above result.
We have, QW (u) = b

(
u− 1

p − 1
)− 1

a and FV (V ) = 1 −
[
1 +

(
V
b

)a]−q
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Therefore, V + QW (FV (V )) = V + b

{[
1 −

(
1 +

(
V
b

)a)−q
]− 1

p

− 1
}− 1

a

has SMD(a, b, p, q)

distribution.

Theorem 2: If W ∼ Dagum(a, b, p), then the random variable,

U = W + b


[
1 −

(
1 +

(
W
b

)−a
)−p

]− 1
q

− 1


1
a

has SMD(a, b, p, q) distribution.

Proof: The proof is omitted since it is similar to that of Theorem 1.

4. Distributional characteristics

The use of quantile functions reduces the effort needed to describe a distribution
through its moments. Hence it is common in statistical analysis to use quantile-based mea-
surements of distributional features like location, dispersion, skewness, and kurtosis. These
measurements can be used to estimate the model’s parameters by matching population char-
acteristics with corresponding sample characteristics.

4.1. Measures of location, spread and shape

The rth order traditional moment is given as

E(Xr) =
ˆ 1

0
(Q(u))rdu.

In particular, the mean of the SMD distribution is

µ = b

Γ
(
1 + 1

a

)
Γ
(
q − 1

a

)
Γ (q) +

Γ
(
p+ 1

a

)
Γ
(
1 − 1

a

)
Γ (p)

 .
For the model given in (5), the median (M) is

M = Q(0.5)

= b

[(
2

1
q − 1

) 1
a +

(
2

1
p − 1

)− 1
a

]
. (10)

The interquartile range (IQR) is

IQR = Q (0.75) −Q (0.25)

= b

{ [
(0.25)− 1

q − 1
] 1

a −
[
(0.75)− 1

q − 1
] 1

a

+
[
(0.75)− 1

p − 1
]− 1

a −
[
(0.25)− 1

p − 1
]− 1

a

}
. (11)



326 ASHLIN VARKEY AND HARITHA N. HARIDAS [Vol. 22, No. 1

Galton’s skewness (S) and Moors kurtosis (T) measures are given in (12) and (13) respec-
tively.

S = Q (0.25) +Q (0.75) − 2M
IQR

= S1 + S2[
(0.25)− 1

q − 1
] 1

a −
[
(0.75)− 1

q − 1
] 1

a +
[
(0.75)− 1

p − 1
]− 1

a −
[
(0.25)− 1

p − 1
]− 1

a

, (12)

where S1 =
[
(0.25)− 1

q − 1
] 1

a +
[
(0.75)− 1

q − 1
] 1

a − 2
[
2

1
q − 1

] 1
a ,

and S2 =
[
(0.25)− 1

p − 1
]− 1

a +
[
(0.75)− 1

p − 1
]− 1

a − 2
[
2

1
p − 1

]− 1
a .

T = Q (0.875) −Q (0.625) +Q (0.375) −Q (0.125)
IQR

= T1 + T2[
(0.25)− 1

q − 1
] 1

a −
[
(0.75)− 1

q − 1
] 1

a +
[
(0.75)− 1

p − 1
]− 1

a −
[
(0.25)− 1

p − 1
]− 1

a

, (13)

where T1 =
[
(0.125)− 1

q − 1
] 1

a −
[
(0.375)− 1

q − 1
] 1

a +
[
(0.625)− 1

q − 1
] 1

a −
[
(0.875)− 1

q − 1
] 1

a ,

and T2 =
[
(0.875)− 1

p − 1
]− 1

a −
[
(0.625)− 1

p − 1
]− 1

a +
[
(0.375)− 1

p − 1
]− 1

a −
[
(0.125)− 1

p − 1
]− 1

a .

4.2. L-moments

The L-moments are alternatives to the classical moments and are the expected values
of linear functions of order statistics. The work on order statistics by Sillitto (1969) and
Greenwood et al. (1979) laid the foundation for L-moments, but Hosking (1990) developed a
comprehensive theory on L-moments. These moments are resistant to outliers and typically
have reduced sample variances. Like classical moments, L-moments can be used to identify
distributions, summarise measures of probability distributions, and fit models to data. The
rth L-moment is represented as

Lr =
ˆ 1

0

r−1∑
k=0

(−1)r−1−k

(
r − 1
k

)(
r − 1 + k

k

)
ukQ(u)du.

The first four L-moments of SMD distributions are

L1 = b [A1O1 + A2R1] ,

L2 = b [A1 (O1 −O2) − A2 (R1 −R2)] ,

L3 = b [A1 (O1 − 3O2 + 2O3) + A2 (R1 − 3R2 + 2R3)] ,

L4 = b [A1 (O1 − 6O2 + 10O3 − 5O4) − A2 (R1 − 6R2 + 10R3 − 5R4)] ,
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where A1 = Γ
(
1 + 1

a

)
, A2 = Γ

(
1 − 1

a

)
, Oi = Γ(iq− 1

a)
Γ(iq) , Ri = Γ(ip+ 1

a)
Γ(ip) and i = 1, 2, 3, 4.

The L-coefficient of variation (τ2), which is an alternative to the coefficient of variation based
on traditional moments is

τ2 = L2
L1

= A1 (O1 −O2) − A2 (R1 −R2)
A1O1 + A2R1

. (14)

The L-coefficient of skewness (τ3) and L-coefficient kurtosis (τ4) of the SMD distribution, is
given in (15) and (16).

τ3 = L3
L2

= A1 (O1 − 3O2 + 2O3) + A2 (R1 − 3R2 + 2R3)
A1 (O1 −O2) − A2 (R1 −R2)

. (15)

τ4 = L4
L2

= A1 (O1 − 6O2 + 10O3 − 5O4) − A2 (R1 − 6R2 + 10R3 − 5R4)
A1 (O1 −O2) − A2 (R1 −R2)

. (16)

The plots of L-coefficients of skewness (τ3) and kurtosis (τ4) for different parameter
values are given in Figures 2, 3 and 4. In Figure 2, the curve of τ3 decreases with a for fixed
value of q and p but the curve of τ4 decreases with a for fixed value of q and p, when p > 1.
In Figure 3, the curves of τ3 and τ4 increase with p for fixed values of a and q when q ≥ 1.
The curves of τ3 and τ4 for fixed values of a and p and for varying q are given in Figure 4.
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Figure 2: Plot of L-coefficients of skewness and kurtosis for particular values of
q and p as a function of the parameter a

4.3. Order statistics

In a random sample of size n, let Xr:n represent the rth order statistic. Then, Xr:n
has density function fr(x) and is given as

fr(x) = 1
β(r, n− r + 1)f(x)F (x)r−1(1 − F (x))n−r.
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Figure 3: Plot of L-coefficients of skewness and kurtosis for particular values of
a and q as a function of the parameter p

a=2,p=0.05

a=2,p=25

a=3,p=2

a=4,p=4

a=50,p=0.5

0 10 20 30 40 50

0.0

0.2

0.4

0.6

q

τ
3

a=2,p=0.05

a=2,p=25

a=3,p=2

a=4,p=4

a=50,p=0.5

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

q

τ
4

Figure 4: Plot of L-coefficients of skewness and kurtosis for particular values of
a and p as a function of the parameter q

From (6) we get

fr(x) = apq

bβ(r, n− r + 1)
F (x)r+ 1

p (1 − F (x))n+ 1
q

+1−r

pF (x)
1
p

+1
[
(1 − F (x))− 1

q − 1
] 1

a
−1

+ q(1 − F (x))
1
q

+1
(
F (x)− 1

p − 1
)− 1

a
−1
.

Thus

E(Xr:n) = apq

bβ(r, n− r + 1) ×
ˆ ∞

0

xF (x)r+ 1
p (1 − F (x))n+ 1

q
+1−r

pF (x)
1
p

+1
[
(1 − F (x))− 1

q − 1
] 1

a
−1

+ q(1 − F (x))
1
q

+1
(
F (x)− 1

p − 1
)− 1

a
−1
dx.

In quantile terms, the above expression can be written as

E(Xr:n) = apq

bβ(r, n− r + 1)

ˆ 1

0

Q(u)ur+ 1
p (1 − u)n+ 1

q
+1−r

p u
1
p

+1
(
(1 − u)− 1

q − 1
) 1

a
−1

+ q(1 − u)
1
q

+1
(
u− 1

p − 1
)− 1

a
−1
du.
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For SMD distribution the first-order statistic X1:n has a quantile function

Q(1) (u) = Q
[
1 − (1 − u)

1
n

]
= b

[(1 − u)− 1
nq − 1

] 1
a +

[(
1 − (1 − u)

1
n

)− 1
p − 1

]− 1
a

 , (17)

and the nth order statistic Xn:n has the quantile function

Q(n) (u) = Q
(
u

1
n

)
= b


[(

1 − u
1
n

)− 1
q − 1

] 1
a

+
[
u− 1

np − 1
]− 1

a

 . (18)

5. Income inequality and poverty measures

In statistical and economics literature, the study of income inequality and poverty
measures are always popular and favorite subjects. A measure of income inequality is in-
tended to give an index, that can reduce the differences in income that exist among the
members of a group, whereas a poverty measure evaluates the severity of poverty experi-
enced by those whose income is below a pre-determined poverty level.

5.1. Income inequality measures

The Lorenz curve proposed by Lorenz (1905) is a flexible tool for reporting and
graphically depicting income inequality. When the income is arranged in increasing order
of magnitude, the points (u, L(u)) define a Lorenz curve, where u denotes the cumulative
frequency of income receiving units and L(u) denotes the cumulative frequency of income.
Gastwirth (1971) gave a general definition of Lorenz curve as

L(u) = 1
µ

ˆ u

0
Q(p)dp,

where µ =
´ 1

0 Q(p)dp. For SMD distribution the Lorenz curve is

L(u) =
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

) , (19)

where β∗(., .), is an incomplete beta function.

The Gini index is a well known income inequality proposed by Gini (1914) and is
defined as two times the area between the Lorenz curve and the egalitarian line. The Gini
index for the class of distributions in (5) is

G = 1 − 2
ˆ 1

0
L(u)du

= 1 − 2
qβ

(
1 + 1

a
, 2q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)
− pβ

(
2p+ 1

a
, 1 − 1

a

)
qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)
 . (20)
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Pietra (1932) developed the Pietra index which measures the maximal vertical dis-
tance between the Lorenz curve and the line of equality. The Pietra index and relative mean
deviation in quantile terms are

P = ϑ1

2µ,

τ2 = ϑ1

µ
,

where ϑ1 =
´ 1

0 |Q(u) − Q(u0)|du and µ = Q(u0) for some 0 < u0 < 1. Further, by solving
for u in the equation µ = Q(u), u0 can be obtained, and µ represents the mean of the
distribution.
Now, the Pietra index of the SMD distribution is given as

P =
u0Q (u0) − b

[
qβ

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p
0

(
p+ 1

a
, 1 − 1

a

)]
µ

. (21)

The Bonferroni curve proposed by Bonferroni (1930) is used to quantify the variability
in income distribution. For an absolutely continuous and non-negative random variable, the
Bonferroni curve in quantile terms is given as

BF (u) = L(u)
u

= 1
uµ

ˆ u

0
Q(p)dp.

For SMD distribution the Bonferroni curve is

BF (u) =
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
u
[
qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)] . (22)

A more realistic curve was introduced by Zenga (2007) based on the conditional
expectation of the concerned distribution. The Zenga curve in quantile terms is

Z(u) = 1 − (1 − u)
u

´ u

0 Q(p)dp´ 1
u
Q(p)dp

.

For SMD distribution the Zenga curve is given as

Z (u) = q z1 + p z2
q z3 + p z4

, (23)

where

z1 =
[
β
(

1 + 1
a
, q − 1

a

)
− u−1β

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)]
,

z2 =
[
β
(
p+ 1

a
, 1 − 1

a

)
− u−1β

u
1
p

(
p+ 1

a
, 1 − 1

a

)]
,

z3 =
[
β
(

1 + 1
a
, q − 1

a

)
− β

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)]
,

z4 =
[
β
(
p+ 1

a
, 1 − 1

a

)
− β

u
1
p

(
p+ 1

a
, 1 − 1

a

)]
.
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The Lorenz, Bonferroni, and Zenga curves of SMD distribution are given in Figure
5, 6, and 7 respectively.

The Frigyes measures developed by Éltetö and Frigyes (1968) have clear economic
interpretations and are given as

φ = m

m1
, ψ = m2

m1
, ω = m2

m
,

where m = E(X), m1 = E(X|X < m), and m2 = E(X|X ⩾ m). The measure ψ can be
considered as an inequality measure for the complete income distribution, whereas φ and ω
denote the inequalities of the two respective portions of the distribution below and above
the mean.
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Figure 5: Graph of SMD Lorenz curve
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Figure 6: Graph of SMD Bonferroni curve
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Figure 7: Graph of SMD Zenga curve

In quantile terms, these measures are given as

φ = u0Q(u0)´ u0
0 Q(u)du ,

ψ = u0

1 − u0

´ 1
u0
Q(u)du´ u0

0 Q(u)du ,

ω =
´ 1

u0
Q(u)du

(1 − u0)Q(u0)
.

For SMD distribution these measures are

φ =
u0

[(
(1 − u0)− 1

q − 1
) 1

a +
(
u

− 1
p

0 − 1
)− 1

a

]
qβ

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p
0

(
p+ 1

a
, 1 − 1

a

) , (24)

ψ = u0

(1 − u0)

 qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)
qβ

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p
0

(
p+ 1

a
, 1 − 1

a

) − 1

 , (25)

ω = qw1 + pw2

(1 − u0)
[(

(1 − u0)− 1
q − 1

) 1
a +

(
u

− 1
p

0 − 1
)− 1

a

] . (26)

where

w1 =
[
β
(

1 + 1
a
, q − 1

a

)
− β

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)]
,

w2 =
[
β
(
p+ 1

a
, 1 − 1

a

)
− β

u
1
p
0

(
p+ 1

a
, 1 − 1

a

)]
.
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5.2. Poverty measures

Measures of poverty are primarily used to track socioeconomic development and set
goals for success or failure. Most of the poverty measurements can be stated as the average
deprivation faced by the poor. If the function D(z, y) describes the level of deprivation
experienced by an individual whose income y is less than the poverty line z.
Hence

P = Ey [D (z, y) I (y < z)]

=
ˆ z

0
D (z, y) f(y)dy, (27)

where I (y < z) represents an indicator function which takes value 1 when y < z and 0
otherwise, and f(y) represents probability density function. For a detailed reading on poverty
measures, one can refer to Kakwani (1980) and Morduch (2008). Chotikapanich et al. (2013)
derived poverty measures from generalized beta distribution and examined how poverty has
changed in south and southeast Asian nations.

The headcount ratio is the most basic and widely used measure of poverty, it repre-
sents the proportion of the population who are poor and is denoted by H. By definition

H = Np

N
,

where Np and N denotes the number of poor and total population respectively. That is, the
head-count ratio ignores the severity of the deprivation experienced by the poor.

A number of alternatives to the head-count ratio have been proposed in order to
establish a measure that takes into account both the proportion of poor as well as the
intensity of poverty among those who are characterized as poor. The poverty gap ratio
calculates the amount of money by which each person falls below the poverty line. It can be
obtained from (27), by setting D (z, y) =

(
z−y

z

)
. Thus

PG =
ˆ z

0
D (z, y) f(y)dy

=
ˆ z

0

(
z − y

z

)
f(y)dy. (28)

Using the transformation, F (z) = u and F (y) = p, where 0 < u < 1 and 0 < p < 1 in (28),
we get the poverty gap ratio in quantile form and is given as

PG =
ˆ u

0

(
Q(u) −Q(p)

Q(u)

)
dp. (29)

The poverty gap ratio defined here is also known as the income gap ratio of the poor in
Haritha et al. (2007). The poverty gap ratio can be written in terms of reversed mean
residual quantile function as follows

PG = uR(u)
Q(u) ,
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where R(u) = u−1 ´ u

0 (Q(u) −Q(p)) dp. For, SMD distribution the poverty gap ratio is

PG = u−
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
(
(1 − u)− 1

q − 1
) 1

a +
(
u− 1

p − 1
)− 1

a

. (30)

The Foster-Greer-Thorbecke (FGT) measure proposed by Foster et al. (1984) gener-
alizes the poverty gap ratio. Here, D (z, y) =

(
z−y

z

)α
and the measure is

FGT (α) =
ˆ z

0

(
z − y

z

)α

f(y)dy,

where α ≥ 1 is the inequality aversion parameter. The lower tail of the income distribution
receives more emphasis as the value of α increases. When α = 1, the FGT measure becomes
equivalent to the poverty gap ratio. The quantile version of the FGT measure can be obtained
by using the same transformation in the poverty gap ratio and is given in (31). Moreover, it
does not have a closed form expression for the SMD distribution.

FGT (α) =
ˆ u

0

(
Q(u) −Q(p)

Q(u)

)α

dp. (31)

Watts (1968) introduced the first distribution-sensitive poverty index called Watt’s
index. This index satisfies the focus, monotonicity, and transfer axioms of poverty and in
quantile terms, it is given as

W =
ˆ u

0
ln
(
Q(u)
Q(p)

)
dp. (32)

Kakwani (1999) has proposed a measure that is closely related to the Watts index and is
given by, K∗ = 1 − e−W . For SMD distribution these indices do not have simple algebraic
expressions.

Sen (1976) put forward a measure that attempted to incorporate the effects of the
number of poor, the severity of their poverty, and poverty distribution within the group. In
quantile terms, it is

S = u

(
u∆ρ1(u) + ρ2(u)
u∆ρ1(u) + ρ1(u)

)
,

where ρ1(u) = 1
u

´ u

0 Q(p)dp, ρ2(u) = 1
u2

´ u

0 (2p− u)Q(p)dp, and ∆ ρ1 denotes derivative of ρ1
with respect to u. For SMD distribution ρ1(u) and ρ2(u) are given as

ρ1(u) = b

u

[
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)]
,

ρ2(u) = b

u2

(2 − u)qβ
1−(1−u)

1
q

(
1 + 1

a
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The Gini index for the poor has the quantile form

η(u) = 1 − 2
ρ1(u)

ˆ u

0
Q(p)

(
u− p

u2

)
dp

= ρ2(u)
ρ1(u) . (33)

Now, for SMD distribution the above index can be written as

η(u) = 2
u

× A

B
− 1, (34)

where
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6. Inference and applications

Here, we estimate the parameters of the family of distributions (5) and use real data
sets to assess the model’s effectiveness and applications.

The parameters of the distribution in a quantile setup can be estimated using a va-
riety of methods. The L-moments method, the percentile approach, the minimum absolute
deviation method, the least squares method, and the maximum likelihood method are fre-
quently used techniques. We employ the method of least squares to estimate the parameters
of the model (5). In order to estimate the generalized Tukey lambda distribution, Öztürk
and Dale (1985) utilized this estimation method. Hankin and Lee (2006) also used this
method to estimate the parameters of the Davies distribution. The least square estimation
is illustrated as follows.

Let X(i) denote the ith order statistic from a random sample of size n from SMD
distribution, and u(i) be the ith order statistic of the associated uniformly distributed random
variable, u = F (X). In the ideal situation, both the random variables X(i) and Q(u(i), δ̂)
have the same distribution, where δ̂ is the estimator of the model’s parameter vector. In this
estimation technique, we estimate δ = (a, b, p, q) that minimizes ζ(δ)

ζ(δ) =
n∑

i=1

(
X(i) −Q(u(i), δ)

)2
.

6.1. Real data analysis

The applicability of the model (5) can be demonstrated with the aid of two real
income datasets. The first data is taken from https://www.bea.gov, which deals with the
per capita personal income of 46 counties in South Carolina State, 2018. Using midyear
population estimates from the Census Bureau, per capita personal income was calculated.
We use the least squares method discussed above to estimate the parameters. The estimate
is based on the parameter value that minimizes the residual sum of squares and is obtained
as

https://www.bea.gov


336 ASHLIN VARKEY AND HARITHA N. HARIDAS [Vol. 22, No. 1

â = 8.2443, b̂ = 10618.9, q̂ = 2.83288, and p̂ = 1856.39.

The Q-Q plot and the chi-square test are the two goodness-of-fit criteria used here to evaluate
how well the model fits the data. The Q-Q plot given in Figure 8, shows that the fit is
satisfactory. We conducted the chi-square goodness-of-fit test and obtained the test statistic
value as 6.89418 with p-value 0.648136. Hence, the proposed model (5) fits the given dataset
reasonably well. Since the quantile functions of the SM and Dagum distributions are added
to obtain our model, we fitted the above data to these distributions, and the results are given
in Table 1. Figure 9 illustrates the histogram of the data along with the density functions for
the SM, SMD, and Dagum distributions. It is clear from the figure that the SMD distribution
fits the dataset more accurately than the other two models.
Table 1: Parameter estimates, chi-square statistic, and p-value of SM and Dagum
distributions for dataset 1

Distribution Parameter estimates Chi-square statistic p-value
SM a = 24.0223

b = 33492.8 8.66856 0.468414
q = 0.31186

Dagum a = 10.477
b = 36651.4 7.74593 0.559939
p = 1.27739
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Figure 8: Q-Q plot for the per capita personal income of counties in South
Carolina State in 2018

The second dataset is also taken from https://www.bea.gov, which deals with the
per capita personal income of 120 counties in Kentucky State, 2020. The method of least
squares is employed to estimate the parameters and is obtained as

https://www.bea.gov
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Figure 9: The densities of the SM, SMD, and Dagum distributions for the per
capita personal income of counties in South Carolina State in 2018

â = 9.46169, b̂ = 17513.9, q̂ = 3.20767, and p̂ = 27.4554.

Two goodness-of-fit methods are used to evaluate how well the model fits the data. The first
one is the Q-Q plot in Figure 10, which shows that the suggested model is appropriate for
the given data set. In addition, we perform the chi-square goodness-of-fit test and get test
statistic value 4.35791 with p-value 0.986754. This indicates the fit of SMD distribution for
the given data. The SM and Dagum distributions are also fitted to income data of Kentucky
State, and the results are given in Table 2. The histogram of the data and the density
functions for the SM, SMD, and Dagum distributions are shown in Figure 11. From the
figures and the chi-square values the SMD model appears to be better than SM and Dagum
distributions.

Table 2: Parameter estimates, chi-square statistic, and p-value of SM and Dagum
distributions for dataset 2

Distribution Parameter estimates Chi-square statistic p-value
SM a = 16.1799

b = 39576.5 7.20778 0.891129
q = 0.640004

Dagum a = 9.86976
b = 36637.5 4.49484 0.984699
p = 2.34804

7. Conclusion

In this article, we propose the quantile function known as SMD distribution by adding
the quantile functions of the SM and Dagum distributions. Several popular distributions are
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members of the proposed class of distributions. We studied the distributional properties, the
major income inequality, and the poverty measures of the proposed class. We also derived
the quantile version of poverty measures, such as the poverty gap ratio and the Foster-
Greer-Thorbecke measure. The estimation of the parameters of the model was done using
the method of least squares. The proposed class of distribution was used for the analysis of
two real income data and it gives a better fit than SM and Dagum distributions.
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Figure 10: Q-Q plot for the per capita personal income of counties in Kentucky
State in 2020
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Figure 11: The densities of the SM, SMD, and Dagum distributions for the per
capita personal income of counties in Kentucky State in 2020
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Abstract
We consider the problem of data integration in small area estimation, where a non-

probability sample (nps) and a relatively small probability sample (ps) are available from
each area. By definition, for the nps, there are no survey weights, but for the ps, there
are survey weights. A recent method, based on a pseudo-likelihood, is used to estimate
the survey weights in the nps, and thereafter assumed known. The key issue we address is
that the nps, although much larger than the ps, can lead to a biased estimator of a finite
population quantity of each area but with much smaller variance. We assume that there are
common covariates and responses for everyone in the two samples, no covariates available for
nonsampled units, and no overlaps of the two samples by area. In the data integration, we
use the nps to construct a prior for the ps, and partial discounting of the nps is incorporated
to avoid a dominance of the prior. Inverse probability weighting is used to assist Bayesian
predictive inference via surrogate sampling of the finite population means and percentiles.
The Gibbs sampler, with some collapsing to speed up convergence and to provide strong
mixing, is carefully executed to fit the joint posterior density. In our illustrative example on
body mass index, our data-integrated model is preferred over the ps only model and other
competitors. The data-integrated model provides small area estimates, roughly similar to
those of the ps only model, with larger precision.

Key words: Bayesian diagnostics; Finite population quantities; Gibbs sampler; Inverse
probability weighting; Power prior; Surrogate samples.

1. Introduction

We assume that there are data from a number of small areas, and from each area
we have a non-probability sample (nps,1) and a probability sample (ps, 2), the probability
sample being much smaller than the non-probability sample. The problem is how to improve
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inference for each area based on the ps, but supplemented by the nps, and we do not want
the nps to dominate the analysis. While the nps may be biased, the ps is considered unbiased
when the survey weights are incorporated. In a similar manner, because of its size the nps
will provide improved precision but it will provide biased estimates, which we do not want
to happen. Probability sampling is the gold standard among all data collection procedures,
but this is still problematic because nonresponse has become a serious concern. How can we
provide small area estimates with relatively small bias, possibly closed to the ps, with better
precision than only the ps can provide?

There are efforts to combine both probability and nonprobability samples to produce
a single inference that compensates for the limitations of each process. Typically the non-
probability sample is relatively large, as in big data, but one needs to be careful with the bias
it introduces into the final estimates. Meng (2018) argued that a small bias in big data can
be catastrophic; see also Nandram and Rao (2021, 2023) for a review and an interpretation
of Meng (2018) relevant to nonprobability sample. Perhaps if one uses only the covariates
in the big data, there may not be significant bias, but it is a different issue if one wants to
use the study variable from the big data as well.

Most of the work on nonprobability sampling has been in the non-Bayesian setting,
mostly randomization-based analysis. For example, Elliott and Haviland (2007) evaluated
a composite estimator to supplement a standard probability sample with a nonprobability
sample. They showed that the estimator, based on a linear combination of both sample pro-
cesses and a bias function, can produce estimates with a smaller mean squared error (MSE)
relative to a probability-only sample. See Elliott and Valliant (2017) for an informative
review of the design-based approach, where they discussed quasi-randomization.

Sakshaug et al. Blom (2019) and Wisnioski et al. (2020) introduced a Bayesian
approach in which survey weights are incorporated as a covariate and there is no need to
estimate the probabilities of the nps. The underlying idea is that probability and nonprob-
ability samples can be integrated in a way that exploits their advantages to compensate for
their weaknesses and improve estimation of model parameters. Salvatore et al. (2023) used
a similar idea for binary data via logistic regression. Nandram and Rao (2021, 2023) showed
how to combine a nps and a ps using a Bayesian model. They argued that the nps should
be used to construct a prior, together with a discounting factor, and to obtain a prior for
the hyper-parameters in the model, which begins with a weighted likelihood. As pointed
out by both Sakshaug et al. (2019) and Wisnioski et al. (2020), it will be better to use
a nonprobability sample to supplement a probability sample; see also Nandram and Rao
(2021, 2023). Salvatore et al. (2023) also supported our idea.

Chen, Li and Wu (2020) used a ps and a nps to obtain survey weights in the nps in the
design-based approach, where they made strong use of the Horvitz-Thompson and the Hajek
estimators. There was no study variable in the ps and so this is really a very limited data
integration problem. Actually their method cannot be extended to accommodate a study
variable in the ps. Also, their method uses logistic regression to construct the propensity
scores and then the survey (design) weights are obtained by taking reciprocals. This is
ignorable selection. A summary of the approach of Chen, Li and Wu (2020) for propensity
scores is given in Appendix A. For small area estimation, the computational procedure of
Chen, Li and Wu (2020) is unstable, so we had to do this procedure for the entire ensemble
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at once, not each area at a time.

As pointed out by a reviewer, we should present the reasons why we do not use non-
ignorable selection. We used ignorable selection because within the framework of Chen, Li
and Wu (2020), it is not possible to obtain the propensity scores unless you want to use a
mass imputation to ‘manufacture’ the values of the study variable for the probability sample.
This is not in the spirit of our paper because we have the study variable for both the non-
probability sample and the probability sample; yet we use the method of Chen, Li and Wu
(2020) to get the propensity scores. We realized that we could have used both samples to
get the propensity scores in the non-probability samples, but it does not fit directly into the
framework of Chen, Li and Wu (2020). Non-ignorable selection is defined as

f(I = k, y | x) = P (I = k | y, x)f(y | x), k = 0, 1,
where I is the participation variable, y the study variable and x the covariates. We have
ignorable selection if P (I | y, x) = P (I | x), which is simpler than non-ignorable selection.
Clearly, non-ignorable selection is preferred but it leads to computational instability. See
Nandram and Choi (2010) and Nandram (2022) for more discussions on non-ignorability.
One difficulty is that one needs y to be strongly related to x and at the same time, both
x and y are used as covariates in the participation model. New research is needed at least
within the Bayesian paradigm; see Marella (2023) for recent work on nonignorability, not
within the Bayesian paradigm though. Data integration can be discussed without mentioning
how the data are selected; see Salvatore et al. (2023) for binary data and others.

It is worth noting that all the above mentioned work do not consider data integration
for small areas. Beaumont (2020) argued that it is sensible to use a non-probability sample
to supplement a probability sample in small area estimation; see also Beaumont and Rao
(2021). For one thing, small sample sizes within small areas do not lead to adequate precision.
The small area model will include random effects as an attempt to discriminate the areas.
These works use the area-level Fay-Herriot model. However, there is virtually no work
using the unit level model like that of Battese, Harter and Fuller (1988) for integration of a
non-probability sample and a probability sample partly because it is a less practical to get
unit-level data in both the nps and the ps, but it is possible. Again see Nandram and Rao
(2021, 2023).

Rao (2020) stated that a non-probability sample can be used to construct covariates
for probability samples in small area estimation. The use of area level big data as additional
predictors in the area level model has the potential of providing good predictors for modeling.
He mentioned four applications that have used big data covariates in an area level model;
see Marchetti et al. (2015), Porter et al. (2014), Schmid et al. (2017) and Muhyi et al.
(2019) for the four applications. Rao (2020) also cited applications where unit level models
are used; see Chambers et al. (2019). Again, if one wants to use both the study variable
and the covariates from the big data, one might need the unknown selection probabilities.
However, one does not really need to estimate the selection probabilities because one can
use structural (measurement error) models; see discussions in the concluding remarks and
Berg et al. (2021). One drawback of structural models is that there will be non-identifiable
parameters which will create difficulties in model fitting, especially if Markov chain Monte
Carlo methods must be used.

In our paper, we actually used a power prior to discount the non-probability sample,
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which we treat as historical data to construct a prior distribution for the parameters of the
probability sample. The parameters in the two models are basically the same, and their
priors come from the non-probability sample. In general, if you start with a density, g(y | θ),
we can penalize it by using

f(y | θ, a) = {g(y | θ)}a�
{g(y | θ)}ady

, 0 ≤ a ≤ 1.

So we actually use f(y | θ, a) for the non-probability sample and g(y | θ) for the probability
sample. For example, if a = 1, there will be no discounting, and if a = 0, the non-probability
sample will not be used. Details of the power prior in data integration is reviewed in Nandram
and Rao (2021, 2022); see Ibrahim and Chen (2000) and Ibrahim et al. (2015) for a review
and many applications of the power prior in more general settings.

Small area estimation (SAE) is an important problem facing many government agen-
cies. They want to do estimation for each area, but for most small areas the direct estimates
are unreliable. Then, pooling of the data over the entire ensemble is required to get reli-
able estimates for each area. While the SAE problem is difficult in its own right, there is
additional complexity to integrate the non-probability sample and the probability sample.

To focus our development, we study body mass index (BMI) as the variable of interest
with covariates, age, race and sex, from eight counties in California, based on a probability
sample. The covariates, responses (BMI) and survey weights are all known. We construct a
small-area example out of these data with two samples from each of the eight counties (about
80% for nps and 20% for the ps). To form a practical example, we discarded the weights
from the nps and they are assumed unknown. The population size of each county is roughly
the sum of the survey weights in the ps. Here, the covariates, responses and survey weights
in the nps are respectively (x1ij, y1ij, w1ij), i = 1, . . . , ℓ, j = 1, . . . , n1i, and the covariates,
responses and survey weights of the ps are (x2ij, y2ij, w2ij), i = 1, . . . , ℓ, j = 1, . . . , n2i; the
survey weights w1ij are unknown in the nps.

The small area model has the following features.

a. The two sets of covariates are commensurate (i.e., the same covariates are measured
in the non-probability sample and the probability sample; or at least only a common
set of covariates will be used).

b. Pooling will take place using a common set of regression coefficients and variance
components over all areas in the two samples. The nps is essentially used to construct
a prior for the hyperparameters and this prior is discounted using a power prior.

c. Within an area, the random effects are the same in the model that links the non-
probability sample and the probability sample.

d. It is possible to have some areas with only a probability sample, and some areas with
only a non-probability sample, but there must be a common set. This can be done
within our approach, but we will not pursue this issue further in this paper.

Finally, a reviewer asked why there is a need for super-population models. Clearly, it
will be better to do data integration without specifying the super-population model. Most
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Bayesian methods used the super-population model; Wang et al. (2018) is an exception and
it uses an approximate Bayesian method. In fact, they used the sampling distribution of a
summary statistic to derive the posterior distribution of the parameters of interest, but this
is not quite within the Bayesian paradigm. However, there is a need to robustify both models
for the study variable and the participation variable. We have indicated how to do so in the
concluding remarks, and this is an on-going activity. In our on-going research work, by using
a double mass imputation (Kim, et al. 2021, Chen, et al. 2022), we can avoid a participation
model but we do need a robust model for the study variable if we use a Bayesian method.
One of the authors gave a couple of talks on this topic already.

This paper has five sections, including this one, and it is an extension of Nandram
and Rao (2021, 2023) to cover Bayesian data integration for small areas. In Section 2, we
review the single area model of Nandram and Rao (2021, 2023). In Section 3, we discuss
small area estimation using a unit-level model, show how to operationalize the proposed
model to provide fast computation for a large number of areas, and describe how to estimate
finite population percentiles. In Section 4, we provide the analysis of the numerical example
as we described above. Section 5 provides some concluding remarks and extensions. The
appendices provide technical details on propensity scores, computation for the small area
model, Bayesian model diagnostics, and the ps only model.

2. Review of the single area model

In this paper, we extend the single area model of Nandram and Rao (2021, 2023) to
accommodate data integration for small areas. Therefore, it is pertinent for us to describe
the single area model to motivate the small area model.

We have two samples from a single area, which are the nps (1) and the ps (2). We have
(Wti, xti, yti), i = 1, . . . , nt, t = 1, 2, where W1i are unknown, but W2i are assumed known. We
plan to construct a prior for the regression coefficients and the variance parameters using a
discount factor (power prior) to help mitigate the nps from dominating the ps. (Throughout,
as covariates are assumed fixed, conditioning on them will be omitted.)

For the nps, propensity scores, assumed strictly positive, are estimated using logistic
regression (Chen, Li and Wu, 2020; see Appendix A of the current paper for a review), so for
the nps probability enters through quasi-randomization (e.g., Elliott and Valliant, 2017). The
method of CLW is used to estimate the propensity scores, π1i, and the weights of the nps are
W1i = N 1/πi∑n1

j=1 1/πj
, i = 1, . . . , n1, where N is the population size, and the Horvitz-Thompson

estimator of N is ∑n2
i=1 W2i. This assumes ignorability in which given the covariates, the

study variable and the participation variable are independent and it also assumes that the
propensity scores depend only on the covariates, which is not unreasonable; see Nandram
(2022) for a discussion about nonignorability. These estimated weights, W1i, are assumed
known throughout our work. In our models, associated with weighted likelihood, we use
normalized densities with adjusted weights to get a more appropriate measure of variability.
The adjusted weights are

wti = n̂tWti/
nt∑

j=1
Wtj, n̂t =

 nt∑
j=1

Wtj

2

/
nt∑

j=1
W 2

tj, i = 1, . . . , nt, t = 1, 2,
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where n̂t is the effective sample size; see Potthof et al. (1992).

The population model, which we assume holds, is

yi | β, σ2 ind∼ Normal(x′
iβ, σ

2), i = 1, . . . , N.

A finite population quantity (mean or percentile) can be estimated using surrogate sampling
(Nandram 2007). That is, the entire population is sampled given (β, σ2). However, the
question is how to get samples of (β, σ2), and this is where most of the work is needed. We
need to adjust the population model to accommodate the two samples, in which the nps is
penalized using a power prior; see Nandram and Rao (2021, 2023) for a quick review of the
power prior and how it is used in our work.

The model that combines the two samples, in which the nps is used to supplement
the ps is

yti | β, σ2 ind∼ Normal
(
x′

iβ,
σ2

atwti

)
,

π(β, σ2, a) ∝ 1/σ2, a2 = 1, 0 < a1 = a < 1, i = 1, . . . , nt, t = 1, 2,
where a is the discounting factor with a uniform prior and wti are adjusted weights. The
joint posterior density of (β, σ2, a) has been shown to be proper and it can be fit using a grid
sample (the posterior density of a is non-standard); see Nandram and Rao (2021, 2023) for
details.

Nandram and Rao (2021, 2023) obtained Bayesian predictive inference for the finite
population mean using

π(Ȳ | y1, y2) =
�
f(Ȳ | β, σ2)π(β, σ2 | y1, y2)dβdσ

2,

where y1 and y2 are the two samples. Note that f(Ȳ | β, σ2) does not depend on (y1, y2),
unlike standard Bayesian predictive inference, a feature of surrogate sampling; see Nandram
(2007). Note that

Ȳ | β, σ2 ∼ Normal
(
X̄

′
β,
σ2

N

)
,

where we use the Horvitz-Thompson estimator of the finite population mean vector covari-
ate, X̄, which is 1

N

∑n2
i=1 W2ix2i; this is actually the Hajek estimator because N is assumed

unknown.

Inference about a finite population percentile is a related, but different, problem. This
is discussed in Section 3. Inference about the finite population percentiles is also a problem
in our study on body mass index (e.g., the 85th percentile is a measure of overweight).

3. A small area model for data integration

We show how to extend the model of Nandram and Rao (2021) to accommodate a
number of areas. This uses an extended version of the unit-level model of Battese, Harter
and Fuller (BHF, 1988). See also Toto and Nandram (2011) and Molina, Nandram and Rao
(2014) for the Bayesian version of the BHF model.
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We assume there are ℓ areas and within the ith area, there are a non-probability
sample of size n1i and a probability sample of size n2i where “1” and “2” respectively refer to
the non-probability sample and the probability sample, maintaining the notation in the single
area example, and the population size is Ni. [Note that the nps and the ps of each area come
from the same distinct sub-population; so there is single subscript in Ni.] For i = 1, . . . , ℓ,
the covariates are (xsij, j = 1, . . . , nsij, s = 1, 2), but the covariates are unobserved for the
nonsampled units, and the responses are ysij, j = 1, . . . , nsi. There are also survey weights
for the probability sample, denoted by W2i (known). There are no survey weights for the
non-probability sample and these are estimated using the method of Chen, Li and Wu
(2020); again see Appendix A. The population size for the ith area is estimated by Ni =∑n2i

j=1 W2ij, i = 1, . . . , ℓ. Bayesian predictive inference is required for the finite population
area means,

Ȳi = 1
Ni

Ni∑
j=1

yij, i = 1, . . . , ℓ,

based on the non-probability samples and probability samples, where yij are the unknown
population values. Of course, the model permits the use of the non-probability sample, as
we have seen for the single sample model. That is, there is pooling across areas and within
areas from both the non-probability sample and the probability sample.

As we have stated, the discounting factors will only be included for the nps, which will
be used to construct the prior (the nps is viewed as historical data) and the ps will be used as
the actual data. For generality, these discounting factors depend on areas. That is, for s = 1
(nps), asi = ai, i = 1, . . . , ℓ (allowing discounting) and for s = 2 (ps), asi = 1, i = 1, . . . , ℓ
(no discounting).

3.1. Proposed small area model

Our model for the two samples over the areas is

ysij | νi, β
ind∼ Normal(xsijβ + νi,

σ2

asiwsij

), j = 1, . . . , nsi, s = 1, 2,

where wsij are the adjusted weights within areas. The weights for the nps are obtained using
the method of Chen, Li and Wu (2020) over the entire ensemble (assumed known henceforth),
and then the weights for both the nps and ps are used to provide the adjusted weights, as
was done in the single area example. The fact that we are assuming the estimated weights
are known is an important caveat of our work, and this is on-going research activity. A
priori, for the random effects, we assume that

νi | ρ, σ2 ind∼ Normal(0, ρ

1 − ρ
σ2), i = 1, . . . , ℓ,

and for the hyperparameters, we assume

π(β, σ2, ρ) ∝ 1
σ2 , 0 < ρ < 1.

Again note that these are two BHF models, one for the non-probability samples and the other
for the probability samples. But they are connected because they have the same parameters
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(except the nps has the discounting factors), and this is how we link the nps, ps and the
small areas.

For the discounting factors 0 ≤ ai ≤ 1, we will assume that for i = 1, . . . , ℓ,

ai | θ, γ ind∼ Beta
{
θ

1 − γ

γ
, (1 − θ)1 − γ

γ

}
, 0 < θ, γ < 1.

We need to specify the priors for θ and γ. We make a modest assumption that the distribution
of each ai is log-concave, and a sufficient condition for this to happen is that θ 1−γ

γ
> 1 and

(1 − θ)1−γ
γ

> 1. (A log-concave density has very nice properties, specifically its moment
generating function exists.) This means that 0 < γ < 1

3 ,
γ

1−γ
< θ < 1−2γ

1−γ
. Therefore, the

prior for (a, θ, γ, ρ) is

π(a, θ, γ, ρ) =


ℓ∏

i=1

a
θ 1−γ

γ
−1

i (1 − ai)(1−θ) 1−γ
γ

−1

B{θ 1−γ
γ
, (1 − θ)1−γ

γ
}

 , 0 < γ <
1
3 ,

γ

1 − γ
< θ <

1 − 2γ
1 − γ

, 0 < ρ < 1.

Note that this model holds for the entire population with wsij ≡ 1.

Using Bayes’ theorem, letting y (both nps and ps) denote the vector of all observa-
tions, the joint posterior density is

π(ν, a, β, σ2, ρ, θ, γ | y) ∝

1
σ2

ℓ∏
i=1


n1i∏

j=1

√
aiw1ij

2πσ2 e
−

aiw1ij

2σ2 (y1ij−x′
1ijβ−νi)2

n2i∏
j=1

√
w2ij

2πσ2 e
−

w2ij

2σ2 (y2ij−x′
2ijβ−νi)2



×
√

1 − ρ

2πρσ2 e
− 1−ρ

2ρσ2 ν2
i
a

θ 1−γ
γ

−1
i (1 − ai)(1−θ) 1−γ

γ
−1

B{θ 1−γ
γ
, (1 − θ)1−γ

γ
}

 . (1)

Letting Ω1 = (a, θ, γ, ρ) and Ω2 = (ν, β, σ2), to fit the posterior density in (1), we will
first integrate out Ω2 and sample the posterior density of Ω1 | y using the Gibbs sampler;
see Appendix B. Then, we can sample Ω2 | Ω1, y using the composition method via

π(Ω2 | Ω1, y) = π1(σ2 | Ω1, y)π2(β | σ2,Ω1, y)π3(ν | β, σ2,Ω1, y),

where π1(σ2 | Ω1, y), π2(β | σ2,Ω1, y) and π3(ν | β, σ2,Ω1, y) are all in standard forms,
inverse gamma, p-variate normal and independent normals respectively; see Appendix B.
This strategy provides a more efficient computational algorithm (better convergence and
mixing of the Gibbs sampler).

Bayesian predictive inference is required for Ȳi = 1
Ni

∑Ni
i=1 yij, where yij are the pop-

ulation values (unknown). As the sample values, ysij, are corrupted because of the survey
weights, we cannot use them. So we use surrogate sampling; in principle the entire population
is drawn, not the values for the individual units though. Therefore,

Ȳi | νi, β, σ
2 ind∼ Normal

(
X̄

′
iβ + νi,

σ2

Ni

)
, i = 1, . . . , ℓ,
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where X̄ i = 1
Ni

∑Ni
i=1 x2ij and Ni are assumed unknown. We use the Horvitz-Thompson

estimators x̄2i =
∑

j∈S2i
w2ijx2ij∑

j∈S2i
w2ij

and ∑
j∈S2i

w2ij to estimate X̄2i and Ni respectively (inverse
probability weighted estimators - IPW), where S2i is the set of units in the ith area of the
ps. Then,

Ȳi | νi, β, σ
2 ind∼ Normal

(
x̄′

2iβ + νi,
σ2∑

j∈S2i
w2ij

)
, i = 1, . . . , ℓ. (2)

Once we have drawn (ν, β, σ2) using the Gibbs sampler, we simply draw the Yi from (2).
According to the model, all the sampled data are used in the predictive inference.

Observe that E(Ȳi | νi, β, σ
2, ρ) = x̄′

2iβ + λi(¯̄yi − ¯̄xi
′
β), where

λi =
ρ
∑2

s=1
∑nsi

j=1 asiwsij

ρ
∑2

s=1
∑nsi

j=1 asiwsij + (1 − ρ)
, ϕsij = asiwsij∑2

s=1
∑nsi

j=1 asiwsij

,

¯̄yi =
2∑

s=1

nsi∑
j=1

ϕsijysij, ¯̄xi =
2∑

s=1

nsi∑
j=1

ϕsijxsij;

see Appendix B for definitions. Then,

E(Ȳi | β, σ2, ρ, y) = λi
¯̄yi + (1 − λi) ¯̄xi

′
β + (x̄2i − ¯̄xi)′β

and

Var(Ȳi | β, σ2, ρ, y) =
{

1∑n2i
j=1 w2ij

+ ρ

ρ
∑2

s=1
∑nsi

j=1 asiwsij + (1 − ρ)

}
σ2.

These can be used to form Rao-Blackwellized density estimators for Ȳi.

More importantly, we can study the behavior of E(Ȳi | β, σ2, ρ, y) and Var(Ȳi |
β, σ2, ρ, y) to see the importance of ρ. As ρ → 0, λi → 0,

E(Ȳi | β, σ2, ρ, y) → x′
2iβ

and

Var(Ȳi | β, σ2, ρ, y) → σ2∑n2i
j=1 w2ij

.

That is, the non-probability sample does not play a major role. As ρ → 1, λi → 1,

E(Ȳi | β, σ2, ρ, y) → x′
2iβ + (¯̄yi − ¯̄x′β)

and

Var(Ȳi | β, σ2, ρ, y) →
{

1
a
∑n1i

j=1 w1ij +∑n2i
j=1 w2ij

+ 1∑n2i
j=1 w2ij

}
σ2.

Both samples are important.



352 BALGOBIN NANDRAM AND J. N. K. RAO [Vol. 22, No. 1

3.2. Operationalizing the small area model

Apart from the exchangeable assumption on the ai, the current small area model is
essentially robust with respect to the ai. But with a large number of areas, it will be too
slow to sample all the ai using the grid method. One possibility is to smooth out the ai in
an attempt to operationalize the algorithm.

We can assume that the ai are “proportional” to the sample sizes or better yet to
their logarithms. This will also eliminate the exchangeability assumption. Therefore, one
possibility is to take

ai = eγ0+γ1 log(ni)

1 + eγ0+γ1 log(ni)
, i = 1, . . . , ℓ,

where for the ith area, ni is the sample size of the nonprobability sample or the total sample
size. We are assuming here that −∞ < γ0 < ∞, 0 < γ1 < ∞.

Then, clearly
ai = α0n

γ1
i

1 + α0n
γ1
i

, α0 = eγ0 , i = 1, . . . , ℓ.

Now, letting α0 = ϕ0
1−ϕ0

and α1 = ϕ1
1−ϕ1

, we have

ai = ϕ0n
ϕ1

1−ϕ1
i

1 − ϕ0 + ϕ0n
ϕ1

1−ϕ1
i

, i = 1, . . . , ℓ, (3)

where 0 < ϕ0, ϕ1 < 1. Note that if ϕ1 = 0, then ai = ϕ0 and there will be no dependence on
the ni. Now, simply substitute the ai in (3) into the SAE model and use the prior

ϕ0, ϕ1
ind∼ Uniform(0, 1).

This reduces the number of parameters for this part of the model from ℓ+ 2 to just two and
actually the two parameters, θ and γ, are now eliminated or replaced by ϕ0 and ϕ1. So if ℓ is
large, not just 8, there will be large gains in computational time. This is how the procedure
is operationalized.

3.3. Percentiles

As we consider each area individually, we can drop the subscript, i, to get the popu-
lation model

yj | β, ν, σ2 ind∼ Normal(x′
jβ + ν, σ2), j = 1, . . . , N.

We recall that the nonsampled covariates are unknown. In principle, if we can get the
nonsampled covariates, then, given β, ν, σ2, we can sample yj, j = 1, . . . , N . Then, for
0 < γ < 1, the [γN ] percentile is Y[γN ], an order statistic. But this procedure is prohibitively
expensive because the nonsampled covariates are unknown and N is large.

However, it is possible to obtain finite population percentiles (needed for BMI data)
without the nonsampled covariates. For BMI, the 85th and 95th percentiles respectively
measure overweight and obsesity. First, note that

P (Yj < tj | ν, β, σ2) = Φ
{
tj − x′

jβ − ν

σ

}
,
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where Φ(·) is the standard normal cdf. Therefore, with 0 < γ < 1, the 100(1−γ)th percentile
of Yj is tj = x′

jβ + ν + σΦ−1(γ), Then, for the hth iterate from the Gibbs sampler, the
100(1 − γ)th percentile of Yj is

t
(h)
j = x′

jβ
(h) + ν(h) + σ(h)Φ−1(γ),

and the 100(1 − γ)th finite population percentile is
∑n2

j=1 W2jt
(h)
j∑n2

j=1 W2j
. Some improvements can be

made; actually such improvements are not necessary because N is very large, and like the
finite population mean, the variance is approximately zero.

Walker (1968) showed that the sample γ-quantile, Y([Nγ]) ∼ aN{ϵγ,
γ(1−γ)
Nf2(ϵγ)}, where ϵγ

is the γth quantile of the population, f(·), which is assumed to be continuous with f(ϵγ) > 0

and F (ϵγ) = γ uniquely. Here, we simply take ϵγ =
∑n2i

j=1 W2ijt
(h)
ij∑n2i

j=1 W2ij
and because the variance is

o( 1
N

) and N is very large, essentially Y([Nγ]) is a point mass at ϵγ. A similar result holds for
Ȳi.

One question is how to define f(y). We write yj | β, ν, σ2 ind∼ Normal(x′
jβ+ ν, σ2), j =

1, . . . , N . Then, we replace xj, j = 1, . . . , N , by the weighted average, d =
∑n2

j=1 W2jxj∑n2
j=1 W2j

, to get

yj | β, σ2 ind∼ Normal(d′β + ν, σ2), j = 1, . . . , N . Finally, f(ϵγ) = 1
σ
ϕ( ϵγ−d′β−ν

σ
), where ϕ(·) is

the standard normal density.

4. Numerical example on small area estimation

We use the BMI data from the eight counties of California to construct a practical
example; see Nandram and Choi (2010) for design issues in the National Health and Nutrition
Examination Survey (NHANES III). We use Bayesian model diagnostics to compare all the
models. Then, we compare our selected model with data integration and the ps only model
via Bayesian predictive inference of the finite population mean and the 85th finite population
percentile.

But, first we discuss the performance of the Gibbs sampler for the model with dis-
counting (the other models are similar). The entire computation consists of three parts (a)
constructing the unknown survey weights for the nps, (b) fitting the individual area model,
and (c) fitting of the small area model. The entire computation took nearly 40 minutes with
(c) taking almost all the time. We started the Gibbs sampler arbitrarily by taking the ai

to be the corresponding posterior means from the individual area model, set ρ = .5, its mid
range, and as the mid point of the interval ( γ

1−γ
, 1−2γ

1−γ
) is .5, set θ = .5 and and γ = 1/6,

its mid range. We ran 21, 000 iterates, used 1000 as a “burn in” and systematically selected
every twentieth to get a ‘random’ sample of M = 1, 000. We also performed the diagnostic
procedures for the Gibbs sampler. The auto-correlations are not significant, the trace plots
show no trend, Geweke tests of stationarity are all passed and the effective sample size are
all satisfactory, mostly near to 1000. Table 1 has the p-values and the effective sample sizes.
The fact that the effective sample size (ESS) is about 550, not 1000, for θ and γ is not a
problem because θ and γ are hyperparameters of the ai, which perform well.
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In Table 2 we present diagnostic measures to compare the small area models. These
are the negative log pseudo marginal likelihood (LPML), the deviance information criterion
(DIC), the Bayesian predictive p-value (BPP), a divergence measure (DM) and the posterior
root mean square error (PRMSE); see Appendix C for a review of the definitions of these
measures. Smaller values of all quantities, except BPP, show better fit; values of BPP in
(.05, .95) show good fitting models.

All measures show that the model without discounting is not competitive, and DM
and PRMSE show that the PS only model is not competitive, leaving us with two models,
discounting and logit. In terms of PRMSE, the model with discounting is approximately
10% better than the logit model, which is not robust because it assumes linearity between
the discounting factors and log sample sizes, thereby making the model with discounting the
best. Also, the posterior standard deviations of the finite population means of the different
areas under the model with discounting are at least as similar to those from the other models,
better than the ps only model.

Table 1: Gibbs sampler diagnostics for the model with discounting using the
BMI data of the eight counties

Parameter n1 n2 Pval ESS

a1 140 24 0.804 1000
a2 138 38 0.750 1000
a3 667 128 0.395 1000
a4 133 29 0.709 1000
a5 96 29 0.813 1000
a6 119 22 0.144 1000
a7 100 28 0.332 884
a8 137 39 0.447 1000
ρ - - 0.465 1000
θ - - 0.886 541
γ - - 0.473 545

NOTE: Pval is the p-value of the Geweke test and ESS is the effective sample size of the Gibbs
sampler
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Table 2: Comparison of five models using BMI data of eight counties

Model LPML DIC BPP DM PRMSE

Discounting 977.491 1946.369 0.553 2.626 1.606
(0.8) (1.3) (-) (-2.0) (-52.4)

Logit 975.866 1943.152 0.528 2.623 1.783
(0.7) (1.1) (-) (-2.2) (-47.1)

No discounting 1235.930 2472.066 1.000 2.616 1.718
(27.5) (28.6) (-) (-2.5) (-49.1)

No nps weights 978.573 1948.031 .541 2.597 1.521
(0.9) (1.3) (-) (-3.1) (-54.9)

PS only 969.371 1922.219 0.493 2.682 3.373

NOTE: For PRMSE, the true value is taken to be the weighted average of all BMI values. The
model with discounting is the one described, the logit model regresses the ai on the logarithm of
sample sizes, and the model without discounting has all ai set to unity. The measures are calculated
for PS data only. Gibbs sampling is needed for the models with discounting. Wang et al. (2011) has
the divergence measure (DM). The parenthesis (·) shows the percent each measure is larger than
the one for the ps. The model with discounting has PRMSE 9.9% smaller than the logit model.

Table 3 has posterior inference about the discounting factors. There are some dis-
crimination among the small areas as the ai range from .066 to .141. The posterior standard
deviations are small making the CVs standing between .102 and .160 and so the inference
is very precise and reliable. Consequently, the 95% HPDIs are reasonably tight. Therefore,
as there is much discounting, the ai are playing a consequential role in this application.
Nandram and Rao (2021, 2023) gave interpretations of the discounting factor for a single
area.

For comparisons, we use the following idea in Tables 4 & 5. For two standard de-
viations, a, b, assuming independence, max(a, b) ≤

√
(a2 + b2) ≤ a + b. That is, assuming

independence of two sources, the standard deviation of the difference is at least the larger
one.

In Table 4, we compare inference about the finite population means using integrated
data and the probability sample only (ps only model). Note that the data from the nps are
not used in the ps model only; see Appendix D for a discussion of the ps only model. As
expected, there are large gains in precision over the ps only model when the model with
discounting is used. Three of the PMs under the model with discounting are smaller than
the corresponding ones under ps only model. Therefore, there is possibly some selection bias
in the model with discounting. The 95% HPDIs for the nps have considerable overlaps on
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Table 3: Posterior summaries of the discounting factors for BMI data of eight
counties

County n1 n2 PM PSD NSE CV 95% HPDI

1 140 24 0.130 0.019 0.001 0.147 (0.097, 0.171)
2 138 38 0.066 0.010 0.000 0.160 (0.043, 0.085)
3 667 128 0.111 0.011 0.000 0.102 (0.091, 0.132)
4 133 29 0.112 0.017 0.001 0.149 (0.081, 0.146)
5 96 29 0.095 0.015 0.001 0.158 (0.069, 0.130)
6 119 22 0.141 0.022 0.001 0.155 (0.101, 0.184)
7 100 28 0.101 0.016 0.001 0.160 (0.071, 0.131)
8 137 39 0.099 0.015 0.000 0.148 (0.071, 0.126)

NOTE: The discounting factors, ai, are small.

the right to those of the ps. Therefore, there is not much difference between the two models
in terms of PMs.

In Table 5, we compare inference about the 85th percentile of the finite population
using the model with discounting and the probability sample only. Again, as expected, there
are large gains in precision when the model with discounting is used. Three of the PMs
under the model with discounting are smaller than the corresponding ones under ps model
only. For each area, the intervals under the nps overlap considerably on the right of those for
the ps. Therefore, again there is possibly some selection bias in the model with discounting.
There are similar results for the 90th and 95th percentiles (not shown) with much larger
variability, of course.

In Figures 1 & 2 we show plots of the posterior densities of the finite population
means by county. For all counties, the model with discounting gives more precise estimates
than the ps only model, and the plots overlap with various degrees, with the plot of the nps
to the right of the ps, indicating some degree of selection bias remaining; five counties (2, 3,
4, 5, 7), appear similar. There appears to be no differences in sample size except for county
3 with very large county size (667, 128).
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Table 4: Comparison of the nps model (with discounting) and the ps only model
via posterior summaries of the finite population mean of the eight counties using
the BMI data

County n1 n2 Model PM PSD NSE CV 95% HPDI

1 140 24 nps 26.193∗ 0.293 0.009 0.011 (25.559, 26.704)
1 140 24 ps 25.229 0.450 0.014 0.018 (24.437 26.199)

2 138 38 nps 27.483∗ 0.299 0.010 0.011 (26.908, 28.052)
2 138 38 ps 27.100 0.363 0.010 0.013 (26.393 27.740)

3 667 128 nps 26.931∗ 0.149 0.006 0.005 (26.642, 27.219)
3 667 128 ps 26.769 0.222 0.006 0.008 (26.346 27.204)

4 133 29 nps 26.299 0.364 0.010 0.014 (25.593, 26.951)
4 133 29 ps 26.481 0.878 0.026 0.033 (24.535 28.090)

5 96 29 nps 27.017 0.355 0.011 0.013 (26.290, 27.652)
5 96 29 ps 27.416 0.521 0.017 0.019 (26.356 28.339)

6 119 22 nps 26.352∗ 0.299 0.008 0.011 (25.841, 26.954)
6 119 22 ps 25.102 0.469 0.013 0.019 (24.100 25.939)

7 100 28 nps 26.845∗ 0.305 0.010 0.011 (26.253, 27.389)
7 100 28 ps 26.467 0.416 0.014 0.016 (25.720 27.297)

8 137 39 nps 27.350 0.295 0.012 0.011 (26.789, 27.930)
8 137 39 ps 28.406 0.457 0.013 0.016 (27.530 29.276)

NOTE: Posterior inference is based on 1000 iterates that provide posterior mean, PM, posterior
standard deviation, PSD, numerical standard error, NSE, coefficient of variation, CV, and 95%
highest posterior density interval, HPDI. The PMs of the model with data discounting are larger
than those under the PS only model by 3.8, 1.4, .6, −.7, −1.5, 5.0, 1.4, −3.7 percent. PMs are larger
for counties marked (∗).
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Table 5: Comparison of the nps model (with discounting) and the ps only model
via posterior summaries of the finite population 85th percentile of the eight coun-
ties using the BMI data

County n1 n2 Model PM PSD NSE CV 95% HPDI

1 140 24 nps 27.762∗ 0.311 0.011 0.011 (27.126, 28.309)
1 140 24 ps 26.724 0.455 0.015 0.017 (25.856, 27.649)

2 138 38 nps 29.036∗ 0.318 0.010 0.011 (28.392, 29.625)
2 138 38 ps 28.574 0.376 0.012 0.013 (27.846, 29.290)

3 667 128 nps 28.490∗ 0.169 0.006 0.006 (28.128, 28.790)
3 667 128 ps 28.255 0.235 0.006 0.008 (27.836, 28.774)

4 133 29 nps 27.859 0.378 0.011 0.014 (27.105, 28.553)
4 133 29 ps 27.955 0.827 0.022 0.030 (26.149, 29.415)

5 96 29 nps 28.580 0.351 0.012 0.012 (27.924, 29.302)
5 96 29 ps 28.908 0.505 0.018 0.017 (27.867, 29.300)

6 119 22 nps 27.932∗ 0.332 0.011 0.011 (27.268, 28.553)
6 119 22 ps 26.600 0.475 0.014 0.018 (25.700, 27.540)

7 100 28 nps 28.409∗ 0.323 0.012 0.011 (27.786, 29.013)
7 100 28 ps 27.934 0.429 0.011 0.015 (27.089, 28.756)

8 137 39 nps 28.905 0.297 0.009 0.010 (28.352, 29.494)
8 137 39 ps 29.913 0.422 0.015 0.014 (29.091, 30.726)

NOTE: Posterior inference is based on 1000 iterates that provide PM, posterior mean, PSD,
posterior standard deviation, W , width of the 95% HPD interval and CV, coefficient of variation.
PMs are larger for counties marked (∗).



2024] SUPPLEMENTING A PROBABILITY SAMPLE WITH A NON-PROBABILITY SAMPLE 359

0.0

0.5

1.0

1.5

2.0

2.5

3.0

23 25 27 29 31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

23 25 27 29 31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

23 25 27 29 31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

23 25 27 29 31

County 1; 240, 24 County 2; 138, 38

County 3; 667, 128 County 4; 133, 29

Figure 1: Comparison for the posterior distributions of the finite population
mean for nps and ps models by county (dashed: discounting model; solid: ps
only model)
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Figure 2: Comparison for the posterior distributions of the finite population
mean for nps and ps models by county (dashed: discounting model; solid: ps
only model)



2024] SUPPLEMENTING A PROBABILITY SAMPLE WITH A NON-PROBABILITY SAMPLE 361

5. Concluding remarks

This section has two subsections. The first subsection is a summary of the paper
with general comments and the second subsection is on robustification of the models for the
study variable and the participation variable.

5.1. Summary and comments

In our illustrative example on body mass index, our data-integrated model with dis-
counting is preferred over the ps only model and other competitors. The logit data-integrated
model is a strong competitor. The data-integrated model provides small area estimates,
roughly similar to those of the ps only model, with larger precision. It is difficult to remove
all biases completely. We outline some important problems we are currently working on,
particularly how the assumptions on the participation variable and the study variable can
be relaxed.

We have shown how to extend our approach to cover small area estimation. We have
done so for the unit-level small area model (a bit less practical); this is an extension of
Nandram and Rao (2021, 2023) to cover small areas. We have extended Toto and Nandram
(2010) or Molina, Nandram and Rao (2014), who provided a Bayesian approach, to solve
the problem without combining a nps and a ps. However, our work here was motivated by
Beaumont (2020), Rao (2020) and Beaumont and Rao (2020) but these authors provided
limited discussion of unit-level models; Beaumont and Rao (2020) showed how to use the
area-level Fay-Herriot model to improve inference for the small areas in the ps, covariates
being drawn from the nps (Big Data).

The assumption of normality on the BMI data is perhaps not a very good one because
the BMI data are skewed (true for most continuous survey data) and discrete; see Yin
and Nandram (2020 a,b) on how the Dirichlet process is used for BMI data without data
integration. Also, more robust methods on propensity scores are needed. Stick-breaking
priors can be used to provide more robust models, but these models are difficult to fit
when all uncertainty is taken into account and this is on-going work; see Ishwaran and
James (2001). It is also possible to use BART in data integration (e.g., Rafei, et al. 2021).
But BART is not a fully Bayesian procedure because it double-uses the data, it suffers from
overshrinkage, and there is no underlying theory of BART (just a machine learning algorithm
like random forest); see Hill, Linero and Murray (2020) for more detailed discussions and
criticisms about BART. Yet, one does not need to express a relation between study variable
and covariates; see Lockwood (2023, PhD Dissertation) for an important advance.

It is possible to avoid estimation of the survey weights of the non-probability sample
by using a structural (measurement error) model; see Berg et al. (2021) for a start. We have
been doing similar work at National Agriculural Statistics Service, USDA. For the nps (1),
we consider

y1ij
ind∼ Normal

{
γ0 + γ1(x′

1ijβ + νi),
σ2

ai

}
, j = 1, . . . , n1i, i = 1, . . . , ℓ,
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and for the ps (2),

y2ij
ind∼ Normal

{
x′

2ijβ + νi,
σ2

w2ij

}
, j = 1, . . . , n2i, i = 1, . . . , ℓ.

Here, γ0 and γ1 are weakly identified and can lead to poor performance of a Gibbs sampler.
One can define the true values of y2ij as θij = x′

2ijβ + νi. We do not need to estimate nps
weights. Note again that n1i is much larger than n2i, and a discount factor is used to increase
variability and help avoiding the nps to dominate the ps. Note that the parameters, β, σ2

and νi are the same in both the nps and the ps. Finally, a standard assumption on the area
random effects is

νi | ρ, σ2 ind∼ Normal
{

0, ρ

1 − ρ
σ2
}
, i = 1, . . . , ℓ.

Of course, this can be overcome using the Pitman-Yor stick breaking procedure. Because of
non-identifiability issues, we will assume that γ0 and γ1 are independent with

γ0 ∼ Uniform(c1, c2), γ1 ∼ Uniform(d1, d2),

where (c1, c2) and (d1, d2) are to be specified using exploratory data analysis. This can be
done by fitting ȳ1i = γ0 + γ1ȳ2i + ei, i = 1, . . . , ℓ, and using the bootstrap distributions of
the least squares estimators of γ0 and γ1 to get their ranges. For the ai, we will assume the
same prior as before, and we also assume that

π(β, σ2, ρ) ∝ 1
σ2 .

Also, as before prediction is done by using

yij | νi, β, σ
2 ind∼ Normal(x′

ijβ + νi, σ
2), j = 1, . . . , Ni, i = 1, . . . , ℓ,

and the prediction procedure is similar to the one done earlier. For

Ȳi | νi, β, σ
2 ind∼ Normal(X̄ ′

iβ + νi,
σ2

Ni

), i = 1, . . . , ℓ,

where X̄ i =
∑Ni

j=1 xij

Ni
is unknown and Ni may also be unknown. Design-based estimators

of Ni and X̄ i are respectively Ni = ∑n2i
i=1 W2ij and X̄ i =

∑n2i
j=1 W2ijx2ij

Ni
(Hajek or Horvitz-

Thompson). Inference for finite population percentiles is also possible.

5.2. Robustification

Looking towards double robustness as in non-Bayesian methods, we can use a mixture
model for the study variable and a t-link for the participation variable of any number of areas
within the Bayesian paradigm.
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5.2.1. Robustification of the model of the study variable

For the study variable, we use a three-component mixture model. For the non-
probability sample,

f(y1ij | νi, β, p, q, ρ, γ) = (1 − p− q)Normaly1ij
(x′

1ijβ + νi,
ργσ2

aw1ij

)

+pNormaly1ij
(x′

1ijβ + νi,
γσ2

aw1ij

) + qNormaly1ij
(x′

1ijβ + νi,
σ2

aw1ij

), i = 1, . . . , n1i.

and, for the probability sample, we have

f(y2ij | νi, β, p, q, ρ, γ) = (1 − p− q)Normaly2ij
(x′

2ijβ + νi,
ργσ2

w2i

)

+pNormaly2ij
(x′

2ijβ + νi,
γσ2

w2ij

) + qNormaly2ij
(x′

2ijβ + νi,
σ2

w2ij

), i = 1, . . . , n2i, i = 1, . . . , ℓ.

Finally,
νi | ψ, σ2 ind∼ Normal(0, ψ

1 − ψ
σ2), i = 1, . . . , ℓ.

It is also sensible to use the constraint p > q and 0 < p, q, p+q, ρ, γ < 1. In each case,
the first component corresponds to ordinary observations, the second component corresponds
to mild outliers and the third component to severe outliers. See Chakraborty, Datta, and
Mandal (2019) for the much simpler two-component mixture model. There is on-going work
on this topic.

5.2.2. Robustification of the model of the participation variable

We consider the following mixture model for the selection indicators, ri, i = 1, . . . , N ,
and we consider one large area (all areas combined). We make the robust assumption,

ri | T = g, θ
ind∼ Bernoulli{Tag(z′

iθ)}, i = 1, . . . , N,

P (T = g | λg) = λg, g = 1, . . . , G,
where (ag, λg), g = 1, . . . , G, and G are to be specified. We define the propensity scores as

πi =
G∑

g=1
λgTag(z′

iθ), i = 1, . . . , N.

We can now develop a pseudo-density for each g and average all the pseudo-densities
over g. Specifically, we have the mixture pseudo-density,

P (r | z, θ) =
G∑

g=1
λg

n1∏
i=1

{
Tag(z′

1iθ)
1 − Tag(z′

1iθ)

}
n2∏
i=1

{
1 − Tag(z′

2iθ)
}W2i

, (4)
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where Tag , g = 1, . . . , G, is the Student’s t cdf on ag degrees of freedom. The estimated
propensity scores we need are then

π̂i =
G∑

g=1
λgTag(z′

1iθ̂), i = 1, . . . , n1,

where θ̂ = E(θ | r); it is possible to use other summaries as well (e.g., the posterior median
or the posterior mode).

This is a generalization of the logistic regression model, and it covers many cases
(Cauchy, logistic and normal). It is well-known that when the Student’s t density and/or
the logistic distribution are appropriately rescaled, a plot of the quantiles of the Student’s
t density on roughly 8 degrees of freedom versus the quantiles of the logistic distribu-
tion is almost a 45o straight line through the origin. Here λg, g = 1, . . . , G, are specified
weights at degrees of freedom ag, g = 1, . . . , G, and to look at variation around the lo-
gistic distribution, we can place more probability at ag = 8. For example, we have used
ag = 1, 4, 8, 13, 20, 30, 40, 50 for G = 8, ag = 40, 50 will be close to a standard normal
density, and λg = .125, .125, .25, .125, .125, .125, .080, .045. There is on-going work on this
topic.
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APPENDIX A: Propensity scores

Let xi, i = 1, . . . , N , denote the covariates; these are observed in the ps and the
nps, but they are not observed for the rest of the population. Again, for the nps, we have
x1i, i = 1, . . . , n1, and for the ps, we have x2i, i = 1, . . . , n2. Chen, Li and Wu (2020) has
a method to get the propensity scores for the nps, and therefore the survey weights, which
they defined as the reciprocals of the propensity scores. They assume that the propensity
scores can be modeled parametrically using

πi = P (ri = 1 | xi) = π(xi; θ),

with independence over i, where θ are to be estimated. Here ri = 1 for the ps or nps; ri = 0
for the nonsamples. Then, the likelihood function is

ℓ(θ) =
N∏

i=1
{π(xi; θ)}ri{1 − π(xi; θ)}1−ri .

The propensity scores are obtained in two steps.
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First, they wrote the log-likelihood as

ℓ∗(θ) =
n1∑
i=1

log
{

π(x1i; θ)
1 − π(x1i; θ)

}
+

N∑
i=1

log{1 − π(xi; θ)}.

Second, they used the pseudo-log-likelihood by replacing the second term by the
Horvitz-Thompson estimator since the nonsample xi are unknown, as

ℓ∗(θ) =
n1∑
i=1

log
{

π(x1i; θ)
1 − π(x1i; θ)

}
+

n2∑
i=1

W2i log{1 − π(x2i; θ)},

which can now be maximized for θ̂. The propensity scores for the nps are then π(x1i; θ̂), i =
1, . . . , n1. Henceforth, they specialize to logistic regression.

One caveat is that the propensity scores are not really selection probabilities (i.e.,
quasi-randomization). This is true because the propensity scores must be obtained for the
entire population (i.e., all N units) and then calibrated to the nps sample size. Only in this
case, quasi-randomization makes any sense at all. This is still an open problem. Also, they
assumed ignorability (given the covariates, the participation variable is independent of the
study variable), but see Nandram (2022) for nonignorability. Chen, Li and Wu (2020) did
not assume non-ignorability because they assumed that the study variable is missing in the
probability sample; they need to mass impute the the missing values, but this is not in the
spirit of their work.

APPENDIX B: Computation for the small area model

We discuss how to fit the proposed model. Recall Ω1 = (a, θ, γ, ρ) and Ω2 = (ν, β, σ2).
Our strategy is to integrate out Ω2 from π(Ω1,Ω2 | y) to get π(Ω1 | y) and then sample
π(Ω1 | y) using the Griddy-Gibbs sampler (Ritter and Tanner, 1992).

For convenience, we will keep asi, s = 1, 2, i = 1, . . . , ℓ, free in (0, 1) and sometimes
a1i = ai and a2i = 1, i = 1, . . . , ℓ. Then, letting n = ∑2

s=1
∑ℓ

i=1 nsi, the total number of
observations,

π(Ω1,Ω2 | y) ∝ π(Ω1)
(

ℓ∏
i=1

√
ai

)
×

( 1
σ2

)n+ℓ
2 +1 (1 − ρ

ρ

)ℓ/2 ℓ∏
i=1

[
e

− 1
2ρσ2

{
ρ
∑2

s=1

∑nsi
j=1 asiwsij(ysij−x′

sijβ−νi)2+(1−ρ)ν2
i

}]
. (B.1)

We will integrate out Ω2. Momentarily, we will drop π(Ω1), but we will retain ∏ℓ
i=1

√
ai.

Define the following quantities,

λi =
ρ
∑2

s=1
∑nsi

j=1 asiwsij

ρ
∑2

s=1
∑nsi

j=1 asiwsij + (1 − ρ)
, ϕsij = asiwsij∑2

s=1
∑nsi

j=1 asiwsij

,

¯̄yi =
2∑

s=1

nsi∑
j=1

ϕsijysij, ¯̄xi =
2∑

s=1

nsi∑
j=1

ϕsijxsij,



366 BALGOBIN NANDRAM AND J. N. K. RAO [Vol. 22, No. 1

ỹsij = ysij − ¯̄yi, x̃sij = xsij − ¯̄xi.

Note that while the λi are functions of ρ, but the ϕsij, ¯̄yi and ¯̄xi are not functions of ρ.

We can now rewrite the exponent in (B.1),

exp

− 1
2σ2


2∑

s=1

nsi∑
j=1

asiwsij(ysij − x′
sijβ − νi)2 + 1 − ρ

ρ
ν2

i


 ,

as

exp

− 1
2σ2


2∑

s=1

nsi∑
j=1

asiwsij(ỹsij − x̃′
sijβ)2 + 1 − ρ

ρ
(

2∑
s=1

nsi∑
j=1

asiwsij)(¯̄yi − ¯̄x′β − νi)2


 .

Then, it is easy to show that

νi | β, σ2, ρ, y
ind∼ Normal{ν̂i,

ρ

1 − ρ
σ2(1 − λi)}, i = 1, . . . , ℓ,

where ν̂i = λi(¯̄yi − ¯̄x′
iβ). This is a standard form in small area estimation and it combines

both the probability sample and the non-probability sample over all areas; note the common
β and σ2.

Then, integrating out the νi from (B.1), we have

π(β, σ2, ρ | y) ∝
( 1
σ2

)n
2 +1 ℓ∏

i=1

√
ai(1 − λi)

×
ℓ∏

i=1

exp

− 1
2σ2


2∑

s=1

nsi∑
j=1

asiwsij(ỹsij − x̃′
sijβ)2 + Pi(¯̄yi − ¯̄x′

iβ)2



 , (B.2)

where

Pi =
 2∑

s=1

nsi∑
j=1

asiwsij

 (1 − λi)2 + 1 − ρ

ρ
λ2

i , i = 1, . . . , ℓ.

Then,
β | σ2, ρ, y ∼ Normal{β̂, σ2∆},

where

∆ =


ℓ∑

i=1

2∑
s=1

nsi∑
j=1

asiwsijx̃sijx̃
′
sij +

ℓ∑
i=1

Pi
¯̄xi

¯̄x′
i


−1

and

β̂ =


ℓ∑

i=1

2∑
s=1

nsi∑
j=1

asiwsijx̃sijx̃
′
sij +

ℓ∑
i=1

Pi
¯̄xi

¯̄x′
i


−1

ℓ∑
i=1

2∑
s=1

nsi∑
j=1

asiwsijx̃sij ỹsij +
ℓ∑

i=1
Pi

¯̄xi
¯̄yi

 .
Then integrating β from (B.2), we have

π(σ2, ρ | y) ∝
( 1
σ2

)n−p
2 +1

| ∆ |1/2
ℓ∏

i=1

√
ai(1 − λi)
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×e
− 1

2σ2

{∑ℓ

i=1

∑2
s=1

∑nsi
j=1 asiwsij{ỹsij−x̃′

sij β̂}2+
∑ℓ

i=1 Pi(¯̄yi−¯̄x′
iβ̂)2

}
. (B.3)

Therefore,
σ2 | ρ, y ∼ InvGam

{
n− p

2 ,
Q

2

}
, (B.4)

where

Q =
ℓ∑

i=1

2∑
s=1

nsi∑
j=1

asiwsij{ỹsij − x̃′
sijβ̂}2 +

ℓ∑
i=1

Pi(¯̄yi − ¯̄x′
iβ̂)2.

Integrating out σ2 from (B.3), we have

π(ρ | y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
ai(1 − λi)

Q(n−p)/2 , 0 ≤ ρ ≤ 1. (B.5)

Actually π(ρ | Ω1, y) is defined for all values of ρ in [0, 1] because the Pi and λi are well
defined for all values of ρ in [0, 1]. Note that the ai are constants (given) above, specifically
they are constants in (B.5).

Bringing back π(Ω1) into the picture, we have

π(Ω1 | y) ∝ π(Ω1)π(ρ | y),

and therefore,

π(Ω1 | y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
ai(1 − λi)

Q(n−p)/2


ℓ∏

i=1

a
θ( 1−γ

γ
)−1

i (1 − ai)(1−θ)( 1−γ
γ

)−1

B{θ(1−γ
γ

), (1 − θ)(1−γ
γ

)}

 , (B.6)

γ
1−γ

≤ θ ≤ 1−2γ
1−γ

, 0 < γ < 1/3, 0 ≤ ρ ≤ 1. It is worth noting that the ai are not independent;
∆ and Q contain all the ai, which is contained by λi also.

In (B.6), π(Ω1 | y) is well defined for all values of a, θ, γ, ρ because 0 < ai < 1, i =
1, . . . , ℓ, 0 < ρ < 1, 0 < γ < 1

3 , γ
1−γ

≤ θ ≤ 1−2γ
1−γ

. Therefore, it follows that the joint posterior
density π(Ω1,Ω2 | y) is proper. Next, we present the rather obvious conditional posterior
densities (CPDs) necessary to run the Gibbs sampler.

First, we consider the CPD of the ai, i = 1, . . . , ℓ. Letting a(i) = (a1, . . . , ai−1, ai+1, . . . , aℓ)′, i =
1, . . . , ℓ (ai is eliminated), then for 0 < ai < 1,

π(ai | a(i), ρ, θ, γ, y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
ai(1 − λi)

Q(n−p)/2

{
ℓ∏

i=1
a

θ( 1−γ
γ

)−1
i (1 − ai)(1−θ)( 1−γ

γ
)−1
}
. (B.7)

Second, the CPD of ρ is

π(ρ | a, θ, γ, y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
(1 − λi)

Q(n−p)/2 , 0 < ρ < 1. (B.8)
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Third, the joint CPD of (θ, γ) is

π(θ, γ | a, ρ, y) ∝


ℓ∏

i=1

a
θ( 1−γ

γ
)−1

i (1 − ai)(1−θ)( 1−γ
γ

)−1

B{θ(1−γ
γ

), (1 − θ)(1−γ
γ

)}

 , γ

1 − γ
≤ θ ≤ 1 − 2γ

1 − γ
, 0 < γ < 1/3.

(B.9)
γ

1−γ
≤ θ ≤ 1−2γ

1−γ
, 0 < γ < 1/3. The CPD of θ or γ is easy to write down.

We note that all the CPDs are nonstandard, but all the parameters lie in (0, 1), so
we have used a grid method, with 100 grid points, to sample each of the CPDs. The number
grid points can be reduced for the ai perhaps to 50 or so, but we need the number grid
points to be around 100 for (ρ, θ, γ); hyperparameters are more difficult to sample. We have
done this, and we have reduced the entire computation time from roughly 40 minutes to 20
minutes with little change in the results.

APPENDIX C: Bayesian model diagnostics and measures

We test concordance of the ps (2) part of the model,

y2ij | νi, β, σ
2 ind∼ Normal(x′

2ijβ + νi,
σ2

W2ij

), j = 1, . . . , n2i, i = 1, . . . , ℓ,

with the observed data of the ps (2). It is not sensible to study concordance with the
observed data of the nps (1) because they are biased. The posterior density of (ν, β, σ2)
comes from their respective models. We describe five Bayesian measures, which are the
negative log-pseudo marginal likelihood (LPML), the deviance information criterion (DIC),
the Bayesian predictive p-value (BPP), the divergence measure (DM) and the posterior root
mean squared error (PRMSE); LPML and DM are based on Bayesian cross-validation.

First, the conditional posterior ordinate is CPOij = f(y2ij | y(2ij)), where y(2ij) is the
vector of all values excluding y(2ij). Let Ω = (ν ′, β′, σ2)′ and Ω(h) denote the hth iterate from
the Gibbs sampler of the appropriate parameters. Then, CPOij is usually estimated by

ĈPOij =
[

1
M

M∑
h=1

1
f(y2ij | Ω(h))

]−1

,

the harmonic mean, and LPML = ∑ℓ
i=1

∑n2i
j=1 log(ĈPOij).

Second, letting Ω̂ denote the posterior mean of Ω, the DIC is

DIC = 2D̂(y) −D(y | Ω̂),

where D(y | Ω) = −2 log{f(y | Ω)} and D̂(y) = 1
M

∑M
h=1 D(y | Ω(h)).

Third, letting T2 denote a test (discrepancy) function, the BPP is

P (T rep
2 > T obs

2 | yobs),
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where we have used
T2 =

ℓ∑
i=1

n2i∑
j=1

W2ij

(y2ij − x′
2ijβ − νi)2

σ2 .

Fourth, the divergence measure is

DM = 1∑ℓ
i=1 n2i

ℓ∑
i=1

ni∑
j=1

|y2ij − E(y2ij|y(2ij))|;

see Wang et al. (2012).

Fifth, letting T = ∑2
s=1

∑ℓ
i=1

∑nsi
j=1 Wsijysij/

∑2
s=1

∑ℓ
i=1

∑nsi
j=1 Wsij,

PRMSE =

√√√√ ℓ∑
i=1

{(PM2i − T )2 + PSD2
2i},

where PM2i = E(Ȳ2i|y1, y2) and PSD2
2i = Var(Ȳ2i|y1, y2).

APPENDIX D: Adding survey weights into the bayesian BHF model

We describe how to fit the ps only model. This is essentially adding survey weights
to the BHF model.

The population model is

yij | νi, β, ρ
ind∼ Normal{x′

ijβ + νi, (1 − ρ)σ2}, j = 1, . . . , Ni,

where xij has p components, including an intercept, and

νi | σ2, ρ
ind∼ Normal(0, ρσ2), i = 1, . . . , ℓ.

The reparameterization with respect to ρ is similar, but slightly different, to the one we have
used before. The correlation of the values within an area is ρ, and the model is defined for
all values of ρ in [0, 1]. Let Ȳi = 1

Ni

∑Ni
j=1 yij, the finite population mean of the ith area, and

let X̄ i denote the finite population mean covariate vector.

Therefore,
Ȳi | νi, β, ρ

ind∼ Normal{X̄ ′
iβ + νi,

(1 − ρ)σ2

Ni

}.

Then, integrating out the νi, we have

Ȳi | β, σ2, ρ
ind∼ Normal{X̄ ′

iβ, ρσ
2 + (1 − ρ)σ2

Ni

}.

So that σ2 has a direct impact in prediction even when the Ni are very large, and ρ plays an
important role here. This is different from the case when there is just a single sample (i.e.,
no random effects), where for large Ni, the variance is approximately 0.
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The sample model is

yij | νi, β, ρ
ind∼ Normal{x′

ijβ + νi,
(1 − ρ)σ2

wij

}, j = 1, . . . , ni,

νi | σ2, ρ
ind∼ Normal(0, ρσ2), i = 1, . . . , ℓ,

π(β, σ2, ρ) ∝ 1
σ2 .

Letting n = ∑ℓ
i=1 ni, the total number of observations over the ℓ small areas, the joint

posterior density is

π(ν, β, σ2, ρ | y) ∝ 1
(σ2)(n+ℓ)/2+1

1
(ρ)ℓ/2

1
(1 − ρ)n/2

× exp
− 1

2ρ(1 − ρ)σ2

ρ
ni∑

j=1
wij(yij − x′

ijβ − νi)2 + (1 − ρ)ν2
i


 . (D.1)

We will decompose π(ν, β, σ2, ρ | y) as

π(ν, β, σ2, ρ | y) = π1(ν | β, σ2, ρ, y)π2(β | σ2, ρ, y)π3(σ2 | ρ, y)π4(ρ | y),

where π1(ν | β, σ2, ρ, y), π2(β | σ2, ρ, y), π3(σ2 | ρ, y), except π4(ρ | y), are all in standard
forms. Next, we will demonstrate this decomposition, and at the same time, we will prove
propriety of the joint posterior density.

For i = 1, . . . , ℓ, let x̄i =
∑ni

j=1 wijxij∑ni
j=1 wij

, ȳi =
∑ni

j=1 wijyij∑ni
j=1 wij

, and λi = ρ
∑ni

j=1 wij

ρ
∑ni

j=1 wij+1−ρ
. Note

that the λi are not functions of σ2. Then, it is easy to show that

νi | β, σ2, ρ, y
ind∼ Normal{ν̂i, (1 − λi)ρσ2}, i = 1, . . . , ℓ,

where ν̂i = λi(ȳi − x̄′
iβ).

Let tij = yij − λiȳi and dij = xij − λix̄i, i = 1, . . . , ℓ. Then, integrating νi from (D.1),
we have

π(β, σ2, ρ | y) ∝ 1
(σ2)n/2+1

1
(1 − ρ)n/2

ℓ∏
i=1

√
1 − λi

× exp
− 1

2ρ(1 − ρ)σ2

ρ
ℓ∑

i=1

ni∑
j=1

wij(tij − d′
ijβ)2 + (1 − ρ)

ℓ∑
i=1

λ2
i (ȳi − x̄′

iβ)2


 . (D.2)

Now, let

β̂ = ∆

ρ
ℓ∑

i=1

ni∑
j=1

wijdijtij + (1 − ρ)
ℓ∑

i=1
λ2

i x̄iyi

 ,
where

∆−1 = ρ
ℓ∑

i=1

ni∑
j=1

wijdijd
′
ij + (1 − ρ)

ℓ∑
i=1

λ2
i x̄ix̄

′
i.
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Note that β̂ does not depend on σ2. Then, it is easy to show that

β | σ2, ρ, y ∼ Normal(β̂, ρ(1 − ρ)σ2∆).

Now, integrating β from (D.2), we have

π(σ2, ρ | y) ∝ 1
(σ2)(n−p)/2+1

|∆|
(1 − ρ)(n−p)/2ρ

p/2
ℓ∏

i=1

√
1 − λi

× exp
− 1

2ρ(1 − ρ)σ2

ρ
ℓ∑

i=1

ni∑
j=1

wij(tij − d′
ijβ̂)2 + (1 − ρ)

ℓ∑
i=1

λ2
i (ȳi − x̄′

iβ̂)2


 . (D.3)

Finally, it follows easily that

σ2 | ρ, y ∼ InvGam

n− p

2 ,
ρ
∑ℓ

i=1
∑ni

j=1 wij(tij − d′
ijβ̂)2 + (1 − ρ)∑ℓ

i=1 λ
2
i (ȳi − x̄′

iβ̂)2

2ρ(1 − ρ)


and integrating σ2 from (D.3), we have

π(ρ | y) ∝
ℓ∏

i=1

1
(ρ∑ni

j=1 wij + 1 − ρ)1/2

× ρn/2(1 − ρ)ℓ/2|∆|1/2

{ρ∑ℓ
i=1

∑ni
j=1 wij(tij − d′

ijβ̂)2 + (1 − ρ)∑ℓ
i=1 λ

2
i (ȳi − x̄′

iβ̂)2}(n−p)/2
, 0 < ρ < 1. (D.4)

Note that π(ρ | y) is defined for all values of ρ ∈ [0, 1]; we only need ∆ to be well
defined, and this is true because ∑ℓ

i=1
∑ni

j=1 dijd
′
ij is full rank for all values of ρ (i.e., the

matrix (x′
ij) is full rank provided that it has at least p linearly independent rows). Of course,

n > p as in standard regression problems. Therefore, the joint posterior density is proper.
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