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Abstract 

 

Finite Automata (FA) and soft computing techniques have potential to improve 

agricultural water management practices. The existing irrigation systems suffer from low 

water productivity. This issue can be ameliorated through Dirt texture, Evapotranspiration 

and Crop Evolution based Land specific (DECEL) model. The soft computing models such as 

K-Nearest Neighbor (KNN) and linear regression prediction methods are used in the DECEL 

irrigation framework. The results exhibited that, the KNN algorithm obtained accuracy of 

95.88% over dirt texture classification and 99.98% accuracy on crop coefficient prediction. 

The reference evapotranspiration is predicted using linear regression method.  

Key words: Dirt texture; Evapotranspiration; Crop coefficient; Machine learning; Finite 

automata. 

1. Introduction 

 

The global food requirement increases about 60% by the year 2050 due to growing 

population (Alexandratos and Bruinsma, 2012). Currently irrigated land can only satisfy 40% 

of the expected global food requirement by the year 2050. Agriculture sector uses 70% of the 

available water (Provenzano and Sinobas, 2014). Currently only 16% of the cultivable area is 

irrigated due to adoption of conventional irrigation approaches (Alexandratos and Bruinsma, 

2012; Playan et al., 2014). The arid and semi-arid regions are currently expanded to 36% and 

global warming trend further expands the aridity area (Safriel et al., 2005; Alcamo et al., 

2007; Arnell et al., 2011). The efficiency and economic outcome is the vital concern of 

irrigation system (Burt et al., 2005; Chartzoulakis et al., 2015). The performance of irrigation 

system depends on timely supply of exactly required volume of water. The water 

transformation through soil and crop are expressed using the metrics such as evaporation, 

transpiration, infiltration, runoff and deep percolation. Evaporation is the process of water 

transformation from liquid to vapour. The transpiration is the process of water passed from 

crop stomata to atmosphere in the form of vapour. Evapotranspiration (ET) is the combined 

process of surface evaporation and crop transpiration. The infiltration is the process of water 

entry in the surface of soil. The deep percolation is the infiltrated water which moves beyond 

the root zone. The water moves out of the land is called runoff (Burt et al., 1997). The dirt 
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properties, weather conditions and crop coefficient play crucial role in irrigation system 

(Dabach et al., 2011; Soulis and Elmaloglou, 2018). 

The rest of the paper is structured as follows. The Section 2 describes the evolution of 

various irrigation methods. The irrigation automation framework is outlined in Section 3. The 

soft computing approaches and their results are discussed in Section 4. Finally, the 

conclusions and future research directions are summarized in Section 5. 

 

2. Related Work 

 

The surface irrigation method is most extensively used technique and this approach is 

popular due to low initial cost and energy demand despite the low irrigation efficiency.  

Basin, border and furrow are generally practiced surface irrigation techniques (Raghuwanshi 

et al., 2011). The sprinkler irrigation framework comprises of pipe network in which water 

flows with force through nozzles and it simulates precipitation with the help of overhead 

spraying. The solid set, linear and hand move, centre pivot, wheel line, gun type and hose-

pull are various sprinkler irrigation techniques. In drip irrigation, water is supplied via pipe 

network in a fixed model and water is slowly emitted to each plant to the root zone (Tindula 

et al., 2013). The evolution of first-generation irrigation technology was started with multi-

client electronic hydrants for utilization at dispensation network. The second-generation 

irrigation technology was variable frequency pump. The micro irrigation method was the 

third generation in irrigation technology wherein WP was increased but marginally installed 

due to high initial investment (Pradeep et al., 2021a). The sub surface drip irrigation (SDI) 

was the fourth generation in irrigation technology invented to solve the issues of surface drip 

irrigation specifically to eliminate emitter clogging issue. The fifth generation in irrigation 

technology was deficit irrigation invented to supply reduced amount of water without 

affecting the yield based on crop growth stage (Levidow et al., 2014; Kang et al., 2017). 

Intelligent irrigation is the emerging area which addresses the low water productivity issue 

(Pradeep et al., 2019; Pradeep et al., 2020; Krishnashetty  et al., 2021; Pradeep et al., 2021b). 

The evolution of irrigation methods are presented in Table1. 

 

Table 1: Progress of irrigation techniques 

 

 

3. Irrigation Automation Model 

 

The Finite Automata (FA) is a core concept of intelligent computing. In this paper, the 

deterministic variant of FA (DFA) is used to design the automated irrigation framework 

Approach Benefits Implementation  

Multi-client hydrants Dispensation unit Mostly used 

Frequency pumps Pumping plant Mostly used 

Drip & Sprinkler Water control and irrigation scheduling Marginally deployed 

Sub surface drip  Water control and irrigation scheduling  Minimal 

Deficit irrigation  Water control and irrigation scheduling Minimal 

Intelligent irrigation High water productivity and economy New era 
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provided with some rules that permit the automaton to handle the symbols, according to the 

rules to generate the output. There are only two possible outcomes over the input passed to 

the FA, “accept” or “reject”. In FA model the states are represented by circles. Arcs between 

the states are labeled by inputs. The States may have a self loop for some of the input 

symbols. In FA model one of the states is designated as start state, indicated by an arrow 

leading to that state without origin state and its necessary to have one or more states as final 

or accepting states, indicated by double circle. For all valid input string the FA should halt at 

one of the designated final state. In the present study an irrigation automation framework is 

proposed which is represented in Figure 1. 

 

Figure 1: DFA model for irrigation automation 

 

The input variables are dirt texture, evapotranspiration, and crop evolution coefficient data 

for specific land. The automated irrigation framework variables are reported in Table 2.The 

United States Department of Agriculture (USDA) has defined twelve major soil texture 

classes considering the combination of sand, silt and clay fractions, which are highlighted in 

Table 3. The set of soil texture input parameters are represented in the model as {1, 2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12}. The weather data is classified as warm, temperate, and polar, reported 

in the Table 4 and also represented as input variables {13, 14, 15} in Figure 1. The crop 

evolution coefficient depends on the crop growth stage. They are represented in the model as 

{16, 17, 18, 19, 20} and reported in Table 5. The accepting states determine volume of water 

required for the given input pattern.  

 

Table 2: Variables of automated irrigation framework  

 

DFA 

Attributes 

Description 

States Q = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, 

b19, b20, b21, b22, b23, b24, b25, b26, b27} 
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Input 

symbols 

Soil texture variables = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

Evapotranspiration data variables = { 13, 14, 15}  

Crop evolution input parameters = {16, 17, 18, 19, 20} 

Start state b0 

Final states F = {b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27} 

 

Table 3: Dirt classification transitions 

 

Current State Input Next State Soil texture  

b0 1 b1 Sand 

b0 2 b2 Loamy sand 

b0 3 b3 Sandy loam 

b0 4 b4 Loam 

b0 5 b5 Silty loam 

b0 6 b6 Silt 

b0 7 b7 Clay loam 

b0 8 b8 Sandy clay loam 

b0 9 b9 Silty clay loam 

b0 10 b10 Sandy clay 

b0 11 b11 Silty clay 

b0 12 b12 Clay 

 

3.1. Reference evapotranspiration  

 

The reference evapotranspiration is an important metric to understand the crop water 

requirements to obtain satisfactory yield. The reference evapotranspirationplays vital role to 

compute irrigation water requirements. To estimate reference evapotranspirationthe weather 

data such as temperature (T), wind speed (WS), solar radiation (SR), sunshine hours (SS), 

relative humidity (RH), rainfall (RF) and vapour pressure (VP) are key input variables (Allen 

and Pruitt, 1991). The most widely used model for estimation of reference 

evapotranspirationis FAO-56 Penman-Monteith method (Allen et al., 1998).  
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ET0= 
0.408∆(Rn- G)+ γ

900

T+273
U2 (es- ea)

∆+ γ (1+0.34U2)
(1) 

where, 

ET0 = Reference ET (mm day -1),  

es = Saturation vapor stress (kPa),  

ea = Actual vapor stress (kPa),  

Δ = Incline of the saturation vapor stress function (kPa °C-1), 

G = Dirt heat flux density (MJm-2 day-1),  

γ = Psychometric constant (kPa °C-1)   

Rn = Net radiation (MJm-2 day-1),  

T = Average air temperature (°C)  

U2 = Mean wind speed at 2 m height for 24-h (m s-1) and 

es- ea = Vapor stress loss (kPa). 

 

3.2. Dataset 

 

The observed weather dataset of metrological station, University of Agriculture 

Sciences, GKVK, Bengaluru is used for prediction of reference evapotranspiration. The 

Colorado Maize crop evolution water requirement data set is used for prediction of crop 

coefficient. The soil texture classification dataset is created using USDA triangle soil texture 

classification reference model. 

 

Table 4: Weather data classification transitions 

 

Current state Input Next state Weather classification  

b1 13 b13 Warm 

b1 14 b14 Temperate 

b1 15 b15 Polar 

b2 13 b13 Warm 

b2 14 b14 Temperate 

b2 15 b15 Polar 

b3 13 b13 Warm 
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b3 14 b14 Temperate 

b3 15 b15 Polar 

b4 13 b13 Warm 

b4 14 b14 Temperate 

b4 15 b15 Polar 

b5 13 b13 Warm 

b5 14 b14 Temperate 

b5 15 b15 Polar 

b6 13 b13 Warm 

b6 14 b14 Temperate 

b6 15 b15 Polar 

b7 13 b13 Warm 

b7 14 b14 Temperate 

b7 15 b15 Polar 

b8 13 b13 Warm 

b8 14 b14 Temperate 

b8 15 b15 Polar 

b9 13 b13 Warm 

b9 14 b14 Temperate 

b9 15 b15 Polar 

b10 13 b13 Warm 

b10 14 b14 Temperate 

b10 15 b15 Polar 

b11 13 b13 Warm 

b11 14 b14 Temperate 

b11 15 b15 Polar 
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b12 13 b13 Warm 

b12 14 b14 Temperate 

b12 15 b15 Polar 

 

Table 5: Transition table represents crop growth evolution classification 

 

Current state Input Next state Crop evolution  

q13 16 q16 initial stage  

q13 17 q17 development stage 

q13 18 q18 mid-season 

q13 19 q19 late season 

q14 16 q16 initial stage  

q14 17 q17 development stage 

q14 18 q18 mid-season 

q14 19 q19 late season 

q15 16 q16 initial stage  

q15 17 q17 development stage 

q15 18 q18 mid-season 

q15 19 q19 late season 

 

4. Results and Discussions 

 

 The DFA irrigation framework is reviewed using Java Formal Languages and 

Automata Package (JFLAP) tool. (Rodger et al., 2006). The model is validated for the pattern 

“11316”. The variable ‘1’ indicates sandy soil texture, ‘13’ indicates warm weather and ‘16’ 

indicates initial stage of crop. The tracing of sample pattern amp is represented in Figure 2. 

The pattern “11316”, demands high water supply because of sandy soil texture, warm 

weather and initial stage of crop. Hence for pattern 1, the model halts at state q16, which 

indicates high crop-water requirement for the given input condition.  
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Figure 2: Tracing over input pattern “1 13 16” 

 

4.1. Evapotranspiration prediction 

 

The evapotranspiration is an important metric to understand the crop water 

requirements to obtain satisfactory yield. The linear regression method is used for prediction 

of evapotranspiration, which determines water requirement considering weather data. The 

relevant data instances are reported in Table 6. The models are analyzed using statistical 

performance measures such as Mean Absolute Error (MAE) and coefficient of correlation 

(R). The different weather input variable combinations are reported in Table 7. The 

prediction accuracy is highlighted in Figure 3. 

 

Table 6: Evapotranspiration estimation sample instances 

 

Maximum 

temperature  

 

Minimum  

Temperature  

Vapor 

Pressure 

 

Relative 

Humidity  

 

Wind 

Speed  

Bright 

Sun 

Shine 

Hours  

Evapotranspi

ration  

32.4 21.8 17.8 80 4.4 2.6 3.5 
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32.6 22.0 16.5 84 4.0 7.6 3.9 

33.6 22.4 19.1 85 3.8 8.8 4.2 

34.2 20.8 19.4 87 4.8 8.0 4.3 

31.8 21.2 17.7 82 9.0 9.7 4.5 

34.2 21.2 18.8 85 7.7 8.7 4.7 

 

Table 7: Statistical analysis of linear regression model over different input combination 

 

 

Input 

combination No. 

Input Variables Statistical Analysis 

MAE R2 

1 Max.Temp, Min.Temp, Vapor pressure, Relative 

humidity, Wind speed, Bright sunshine hours 

0.16 0.90 

2 Max.temp, Min.Temp, Vapor pressure, Relative 

humidity, Wind speed 

0.27 0.82 

3 Max. Temp, Min.Temp, Vapor pressure, 

Relative humidity 

0.27 0.82 

4 Max. Temp, Min.Temp, Vapor pressure 0.32 0.74 

5 Max. Temp, Min.Temp 0.32 0.73 
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Figure 3: Linear regression model prediction analysis over different input combinations 

 

4.2. Dirt texture and crop-evolution coefficient prediction using K-NN algorithm 

 

The dirt texture determines the water holding capacity of soil and which helps to 

increase the water productivity of irrigation system. The crop evolution-based coefficient 

indicates the crop water requirement based on the plant growth stage and it supports for 

computing water budget in irrigation automation. The K-NN algorithm is applied to predict 

dirt texture and crop coefficient. The sand, silt and clay fraction are input variables for soil 

texture classification, which are reported in Table 8.  The Maize crop growth stage water 

requirement is input for crop coefficient prediction. The experimental results exhibited the 

accuracy of 95.88% over soil texture prediction and 99.98% accuracy over crop coefficient 

prediction and reported in Table 9. 

 

Table 8: Dirt texture classification sample instances 

 

Sand Silt Clay Type 

91 6 3 Sand 

50 20 30 Sandy clay loam 

15 55 30 Silty clay loam 

40 10 50 Clay  
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Table 9: Dirt texture and crop coefficient estimation accuracy  

 

Algorithm Prediction Input Accuracy 

K-NN Dirt texture  Sand, silt and clay 

fraction  

95.88% 

K-NN Crop-coefficient  Crop growth stage 

and crop species 

99.98% 

 

5. Conclusion 

 

In the proposed research work the finite automata and soft computing concepts are 

integrated to design a DECEL model to optimize water usage in irrigation management. The 

automated irrigation framework is proposed using deterministic finite state machine, linear 

regression and K-NN algorithm. The proposed irrigation automation framework predicts the 

water requirement considering soil texture, evapotranspiration and weather data.  The linear 

regression model experimental results proved that the best input features combination for 

prediction of reference evapotranspiration are Max.Temp, Min.Temp, vapor pressure, relative 

humidity, wind speed and bright sunshine hours. The soil texture class and crop coefficient 

values are predicted using K-NN algorithm and results exhibited the 95.88% and 99.98% 

accuracy respectively.  As far as we know, the proposed DECEL model is a novel idea, 

which is designed to increase water productivity in irrigation system. The proposed research 

work opens the future research on development of efficient intelligent irrigation system and 

also deployment in the field. 
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Abstract 

A symbolic data set is a combination of symbolic values. The analysis of these 
symbolic values is known as symbolic data analysis. It is an extension of the standard 
classical data analysis where symbolic data tables are used as input and symbolic objects are 
made output as a result. Symbolic data may arise in all branches of science and social science 
after aggregating a base data set over individual entries that together constitute a category of 
interest. This study attempts to bring into notice the use of symbolic data analysis and 
compare its outcome with standard classical data analysis. Different statistical tools have 
been used for comparative analysis of the symbolic and classical data viz. descriptive 
statistics, covariance, and correlation. To apply these statistical tools in both symbolic and 
classical data analysis set up, a well-known Iris flower data set is being used. The outcome of 
the study shows that there is a little difference in the results of descriptive statistics for the 
univariate case between classical data analysis and symbolic data analysis. However, in 
bivariate statistics computation though the directions of the covariance and correlation values 
(i.e. positive or negative) are the same, yet symbolic data analysis gives comparatively lesser 
magnitude values than the classical data analysis. 

 
Key words: Data analysis; Descriptive statistics; Interval-valued variables; Symbolic data. 

1. Introduction  

When we deal with classical data set that data may be either univariate or bivariate or 
multivariate. In the case of univariate classical data, a single random variable is considered 
(e.g. production of rice). For bivariate data, two random variables (e.g. amount of fertilizer 
and production of wheat) are studied simultaneously in respect of their distribution. Similarly, 
more than two random variables concerning their distributions for a multivariate classical 
data are considered (e.g. monthly information of temperature, rainfall, humidity, etc.). 
Usually, classical data analysis seeks to describe the descriptive statistics and determine the 
reliability of inferential statistics. It is based on the repeatedly measured properties of the 
same objects or only one value per object.  

Statistically, classical data on P random variables are represented by a single point 
(say) in P-dimensional space. For instance, the observed values for the random variable Y = 
(Y1, Y2, …, Yp) for a single individual. This type of data can be analyzed using classical 
techniques for n = 150 observations (say) with P = 30 variables. When the size of n becomes 
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very large (e.g. n = 50000 and P = 90), standard classical analysis can be knotty. Again, 
consider a random variable “Type of Disease (Y)” with Y = {Diabetes, High Blood Pressure, 
Cancer} then a classical response from the respondent could be Y = Diabetes, or Y = High 
Blood Pressure, or Y = Cancer. It can be noticed that each observation consists of only one 
value or data point. Now if a respondent has two diseases say Diabetes and High Blood 
Pressure [i.e.Y= {Diabetes, High Blood Pressure}] then the typical classical data set format 
can’t accommodate this information. In such situations, symbolic data analysis can be ready 
to lend a hand. However, there are two possible issues. The first one is how the data set can 
be prepared to a size that allows analysis to proceed appropriately. The second issue is, to 
attain the first one, it is essential to consider what we want to learn or extract from the given 
data set. Symbolic data may arise in all branches of science and social science (e.g. from 
medical, industry, government experiments, and other data collection pursuits) in a variety of 
different ways. It may arise after aggregating a base data set over individual entries that 
together constitute a category of interest to the researcher (Diday and Fraiture, 2008). 
Furthermore, they may arise as an outcome of aggregating very large data set into a smaller 
manageable sized data set or aggregating into a data set that provides information about 
categories of interest (Diday and Fraiture, 2008). More specifically, we could say that a 
symbolic value typically represents the set of individuals who satisfy the description of the 
associated symbolic concept or category. A symbolic value may include lists, intervals, 
categories and so on. A more elaborate discussion of symbolic values is provided in the 
following section. 

Symbolic data analysis is an extension of standard data analysis where symbolic data 
tables are used as input and symbolic objects are made output as a result. The data units are 
called symbolic since they are more complex than standard ones, as they donot only contain 
values or categories but also include internal variation and structure (Billard and Diday, 
2006). Suppose we have a data set that can be structured like a classical data set. This data 
can be aggregated to a manageable size and categorized with specializing decision to 
construct symbolic data sets. Like classical data, symbolic data set can also have three types 
of variables viz. interval-valued, multi-valued and modal variables. The multi-valued 
variables are the different attributes of the symbolic data set which can have a relation with 
other variables. Suppose for a field experiment on rice, presence and absence of fungal 
disease, and the number of spraying for treatment can be jointly considered as multi-valued 
variables. The interval-valued variable has the maximum and minimum value of the 
observation, where the values of the observation are varied. The modal variables are 
multistate variables with a frequency, probability or weight attached to a specific value in the 
data. Usually, these weights are capacities, creditabilities, necessities or possibilities. 

Now let us explain how a symbolic dataset is created from the classical data set. The 
Table 1 consists of a set of classical data which represents the different varieties of rice along 
with the information of season, production, tillers per hill, duration and grain size.  

As mentioned, a symbolic value may be lists, intervals, categories, etc.; from Table 1, 
the season variable may be considered as a concept to construct a symbolic data set. It could 
be described by considering rice season (i.e. Sali, Ahu, and Bodo) as the concept. The set of 
seasons is the extent and the different characteristics of rice are the intent. Thus, using the 
different seasons of rice as a concept a symbolic data table is constructed (cf. Table 2). In 
Table 2, the variable production, number of tillers, and durations are interval-valued 
variables. For these interval-valued variables, other variables vary within the respective 
symbolic values. Here except grain size, all the variables are quantitative interval-valued 
variables. The variable grain size is qualitative viz. Big or Small. To transform this qualitative 
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variable into symbolic values, first, we calculated the ratio of big and small grains 
corresponding to the rice season. Thereafter, these ratio values are assigned as symbolic 
values to the variable grain size to make the variable as an interval-valued variable.  

Table 1: Classical data set of rice varieties 

 

Variety Season Production 
(kg/ha) 

Tillers/hill 
(number) 

Duration 
(days) Grain Size 

Ranjit Sali 75 25 155 Big 
Kushal Sali 65 20 150 Big 

Satyaranjan Sali 54 18 135 Small 
Lachit Ahu 42 13 115 Small 
Luit Ahu 36 11 105 Small 

Silarai Ahu 45 15 125 Big 
Bishnuprasad Bodo 66 21 160 Big 
Jyotiprasad Bodo 60 19 170 Big 

Joymoti Bodo 78 26 175 Small 
(Source: Leaflet of Regional Agricultural Research Station, Titabar, Assam Agricultural University, 

Jorhat) 

The following symbolic data table obtained using the season as a concept from Table 1. 
Table 2: Symbolic data set of rice varieties 

 
Season Production (kg/ha) Tillers/hill (number) Duration (days) Grain Size 

Sali [54,75] [18,25] [135,155] (0.67B, 0.33S) 
Ahu [36,45] [11,15] [105,125] (0.33B, 0.67S) 
Bodo [60,78] [19,26] [160,175] (0.67B, 0.33S) 

 
From the above discussion, we understand that classical values can be qualitative or 

quantitative. In contrast, symbolic values can be single-valued, interval-valued, and multi-
valued with or without logical dependency rules. However, we have especially focused on 
interval-valued variables in this study. These days the researchers are more acquainted with 
the classical data and its modeling, so the importance of symbolic data analysis is always 
quarantined. Therefore, this study attempts to bring into notice the symbolic data analysis and 
compare its outcome with classical data analysis. Different statistical tools have been used for 
comparative analysis of symbolic as well as classical data viz. descriptive statistics, 
covariance, and correlation.  

2. Review of Literature 
Statistical data analysis always plays an important role in determining useful and 

effective information on real-life situations. In the words of Tukey (1962), data analysis is the 
“Procedures for analyzing data, techniques for interpreting the results of such procedures, 
ways of planning the gathering data to make its analysis easier, more precise or more 
accurate, and all the machinery and results of (mathematical) statistics which apply to 
analyze data.” In an era of big data, the prominence of symbolic data analysis is 
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indispensable through which one could summarize big data into smaller data set of 
manageable size. Several authors have already added some value to the literature through 
their contribution. 

Symbolic objects are the basic elements for knowledge representation in symbolic data 
analysis (Prediger, 1997). A method of clustering for a set of symbolic data where individuals 
are described by symbolic variables of various types: interval, categorical multi-valued or 
modal variables are presented by Brito (2003). Billard and Diday (2003) summarized large 
datasets into a more manageable size and tried to get maximum knowledge inherent in the 
entire dataset as much as possible. A similar study was performed by Diday and Esposito 
(2003) introducing symbolic objects and constitutes an explanatory output for data analysis. 
Mballo and Diday (2005) studied the reliability of the Kolmogorov-Smirnov criterion to build 
the decision tree on interval-valued variables to extract symbolic objects from the decision 
tree and to induced the data table of symbolic objects for higher study of symbolic data 
analysis. Brito et al. (2006) introduced partitioning clustering methods for objects described 
by interval data. Appice et al. (2006) generalized symbolic data analysis aimed at some 
standard statistical data mining methods, which has developed for classification tasks in the 
case of symbolic objects. Brito (2007a) discussed some issues that arise when trying to apply 
classical data analysis techniques to symbolic data and addressed the vital question of the 
measurement of dispersion and also the result of different possible choices in the design of 
multivariate methods. Diday (2008) observed that databases are now ubiquitous in industrial 
companies and public administrations and they often grow to an enormous size. In symbolic 
data analysis, these categorical and numerical are considered to be the new statistical units. 
The next step is to get these higher-level units and then to describe them by taking care of 
their internal variation. Domingues et al. (2010) introduced a new linear regression method 
for interval-valued data. Fraiture et al. (2011) worked on symbolic data analysis and 
explained how the classical data models to take into account more complete and complex 
information. Primental et al. (2012) used common tools of symbolic data analysis to reduce 
the data without losing much information. They used information about researchers of 
institutions from Brazil through the tools of symbolic data. The main goal was to analyze the 
scientific production of Brazilian institutions. Brito (2007b) worked on modeling and 
analyzing interval data and discussed some issues that arose when applying classical data 
analysis techniques to interval data. She put a special focus on the notions of dispersion, 
association and linear combinations of interval variables and presented some methods that 
have been proposed for analyzing clustering, discriminant analysis, linear regression and 
interval time series analysis. Some Indian statisticians also worked on the field of symbolic 
data analysis. Dinesh et al. (2005) studied symbolic data analysis literature revealed that 
symbolic distance measures are playing a major role in solving pattern recognition and 
analysis problems. Guru et al. (2011) proposed a new model to grade cured tobacco leaves 
using symbolic data. Doreswamy and Narasegouda (2014) proposed an object-oriented data 
model using symbolic data analysis which provides a sensor data repository for storing and 
managing sensor data. 

3.    Data and Methodology 
 

3.1.  Data 

The relevant data for comparative analysis between classical and symbolic data analysis 
is collected from the source https://en.m.wikipedia.org/wiki/Iris_flower_data_set. This data 
set is popularly known as Iris flower data set or Fisher’s Iris data set. It is a multivariate data 
set introduced by British statistician and biologist Fisher (1936) in his paper entitled “The 
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Use of Multiple Measurements in Taxonomic Problems as an Example of Linear 
Discriminant Analysis”. The data set consists of 50 samples from each of the three species of 
Iris viz. Setosa, Virginica, and Versicolor. The four different features were measured from 
each sample and they are the length and width of the sepals and petals of Iris flower in 
centimeters. 

3.2.  Methodology 

Keeping the objective of the study in mind, the formulae of descriptive statistics, 
covariance and correlation are presented in the subsequent sections for symbolic data. As we 
believe that the formulae of the above statistical measures for classical data analysis set up 
are well known to the readers. Also, noticed that we have considered the methodology of 
symbolic data analysis for interval-valued variables only. The single-valued and multi-valued 
variables of symbolic data are not considered in this study for comparison.  

3.2.1. Descriptive statistics for interval–valued variables 

Let us define the interval-valued variable Yj = Z and the ‘Z’ contains the interval of ‘u’ 
number of observation. For ‘u’ number of observation of ‘Z’ interval, the values of Z(u) = [au, 
bu] for u∈E= {1,….., m}. Here au is the minimum value, bu is the maximum value of the 
specified observation and ‘m’ is the total number of observations. Now for a interval-valued 
variable ‘Z’ the symbolic mean and symbolic variances are calculated by 

    (1) 

  (2) 

Symbolic Standard Deviation (SDj) =     (3) 

3.2.2. Bivariate statistics for interval–valued variables 

Let Z1(u) and Z2(u) are two symbolic observations on the space Z(u) = Z1(u)× Z2(u). 
The Z1(u) contains interval symbolic variables [a1u,b1u] at ‘u’ observation and Z2(u) contains 
interval symbolic variables [a2u, b2u] at ‘u’ observation for each u∈E. Here ‘a1u’ is the 
minimum value and ‘b1u’ is the maximum value of Z1u interval symbolic variables. Similarly, 
‘a2u’ is the minimum value and ‘b2u’ is the maximum value of Z2u interval symbolic variables. 
Now the symbolic covariance function between Z1(u) and Z2(u) interval-valued symbolic 
variables is defined as 

           (4) 

Once we have a covariance function, we can easily calculate the symbolic correlation 
between the interval–valued variables Z1 and Z2. It is defined as 

     (5) 

( ) ( )å
Î

+=
Eu

uum ab
m

S
2
1Mean Symbolic

( ) ( ) ( )
2

2
22

4
1

3
1 VarianceSymbolic ú

û

ù
ê
ë

é
+-++= åå

ÎÎ Eu
uu

Eu
uuuuv ab

m
aabb

m
S

vS

( ) ( )( ) ( ) ( )
þ
ý
ü

î
í
ì

+
þ
ý
ü

î
í
ì

+-
þ
ý
ü

î
í
ì

++= ååå
ÎÎÎ Eu

uu
Eu

uu
Eu

uuuu abab
m

abab
m

ZZCov 22112221121 4
1

4
1,

( ) ( )
( ) ( )21

21
21

,,
vv SVarSVar

ZZCovZZr
´

=



 DIPANKA BORA AND HEMANTA SAIKIA [Vol. 20, No. 2 20 

where  is the symbolic correlation between interval-valued variables Z1 and Z2, 
variance (Sv1) is the symbolic variance of Z1(u) and variance (Sv2) is the symbolic variance of 
Z2(u). 

4.   Results and Discussion 

A classical data set is a group of contents of a single database table where every column 
of the table represents a particular variable and each row corresponds to a given member of 
the data set. On the other hand, the symbolic data set is a combination of symbolic values viz. 
intervals, lists, categories and so on. We have constructed the symbolic data set from the 
classical data set in case of the univariate and bivariate case using the concept of interval-
valued symbolic values. To do that statistical language R is being used with package RSDA 
(cf. Appendix-A) and the corresponding symbolic data is presented in Table 3. 

Table 3: Symbolic data set of Iris flower data 
 

Species 
Sepal Length  

[Z1(u)] 
Sepal Width  

[Z2(u)] 
Petal Length  

[Z3(u)] 
Petal Width  

[Z4(u)] 
[a1u, b1u] [a2u, b2u] [a3u, b3u] [a4u, b4u] 

Setosa [4.3, 5.8] [2.3, 4.4] [1.0, 1.9] [0.1, 0.6] 
Versicolor [4.9, 7.0] [2.0, 3.4] [3.0, 5.1] [1.0, 1.8] 
Virginica [4.9, 7.9] [2.2, 3.8] [4.5, 6.9] [1.4, 2.5] 

 
Table 3 represented the symbolic data set of the classical Iris flower data set, which is having 
interval-valued variables. The variables viz. Sepal length, Sepal width, Petal Length and Petal 
width in the table contain [minimum value, maximum value] corresponding to the number of 
observations or species. In this symbolic data set, the factor species is considered as a concept 
and accordingly we have four symbolic variables are Z1(u), Z2(u), Z3(u) and Z4(u). 

4.1. Univariate statistics of classical and symbolic data for Iris flower data set 
The descriptive statistics for classical data analysis of Iris flower data set are presented 

to compare with the symbolic data analysis. We have used the usual statistical tools to 
calculate the descriptive statistics presented in Table 4. 

Table 4: Descriptive statistics of Iris flower data set for classical data analysis 
 

Descriptive  
Statistics 

Sepal Length 
(Y1) 

Sepal Width  
(Y2) 

Petal Length  
(Y3) 

Petal Width  
(Y4) 

Mean 5.8433 3.0573 3.7580 1.1933 
Variance 0.6856 0.1899 3.1162 0.5810 

Standard deviation 0.8280 0.4358 1.7653 0.7622 
 
Likewise, to calculate the descriptive statistics for symbolic data analysis of Iris flower data 
set, some of the basic and essential computations we have to perform at first. Thereafter, the 
symbolic mean (Sm), symbolic variance (Sv) and symbolic standard deviation (Ssd) are 
calculated using the formula given in equation (1), (2) and (3) respectively. In Table 5, the 

total values for each of the four variables are obtained by and

),( 21 ZZr

( )å
=

+
4

1i
iuiu ab



2022] SYMBOLIC VS CLASSICAL DATA ANALYSIS: A COMPARATIVE STUDY  21 

. Now if we look at the values of descriptive statistics from both the 

classical and symbolic data analysis table, the values are not differing too much. It means that 
symbolic data analysis gives almost the same mean, variance and standard deviation values 
which we have computed from the classical data analysis for Iris flower data.  

Table 5: Descriptive statistics of Iris flower data set for symbolic data analysis 
 

Sepal Length [Z1(u)] a1u b1u b1u+ a1u [ + (a1u×b1u)+ ] Sm Sv Ssd 

Setosa 4.3 5.8 10.1 77.07 

5.8 0.75 0.86 Versicolor 4.9 7.0 11.9 107.31 
Virginica 4.9 7.9 12.8 125.13 

Total  34.8 309.51 

Sepal Width [Z2(u)] a2u b2u b2u + a2u [  + (a2u×b2u) + ] Sm Sv Ssd 

Setosa 2.3 4.4 6.7 34.77 

3.02 0.32 0.56 Versicolor 2.0 3.4 5.4 22.36 
Virginica 2.2 3.8 6.0 27.64 

Total  18.1 84.77 

Petal Length [Z3(u)] a3u b3u b3u + a3u [ + (a3u×b3u) + ] Sm Sv Ssd 

Setosa 1.0 1.9 2.9 6.51 

3.73 3.37 1.83 Versicolor 3.0 5.1 8.1 50.31 
Virginica 4.5 6.9 11.4 98.91 

Total  22.4 155.73 

Petal Width [Z4(u)] a4u b4u b4u + a4u [  + (a4u×b4u) + ] Sm Sv Ssd 

Setosa 0.1 0.6 0.7 0.43 

1.23 0.49 0.76 Versicolor 1.0 1.8 2.8 6.04 
Virginica 1.4 2.5 3.9 11.71 

Total  7.4 18.18 
 

4.2. Bivariate statistics of classical and symbolic for Iris flower data set 
For comparing the bivariate statistics between classical and symbolic data set of Iris 

flower data, we computed the covariance and correlation between the variables. The results 
are presented in the following tables. 

Table 6: Bivariate statistics of Iris flower data set for classical data analysis 
 

Bivariate Statistics Y1Y2 Y1Y3 Y1Y4 Y2Y3 Y2Y4 Y3Y4 
Covariance -0.0422 1.2658 0.5123 -0.3275 -0.1205 1.2854 
Correlation -0.1176 0.8718 0.8179 -0.4284 -0.3654 0.9627 

 
The symbolic covariance between Sepal Length Z1(u) and Sepal Width Z2(u), Sepal 

Length Z1(u) and Petal Length Z3(u), etc. for interval-valued symbolic variables are obtained 
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by using the equation (4). Likewise, we have calculated all the possible symbolic covariance 
and correlation between the variables and the results can be seen in Table 7. 

In Table 7, column-wise the Z1(u) × Z2(u) represents the symbolic covariance (-0.1025) 
and symbolic correlation (-0.2097) of Sepal Length and Sepal Width, the Z1(u) × Z3(u) 
represents the symbolic covariance (0.98) and symbolic correlation (0.6168) of Sepal Length 
and Petal Length, etc. Now let us compare the results of classical data analysis (cf. Table 6) 
and symbolic data analysis (cf. Table 7) from the computation of bivariate statistics. It is 
observed that though the directions of the values (i.e. positive or negative) are the same in 
covariance and correlation, the symbolic data analysis gives comparatively lesser magnitude 
values than classical data analysis. This is a result of the loss of information from the data in 
every step of processing. In symbolic data analysis for interval-valued variables, we deal with 
the maximum and minimum values of the data set instead of considering all the values like in 
classical real-valued data. Thus, the covariance and correlation results from symbolic data 
analysis have revealed lesser magnitude values in comparison to the classical data analysis 
results. If this is factual then the higher level of statistical analysis like multiple regression, 
clustering, factor analysis, etc. based on symbolic data might mislead the researchers to draw 
an appropriate inference from the data.  

Table 7: Bivariate statistics of Iris flower data set for symbolic data analysis 
 

For both univariate and bivariate statistics, we have computed mean, variance, and 
standard deviation, covariance and correlation. Though the simple linear regression analysis 
is not performed, the information available from univariate and bivariate statistics can easily 
be attained considering Y as the dependent variable and X as an independent variable in terms 
of classical set up like 

     (6) 

Based on the equation (6), the equivalent symbolic linear regression equation between Sepal 
Length (Z1(u)) and Petal Length (Z3(u)) can easily be fitted. Let us consider that Sepal Length 
is dependent on Petal Length and then it is defined as 

    (7) 

where  represents the correlation and Sv1 and Sv3 represents the standard deviation 
of Sepal Length (Z1(u)) and Petal Length (Z3(u)) respectively. 
 
5. Conclusion 

The extension of classical exploratory data analysis to the analysis of interval-valued 
symbolic data raises a few pertinent questions. How to compute dispersion precisely for 
different types of symbolic data (i.e. single-valued and multi-vaued)? How to define linear 
combinations between the symbolic variables? Whether the properties which we have usually 
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Bivariate 
Statistics 

Z1(u) × 
Z2(u) 

Z1(u) × 
Z3(u) 

Z1(u) × 
Z4(u) 

Z2(u) × 
Z3(u) 

Z2(u) × 
Z4(u) 

Z3(u) × 
Z4(u) 

Covariance –0.1025 0.9800 0.3725 –0.2981 –0.1197 1.1597 

Correlation –0.2097 0.6168 0.6090 –0.2878 –0.3003 0.8950 
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considered for classical real-valued data in terms of linear models will be valid for symbolic 
data? It is because the way to assess the central tendency and dispersion of symbolic data is 
not comparable with classical real-valued data. There may be some alternatives to attain these 
questions which we need to explore for greater attention of the researchers across the globe. 
However, the choice of an alternative way shall depends on the type of symbolic data to be 
used subsequently. Regarding interval-valued symbolic data, the one important issue is 
application of statistical models. Without statistical modeling, parameter estimation and 
testing of hypothesis are not possible. So the challenge is in front of the researchers who 
wants to explore symbolic data analysis beyond the classical framework of real-valued data. 
In today’s era of big data, where data storage and analytics is a big challenge, the exploration 
of symbolic data analysis in solving the problem of big data may open a new window in front 
of the researchers. Furthermore, the development of appropriate user-friendly statistical 
software to analyze the symbolic data will go a long way in tackling the challenges posed by 
big data.  
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Appendix-A  

Classical Data to Symbolic Data in R using the Package ‘RSDA’ 

library(RSDA) 

S=classic.to.sym(data=iris, concept="Species", variables = c(Sepal.Length, Sepal.Width, 
Petal.Length, Petal.Width)) 

S  # to get the symbolic output 

Appendix-B 

Some Basic Computation of Symbolic Data Analysis for Bivariate Statistics 

Table B1: Procedure to calculate the symbolic covariance (Zi(u)) 
 

Species 

(𝑏!" +
𝑎!") 

× 
(𝑏#" +
𝑎#") 

(𝑏!" +
𝑎!") 

× 
(𝑏$" +
𝑎$") 

(𝑏!" +
𝑎!") 

× 
(𝑏%" +
𝑎%") 

(𝑏#" +
𝑎#") 

× 
(𝑏$" +
𝑎$") 

(𝑏#" +
𝑎#") 

× 
(𝑏%" +
𝑎%") 

(𝑏$" +
𝑎$") 

× 
(𝑏%" +
𝑎%") 

Setosa 67.67 29.29 7.07 19.43 4.69 2.03 
Versicolor 64.26 96.39 33.32 43.74 15.12 22.68 
Verginica 76.80 145.92 49.92 68.40 23.40 44.46 

Total 208.73 271.6 90.31 131.57 43.21 69.17 
 

The symbolic covariance between Sepal Length (Z1(u)) and Sepal Width (Z2(u)) is calculated 
using the equation (4).  

      (B1) 

where, , &  

Now the symbolic correlation (cf. equation (5)) between Sepal Length (Z1(u)) and Sepal 
Width (Z2(u)) is calculated by  

   (B2) 

 

Similarly, we have calculated all the possible covariance and correlations among the 
variables for Iris flower data set using symbolic data analysis and the results are presented in 
Table 7.
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Abstract 
 

Control chart is a valuable statistical process control (SPC) tool used for monitoring the 
process performance. When control chart gives the out-of-control signal, the search initiates 
to identify the sources responsible for the special cause of variation. But control chart does 
not give the exact time when the process change begun. The time when the process change 
appears first in the process called change point. Knowing the change point in the process 
helps to identify the special cause of variation. This article discusses the approach based on 
the maximum likelihood estimator of process change to identify the time of a permanent shift 
in the normal mean with EWMA and MA control charts. 

 
Key words: Statistical quality control; Change point; maximum Likelihood; EWMA control 
chart; Moving average control chart; Average run length. 
 
1. Introduction 

 
Control charts distinguish between the special cause of variation and the common cause 

of the variation in the process. To improve and control the process control charts are widely 
used in the manufacturing industries. Once control chart issues a signal that the special cause 
is present in the process. Process professionals should initiate a search for the special cause of 
the variation which could be quite difficult. The search depends on the professional’s 
knowledge and experience. To quality improvement it is necessary to bring the process back 
into the statistical control. One essential step would help to quality improvement is that 
knowing the starting time the special cause of variation appears first in the process. Once it is 
possible to identify the exact time when the process happens due to special cause of variation 
appears first in the process, there may not be delay finding the occurrence of the special cause 
of the variation in the process. As a result, the special cause of variation can be identified 
more quickly, and the corrective action can be taken to eliminate the sources of the special 
cause of variation which leads to process improvement. 

 
In recent years change point estimation in control charts has received a great deal of 

attention, as the change point estimation procedure simplify the effort to search for and 
identify special causes in statistical process monitoring. Hinkley (1970) considered inference 
about the point in a sequence of random variables at which the probability distribution 
changes. They compared asymptotic distribution of the MLE and likelihood ratio statistic 
with some finite sample distributions. Samuel et al. (1998a) proposed a method of maximum 
likelihood estimator to identify the time of step change in the normal mean with  control 
chart. Samuel et al. (1998b) considered the step change in the normal process variance. 

X
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Samuel and Pignatiello (1998) estimated the change point in the rate parameter of the Poisson 
process. Nedumaran et al. (2000) considered the time of the step change in the multivariate 
process with chi-square control chart. Pignatiello and Samuel (2001a) considered the change 
point in the normal process mean in SPC applications. Pignatiello and Samuel (2001b) 
estimated the step change point in the process fraction nonconforming. They have estimated 
MLE of a change point when a step change occurred in the fraction nonconforming. Park and 
Park (2004) considered the time of step change in the normal process mean and variance 
when  and S control charts used simultaneously. Khoo (2004) determined the permanent 
shift in the process mean with CUSUM control chart. Perry et al. (2005) estimated the time of 
step change in the rate parameter of the Poisson distribution with linear trend and monotonic 
change, respectively. Fahmy and Elsayed (2006) estimated the maximum likelihood estimator 
of the change point when Shewhart control chart is used under linear trend disturbance. Perry 
and Pignatiello (2006) estimated the time of a linear trend change in the normal process 
mean. Perry et al. (2007) considered the monotonic change in the non-conformity level , 
when the process is modeled by binomial distribution. Gazanfari et al. (2008) used clustering 
approach to identify the time of a step change in Shewhart control charts. Noorossana et al. 
(2009) estimated the step change point in the process non-conformity proportion when 
process is modelled by geometric distribution. Dogu and Kocakoc (2011) proposed change 
point model for generalized variance control chart. Zandi et al. (2011) estimated MLE of a 
change point for a linear trend disturbance in the process non-conformity.  

 
There are many situations in which the sample size used for process monitoring is one 

(Montgomery (2012)). An individual control chart is usually used to monitor shifts in the 
process mean when it is not possible to form subgroups. Shewhart individual chart have 
been extensively used in monitoring the process mean. The main drawback of Shewhart
chart is that it uses only information of the last sample observation and ignores the 
information of the process which makes it insensitive to small shifts in process mean. An 
alternative to detect small shifts is to use the memory type chart as like Cumulative sum 
(CUSUM) chart, exponentially weighted moving average (EWMA) chart or moving average 
(MA) chart. These charts consider the past as well as current information about the process, 
which makes charts very sensitive to small shifts in process parameters. Relative to CUSUM 
chart, the EWMA and MA charts are quite basic. The EWMA chart uses a weighted average 
as the chart statistic while the time weighted MA chart is based on simple moving averages. 
Kapase and Ghute (2018) estimated the time of a step change in the normal process mean 
with Tukey’s control chart and individual  control chart and compared both the control 
charts in detecting the occurrence of the special cause in the process. 

  
In this paper, we describe the application of change point estimators to memory type 

control charts namely EWMA and MA control charts based on individual observations using 
an approach developed by Samuel et al. (1998a).  The remainder of this paper is organized as 
follows: In Section 2, change point estimation procedure is given. Section 3 provides the 
details of EWMA and MA charts. In Sections 4 and 5, we analyze the performance of the 
change point estimator for EWMA and MA control charts respectively. Section 6 provides 
numerical examples to demonstrate the use of estimator each with EWMA control chart and 
MA control chart. It is shown that change point estimator works well with EWMA and MA 
control charts.  Some conclusions are given in Section 7.  
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2. Change Point Estimator 
 
It is assumed that the process initially is in-control with a known value of mean  and 

variance . Following an unknown point in time a change in the process mean occurs from 
 to an out-of-control state mean where  is the subgroup size and is 

the unknown magnitude of the change. Here we consider the case of individual observations
. It is assumed that  does not change while shift occurs in . It is 

also assumed that once this step change in the process mean occurs, the process remains at 
the new level of until special cause has been identified and eliminated. 

 
We will consider the process move to the out-of-control state at observation T. This out 

of signal can be obtained when a point is plotted beyond the control limits. Assuming this is 
not a false alarm, this is the point at which process professionals should initiate a search for 
special cause of variation. Let be the observations from the in-control process, 
while  are the observations when the process changed, so that is the point 
where process change happened. This point is point in time when the shift in the process 
mean appears for first time and then process gets changed. Identifying this point in time when 
process change appears for first time the change point estimator works uniquely. 

 
The data with subgroup size , the change point estimator is derived based on the 

method of the maximum likelihood estimator (Samuel et al. (1998) and Khoo (2004)).We 
denote the MLE of the change point as . For given single observations the MLE of  is 
the value of  which maximizes the logarithm of the likelihood function. The probability 
density function of the observation , which follows normal distribution with mean and 
variance . 

 
 

The likelihood function (apart from constant) is 
 

 

(1) 
There are two unknown parameters  and  in the equation (1). If the change point 

is known the MLE of  is . 

Substituting this in the equation (1) follows: 
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It follows that the value of which maximizes the log-likelihood function is 
 

 
 

3. EWMA and MA Control Charts 
 

Assume that  denote independent and identically distributed observations 
with an in-control mean and standard deviation . We assume that both the parameters 
are known. In practice, and are estimated from the observed historical data. The 
EWMA control statistic for individual observations is defined as  

 
, 

 
where is the current observation and is the smoothing parameter. 
The exact control limits for the EWMA chart are 

 

 

where determines the width of the control limits. 
 
The moving average statistic of span  at time for a sequence of observations iscomputed 
as  

 
 

For periods , we compute the average of available observations. In other words, average 
of all observations up to period defines moving average. 
The control limits for the moving average control chart are as follows: 
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4. Change Point Estimator Used with EWMA Control Chart 

 
We consider EWMA control chart to study the performance of the estimator. We used 

Monte Carlo simulation to study the performance of the change point estimator. The change 
point of the process is simulated at observation .The first 100 individual observations 
are randomly generated from standard normal distribution. Then starting from observation 
101, the individual observations are randomly generated from changed process with normal 
distribution with mean  and standard deviation 1 until the EWMA chart gives an out-of-
control signal. At this point  is computed. This procedure is repeated a total number of 

 times for each of the values of  with different 
values of parameters  which has in-control , same as the 
Shewhart control chart and , ,
have in-control ARL0 = 500. The average of the estimates obtained using the estimator from 
the 10,000 simulation runs is computed with their standard error.  

 
Tables 1-4 show , the expected number of observations at which the control chart 

signals a change in the process mean that occurred at time 100. Thus, . We 

show that   the average change point estimate obtained using MLE change point estimator 
with their standard error. 
 
Table 1: Average change point estimates for  and standard errors when used with a 
EWMA control chart, and  
independent simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 123.17 107.16 103.73 102.40 101.75 101.40 

 104.10 99.84 99.87 99.86 99.85 99.88 
 0.2086 0.0532 0.0275 0.0161 0.0111 0.0084 

 
In Table 1, we can see that the expected number of observations required to detect the 

change in the process mean for the magnitude of the shift  is 107.16. The average 
change point estimate is 99.84. Since the change point is simulated at point 100, the average 
change point estimate should be close to 100. For the magnitude of the shift the 
control chart issues signal at 102.40, that of average change point estimate is 99.86 which is 
close to 100.  
 

In Table 2, we can see that the control chart gives out of control signal at 108.16 on an 
average of 10000 simulation trial for the magnitude of the shift . The average change 
point estimate is 99.54 which is close to 100. For the magnitude of the shift the control 
chart issues signal at 101.92 and that of average change point estimate is 99.90. For , 

 and that of the average change point estimate is 99.92 which is again close to 
100. 

wi
i

LCLUCL <±= for3/ 0
0

sµ

100=t

d
t̂

10000=N  3.0 2.5, 2.0, 1.5, 1.0, 0.5,=d
2.0,86.2 == lL 37.3700 =ARL

)05.0,615.2( == lL )1.0,814.2( == lL )25.0,998.2( == lL

)(TE
100)( += ARLTE

t̂

d
100,05.0,615.2,5000 ==== tlLARL 10000=N

d
)(TE

t̂
)ˆ(.. tes

0.1=d

0.2=d

0.1=d
5.2=d

0.3=d
50.101)( =TE



32                                                    R. A. KAPASE AND V. B. GHUTE                         [Vol. 20, No. 2 
 

 
In Table 3, we can see that for the magnitude of the shift  the expected number 

of observations at the point when control chart gives out of control signal at 110.36 on an 
average of 10000 simulation trial. The average change point estimate is 100.09 which are 
close to 100. For the magnitude of the shift the control chart issues signal at 102.08 
and that of average change point estimate is 99.94. For ,  and that of the 
average change point estimate is 99.92 which is again close to 100. 
 

In Table 4, we can see that for the magnitude of the shift  the expected number 
of observations at the point when control chart gives out of control signal at 108.80 on an 
average of 10000 simulation trial. The average change point estimate is 99.85 which are close 
to 100. For the magnitude of the shift the control chart issues signal at 104.32 on an 
average of the 10000 simulation trials and that of average change point estimate is 99.94. For

,  and that of the estimated change point is 99.93 on an average of total 
10000 simulation trial which is again close to 100. 
 
Table 2: Average change point estimates for  and standard errors when used with a 
EWMA control chart, and  independent 
simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 128.61 108.16 104.13 102.64 101.92 101.50 

 105.45 99.54 99.91 99.90 99.90 99.92 
 0.2471 0.0527 0.0258 0.0158 0.0106 0.0076 

 
Table 3: Average change point estimates for  and standard errors when used with a 
EWMA control chart,  and  
independent simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 147.41 110.36 104.8 102.93 102.08 101.62 

 103.03 100.09 99.98 99.91 99.94 99.92 
 0.2235 0.0506 0.0247 0.0142 0.0092 0.0069 

 
 
Table 4: Average change point estimates for  and standard errors when used with a 
EWMA control chart, and  
independent simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 135.00 108.80 104.32 102.71 101.95 101.53 

 103.99 99.85 99.94 99.88 99.91 99.93 
 0.2382 0.0521 0.0251 0.0152 0.01 0.0072 
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The precision of the change point estimator for process mean can be examining the 

probability that within m observations of the exact change point. Table 5 contains the 
results for the case where . For the magnitude of the shift , the 
probability that the change point estimator correctly identified the actual time of change in 
the process mean 9% of the simulation trials. The change point estimator correctly identified 
the actual time of the change time of the change in 45% and 55% of the simulation trials 
within 6 and 9 observations respectively.  

 
It can also be seen that for the value of the shift in the parameter 1.5, the estimator is 

within 2 (6) observations of the actual process change point in 83% (96%) of the simulation 
trials.  For the magnitude of the shift , the probability that the change point estimator 
correctly identified the exact time of change in process mean is 62% of simulation trials. The 
probability that the estimator correctly identified the time of the change within 3 (7) 
observations is 95% (99%) of the simulation trials.  
 
Table 5: Precision of estimator for  when used with EWMA control chart  and 

 and  independent simulation trials 
 

     2.5 3.0 
 0.09 0.27 0.44 0.62 0.75 0.84 
 0.19 0.48 0.71 0.80 0.86 0.96 
 0.26 0.58 0.83 0.85 0.95 0.98 
 0.32 0.67 0.89 0.95 0.97 0.995 
 0.37 0.73 0.93 0.97 0.98 0.997 
 0.41 0.80 0.95 0.98 0.989 0.9987 
 0.45 0.83 0.96 0.987 0.993 0.9989 
 0.49 0.86 0.97 0.991 0.994 0.999 
 0.52 0.88 0.98 0.994 0.995 0.999 

 0.55 0.91 0.987 0.995 0.997 0.999 
 0.59 0.92 0.99 0.997 0.997 1 
 0.61 0.94 0.996 0.999 0.999 1 

 
5. Change Point Estimator Used with MA Control Chart 

 
In this section, we consider MA control chart to study how well the estimator performs. 

As with the EWMA control chart, we used Monte Carlo simulation to study the performance 
of the change point estimator. The change point of the process is simulated at observation

. The first 100 in-control individual observations are randomly generated from 
standard normal distribution. Then starting from observation 101, the individual observations 
are randomly generated from normal distribution with mean and standard deviation 1 until 
the moving average chart gives an out-of-control signal. At this point  is computed. This 
procedure is repeated a total number of  times for each of the values of 

with different values of moving average span . The 
average of the estimates obtained using the estimator from the 10000 simulation runs is 
computed with their standard error.  
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Table 6-8 shows , the expected number of observations at which the control chart 

signals a change in the process mean that occurred at time 100. Thus, . We 

show that   the average change point estimate obtained using MLE change point estimator 
with their standard error. 
 
Table 6: Average change point estimates for  and standard errors when used with MA 
control chart, and  independent simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 256.11 143.70 115.10 106.34 103.23 102.02 

 108.5 100.85 100.18 99.95 99.85 99.82 
 0.251 0.057 0.027 0.018 0.015 0.013 

 
In Table 6, we can see that for the magnitude of the shift  the control chart issues 

signal at 143.70 on an average of 10000 simulation trial. The average change point estimate 
is 100.85 which are close to 100. For the magnitude of the shift the control chart 
issues signal at 115.10 and that of average change point estimate is 100.18. For , the 
expected number to issue a signal from control chart is 102.02. The average change point 
estimate is 99.82. 

 
Table 7: Average change point estimates for  and standard errors when used with MA 
control chart,  and  independent simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 203.58 122.63 107.58 103.62 102.23 101.65 

 109.59 100.93 99.99 99.79 99.73 99.75 
 0.252 0.057 0.031 0.021 0.018 0.016 

 
In Table 7, it is seen that for the magnitude of the shift  the control chart issues 

signal at 107.58. The average change point estimate is 99.99 which are close to 100. For the 
magnitude of the shift the control chart issues signal at 103.62. The average change 
point estimate is 99.79. For , the expected number to issue a signal from control chart 
is 101.65. The average change point estimate is 99.75 which are again close to 100. 
 
Table 8: Average change point estimates for  and standard errors when used with MA 
control chart,  and independent simulation trials 
 

 0.5 1.0 1.5 2.0 2.5 3.0 
 183.63 116.52 105.95 103.15 102.11 101.62 

 109.66 100.79 99.89 99.69 99.71 99.74 
 0.2413 0.0575 0.0319 0.024 0.019 0.017 
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In Table 8, we can see that for the magnitude of the shift  the expected number 
of observations at the point when control chart gives out of control signal at 105.95 on an 
average of 10000 simulation trial. The average change point estimate is 99.89 which are close 
to 100. For the magnitude of the shift the control chart issues signal at 102.11 on an 
average of the 10000 simulation trials and that of average change point estimate is 99.71. For

,  and that of the estimated change point is 99.74 on an average of total 
10000 simulation trial. 
 

We next consider the observed frequency with which the estimator of the time of step 
change is within m observations of the exact change point, for .  This indicates 
the precision of the proposed estimator. This table contains the results for the case where

. For the magnitude of the shift , the precision that the change point estimator 
correctly identified the actual time of change in the process mean 9% of the simulation trials, 
same as EWMA control chart. The change point estimator correctly identified the actual time 
of the change within the 2(6) is 26% and 47% of the simulation trials within the respectively. 
 

It can also be seen that for the value of the shift in the parameter 1.0, the estimator is 
within 3(9) observations of the actual process change point in 68% (91%) of the simulation 
trials. For the value of the shift 2.0 the estimator correctly identified the actual change point is 
61%. The precision of the estimator within the 4(8) observations of the actual change point is 
97% (99%) of the total simulation trials. The precision of estimated time of the change within 
m observations of the actual change point should increase as m increases. 

 
Table 9: Precision of estimator for  when used with MA control chart  and 

and  independent simulation trials 
 

     2.5 3.0 
 0.09 0.27 0.45 0.61 0.75 0.84 

 0.19 0.47 0.70 0.83 0.90 0.93 

 0.26 0.60 0.82 0.92 0.95 0.97 

 0.33 0.68 0.88 0.95 0.97 0.98 

 0.38 0.75 0.92 0.97 0.98 0.984 

 0.42 0.80 0.94 0.98 0.988 0.988 
 0.47 0.84 0.96 0.983 0.990 0.990 
 0.50 0.87 0.97 0.989 0.992 0.992 

 0.53 0.89 0.98 0.991 0.995 0.994 
 0.56 0.91 0.983 0.993 0.996 0.997 
 0.59 0.92 0.986 0.997 0.999 0.999 
 0.61 0.94 0.99 0.999 1 1 

 
6. Examples of Application 
 

This section provides numerical examples to demonstrate the use of estimator each with 
EWMA control chart and MA control chart. The change point estimator works well with 
EWMA and MA control charts.  
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Example-1: EWMA Control Chart 

 
In this example, we consider the data of a production process for forged piston rings 

used in the illustrative example of (Samuel et al., 1998a). The in-control process follows a 
normal distribution with mean 100 and standard deviation 5. Each subgroup has n = 4 
observations. The EWMA control chart with λ = 0.1 and L = 2.703 is considered. From the 
original data of 27 subgroups given in (Samuel et al., 1998a), only the first 20 subgroups are 
required before the EWMA chart signals an out-of-control, since . Table 10 
summarizes the 20 subgroup averages and the corresponding EWMA statistics. 

 
Table 10: Subgroup averages and the corresponding EWMA statistics 

 
Subgroup (i)   UCL LCL 

1 100.45 100.045 101.351 98.648 
2 97.45 100.15 101.818 98.181 
3 102.45 97.95 102.122 97.877 
4 100.675 102.272 102.339 97.660 
5 98.550 100.462 102.502 97.497 
6 102.95 98.990 102.626 97.373 
7 98.825 102.537 102.722 97.277 
8 101.325 99.075 102.798 97.201 
9 103.075 101.5 102.858 97.141 
10 99.600 102.727 102.900 97.094 
11 98.825 99.522 102.943 97.056 
12 97.950 98.737 102.974 97.025 
13 100.425 98.197 102.998 97.001 
14 96.075 99.99 103.018 96.981 
15 101.225 96.59 103.034 96.965 
16 103.075 101.41 103.046 96.953 
17 101.925 102.96 103.057 96.942 
18 101.350 101.867 103.065 96.934 
19 103.575 101.572 103.072 96.927 
20 102.925 103.509 103.077 96.922 

 
Table 11 summarizes the reverse cumulative subgroup averages and Ct values for

 and T = 20. The value of t which gives the maximum Ct value is the estimator 
of the last subgroup from the in-control process. From the results in Table 11, we observed 
that the maximum value of Ctis 32.998 and it happens at t = 15. Thus, it is estimated that 
subgroup 16 is the first subgroup obtained from the shifted process and that subgroup 15 is 
the last subgroup from the in-control process.  

 
However, the EWMA chart enables an out-of-control signal to be detected earlier, i.e., 

at subgroup 20 compared to the time when the chart first detected an out-of-control signal, 
i.e., at subgroup 27 (see Samuel et al., 1998a). 
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Table 11: The computed and the corresponding Ct values 
 

Subgroup (i)  T  Ct 
1 100.45 0 100.634 8.058 
2 97.45 1 100.644 7.891 
3 102.45 2 100.821 12.160 
4 100.675 3 100.726 8.964 
5 98.55 4 100.729 8.511 
6 102.95 5 100.874 11.475 
7 98.825 6 100.726 7.387 
8 101.325 7 100.872 9.900 
9 103.075 8 100.835 8.366 
10 99.6 9 100.631 4.384 
11 98.825 10 100.734 5.394 
12 97.95 11 100.946 8.065 
13 100.425 12 101.321 13.965 
14 96.075 13 101.449 14.703 
15 101.225 14 102.345 32.994 
16 103.075 15 102.569 32.998 
17 101.925 16 102.442 23.863 
18 101.35 17 102.615 20.514 
19 103.575 18 103.2475 21.09251 
20 102.92 19 102.92 8.5264 

 
Example 2: MA Control Chart  
 

In this example, we consider the data of 20 observations coming from normal 
distribution with mean 10 and last 10 observations with mean 11 with common standard 
deviation 1. This data is used in the example of (Montgomery, 2012). The moving average 
control chart with subgroup size is considered. For purpose of the use of the change 
point estimator with given data we take large value of . From the original data of 
30observations given in (Montgomery, 2012), only the first 28 observations are required 
before the moving average chart signals an out-of-control, since Mi>UCL. Table A.1 
(Appendix) summarizes the 28 observations and the corresponding moving average statistics. 
 

Table A.2 shows the reverse cumulative averages and corresponding values of Ct for       
t = 1, 2, …, 27 and T = 28. The value of t which maximizes the value of Ct is the estimator of 
the last observation from the in-control process. From Table A.2, we can observe that at 
observation t = 22 the maximum value of Ct is 6.025. Thus, it is estimated that observation 23 
is the first observation obtained from the shifted process and that observation 22 is the last 
observation from the in-control process. 
 

From this example we can observe the moving average control chart signals out-of-
control at  and that the change point estimator identified the change in the process at

tX  ,20

iX tX ,20
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. This shows that the change point estimator fairly works with moving average control 
chart to identify the out-of-control signal earlier. 

 
 

7. Conclusion 
 

Control charts are used to detect whether or not a process has changed. When a control 
chart detects the shift in a process, process professionals initiate a search to find the special 
causes of variation in the process. When the process gets changed, the process change is not 
usually known to the process professionals. However, the process professionals knew when 
the change started in the process; it will help to provide the scope of the search window at 
what time the process gets changed. Subsequently, it helps to eliminate the sources of the 
special causes. 

 
In this paper, an estimator based on the maximum likelihood estimator method is used 

with EWMA control chart and MA chart to find the step change that occurred in the normal 
process mean. The results show that the change point estimator is helpful to detect the change 
in the process. The EWMA and MA control charts are effective to detect the small shifts in 
the process mean. The change point estimator also performs well to detect the small changes 
with EWMA and moving average control chart. 
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APPENDIX 
 

Table A.1: Averages and the corresponding moving average statistics 
 

Subgroup (i)   UCL LCL 
1 9.45 9.45 13 7 
2 7.99 8.72 12.12 7.88 
3 9.29 8.91 11.73 8.27 
4 11.66 9.722 11.50 8.5 
5 12.16 9.814 11.34 8.66 
6 10.18 9.518 11.22 8.78 
7 8.04 9.853 11.22 8.78 
8 11.46 10.055 11.22 8.78 
9 9.20 10.23 11.22 8.78 
10 10.34 9.708 11.22 8.78 
11 9.03 9.923 11.22 8.78 
12 11.47 10.335 11.22 8.78 
13 10.51 9.991 11.22 8.78 
14 9.40 10.138 11.22 8.78 
15 10.08 9.976 11.22 8.78 

iX iMAverageMoving
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16 9.37 10.241 11.22 8.78 
17 10.62 10.04 11.22 8.78 
18 10.31 9.716 11.22 8.78 
19 8.52 9.956 11.22 8.78 
20 10.84 10.083 11.22 8.78 
21 10.90 10.338 11.22 8.78 
22 9.33 10.123 11.22 8.78 
23 12.29 10.453 11.22 8.78 
24 11.50 10.95 11.22 8.78 
25 10.60 10.91 11.22 8.78 
26 11.08 10.95 11.22 8.78 
27 10.38 10.863 11.22 8.78 
28 11.62 11.245 11.22 8.78 

Source: Montgomery D. C. (2012). Introduction to Statistical Quality Control 
 

Table A.2: The computed and the corresponding Ct values 
 

Subgroup (i)  t  Ct 
1 9.45 0 10.242 0 
2 7.99 1 10.272 0.023 
3 9.29 2 10.36 0.356 
4 11.66 3 10.402 0.639 
5 12.16 4 10.329 0.180 
6 10.18 5 10.336 0.199 
7 8.04 6 10.440 0.858 
8 11.46 7 10.391 0.466 
9 9.20 8 10.451 0.870 
10 10.34 9 10.457 0.874 
11 9.03 10 10.536 1.553 
12 11.47 11 10.481 0.970 
13 10.51 12 10.480 0.899 
14 9.40 13 10.552 1.433 
15 10.08 14 10.585 1.645 
16 9.37 15 10.679 2.475 
17 10.62 16 10.684 2.337 
18 10.31 17 10.718 2.485 
19 8.52 18 10.938 4.832 
20 10.84 19 10.948 4.486 
21 10.90 20 10.962 4.143 
22 9.33 21 10.971 3.715 
23 12.29 22 11.245 6.025 
24 11.50 23 11.036 3.145 
25 10.60 24 10.920 1.834 
26 11.08 25 11.026 1.843 
27 10.38 26 11.000 1.146 
28 11.62 27 11.620 1.896 
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Abstract 

This article discusses A-optimal minimum support designs for the three different forms of cubic 
polynomial mixture models i.e. full cubic, cubic without 3-way effect, and special cubic mixture 

models in three ingredients. The necessary and sufficient conditions for the proposed designs have 

been confirmed by the equivalence theorem.   
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1. Introduction 

The importance of mixture experiments is increasing gradually, because it is utilized in 

many disciplines such as pharmaceutical science, food science, chemical science, and textile 

science, etc. Let us consider a mixture experiment having q  ingredients with mixture 

proportions denoted by ,1x ,2x ..., qx
 
then the factor space consisting of these ingredient 

proportions can be represented by a  )1(q dimensional set   given by 









 


q

i

ii

q

q qixxRxxx
1

21 ...,,2,1,10,1|),...,,(x .                   (1) 

Let the observed response may be represented as )()( xx  y , where )(x  is the 

expected response and )(x  is the random error observed at x . We also assume that )(x  

are i.i.d. random variables with mean 0 and variance 2 . To describe the relationship between 

the response of interest and the ingredient proportions, in any mixture experiment, various 

mixture models have already been introduced in the literature e.g. Scheffè’s canonical 

polynomial models, Becker’s models, log contrast models, etc. Among these models, the 

canonical polynomial models are frequently used for the analysis of mixture data related to 

real-life problems.  

In general, the optimal designs are constructed based on a certain optimality criterion to 

make the predicted response closer to the mean response over a certain region of interest. For 

the pioneering work on optimal designs for mixture experiments, one can refer to the work of 

Kiefer and Wolfowitz (1959), and Kiefer (1961). Afterward, many researchers have put their 

attention towards the discipline of optimal designs for mixture experiments [see Aggrawal et 
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al. (2011), Singh and Panda (2011), Goos and Syafitri (2014), Mandal and Pal (2017), and 

Pal and Mandal (2021), etc.].  

Kiefer (1961) obtained D-optimal designs for Scheffè’s models of degrees one, two, 

and three. For Scheffè’s linear model in q  mixture ingredients, a saturated design that 

assigns a weight q1  to each vertex of the simplex region is a D-optimal design. Again a 

minimum-point design supported by points of }2,{q simplex-lattice with equal mass assigned 

to each support point is D-optimum for Scheffè’s quadratic mixture model. Kiefer (1961) 

obtained the saturated D-optimal designs for the full cubic model, the cubic model without 3-

way effect, and the special cubic model when 3q . Later on, Mikaeili (1989) obtained the 

D-optimal designs for the cubic model without 3-way effect. Farrell et al. (1967) and Lim 

(1990) derived the D-optimal designs for the general cubic polynomial model with two and 

three mixture components respectively. Mikaeli (1993) investigated the D-optimal designs 

for the full cubic model on the set  .  

For Scheffè’s cubic canonical polynomial model in this effect, we see that most of the 

existing works focus solely on D-optimality. However, to date, no research work has been 

done concerning the A-optimal designs for the cubic polynomial models and it was still an 

open problem. The advantage of D-optimal design is that all the support points involved are 

associated with equal weight whereas in the case of A-optimality, the weights associated with 

different support points, in general, are different. Again, the weights vary when the number 

of mixture components varies. Thus, obtaining an A-optimal design for all the different forms 

of cubic mixture canonical polynomial models is comparatively much more complicated in 

comparison to the D-optimal design. In this article, we study the problem of finding A-

optimal minimum support designs for the three different forms of cubic polynomial mixture 

models in three ingredients. 

The article is structured as follows. In Section 2, a brief discussion on the A-optimal 

design and equivalence theorem is presented. Section 3 obtains A-optimal designs for the 

three different forms of the cubic model of mixture experiments i.e. full cubic model, cubic 

model without 3-way effect, and special cubic model when q = 3. The article ends with some 

discussions and conclusions in Section 4.   

 

2. A-Optimal Design and Equivalence Theorem 

Let us consider a regression model of the form  

βxfx )()(  , x ,           (2) 

where )(x denotes the expected response, x  is the input variable, and )(xf  is the 

regression function.     

Again, let us consider an approximate design (Kiefer, 1974) of the following form  
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where (1)x ,..., (m)x  are different design points over   and ir  is the weight assigned to the 

point (i)x , mi ...,,2,1 .  Denote   as the set of all approximate designs with non-singular 

information matrix  

)()()( (i)(i)

1

xfxfM 


m

i

ir  

on  .  

Definition 1: A design *  with an information matrix )(M for model (2) is called A-

optimal design if it minimizes Trace ))(( 1 
M over . 

Definition 2:A minimum support design for any regression model having p parameters is 

supported on exactly p distinct support points [see Goos and Vandebroek (2001)]. 

The following equivalence theorem established by Fedorov (1971) provides the 

necessary and sufficient conditions for the determination of A-optimal design over the 

simplex region  . 

Theorem 1: A design *  is A-optimal for model (2) if and only if  

 


),( *


x
x

dMax  Trace ))(( *1 M         (3) 

where )()()(),( 2
xfMxfx  d . Moreover, the supremum exists at the support point of

.*  

Selection of support points: Kiefer (1961) considered the design a (for 2/10  a ) which 

puts equal mass 
10

1
 on each of the vertices 0,1  kji xxx ; each of the six points

0,1  kji xaxx , and 1x 2x 3/13 x . He proved that the design a  for a

2/)51( 2

1


  is D-optimum for the full cubic model when q = 3. Similarly, he showed that the 

design a (excluding the point 1x 2x 3/13 x ) in which each point is supported by a mass 

9

1
 is D-optimum for the cubic model without 3-way effect in three ingredients for a

2/)51( 2

1


 . Further, he showed that the simplex centroid design which assigns mass 
7

1
 to 

each of the support points is D-optimum for the special cubic model when q = 3. We, 

therefore, propose the following subclasses ( 1D , 2D , 3D ) of designs a to find the minimum 

support A-optimal design. 

 

 



 MAHESH KUMAR PANDA, RUSHI PRASAD SAHOO [Vol. 20, No. 2 44 

 

Model (Subclass) 

 

     1x             2x            3x  Weight 

Full Cubic Model ( 1D ) 

 

 

 

 

( 2/10  a ) 

      1              0              0 

      0              1              0 

      0              0              1 

 

1r  

     a           a1            0 

     a               0          a1  

      0             a           a1  

   a1           a              0 

   a1            0             a  
      0           a1           a  

 

 
 
 
 

2r  

    1/3           1/3           1/3 
3r  

Cubic Model without 3-way 

effect ( 2D ) 

 

 

 

( 2/10  a ) 

     1              0              0 

     0              1              0 

     0              0              1 

1r  

    a           a1             0 

    a              0            a1  

     0             a            a1  

  a1           a               0 

  a1            0              a  
     0          a1             a  

2r  

Special Cubic Model ( 3D ) 

 

 

 

     1              0              0 

     0              1              0  

     0              0              1 

1r  

    a           a1             0 

    a              0           a1  

     0             a           a1  

 

2r  

   1/3           1/3           1/3 
3r  

 

Here we assume that a weight of 1r  is associated with each of the vertices, a weight of 2r  is 

associated with each of the design points axx ji 1 , 0kx (for full cubic and cubic model 

without 3-way effect) and axi  , 0kx (for special cubic), and finally a weight of 3r is 

associated with each of the midpoints of 2-dimensional faces such that the total weights add 

to unity. We can concentrate on the above class of designs because the A-optimality criterion 

is invariant for all three components. Consequently, the optimum design will also be invariant 

w.r.t 1x , 2x , and 3x . 

In the next section, we obtain the A-optimal designs for the three different forms of 

Scheffè’s cubic polynomial model when q =3.  
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3. A-Optimal Designs for Cubic Models for Mixture Experiments 

3.1. Full cubic model 

The expected response for a full cubic model (see Cornell (2002)) can be represented as 

 



kji

kjiijk

q

ji

jijiij

q

ji

jiij

q

i

ii xxxxxxxxxx  )()(
11

111 βxf

 
   (4) 

where )(1 xf and 1β are column vectors of length
6

)2)(1(  qqq
 and are defined by 

 ),(),.(,,...,,,,...,,)( 3131212113121211 xxxxxxxxxxxxxxxxx qqq  xf   

   qqqqqqq xxxxxxxxxxxxx 1242132111 ,...,,),(..., ; 

   qqqqqqqq 121241231131211312211 ,...,,,,...,,,,...,,,,...,, β .  

The non-singular information matrix for the model (4) is given by  

)()()( (i)1(i)1

1

xfxfM 


m

i

ir          (5) 

The next theorem obtains the A-optimal minimum support design for model (4) when q

= 3. 

Theorem 2: For q = 3, the design 1  with support points from {3, 3} simplex-lattice that 

assigns a weight of 0.0612 to the 3 vertices (1, 0, 0), (0, 1, 0), (0, 0, 1); a weight of 0.0933 to 

the 6 points (1/3, 2/3, 0), (1/3, 0, 2/3), (0, 1/3, 2/3), (2/3, 1/3, 0), (2/3, 0, 1/3), (0, 2/3, 1/3); 

and a weight of 0.2567 to the centroid point (1/3, 1/3, 1/3) is the A-optimal minimum support 

design for the full cubic polynomial model with mixture experiments on  .  

Proof: According to the equivalence theorem in equation (3), if 
*  is the A-optimal design 

then the infimum of Trace ))(( 1 M  and the supremum of ),( xd  both exists at the support 

points of
* . Based on this result, we search for support points of A-optimal design i.e. Min 

Trace ))(( 1 M for the full cubic model over the subclass 1D  by considering different values 

of ‘ a ’ subject to the linear constraint that the sum of the weights is equal to 1. 

Let us consider the proposed design a for the full cubic model given in Section 2. The 

inverse of the information matrix of the form (5) for the design a  is 
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and 3I  is the identity matrix of order 3, 3J  is a matrix of order 33  in which each entry is 1, 

31  is a column vector of order 13 , 

























11

11

11

1

0

0

0

gg

gg

gg

A ,      
























11

11

11

2

0

0

0

gg

gg

gg

A ,   

























0

0

0

33

33

33

3

gg

gg

gg

A ,     






















533

353

335

4

ggg

ggg

ggg

A . 

 

Next, the trace of )(1

a
M  is obtained as  

Trace
1

2
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2
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(7) 

Now, the problem becomes minimizing equation (7) subject to the restriction of 

weights 163 321  rrr . To solve this problem, we use the Lagrangian multiplier method 

and set the Lagrangian function as    

 Trace ))(( 1

a
M  163 321  rrr . 
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By taking the partial derivatives of   w.r.t 1r , 2r , 3r , and , and set them equal to 0, 

we get  

 
0

)1(

3054)82)(1()1(3
2

1

22

2
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raa

raaaa 
,       (8) 

06
)132(2

))1(4011(3
2

2

222





 

raaa

aa
,        (9) 

0
729

2

3

 
r

,                    (10) 

163 321  rrr .                  (11) 

The algebraic derivations for solving equations (8) – (11) are lengthy and tedious, thus 

we numerically compute possible optimal values of 1r , 2r , 3r (rounded off to the fourth place 

of the decimal) and the corresponding value of Trace ))(( 1

a


M for different values of a , 

which are tabulated in Table 1. 

Table 1:Trace ))(( 1

a


M  and corresponding weights of full cubic model for different 

values of a  

 

a  
1r  2r  

3r  Trace ))(( 1

a


M  

0.01 0.1581 0.0853 0.0137 3.8758 
610  

0.05 0.1407 0.0854 0.0654 170599.0 

0.10 0.1213 0.0856 0.1224 48687.3 

0.20 0.0902 0.0867 0.2095 16614.4 

*0.28 0.0724 0.0891 0.2484 11819.3 

**0.33 0.0612 0.0933 0.2567 11061.0 

0.40 0.0471 0.1048 0.2297 13817.8 

0.45 0.0306 0.1248 0.1591 28810.3 

0.49 0.0080 0.1557 0.0419 414412.0 

*Corresponding D-optimal design, 




















...276.0
2

51 2/1

a

 
* *Simplex lattice design (a = 1/3)  

From Table 1, we observe that the support points of simplex lattice design i.e. 1  are 

the possible support points of the A-optimal design for the full cubic model. 
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The next step is to prove the necessary and sufficient condition i.e.
x

Max ),( 1xd

Trace ))(( 1

1 
M has been established as (A1) in Appendix A. In this case, we obtain the value 

of )( 1

1 
M  by substituting a = 1/3 in equation (6). 

We now obtain the A-optimal design for the cubic model without 3-way effect.  

3.2.   Cubic model without 3-way effect 

The expected response for a cubic model without 3-way effect (see Cornell (2002)) is 

as follows:  





q
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jijiij

q
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jiij

q

i

ii xxxxxxx )()(
11

222  βxf               (12) 

where )(2 xf and 2β are column vectors of length
2q  and are defined by 

 ),(),(,,...,,,,...,,)( 3131212113121212 xxxxxxxxxxxxxxxxx qqq  xf   

   )(..., 11 qqqq xxxx  

   qqqqq 1131211312212 ,...,,,,...,,,,...,, β . 

The non-singular information matrix for the model (12) is given by  

)()()( (i)2(i)2

1i

i xfxfM 


m

r                   (13) 

In the next theorem, we obtain an A-optimal minimum support design for the model 

(12) when q = 3. 

Theorem 3: For q =3, the design 2 with support points from the corresponding D-optimal 

design that assigns a weight of 0.0980 to the vertices (1, 0, 0), (0, 1, 0), (0, 0, 1); a weight of 

0.1177 to the 6 points ( a , 1- a , 0), ( a , 0, 1- a ),(0, a , 1- a ), (1- a , a , 0), (1- a , 0, a ),(0, 1 

- a , a ), with a 2/)51( 2

1


 is the A-optimal minimum support design for the cubic 

polynomial model without 3-way effect on  .  

Proof: Following the similar arguments in Theorem 2, we search for support points of A-

optimal design i.e. Min Trace ))(( 1 M for the cubic model without 3-way effect over the 

subclass 2D . Here we consider the proposed design a for the cubic model without 3-way 

effect given in Section 2. The inverse of the information matrix of the form (13) for the 

design a  is  
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which is again a submatrix of the information matrix in equation (6). Next, the trace of 

)(1

a
M  is obtained as  

Trace
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222

11

)132(

)1)1(()21(3)3)1(6(
))((

rraaa

raaaraa
a




 M .             (15) 

Now, the problem becomes minimizing equation (15) subject to the restriction of 

weights 163 21  rr . To solve this problem, we use the Lagrangian multiplier method and 

set the Lagrangian function as    

 Trace ))(( 1

a


M  163 21  rr  

By taking the partial derivatives of   w.r.t 1r , 2r , and , and set them equal to 0, we 

get  

03
)1(

)1)1((3
2

1

22

22
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aa
,                 (16) 

06
)132(
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2

222







raaa

aa
,                 (17) 

163 21  rr .                   (18) 

Next, by solving equations (16) – (18), we numerically compute possible optimal values of 1r

, 2r (rounded off to the fourth place of the decimal) and the corresponding value of Trace

))(( 1

a


M for different values of a , which are tabulated in Table 2. 

Table 2:Trace ))(( 1

a


M  and corresponding weights of cubic model without 3-way effect 

for different values of a  

a  
1r  2r  Trace ))(( 1

a


M  

0.01 0.1372 0.0980 541681.0 

0.05 0.1337 0.0998 24850.5 

0.10 0.1285 0.1024 7539.0 

0.20 0.1142 0.1096 3072.7 

*0.28 0.0980 0.1177 2708.1 
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**0.33 0.0815 0.1259 3194.5 

0.40 0.0560 0.1387 5866.4 

0.45 0.0310 0.1512 18037.5 

0.49 0.0067 0.1633 375443.0 

*Corresponding D-optimal design, 




















...276.0
2

51 2/1

a

 
** Simplex lattice design (a = 1/3) excluding the centroid   

From Table 2, we observe that the support points of the corresponding D-optimal 

design i.e. 2  are the possible support points of the A-optimal design for the cubic model 

without 3-way effect. 

The next step is to prove the necessary and sufficient condition i.e.
x

Max ),( 2xd

Trace ))(( 2

1 
M has been established as (A2) in Appendix A. In this case, we obtain the 

value of )( 2

1 M  by substituting a =0.276393 in equation (14). 

In the next part, we obtain the A-optimal minimum support design for a special cubic 

model.  

3.3.  Special cubic model   

The expected response for the special cubic model (see Cornell (2002)) is as follows:  
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where )(3 xf and 3β are column vectors of length
6

)5( 2 qq
 and are defined as 

   qqqqqq xxxxxxxxxxxxxxxxxx 1242132113121213 ,...,,,,...,,,,...,,)(xf ; 

   qqqqqq 1212412311312213 ,...,,,,...,,,,...,, β . 

The non-singular information matrix for the model (19) is as follows:  

)()()( (i)3(i)3

1

xfxfM 


m

i

ir                   (20) 

The next theorem obtains the A-optimal minimum support design for the model (19) when q

= 3. 

Theorem 4: For q = 3, the weighted simplex-centroid design 3  that assigns a weight of 

0.0546 to the vertices (1, 0, 0), (0, 1, 0), (0, 0, 1); a weight of 0.1629 to the barycentre of 

depth 1 i.e.(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2); and a weight of 0.3476 to the centroid 

point (1/3, 1/3, 1/3) is the A-optimal minimum support design for the special cubic 

polynomial model with mixture experiments on  .  
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Proof: Following the similar arguments in Theorem 2, we search for support points of A-

optimal design i.e. Min Trace ))(( 1 M for the special cubic model over the subclass 3D . 

Here we consider the proposed design a for the special cubic model given in Section 2. The 

inverse of the information matrix of the form (20) for the design a  is  
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Next, the trace of )(1

a
M  is obtained as  

Trace
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To minimize equation (22) subject to the restriction of weights ,133 321  rrr we set the 

Lagrangian function as    

 ))((Trace 1

a  M )133( 321  rrr  
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Now, taking the partial derivatives of    with respect to 1r , 2r , 3r  and  , and set them 

equal to 0, we get  

0
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Next, by solving equations (23) – (26), we numerically compute possible optimal values of 1r

, 2r , 3r (rounded off to the fourth place of decimal) and corresponding value of Trace

))(( 1

a


M for different values of a , which are tabulated in Table 3. 

Table 3:Trace ))(( 1

a


M  and corresponding weights of special cubic model for different 

values of a  

 

a  
1r  2r  

3r  Trace ))(( 1

a


M  

0.01 0.1818 0.1474 0.0124 4.69727
610  

0.05 0.1650 0.1483 0.0601 201592.0 

0.10 0.1455 0.1495 0.1149 55204.2 

0.20 0.1111 0.1527 0.2086 16758.6 

0.28 0.0891 0.1556 0.2657 10322.6 

0.33 0.0753 0.1580 0.2998 8106.8 

0.40 0.0627 0.1608 0.3294 6716.7 

0.45 0.0567 0.1623 0.3429 6199.2 

*0.50 0.0546 0.1629 0.3476 6033.5 

* Simplex centroid design and corresponding D-optimal design (a = 1/2) 

From Table 3, we observe that the support points of simplex centroid design i.e. 3  are 

the possible support points of the A-optimal design for the full cubic model. 

The next step is to prove the necessary and sufficient condition i.e.
x

Max ),( 3xd

Trace ))(( 3

1 M has been established as (A3) in Appendix A. In this case, we obtain the value 

of )( 3

1 M  by substituting a = 1/2 in equation (21). 
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4. Discussions and Conclusions 

In comparison to D-optimal designs for models for mixture experiments, obtaining A-

optimal designs for models with mixture experiments involves more challenges, as the 

support points in general, are associated with different weights. The present article obtains A-

optimal minimum support designs for the three different forms of the cubic model of mixture 

experiments when the mixture involves three ingredients. We find that the design points of 

{3, 3} simplex- lattice and simplex-centroid designs are the support points of the obtained A-

optimal designs for the full cubic and special cubic models respectively. In the case of the 

cubic model without 3-way effect, the support points of the corresponding D-optimal designs 

are the support points of A-optimal designs. One may apply this result to the case of mixture 

experiments having q 4 ingredients. Of course, the task may be complicated for computing 

the inverse of the information matrix. 
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where 

106111 b ,                 2b 10794.5,                 3b 129898,                    4b  730343, 

5b  97276.5,            6b 2.67057 610 ,       7b 1.33528×106,           8b 289304 , 

9b 2.04729×106,      10b 473639,                11b 380398,                   12b 9.93829×106, 

13b 4.81873×107. 

By using Matlab, the value of ),( 1xd , at all the support points can be seen to be is 

equal to Trace ))(( 1

1 
M = 11061. Again using the standard maximize function in Matlab, we 

find that 




),( 1


x
x

dMax 11061                  (A1) 

over the simplex region  . Thus equivalence theorem is verified and this proves Theorem 2.  

Proof of Theorem 3: 
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1c 2708.1,                2c 18961,                  3c 153524,               4c 40643.2, 

5c 451458,               6c 902917,               7c 60953.9,             8c 230319,  

9c 169365,              10c 508094. 

By using Matlab, the value of ),( 2xd , at all the support points can be seen to be is 

equal to Trace ))(( 2

1 
M = 2708.1. Again using standard maximize function in Matlab, we 

find that  
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over the simplex region  . Thus equivalence theorem is verified and this completes the proof 

of Theorem 3.  

Proof of Theorem 4: 
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where 

1a  6033.45,     2a  8714.99,             3a 81138,                  4a  337960, 

5a 201717,       6a 1.26788×106 ,      7a 5.80653×106,       8a 2.83064×107. 

By using Matlab, the value of  ),( 3xd at all the support points can be seen to be is 

equal to Trace ))(( 3

1 M = 6033.5. Again using the standard maximize function in Matlab, 

we find that  
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over the simplex region  . Thus equivalence theorem is verified and this proves Theorem 4.  





Corresponding author: H. J. Patel 
Email: harshil.dare421@gmail.com 

Statistics and Applications {ISSN 2454-7395(online)} 
Volume 20, No. 2, 2022 (New Series), pp 57-71 
 

A Stochastic Modeling of a Monthly Rainfall of Hillsborough 
County Using Frechet Distribution 

H. J. Patel and M. N. Patel 
Department of Statistics, School of Sciences, Gujarat University, 

Ahmedabad-380009, Gujarat, India 

Received: 16 May 2021; Revised: 06 August 2021; Accepted: 08 August 2021 

Abstract 

In this paper we investigate the prediction problem for the monthly rainfall of 
Hillsborough County at United States of Florida by Markov chain model. We have used the 
monthly rainfall data from January 1915 to June 2016. Then the data is divided in 11 states 
and hence, 11 x 11 transition probability matrix (TPM) is prepared. The truncated Frechet 
distribution is used for the data in each state. To estimate the parameter of the distribution, 
method of moment and Bayes estimation are used. Using the estimate of the parameter in 11 
states prediction method is developed based on Markov chain approach. To validate the 
proposed method, we have simulated the monthly rainfall for the same period of the original 
data and the results are compared. The simulated results come out almost similar to the 
original data. To predict monthly rainfall for future 5000 and 10,000 months a simulation 
study is also carried out and the results are shown. 

Key words: Markov chain; Truncated Frechet model; Rainfall; Bayes estimation; Simulation. 

1. Introduction 
 

There will be a high impact of advancement in human necessity on natural events such 
as rainfall, temperature, precipitation, wind flow et cetera. Since decades there was a very 
complex pattern observed in climate change which was difficult to predict the parameters by 
the meteorologists or the hydrologists. There is still an intense scope of research is available 
in hydrology and meteorology. The hydrological data mainly consists of water and its 
application such as precipitation, rainfall, humidity level and water storage level of the dam. 
A rainfall is the one of the natural sources for getting water for drinking, agriculture and 
industrial use purpose. 

The analyses of hydrological and meteorological data have a great importance amongst 
the scientists and researchers. Researchers must ensure the collection of hydrological data 
should be efficient and effective which meet the requirements (Stewart, 2015). A data from 
hydrological networks is used by public and private sectors for variety of applications like 
designing, operating and maintaining the multipurpose water management systems (USGS, 
2006). Three essential elements of life are fresh water, food and house. The data related to 
rainfall, precipitation, temperature, humidity, wind speed is essential for the planning of any 
hydrological event. Analysis of rainfall data found useful in cropping pattern, providing 
drinking water and construction of roads, dams, bridges and culverts. Such analysis will 
provide useful information to farmers, water resources planner and engineers to assess the 
availability and requirement of storage of water.  
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There are multiple research studies have been done on rainfall data and its analysis. The 
analysis of dry and wet spells received a special attention of many scientists, which is another 
aspect of the rainfall analysis. Singh and Ranade (2009) analyzed wet and dry spells and their 
extremes across India. Harsha (2017) describes the analysis of rainfall data in Mangalore. 
The classical procedure is being used for the analysis of rainfall data. To test the random 
fluctuations and the presence of climate changes in the yearly rainfall data run test and 
Kolmogorov-Smirnov two sample tests are used. G. Di Baldassarre et al. (2006) have used 
the generalized extreme value distribution to analyze rainfall extremes of northern central 
Italy based on L-moments and investigate its statistical properties. Nyatuame et al. (2014) 
have performed the statistical analysis for the monthly and yearly rainfall data of Volta 
region, Ghana using Latin squared design and analysis of variance. For trend analysis of 
rainfall data the linear regression model is used. Arvind et al. (2017) has performed statistical 
analysis for a rain gauge station in Trichy district. They studied various statistical 
distributions to analyze the rainfall data.  

Not significant work has been done for the statistical analysis using stochastic process 
Markov chain modeling under various types of distribution, which motivate us to consider 
this kind of research. 

We have used monthly rainfall data of Hillsborough County (latitude 27°54'36.00" N 
and longitude -82°20'60.00" W) at United States of Florida is considered for the period of 
January 1915 to June 2016. The data is taken from the pertinent website: 
https://www.swfwmd.state.fl.us/resources/data-maps/rainfall-summary-data-region.  A 
separate spread sheet is available for the monthly rainfall data. Then the monthly rainfall data 
of Hillsborough County was concatenated for the period of January 1915 to June 2016 from 
that web page. 

In hydrological research studies multiple statistical approaches have been applied for 
the estimation. The objective of this study is to develop a statistical model based on Markov 
chain to estimate and predict the month wise rainfall of the mentioned time period. The span 
of the rainfall data used is 0.00 to 19.06 mm. To consider the analysis based on the Markov 
chain we have bifurcated the data into some small numbers of intervals which we called the 
states of the Markov chain. 11 states are prepared from the data and which are shown in 
Table A.1. 

In Section 3, a transition probability matrix for a Markov chain model is prepared. The 
truncated Frechet distribution is considered for the rainfall of each states and the estimate of 
the parameter of the distribution is obtained using the method of moments in Section 4. In 
Section 5 we have used a Bayesian approach to estimate the parameter of the distribution. A 
simulation study is considered in Section 6. A detailed algorithm is prepared for estimation 
and prediction of present and future rainfall data. Discussion about the estimated results is 
provided in Section 7. The conclusion is presented in the Section 8. 

2. Model Creation 
 

The rainfall of the Hillsborough lies between 0.00 mm to 19.06 mm from the period of 
January 1915 to June 2016 is taken. For the Markov chain model the determination of states 
is the first aspect. The states should non-overlapping subsets of entire data. Based on the 
range of our data we have constructed 11 subsets such that each subset possesses sufficient 
numbers of observations. Looking at the data we have considered the subsets having different 
length. These subsets we considered as states of our Markov chain model, which are 
displayed in Table A.1. 
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3. Markov Chain Model 
 

A discrete parameter Markov process is known as a Markov chain. Here time space is 
considered as discrete. The Markov chain models are much valuable mechanism in stochastic 
process, which also indicates that when present value is known then the historical and future 
values are independent. Sericola (2013) mentioned that the present state of the procedure is 
known then the best future prediction can be made using very less parameters of Markov 
chain model. 

 
Mahanta et al. (2019) applied Markov chain model for the daily temperature data of 

Dhaka and Chittagong stations of Bangladesh. The Markov chain model have been used as a 
process to search its reliability and obtain failure free operational process for long term period 
can be established specifically for sugar mills by Sharma and Vishwakarma (2014). Zakaria 
et al. (2019) have used the Markov chain model based on the initial state as well as transition 
from one state to another state for the forecasting pattern of the air pollution index of Miri, 
Sarawak. 
 

Jain (1986) have also implemented the Markov model for the seasonal variation in 
patients who are suffering from asthma. Zhou et al. (2018) proposed a Markov chain model 
which provides prediction of daily bike production and attraction of stations with better 
predictive accuracy based on the daily data collected from Zhongshan city. Al-Anzi and 
AbuZeina (2016) have provided the hidden Markov Models (HMM) can be used for the 
natural language processing (NLP) applications. Patel and Patel (2020a, 2020b, 2021) have 
considered a first order Markov chain model for the prediction of daily high temperature and 
daily low temperature. 

 
In this study, the 101 years of monthly rainfall of the Hillsborough County is being 

considered in millimeter (mm). A data of 1218 (=N) observations is taken for the creation of 
Markov chain model.  

 
Let Zt, t = 1, 2, ..., N be the rainfall for the month t, and the states are U1, U2, U3 ... U11.  

 
If P[Zt+1 = Uj | Z1 = U1, ..., Zt-1 = Ut-1, Zt = Ui] = P[Zt+1 = Uj | Zt = Ui], then such model 

is called first order Markov chain model with 11 states. Here, P[Zt+1 = Uj | Zt = Ui] is 
independent of time t. This transition probability is denoted by pij, i,j = 1, 2, ... ,11, which 
denotes the probability that the monthly rainfall is on any month will belong to state Uj, given 
that it was in the state Ui a month before. Thus, 11 × 11 TPM, M = [mij] is prepared.  

 
The transition frequency from state Ui to Uj denotes the total number of months having 

rainfall in state Uj from the rainfall of earlier month in state Ui. Such transition frequencies 
are calculated for each state and hence, transition frequency matrix is prepared which is 
shown in Table A.2. 

 
Using the transition frequency matrix a transitional probability matrix (TPM) is 

obtained, dividing by row total of each row to its cell values. Then the value of (i, j)th cell is 
called transition probability of jth state from ith state. The TPM is given in Table A.3. The 
cumulative TPM is provided in Table A.4. 
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4. Truncated Frechet Distribution for Monthly Rainfall  
 

Very limited research work has been done about the analysis of the hydrological data 
using Markov chain approach along with statistical distribution. Various types of statistical 
distributions like exponential distribution, Weibull distribution, Gamma distribution, extreme 
value distribution, Frechet distribution are used to analyze the data related to meteorological 
data like temperature, as well as hydrological data like rainfall, wind flow, water storage 
capacity and precipitation. Patel and Patel (2020 a, 2020 b, 2021) have considered the 
truncated exponential distribution and generalized exponential distribution for the analysis of 
the data related to daily low and high temperature of the Ahmedabad, Gujarat, India. 

 
In this paper we have considered Truncated Frechet distribution to analyze the monthly 

rainfall data the Hillsborough County. Frechet distribution is named after a French 
mathematician Maurice Rene Frechet, who developed it in 1920 as a maximum value 
distribution. Frechet distribution is a special case of generalized extreme value distribution 
which is also named as extreme value type II distribution. This distribution is also referred as 
inverse Weibull distribution. Kotz and Nadarajah (2000) describe this distribution and 
discussed its various application in different fields such as rainfall, wind speeds, track race 
records, natural calamities and so on. Ramos et al. (2017) have presented the parameter 
estimation for the Frechet distribution in the presence of cure fraction.  

 
Recently Ramos et al. (2020) have considered various methods of classical and 

Bayesian estimation of the parameters of the Frechet distribution. They have described the 
application of this distribution for five real data sets related to the minimum flow of water on 
Piracicaba river in Brazil. 
 
The probability density function (pdf) of Frechet distribution: 

g (x, ∝) =	∝
"
(#
$
)%&%∝𝑒%(

!
")
#∝

; ∝> 0; 𝜎> 0; x > 0.     (1) 
 

We have used truncated Frechet distribution to analyze the monthly rainfall data considering 
𝜎=1 in equation (1). 

g (x, ∝) =∝ 𝑥%&%∝𝑒%##∝; ∝> 0; 𝜎> 0; x > 0.               (2) 
 

From equation (1) the pdf of truncated Frechet distribution whose range lies between a and b 
is obtained by:  
   g	(x,	∝)	= )	(+,			∝)

-(.,			∝)%	-	(/,			∝)
	,	0	<a	<	x	<	b, x > 0; ∝> 0.             (3) 

 
where 𝐹	(𝑥, ∝) = 𝑒%##∝ can be represented as and the equation (3) can be re-written as 
 

   g	(x	|a	<	x	<	b)	=∝	##%#∝0#!
#∝

0#&#∝%	0#'#∝
	,a	<	x	<	b, x > 0.   (4) 

 
The cumulative distribution function for Frechet distribution is represented as follows: 
 

   G	(x	|a	<	x	<	b)	=0#!
#∝
%	1	(/)

1	(.)	%	1	(/)
	,	a	<	x	<	b    (5) 
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Mean of the truncated Frechet distribution is given by  

    E(X)	=	
2(&%	%∝)

0#&#∝%	0#'#∝
      (6) 

 
The value of ∝j is estimated by using the method of moment by equating the observed 

mean with the mean of the truncated Frechet distribution of the jth state, for j = 1, 2, ... , 11. 
The moment estimates of the parameters of 11 states are shown in Table A.5.  For fitting of 
the truncated Frechet distribution in each state, the chi-square test of goodness of fit is 
performed and found that the p-values for each state appeared as > 0.05.  The graph of state 
wise observed and expected frequencies is given below. Based on the Figure B.1 we also 
confirm that the Frechet distribution works well for the monthly rainfall data of each state. 

 
5. Bayes Estimation 
 

The Bayesian method has been applied to assess the parameters of a hydrological 
model. The Bayesian method also provides an estimate of uncertainty of model parameters by 
using prior probability distribution of the parameters. Rainfall data contains significant 
uncertainty, the Bayesian method has been used by several researchers to consolidate rainfall 
uncertainty in model calibration (Sun et al. (2017)). Engeland and Gottschalk (2002) have 
used Bayesian approach for estimation of parameters in a regional hydrological model for 
NOPEX area in southern Sweden. Badjana et al. (2017) have used Bayesian approach to 
investigate the long term trend in annual rainfall, annual rainfall duration and annual 
maximum rainfall for seven stations at Kara river basin, West Africa. The trend analysis was 
performed by fitting the Log normal, Normal and Generalised extreme value distribution to 
the annual rainfall data. 

 
The similar type of research work around Bayesian analysis and statistical modeling 

can be found in, for example, Fortin et al. (1997), P.H.A.J.M Van Gelder (1996) and 
Noortwijk et al. (1998).  Morita (1993) has applied the Bayesian estimates as the 
symptomatic tool for the clinical practice. Various priors of the Bayes estimators based on the 
power law distribution, of the double Gamma-Exponential distribution has the minimum 
posterior standard error as well as minimum Akaike's Information Criteria (AIC) and 
Bayesian Information Criteria (BIC) by Sultan et al. (2014). 
 

Verma et al. (2019) has proved that Bayesian technique is quite helpful if any prior data 
information is available, which reduces the variability for making the effective clinically 
meaningful decisions.  
 

In this section Bayes estimates of the parameters of truncated Frechet distribution under 
squared error loss function are derived for 11 states. The prior distribution for the jth state is 
considered as exponential distribution with mean 𝜃j having pdf  
 

𝜋3(∝j)=	
&
4(
𝑒	
#	∝(
*( ;	αj>	0,	θj>	0, j = 1,2, … ,12.     (7) 

 
That is ∝j ~ Exp (mean 𝜃3), j = 1,2, … ,12.                (8) 
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The likelihood function based on the observations 𝑥&3, 𝑥53, … 𝑥6(	( of the jth state is given by 
 

L	(𝑥	|	∝j)	=	∏
∝(#+(

%#∝( 			0#!+(
#∝(

0#&
#∝(%	0#'

#∝(
6(
78&        (9) 

 
Using likelihood function and prior distribution, the posterior distribution of θj for jth state is 
obtained as: 
 
h	(∝j	|	𝑥)	~	L	(𝑥	|	∝j)	𝜋(∝j)	
 

     =
	∝(

,(∏ #+(
#∝(

,(
+-% 0#∑ !+(

#∝(,(
+-%

(0#&
#∝(%	0#'

#∝(),( 	∏ #+(
,(
+-%

 &
4(
𝑒	
#	∝(
*(                                                           (10) 

 

     ~
%
*(
	∝(

,(0#(	∑ 012!+(	3	
%
*	)

,(
+-% ∝(0#∑ !+

#∝(,(
+-%

(0#&
#∝(%	0#'

#∝(),( 	
, θ3> 0                          (11) 

Under squared error loss function the Bayes estimator of θj is nothing but mean of its 
posterior distribution.  
 
That is, ∝:@;/<0=

		=	Eh	(∝j	|	𝑥),	j	=	1,2,	…	,11.                (12) 

 

∝:@;/<0=
	=	∫

%
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	∝(

,(3%0#(	∑ 012!+(3	
%
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(
+-% 	∝0#∑ !+

#∝(,(
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?
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where 
 

 𝑘 = ∫
%
*(
	∝(

,(0#(	∑ 012!+(	3	
%
*	)

,(
+-% ∝(0#∑ !+

#∝(,(
+-%

(0#&
#∝(%	0#'

#∝(),( 	
𝑑𝛼3

?
@  

 
is a function of 𝑥, independent of ∝j.  
 

Here Bayes estimate cannot be simplified and obtained in a closed form. So, we use the 
important sampling method, proposed by Kundu et al. (2009).  
We rewrite the posterior distribution of ∝j as  
 

h	(∝:@;/<0=
|	𝑥)	=	Gamma	(nj	+	2,	∑ 𝑙𝑜𝑔 𝑥37 +	

&
4(

6(
78& )𝜔(𝛼3)																											(14)	

 

where  𝜔S𝛼3T =
0#∑ !+

#∝(
+-%

4	(0#&#∝%	0#'#∝),(
                                                              (15) 

 
Using important sampling the Bayes estimates of the ∝j can be obtained by following 
algorithm: 
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Step 1: Generate ∝j from Gamma (nj + 2, ∑ 𝑙𝑜𝑔 𝑥37 +	
&
A(

6(
78& ) distribution. 

Step 2: Repeat the above steps S=1000 times to generate (∝j1, ∝j2, … ∝jS). 
Step 3: Compute the S values of 𝜔S𝛼3T using the values of ∝j in Step 2. 
Step 4: The Bayes estimate of parameter ∝j is given by 
 

                                 ∝:@;/<0=
 = 

∑ ∝(+
5
+-% ∗	DEF(+G
∑ DEF(+G5
+-%

 

 
The values of the Bayes estimates of the parameters obtained for all the states are given in 
Table A.6. 
 
6. Simulation and Prediction 
 

In this section we check the performance of the proposed methods of prediction. We 
consider a simulation to check whether the simulated results are approximately accurate to 
the original data or not. To estimate the monthly rainfall, the moment estimates and Bayes 
estimates of the parameters of the 11 states are used. 
 
6.1. Simulation algorithm 
 

The simulations algorithm steps are mentioned below: 
1. Let us consider the initial state as the state observed for the first value of the rainfall data. 

say j (j = 1, 2, 3, … 11). Generate the uniform random number from uniform distribution 
U (0, 1), say rnx. 

2. To decide the next state, say l, the random value (rnx) is compared with the cumulative 
transition probabilities of the state j, till the random value (rnx) outstrip the cumulative 
transition probability of the state. 

3. Let us consider the relevant values of a parameter for l-th state from Table A.6. 
4. Insert the value of a parameter in the cumulative distribution function of truncated 

Frechet distribution. 

F(x	|	aj<	x	<bj)	=	
∝(#

#%#∝(0#!
#∝(

0#&
#∝(%	0#'

#∝( ,	j	=	1,2,	…	,	11.                         (16) 

Here (aj, bj) are the lower and upper limits of the jth state respectively. Replace F(x	|	aj<	x	
<bj)	by	the random number between 0 to 1 in Equation (16). 
5. Solving the Equation (16) we get the estimate of rainfall for next month.  
6. Continue the step 1 to step 6 by considering initial state j=l till we have 1218 estimated 

rainfall values.  
 

In similar manner,  prediction for future monthly rainfall is being done using the above 
steps considering the initial state j as the state of the last rainfall value of the data. The 
simulation is continuing for next 5000 and 10,000 months.  The estimation is carried out for 
the monthly rainfall of the Hillsborough County of the same period from January 1915 to 
June 2016 under the proposed methods. The average rainfall obtained from both the methods 
reflect almost close to each other. 
 



 H.J. PATEL AND M.N. PATEL [Vol. 20, No. 2  64 

The simulated results obtained from moment estimates and Bayes estimates, the 
descriptive statistics (minimum, maximum, average and standard deviation) are presented in 
Table A.7.  A comparison of state wise frequencies obtained through the proposed methods is 
made with frequencies obtained based on the actual data. The results are shown in the Table 
A.8 and Table A.9. The prediction is being carried out for the future months. Using 101 years 
of monthly rainfall data of Hillsborough County the next 5000 and 10,000 months of rainfall 
can be predicted through method of moments and Bayes estimation. 
 

A prediction is being made for number of months and percentage for the rainfall, higher 
than 0.50mm, 2.00mm, 4.00mm, 7.00mm,  9.00mm and 11.00mm as well as the numbers of 
months having rainfall below 0.50mm, 2.00mm, 4.00mm, 7.00mm,  9.00mm and 11.00mm of 
Hillsborough County (refer Table A.10 and Table A.11). 
 
7. Results and Discussion 
 

The state wise frequency obtain from the method of moments (MOM) and Bayes 
estimation are almost near to the actual data. Prediction made by method of moments is 
almost similar to the results obtained under the Bayes estimation. The prediction done under 
the proposed methods are near to actual value which reveals that the prediction based on 
truncated Frechet distribution under the Markov model is appropriate. 
 

Based on Table A.8, The state wise frequency and percentage results achieved thorough 
both these methods are completely identical to each other. The outcome obtained through 
method of moments and Bayes estimation for most of the states are very much similar in 
frequency and percentage values of the observed data.  

The Table A.10 and Table A.11 exhibits that there are approximately 95% chances of 
having < 11.00mm rainfall during the next 5,000 and 10,000 months. In a similar way there 
are only around 5% probability of having > 11.00mm rainfall during the next 5,000 and 
10,000 days. 
 
8. Conclusion 
 

In this paper we have analysed monthly rainfall data of Hillsborough County at United 
states of Florida. The overall data is divided into 11 states. We have applied the truncated 
Frechet distribution for the monthly rainfall data for each state. Two types of approaches 
have been jointly used viz: 1. Markov chain model and 2. Distribution theory approach. To 
estimate the parameters of the distribution we have used method of moments and method of 
Bayes estimation. In case of the Bayes estimation important sampling is used to estimate the 
parameters. Simulation study is considered to judge the performance of the proposed methods 
and for prediction of future monthly rainfall. The models work good for estimation and 
prediction of the monthly rainfall. This work may be useful to water resource management to 
take precautionary steps in advance on the basis of future predictions. 
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Appendix A 

Table A.1: States for rainfall of Hillsborough 
 

States Rainfall 
1  0.00--0.50 
2 0.51--1.00 
3 1.01--1.50 
4 1.51--2.00 
5 2.01--3.00 
6 3.01--4.00 
7 4.01--5.50 
8 5.51--7.00 
9 7.01--9.00 
10 9.01--11.00 
11 11.01--19.06 

 
Table A.2: Transition frequency matrix for rainfall of Hillsborough 
 

i       j 
Transition frequency Row 

Total 1 2 3 4 5 6 7 8 9 10 11 
1 10 9 13 5 14 13 6 5 4 0 0 79 
2 11 9 14 6 12 14 7 9 7 2 2 93 
3 8 16 12 19 14 13 10 5 3 0 1 101 
4 8 13 7 15 19 12 14 7 6 2 0 103 
5 15 17 14 13 30 23 19 11 9 6 5 162 
6 8 12 11 13 18 16 18 19 6 7 5 133 
7 7 9 10 17 16 13 17 17 21 8 8 143 
8 7 4 6 4 16 13 23 21 21 13 10 138 
9 2 2 9 7 12 9 12 22 32 21 7 135 
10 0 0 1 1 8 8 10 10 18 18 9 83 
11 3 9 4 2 3 2 6 5 8 5 6 53 

 

Table A.3: Transition probability matrix (TPM) for rainfall of Hillsborough 

i × j 
Transition probability 

1 2 3 4 5 6 7 8 9 10 11 
1 0.1266 0.1139 0.1646 0.0633 0.1772 0.1646 0.0759 0.0633 0.0506 0.0000 0.0000 
2     0.1183 0.0968 0.1505 0.0645 0.1290 0.1505 0.0753 0.0968 0.0753 0.0215 0.0215 
3 0.0792 0.1584 0.1188 0.1881 0.1386 0.1287 0.0990 0.0495 0.0297 0.0000 0.0099 
4 0.0777 0.1262 0.0680 0.1456 0.1845 0.1165 0.1359 0.0680 0.0583 0.0194 0.0000 
5 0.0926 0.1049 0.0864 0.0802 0.1852 0.1420 0.1173 0.0679 0.0556 0.0370 0.0309 
6 0.0602 0.0902 0.0827 0.0977 0.1353 0.1203 0.1353 0.1429 0.0451 0.0526 0.0376 
7 0.0490 0.0629 0.0699 0.1189 0.1119 0.0909 0.1189 0.1189 0.1469 0.0559 0.0559 
8 0.0507 0.0290 0.0435 0.0290 0.1159 0.0942 0.1667 0.1522 0.1522 0.0942 0.0725 
9 0.0148 0.0148 0.0667 0.0519 0.0889 0.0667 0.0889 0.1630 0.2370 0.1556 0.0519 

10 0.0000 0.0000 0.0120 0.0120 0.0964 0.0964 0.1205 0.1205 0.2169 0.2169 0.1084 
11 0.0566 0.1698 0.0755 0.0377 0.0566 0.0377 0.1132 0.0943 0.1509 0.0943 0.1132 
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Table A.4: Transition cumulative probability matrix for rainfall of Hillsborough 
 

i × j 
Transition cumulative probability 

1 2 3 4 5 6 7 8 9 10 11 
1 0.1266 0.2405 0.4051 0.4684 0.6456 0.8101 0.8861 0.9494 1.0000 1.0000 1.0000 
2 0.1183 0.2151 0.3656 0.4301 0.5591 0.7097 0.7849 0.8817 0.9570 0.9785 1.0000 
3 0.0792 0.2376 0.3564 0.5446 0.6832 0.8119 0.9109 0.9604 0.9901 0.9901 1.0000 
4 0.0777 0.2039 0.2718 0.4175 0.6019 0.7184 0.8544 0.9223 0.9806 1.0000 1.0000 
5 0.0926 0.1975 0.2840 0.3642 0.5494 0.6914 0.8086 0.8765 0.9321 0.9691 1.0000 
6 0.0602 0.1504 0.2331 0.3308 0.4662 0.5865 0.7218 0.8647 0.9098 0.9624 1.0000 
7 0.0490 0.1119 0.1818 0.3007 0.4126 0.5035 0.6224 0.7413 0.8881 0.9441 1.0000 
8 0.0507 0.0797 0.1232 0.1522 0.2681 0.3623 0.5290 0.6812 0.8333 0.9275 1.0000 
9 0.0148 0.0296 0.0963 0.1481 0.2370 0.3037 0.3926 0.5556 0.7926 0.9481 1.0000 

10 0.0000 0.0000 0.0120 0.0241 0.1205 0.2169 0.3373 0.4578 0.6747 0.8916 1.0000 
11 0.0566 0.2264 0.3019 0.3396 0.3962 0.4340 0.5472 0.6415 0.7925 0.8868 1.0000 

 

Table A.5: Moment estimates of ∝j for each state 

State 
Moment 

Estimates (∝W) 
1 1.00024008 
2 1.00486095 
3 1.00532035 
4 1.00425636 
5 1.01327133 
6 1.00793604 
7 1.01226263 
8 1.00726517 
9 1.00860501 
10 1.00545760 
11 1.04569409 

 

Table A.6: Bayes estimates of ∝j for each state 

State Bayes Estimates (∝W) 
1 1.001338 
2 1.005927 
3 1.006125 
4 1.002706 
5 1.053751 
6 1.009213 
7 1.049640 
8 1.008237 
9 1.010347 
10 1.006579 
11 1.073141 
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Table A.7: Descriptive statistics for observed and simulated results 

Statistics 
Observed Simulations using Moment 

estimates 
Simulations using Bayes 

estimates 

N=1218 N=121
8 N=5000 N=10,000 N=1218 N=5000 N=10,000 

Minimum 
rainfall (mm) 0.00 0.11 0.09 0.09 0.11 0.09 0.09 

Maximum 
rainfall (mm) 19.06 19.05 19.06 19.06 19.05 19.06 19.06 

Average 
rainfall (mm) 4.38 4.60 4.70 4.63 4.60 4.70 4.63 

Standard 
deviation of 
rainfall (mm) 

3.39 4.27 4.40 4.27 4.27 4.40 4.27 

 

Table A.8: Observed and estimated frequencies based on method of moments and Bayes 
estimates 

Sr. No. State Actual data Method of Moments 
N=1218 N=1218 N=5000 N=10,000 

1  0.0-0.5 79 (6.49%) 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 0.51-1.0 93 (7.64%) 102 (8.37%) 405 (8.10%) 824 (8.24%) 
3 1.01-1.50 101 (8.29%) 94 (7.72%) 414 (8.28%) 815 (8.15%) 
4 1.51-2.0 103 (8.46%) 105 (8.62%) 418 (8.36%) 840 (8.40%) 
5 2.01-3.00 162 (13.30%) 168 (13.79%) 662 (13.24%) 1350 (13.50%) 
6 3.01-4.00 133 (10.92%) 155 (12.73%) 563 (11.26%) 1172 (11.72%) 
7 4.01-5.50 143 (11.74%) 141 (11.58%) 593 (11.86%) 1164 (11.64%) 
8 5.51-7.00 138 (11.33%) 117 (9.61%) 509 (10.18%) 1041 (10.41%) 
9 7.01-9.00 135 (11.08%) 123 (10.10%) 526 (10.52%) 1052 (10.52%) 
10 9.01-11.00 78 (6.40%) 78 (6.40%) 302 (6.04%) 619 (6.19%) 
11 11.01-19.06 53 (4.35%) 54 (4.43%) 253 (5.06%) 447 (4.47%) 

 

Table A.9: Observed and estimated frequencies based on Bayes estimates 

Sr. No. State Actual data Bayes 
N=1218 N=1218 N=5000 N=10,000 

1  0.00-0.50 79 (6.49%) 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 0.51-1.00 93 (7.64%) 102 (8.37%) 405 (8.10%) 824 (8.24%) 
3 1.01-1.50 101 (8.29%) 94 (7.72%) 414 (8.28%) 815 (8.15%) 
4 1.51-2.00 103 (8.46%) 105 (8.62%) 418 (8.36%) 840 (8.40%) 
5 2.01-3.00 162 (13.30%) 168 (13.79%) 662 (13.24%) 1350 (13.50%) 
6 3.01-4.00 133 (10.92%) 155 (12.73%) 563 (11.26%) 1172 (11.72%) 
7 4.01-5.50 143 (11.74%) 141 (11.58%) 593 (11.86%) 1164 (11.64%) 
8 5.51-7.00 138 (11.33%) 117 (9.61%) 509 (10.18%) 1041 (10.41%) 
9 7.01-9.00 135 (11.08%) 123 (10.10%) 526 (10.52%) 1052 (10.52%) 
10 9.01-11.00 78 (6.40%) 78 (6.40%) 302 (6.04%) 619 (6.19%) 
11 11.01-19.06 53 (4.35%) 54 (4.43%) 253 (5.06%) 447 (4.47%) 
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Table A.10: Frequency of simulated observations with different ranges based on method 
of moments 

Sr. No. Rainfall (mm) Method of Moments 
N=1218 N=5000 N=10,000 

1 <0.50 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 <2.00 382 (31.36%) 1592 (31.84%) 3155 (31.55%) 
3 <4.00 705 (57.88%) 2817 (56.34%) 5677 (56.77%) 
4 <7.00 963 (79.06%) 3919 (78.38%) 7882 (78.82%) 
5 <9.00 1086 (89.16%) 4445 (88.90%) 8934 (89.34%) 
6 <11.00 1164 (95.57%) 4747 (94.94%) 9553 (95.53%) 
7 >0.50 1137 (93.35%) 4645 (92.90%) 9324 (93.24%) 
8 >2.00 836 (68.64%) 3408 (68.16%) 6845 (68.45%) 
9 >4.00 513 (42.12%) 2183 (43.66%) 4323 (43.23%) 
10 >7.00 255 (20.94%) 1081 (21.62%) 2118 (21.18%) 
11 >9.00 132 (10.84%) 555 (11.10%) 1066 (10.66%) 
12 >11.00 54 (4.43%) 253 (5.06%) 447 (4.47%) 

 

Table A.11: Frequency of simulated observations with different ranges based on Bayes 
estimates 

Sr. No. Rainfall (mm) Bayes estimates 
N=1218 N=5000 N=10,000 

1 <0.50 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 <2.00 382 (31.36%) 1592 (31.84%) 3155 (31.55%) 
3 <4.00 705 (57.88%) 2817 (56.34%) 5677 (56.77%) 
4 <7.00 963 (79.06%) 3919 (78.38%) 7882 (78.82%) 
5 <9.00 1086 (89.16%) 4445 (88.90%) 8934 (89.34%) 
6 <11.00 1164 (95.57%) 4747 (94.94%) 9553 (95.53%) 
7 >0.50 1137 (93.35%) 4645 (92.90%) 9324 (93.24%) 
8 >2.00 836 (68.64%) 3408 (68.16%) 6845 (68.45%) 
9 >4.00 513 (42.12%) 2183 (43.66%) 4323 (43.23%) 
10 >7.00 255 (20.94%) 1081 (21.62%) 2118 (21.18%) 
11 >9.00 132 (10.84%) 555 (11.10%) 1066 (10.66%) 
12 >11.00 54 (4.43%) 253 (5.06%) 447 (4.47%) 
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Appendix B 

Table B.1: State wise observed and expected frequency of monthly rainfall data of 
Hillsborough County 
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Abstract
In this paper, we introduced transmuted sine - G family and it’s mathematical prop-

erties. Recently, the statistical relevance and applicability of trigonometric distributions got
much attention among researchers for modeling various real-time phenomena. This paper
contributes to a core area of statistics by investigating a new trigonometric family of prob-
ability distributions defined from the alliance of the families known as transmuted and sine
- G family with the inspiring name of transmuted sine generating (TS - G) family. The
characteristics of this new family are studied through analytical, graphical and numerical
approaches. In addition, we observe the fact that the TS - G family can generate original,
simple and pliant trigonometric models for statistical purposes. This fact is revealed with
the special TS - G model based on the Weibull model and discussed maximum likelihood
estimation with real time application.

Key words: Sine - G family; Transmuted family; Weibull distribution; Maximum likelihood
estimation.

AMS Subject Classifications: 60E05, 62E10, 62F10

1. Introduction

Statistical distribution is very useful in describing and predicting real-world phenom-
ena. Life time distributions are playing a vital role in many area of research such as eco-
nomics, engineering, finance, medicine, biological science, amongst others. Further analyzing
life time data are imperative. Recent developments focus on designing and generating new
families of probability distributions that extend well-known probability distributions and
at the same time provide great flexibility in modeling real time data. In recent years, the
generalization of probability distributions has attracted many statisticians. For example,
exponentiated family of distributions proposed by Gupta et al. (1999). The exponentiated
family of probability distributions provides flexibility by adding one more parameter to the
base distribution. Several classes of probability distributions have been introduced by adding
one or more parameters to generate new family of probability distributions in the statisti-
cal literature. Examples of such families are the exp - G family by Gupta et al. (2001),
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Weibull - G family by Bourguignon et al. (2014), Topp - Leone generated (TL - G) family
by Al-Shomrani et al. (2016), a new extended alpha power transformed - G by Ahmad et
al. (2020), a new alpha power transformed - G by Elbatal et al. (2019), truncated inverted
Kumaraswamy - G by Bantan et al. (2019) , type II general inverse exponential - G by Jamal
et al. (2020), exponentiated truncated inverse Weibull - G by Almarashi et al. (2020) and
type II power TL - G by Bantan et al. (2020). The quadratic rank transmutation map was
introduced by Shaw et al. (2007) to generate new family of distributions. Recent studies
have highlighted the statistical relevance and applicability of trigonometric distributions for
modeling many phenomena. Kharazmi and Saadatinik (2016) introduced Hyperbolic Cosine
- F (HCF) family and Sakthivel et al. (2020) proposed Hyperbolic Cosine Rayleigh distribu-
tion and studied some of it’s mathematical properties with application to breaking stress of
carbon fibers. Kumar et al. (2015) and Souza (2015) introduced the sine - G family with use
of the sine function. This paper introduced a new family of distribution namely transmuted
sine - G (TS - G) family. The characteristics of this family are studied through graphical
and numerical approaches.

In this paper, we introduce a new probability distribution namely transmuted sine - G
family and studied some of it’s properties. In section 2, we present the transmuted probability
models. Section 3 discuss sine - G family. In section 4, we propose some transmuted sine
- G family of distributions. In section 5, present statistical properties of transmuted sine
Weibull distribution. The reliability analysis of proposed model is discussed in section 6. The
maximum likelihood estimation for the parameters of transmuted sine Weibull distribution
is presented given in section 7. The application of transmuted sine Weibull (TS Weibull)
distribution is studied using real data set in section 8 and conclusions of this work is presented
in section 9.

2. Transmuted Distribution

The quadratic rank transmutation map introduced by Shaw et al. (2007). The cu-
mulative distribution function (cdf) F (x) and probability density function (pdf) f(x) are
defined as follows:
The cdf of transmuted family of distribution is defined as

F (x) = (1 + λ)G(x)− λG2(x) ; |λ| ≤ 1 (1)

The pdf of transmuted family of distribution is defined as

f(x) = g(x)[(1 + λ)− 2λG(x)] ; |λ| ≤ 1 (2)

where λ is a parameter of transmutation; G (x) is the cdf and g (x) is the pdf of the baseline
distribution respectively.

3. Sine - G Family

The method of generating new family of probability distributions using sine transfor-
mation was introduced by Kumar et al. (2015) and Souza (2015). The cdf and pdf of sine -
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G family distribution can be obtained as follows:
The cdf of sine - G distribution is defined as

G(x) = sin
(
π

2H(x)
)

(3)

The pdf of sine - G distribution is defined as

g(x) = π

2h(x) cos
(
π

2H(x)
)

(4)

where h (x) and H (x) are pdf and cdf of baseline distribution respectively.

4. Proposed Model

4.1. Transmuted sine family

This paper contributes to the subject by investigating a new trigonometric family
of probability distributions defined from the alliance of the families known as transmuted
distribution and sine - G family and it is named as transmuted sine - G family (TS - G).
The cdf of transmuted sine - G family is defined as

F (x) = (1 + λ) sin
(
π

2H(x)
)
− λ

[
sin

(
π

2H(x)
)]2

; |λ| ≤ 1 (5)

The pdf of transmuted sine - G family is

f(x) = π

2h(x) cos
(
π

2H(x)
) [

(1 + λ)− 2λ sin
(
π

2H(x)
)]

; |λ| ≤ 1 (6)

where λ is a parameter of transmutation. The h (x) and H (x) are pdf and cdf of baseline
distribution respectively.

4.2. Transmuted sine exponential distribution

The cdf of exponential distribution with parameter θ is

H(x) = 1− e−θx ; x > 0 ; θ > 0 (7)

The pdf of exponential distribution with parameter θ is

h(x) = θe−θx ; x > 0 ; θ > 0 (8)

where θ is a rate parameter.
The cdf of transmuted sine exponential family is given by

F (x) = (1 + λ) sin
(
π

2
(
1− e−θx

))
− λ

[
sin

(
π

2
(
1− e−θx

))]2
; (9)

x > 0 ; |λ| ≤ 1, θ > 0
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The pdf of transmuted sine exponential family is given by

f(x) = π

2
(
θe−θx

)
cos

(
π

2
(
1− e−θx

)) [
(1 + λ)− 2λ sin

(
π

2
(
1− e−θx

))]
; (10)

x > 0 ; |λ| ≤ 1, θ > 0

where θ is a rate parameter and λ is parameter of transmutation.
The rth moment is defined as

E (Xr) = θ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,r − 2λδj,l,r] (11)

where (12)

γk,r =
2i∑
k=0

(
2i
k

)
(−1)kr!

(θ(k + 1))r+1

and (13)

δj,l,r =
∞∑
j=0

2i+2j+1∑
l=0

(
π

2

)2j+1
(

2i+ 2j + 1
l

)
(−1)i(−1)l
(2j + 1)!

r!
(θ(l + 1))r+1

The moment generating function is defined as

MX(t) = θ
∞∑
i=0

∞∑
r=0

(
π

2

)2i+1 (−1)i
(2i)!

tr

r! [(1 + λ)γk,r − 2λδj,l,r] (14)

The first four moments are given below

E (X) = θ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,1 − 2λδj,l,1] (15)

E
(
X2
)

= θ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,2 − 2λδj,l,2] (16)

E
(
X3
)

= θ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,3 − 2λδj,l,3] (17)

E
(
X4
)

= θ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,4 − 2λδj,l,4] (18)

The rthmoment of TS exponential distribution is expressed as series. One can easily verify
the convergence of this series by using Cauchy ratio test.

4.3. Transmuted sine modified Weibull distribution

The modified Weibull distribution was introduced by Zaindin et al. (2009) and the cdf
of modified Weibull distribution is given by

H(x) =
(
1− e−αx−βxθ

)
; x > 0 ;α, β ≥ 0, θ > 0 (19)
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such that α + β > 0. Here β and θ are shape parameters and α is a scale parameter.
The pdf of modified Weibull distribution is given by

h(x) =
(
α + θβxθ−1

)
e−αx−βx

θ ; x > 0 ;α, β ≥ 0, θ > 0 (20)
The cdf of transmuted sine modified Weibull distribution is

F (x) = (1 + λ) sin
(
π

2
(
1− e−αx−βxθ

))
− λ

[
sin

(
π

2
(
1− e−αx−βxθ

))]2
;

x > 0 ; |λ| ≤ 1, α, β ≥ 0, θ > 0 (21)
The pdf of transmuted sine modified Weibull distribution is defined as

f(x) = π

2
(
α + θβxθ−1

)
e−αx−βx

θ cos
(
π

2
(
1− e−αx−βxθ

))
[
(1 + λ)− 2λ sin

(
π

2
(
1− e−αx−βxθ

))]
;

x > 0 ; |λ| ≤ 1, α, β ≥ 0, θ > 0 (22)
The rth moment of TS modified Weibull distribution is defined as

E (Xr) =
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,l,r − 2λδj,m,n,r] (23)

where

γk,l,r =
2l∑
k=0

∞∑
l=0

(
2i
k

)
(−1)k+l(βk)l

l!

[
(r + lθ)!
k (αk)r+lθ

+ βθ (r + l (θ + 1)− 1)
(αk)r+l(θ+1)

]
and

δj,m,n,r =
∞∑
j=0

2i+2j+1∑
m=0

∞∑
n=0

(
π

2

)2j+1
(

2i+ 2j + 1
m

)
(−1)j+m+n (βm)n

(2j + 1)![
(r + nθ)!
m (αm)r+nθ

+ βθ (r + nθ)!
(αm)r+n(θ+1)

]
The moment generation function of TS modified Weibull distribution is defined as

MX(t) =
∞∑
i=0

∞∑
r=0

(
π

2

)2i+1 (−1)i
(2i)!

tr

r! [(1 + λ)γk,l,r − 2λδj,m,n,r] (24)

The first four moments are given below

E (X) =
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,l,1 − 2λδj,m,n,1] (25)

E
(
X2
)

=
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,l,2 − 2λδj,m,n,2] (26)

E
(
X3
)

=
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,l,3 − 2λδj,m,n,3] (27)

E
(
X4
)

=
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,l,4 − 2λδj,m,n,4] (28)
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4.4. Weibull distribution

The Weibull distribution was introduced by Swedish physicist Waloddi Weibull (1951).
He applied it on modelling yield strength of materials. The Weibull distribution is popular
and widely used in many fields such as engineering, reliability, failure analysis, lifetime
analysis, material science, quality control, physics, medicine, meteorology, hydrology and
others. However, there are cases when standard Weibull distribution fails to model data
adequately enough for certain types of data. Hence, it is necessary to apply generalized
Weibull distribution because of it’s flexibility and suitability for such type of data. Later,
the importance of this type of generalization has been proved in recent years on various
problems.

The cdf of Weibull distribution is given by

H(x) = 1− e−ηxθ ; x > 0 ; η, θ > 0 (29)

The pdf of Weibull distribution is given by

h(x) = ηθxθ−1e−ηx
θ ; x > 0 ; η, θ > 0 (30)

where θ is a shape parameter and η is a scale parameter.

4.5. Transmuted sine Weibull family

The cdf of transmuted sine Weibull (TS Weibull) distribution is given as

F (x) = (1 + λ) sin
(
π

2
(
1− e−ηxθ

))
− λ

[
sin

(
π

2
(
1− e−ηxθ

))]2
; (31)

x > 0 ; η, θ > 0, |λ| ≤ 1

The pdf of transmuted sine Weibull (TS Weibull) distribution is given as

f(x) = π

2 ηθx
θ−1e−ηx

θ cos
(
π

2
(
1− e−ηxθ

))
(32)[

(1 + λ)− 2λ sin
(
π

2
(
1− e−ηxθ

))]
;x > 0 ; η, θ > 0, |λ| ≤ 1

where θ is a shape parameter, η is a scale parameter and λ is transmuting parameter.
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Figure 1: Plots for cdf of TS Weibull distribution for different values of the
parameters.
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Figure 2: Plots for pdf of TS Weibull distribution for different values of the
parameters.

5. Statistical Properties

5.1. Moments

We obtained an expression for the rth moment of TS Weibull distribution as

E (Xr) = ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,r − 2λδj,l,r,] (33)

where

γk,r =
2i∑
k=0

(
2i
k

)
(−1)k

ηθ(k + 1)

(
r
θ

)
!

(η(k + 1)) rθ

and

δj,l,r =
∞∑
j=0

2i+2j+1∑
l=0

(−1)j(−1)l
(2j + 1)!

(
2i+ 2j + 1

l

)(
π

2

)2j+1
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The first four moments are given below

E (X) = ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,1 − 2λδj,l,1] (34)

E
(
X2
)

= ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,2 − 2λδj,l,2] (35)

E
(
X3
)

= ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,3 − 2λδj,l,3] (36)

E
(
X4
)

= ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,4 − 2λδj,l,4] (37)

The rthmoment of TS Weibull distribution is expressed as series. One can easily verify the
convergence of this series by using Cauchy ratio test.

Variance

V (X) = ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,2 − 2λδj,l,2] (38)

−
[
ηθ

∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,1 − 2λδj,l,1]

]2

The moment generating function of TS Weibull distribution is given below

MX(t) =
∞∑
r=0

tr

r!ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,1 − 2λδj,l,r] (39)

The cumulant generating function of TS Weibull distribution is given below

KX(t) = log
[ ∞∑
t=0

tt

r!ηθ
∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,1 − 2λδj,l,r]

]
(40)

The characteristic function of TS Weibull distribution is given below

φX(t) =
∞∑
r=0

(it)r
r! ηθ

∞∑
i=0

(
π

2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,1 − 2λδj,l,r] (41)

5.2. Quantile function

The quantile function of TS Weibull distribution is given by

Q (p) =



λ
∑∞
i=0

∑4i+2
k=0

(−1)i+k
(2i+1)!

(
π
2

)4i+2 (4i+2
k

)
(ηk)

− (1 + λ)∑∞i=0
∑2i+1
k=0

(−1)i+k
(2i+1)!

(
π
2

)2i+1 (2i+1
k

)
(ηk)

(log p)



1/θ

(42)
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5.3. Generalized entropy

The generalized entropy of TS Weibull distribution is given below

GE(w,ψ) =
ηθ
∑∞
i=0

(
π
2

)2i+1 (−1)i
(2i)! [(1 + λ)γk,ψ − 2λδj,l,ψ]

ψ(ψ − 1)
[
ηθ
∑∞
i=0

(
π
2

)2i+1 (−1)i
(2i)!

[
(1 + λ)γk,1 − 2λδj,l,1]

]]ψ − 1 (43)

5.4. Asymptotic behaviours

The asymptotic behaviours of transmuted sine Weibull distribution is given below

lim
x→0

f(x : η, θ, λ) = 0 and lim
x→∞

f(x : η, θ, λ) = 0

lim
x→0

f(x : η, θ, λ) = π

2 ηθ lim
x→0

xθ−1e−ηx
θ cos

(
π

2
(
1− e−ηxθ

))
×
[
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθ

))]
= π

2 ηθ × (0) = 0

⇒ lim
x→0

f(x : η, θ, λ) = 0 (44)

lim
x→∞

f(x : η, θ, λ) = π

2 ηθ lim
x→∞

xθ−1 lim
x→∞

e−ηx
θ

× lim
x→∞

cos
(
π

2
(
1− e−ηxθ

))
× lim

x→∞

[
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθ

))]
= π

2 ηθ × (0) = 0

⇒ lim
x→∞

f(x : η, θ, λ) = 0 (45)

5.5. Order statistics

The pdf of jth order statistic of TS Weibull distribution is given by

fX(j)(x) = n!
(j − 1)!(n− j)!

π

2 ηθx
θ−1e−ηx

θ

cos
(
π

2
(
1− e−ηxθ

))
[
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθ

))]
[
(1 + λ) sin

(
π

2
(
1− e−ηxθ

))
− λ

[
sin

(
π

2
(
1− e−ηxθ

))]2
]j−1

1−
[
(1 + λ) sin

(
π

2
(
1− e−ηxθ

))
− λ

[
sin

(
π

2
(
1− e−ηxθ

))]2
]n−j
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The pdf of largest order statistic X(n) is given by

fX(n)(x) = n
π

2 ηθx
θ−1e−ηx

θ cos
(
π

2
(
1− e−ηxθ

))
[
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθ

))]
[
(1 + λ) sin

(
π

2
(
1− e−ηxθ

))
− λ

[
sin

(
π

2
(
1− e−ηxθ

))]2
]n−1

The pdf of smallest order statistic X(1) is given by

fX(1)(x) = n
π

2 ηθx
θ−1e−ηx

θ cos
(
π

2
(
1− e−ηxθ

)) [
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθ

))]
[
1−

[
(1 + λ) sin

(
π

2
(
1− e−ηxθ

))
− λ

[
sin

(
π

2
(
1− e−ηxθ

))]2
]]n−1

5.6. Stochastic ordering

Stochastic ordering of positive continuous random variables are an important tool for
judging their comparative behaviour. A random variable X is said to be smaller than a
random variable Y then
(1) Stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x
(2) Hazard rate order (X ≤hr Y ) if hX(x) ≥ hY (x) for all x
(3) Mean residual life order (X ≤mrl Y ) if mX(x) ≤ mY (x) for all x
(4) Likelihood ratio order (X ≤lr Y ) if fX(x)/fY (x) decreases in x.
The following implications based on these properties are illustrated by Yadav et al. (2019)
and Shaked et al. (1995).

(X ≤lr Y )⇒ (X ≤hr Y )⇒ (X ≤mrl Y )

and hence
(X ≤hr Y )⇒ (X ≤st Y )

The following theorem shows that the TS Weibull random variable is ordered with respect
to the strongest likelihood ratio ordering.

Theorem 1:

Let X ∼ TSW (η1, θ1, λ1) and Y ∼ TSW (η2, θ2, λ2) the following under conditions
(i) η1 = η2, λ1 = λ2 and θ1 > θ2
(ii) η1 = η2, λ1 > λ2 and θ1 = θ2
(iii) η1 > η2, λ1 = λ2 and θ1 = θ2
then (X ≤lr Y ) and hence it implies other ordering.
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Proof:

fX(x)
fY (y) =

π
2η1θ1x

θ1−1e−ηx
θ1 cos

(
π
2

(
1− e−η1xθ1

)) [
(1 + λ1)− 2λ1 sin

(
π
2

(
1− e−η1xθ1

))]
π
2η2θ2xθ2−1e−η2xθ2 cos

(
π
2

(
1− e−η2xθ2

)) [
(1 + λ2)− 2λ2 sin

(
π
2

(
1− e−η2xθ2

))]
Taking logarithm of both sides, we can write

log fX(x)
fY(y) = log

 π
2 η1θ1x

θ1−1e−ηx
θ1 cos

(
π
2

(
1− e−η1xθ1

)) [
(1 + λ1)− 2λ1 sin

(
π
2

(
1− e−η1xθ1

))]
π
2 η2θ2xθ2−1e−η2xθ2 cos

(
π
2

(
1− e−η2xθ2

)) [
(1 + λ2)− 2λ2 sin

(
π
2

(
1− e−η2xθ2

))]
 .

Taking partial derivative on both sides, we write

d

dx
log fX(x)

fY(y) = (θ1 − 1)xθ1−2

xθ1−1 − (θ2 − 1)xθ2−2

xθ2−1 − η1θ1x
θ1−1 + η2θ2x

θ2−1

−
π
2η1θ1x

θ1−1e−ηx
θ1 sin

(
π
2

(
1− e−η1xθ1

))
cos

(
π
2

(
1− e−η1xθ2

))
+

2λ1 cos
(
π
2

(
1− e−η1xθ1

))
π
2η1θ1x

θ1−1e−ηx
θ1

1 + λ1 − 2λ1 sin
(
π
2

(
1− e−η1xθ1

))
+

π
2η2θ2x

θ2−1e−η2xθ2 sin
(
π
2

(
1− e−η2x2

))
cos

(
π
2

(
1− e−η2xθ2

))
+

2λ2 cos
(
π
2

(
1− e−η2xθ2

))
π
2η2θ2x

θ2−1e−η2xθ2

1 + λ2 − 2λ2 sin
(
π
2

(
1− e−η2xθ2

))
It can be easily verified that under conditions (i), (ii) and (iii) then d

dx
log fX(x)

fY (y) < 0.
This means that (X ≤lr Y ) and hence (X ≤hr Y ) , (X ≤mrl Y ) and (X ≤st Y ).

6. Reliability Analysis

The survival function of TS Weibull distribution is defined as

R(t) = 1−
[
(1 + λ) sin

(
π

2
(
1− e−ηtθ

))
− λ

[
sin

(
π

2
(
1− e−ηtθ

))]2
]

(46)

The hazard rate function is

h(t) =
π
2ηθt

θ−1e−ηt
θ cos

(
π
2

(
1− e−ηtθ

)) [
(1 + λ)− 2λ sin

(
π
2

(
1− e−ηtθ

))]
1−

[
(1 + λ) sin

(
π
2

(
1− e−ηtθ

))
− λ

[
sin

(
π
2

(
1− e−ηtθ

))]2] (47)

(a) θ = 2, η = 1 and λ = 1 hazard shape is linear.
(b) θ = 1, η = 1 and λ = 1 hazard shape is increasing decreasing increasing function.
(c) θ = 0.5, η = 1 and λ = −1 hazard shape is decreasing function.
(d) θ = 0.5, η = 1 and λ = 1 hazard shape is increasing function.
(e) θ = 1.2, η = 1 and λ = −1 hazard shape is inverse bathtab function.
(f) θ = 1.2, η = 1.5 and λ = −1 hazard shape is unimodal function.
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Figure 3: Plots for reliability function of TS Weibull distribution for different
values of the parameters.
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Figure 4: Plots for hazard function of TS Weibull distribution for different values
of the parameters.

0.0 0.5 1.0 1.5 2.0 2.5

0

2

4

6

8

10

12

14

16

18

h(
t)

t

 

Figure 5: (a)
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Figure 6: (b)
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Figure 7: (c)
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Figure 8: (d)

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

h(
t)

t

 

Figure 9: (e)
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Figure 10: (f)
The above figures 5 - 10 of hazard function of TS Weibull distribution for different values
of the parameters takes shapes as (a) linear, (b) increasing decreasing increasing (IDI), (c)
decreasing, (d)increasing, (e) inverse bathtub and (f) unimodal shapes respectively.
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7. Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample of size n from transmuted sine Weibull distri-
bution. The likelihood function is given by

L(x : η, θ, λ) =
n∏
i=1

π

2 ηθx
θ−1
i e−ηx

θ
i cos

(
π

2
(
1− e−ηxθi

))
[
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθi

))]
(48)

l(x : η, θ, λ) = log
(
π

2

)
+ log(η) + log(θ) + (θ − 1)

n∑
i=1

xi − η
n∑
i=1

xθi

+
n∑
i=1

log
[
cos

(
π

2
(
1− e−ηxθi

))]

+
n∑
i=1

log
[
(1 + λ)− 2λ sin

(
π

2
(
1− e−ηxθi

))]
(49)

∂l(x : η, θ, λ)
∂η

=1
η
−

n∑
i=1

xθi −
n∑
i=1

sin
(
π
2

(
1− e−ηxθi

) (
π
2

))
xθi e
−ηxθi

cos
(
π
2 (1− e−ηxθi )

)
−

n∑
i=1

2λ cos
(
π
2

(
1− e−ηxθi

)) (
π
2

)
xθi e
−ηxθi

1 + λ− 2λ sin
(
π
2 (1− e−ηxθi )

) (50)

∂l(x : η, θ, λ)
∂θ

=1
θ

+
n∑
i=1

xi − η
n∑
i=1

xθi logxi −
n∑
i=1

π
2ηx

θ
i logxi sin

(
π
2 (1− e−ηxθi )

)
cos

(
π
2 (1− e−ηxθi )

)
×−

n∑
i=1

2λ(π2 )e−ηxθi ηxθi logxi cos
(
π
2 (1− e−ηxθi )

)
1 + λ− 2λ sin

(
π
2 (1− e−ηxθi )

) (51)

∂l(x : η, θ, λ)
∂λ

=
n∑
i=1

1− 2 sin
(
π
2 (1− e−ηxθi )

)
1 + λ− 2λ sin

(
π
2 (1− e−ηxθi )

) (52)

The maximum likelihood estimate Θ̂ = (η̂, θ̂, λ̂) of Θ = (η, θ, λ) Also as n→∞ the asymp-
totic distribution of the MLEs (η, θ, λ) are given by, see Rahman et al. (2018) and Zaindin
et al. (2009). η̂θ̂

λ̂

 ∼ N


ηθ
λ

 ,
V11 V12 V13
V21 V22 V23
V31 V32 V33
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Where V̂ij = Vij the asymptotic variance-covariance matrix V of the estimates is obtained by
inverting Hessian matrix. See Appendix. An approximate 100 (1− α) % two sided confidence
intervals for η, θ and λ are respectively is given by

η ∈
[
η̂ − Zα

2

√
V −1

11 , η̂ + Zα
2

√
V −1

11

]
(53)

θ ∈
[
θ̂ − Zα

2

√
V −1

22 , θ̂ + Zα
2

√
V −1

22

]
(54)

λ ∈
[
λ̂− Zα

2

√
V −1

33 , λ̂+ Zα
2

√
V −1

33

]
(55)

Where Zα is the αth percentile of the standard normal distribution.

7.1. Simulation study

In this section, a simulation study is performed to test the performance of MLEs. We
generate a random sample of size n = 50, 100, 200 and 500 from TS Weibull distribution for
the values of θ = 2, η = 4 and λ = 0.5. With replicated 1000 times. It is observed that
the mean squared error (MSE) and average bias decreases when the sample size increases.
Therefore, the maximum likelihood estimate converges to true value of the parameters of TS
Weibull distribution.

Table 1: The MSE and average bias for the above given values of parameters

n θ η λ

50 0.0138 0.0805 0.0223

0.0185 0.0364 0.0194

100 0.0064 0.0390 0.0111

0.0092 0.0193 0.0103

200 0.0032 0.0194 0.0055

0.0054 0.0083 0.0044

500 0.0016 0.0097 0.0028

0.0023 0.0047 0.0025
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8. Application

The following data represents lifetimes of Kevlar 49/epoxy strands subjected to con-
stant sustained pressure at 90 percent stress level until the strand failure studied by Barlow
et al. (1984) and Pobocikova et al. (2018).
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751,
0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596,
1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733,
1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316,
1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513,
2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005,
5.4435, 5.5295, 6.5541, 9.0960.

Table 2: Descriptive statistics

Min Max Mean Vari Lower Quantile Median Upper Quantile Skewness Kurtosis

0.0251 9.0960 1.9592 2.4774 0.8982 1.7362 2.3041 2.0196 5.6004

Table 3: ML estimates of the parameters with measures for model selection

Distribution Parameter estimates Log-lik AIC AICC BIC
W(a, b) â=1.3256, b̂=2.1328 -122.5247 249.0494 249.2094 253.7108

W(a, b, c) â=1.3169, b̂=2.1228, ĉ=0.0058 -122.5141 251.0282 251.3525 258.0204
W(a, b, λ) â=1.0509, b̂=1.4419, λ̂=-0.7955 -121.4300 248.8600 249.1843 255.8522
SW(η, λ) η̂=1.2564257, λ̂=0.2210405 -122.4717 248.9434 249.1078 253.6049

TSW(η, θ, λ) η̂=0.40025, θ̂=0.98819, λ̂=-0.80737 -121.2775 242.5552 248.5552 255.5472

In Table 2, we observed that the empirical distribution is right skewed. Table 3 presents
the ML estimates of the parameters along with the log-likelihood, AIC, AICC and BIC values.
Further, we observed that the TS Weibull distribution provides better fits compared to 2-
parameter Weibull, 3-parameter Weibull, transmuted Weibull distributions and sine-Weibull
distribution. Hence, we can conclude that the TS Weibull distribution provides a better fit
to the data than the other four suitable probability distributions.

9. Conclusion

In the present study, we have introduced transmuted sine Weibull distribution and we
have derived some statistical properties such as moments, mean and variance for the proposed
distribution. The behaviour of the pdf, cdf, reliability function and hazard function are
explained through the graphical methods. We have discussed certain statistical properties
like generalized entropy, asymptotic behaviour, order statistics and stochastic ordering for TS
Weibull distribution. The parameter estimation is performed using the maximum likelihood
method for the proposed distribution. Finally, we have shown TS Weibull distribution
provides a better fit compared to 2-parameter Weibull, 3-parameter Weibull, transmuted
Weibull and sine - Weibull distribution for real time data set.
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Figure 11: Plot of the empirical pdf and cdf of TS Weibull distribution.
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APPENDIX

The Hessian matrix is given as

H =

H11 H12 H13
H21 H22 H23
H31 H32 H33


Where the variance - covariance matrix V is obtained by

V =

V11 V12 V13
V21 V22 V23
V31 V32 V33

 =

H11 H12 H13
H21 H22 H23
H31 H32 H33


−1
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−∂logL

∂η2

]
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Abstract
Confounded factorial designs are shown to provide a rich class of constant block-sum

designs. The approach also provides a direct and straightforward proof of the necessary
condition for existence of constant block-sum designs given recently by Khattree (2022).

Key words: Balanced incomplete block design; Group divisible design; Treatment contrast.

1. Introduction

Constant block-sum designs for quantitative treatment levels have been recently intro-
duced by Khattree (2019a,b). In these designs, the sum of the treatment levels in each block
is constant. Several methods of their construction have been presented by Khattree (2020).
A general approach to determine whether or not a given design can be transformed into a
constant block-sum design and its construction if it exists has been developed in Khattree
(2022). He also discussed several individual examples, including two-associate class group di-
visible (GD) designs. Non-existence of constant block-sum balanced incomplete designs was
established by Khattree (2019a, 2022). Bansal and Garg (2022) and Khattree (2022) derived
some conditions for existence of partially balanced constant block-sum designs and gave fur-
ther combinatorial methods of their construction. Gupta (2021) gave general results for GD
designs with respect to the property of constant block-sum. He established non-existence of
semi-regular and regular GD constant block-sum designs. He also discussed construction of
singular GD constant block-sum designs and gave several illustrative examples.

Motivated by the results presented by Khattree (2022), the purpose of this paper is to
study construction of constant block-sum designs using factorial designs. It is shown that the
method of confounding provides a rich class of constant block-sum designs. The approach
also provides a direct and straightforward proof of the necessary condition for existence of
constant block-sum designs given by Khattree (2022).

2. Method of Construction

Consider an equireplicate confounded block design with parameters v, b, r, k, and let
τ = (τ1, τ2, · · · , τv)′ and β = (β1, β2, · · · , βb)′ respectively denote the v×1 and b×1 vectors

Corresponding Author: Sudhir Gupta
Email: sudhirgupta.stat@gmail.com
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of treatment and block parameters. Let h′τ denote a treatment contrast that is partially
or completely confounded in the design, h′1v = 0, where 1a denotes a a × 1 vector of 1’s.
Further, s′τ denotes a treatment contrast that is estimated with full efficiency in the design,
i.e. it is not confounded in any of the replications of the design, s′1v = 0. We will refer to
factorial effects that are estimated with full efficiency as completely unconfounded effects.

To motivate the method of construction, we replace the ith treatment in the confounded
design by the ith element of h and s. In other words, the treatments in the design are
replaced by the corresponding coefficients of the confounded and unconfounded contrasts.
This is illustrated with the help of the following example.

Example 1: Consider the 23 partially confounded design of Table 1 having parameters v = 8,
b = 4,, r = 2, k = 4. The designed is obtained by confounding the three-factor interaction
F1F2F3 in one replication and the two-factor interaction F2F3 in the other replication.

Table 1

F1F2F3 confounded F2F3 confounded
Block 1 Block 2 Block 3 Block 4

000 001 000 001
101 010 011 010
110 100 100 101
011 111 111 110

Let u1, u2, u3, u12, u13, u23, and u123 be the contrast coefficient vectors for the F1, F2, F3
main effects and F1F2, F1F3, F2F3, F1F2F3 interactions respectively,



u′
1

u′
2

u′
3

u′
12

u′
13

u′
23

u′
123


=



−1 −1 −1 −1 +1 +1 +1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 +1 −1 +1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 −1 +1
−1 +1 +1 −1 +1 −1 −1 +1


.

Also, the vector of treatment parameters can be written as,

τ ′ = (τ000 τ001 τ010 τ011 τ100 τ101 τ110 τ111) ,

with τx denoting the effect of the treatment combination x. Now we replace the treatment
combinations in each block by the corresponding F1F2F3 contrast coefficients and obtain the
design displayed in Table 2. The block sums are given in the last row of the table.
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Table 2
Replace treatment combinations by the

corresponding F1F2F3 contrast coefficients
Block 1 Block 2 Block 3 Block 4

−1 +1 −1 +1
−1 +1 −1 +1
−1 +1 +1 −1
−1 +1 +1 −1

Block sums −4 +4 0 0

Similarly, Tables 3 and 4 give the designs obtained by replacing the treatment combinations
in each block of the design by respectively the F2F3 and F1F2 contrast coefficients. Note
that F1F2F3 and F2F3 are partially confounded whereas F1F2 is not confounded and it is
estimated without any loss of information.

Table 3
Replace treatment combinations by the
corresponding F2F3 contrast coefficients
Block 1 Block 2 Block 3 Block 4

+1 −1 +1 −1
−1 −1 +1 −1
−1 +1 +1 −1
+1 +1 +1 −1

Block sums 0 0 +4 −4

Table 4
Replace treatment combinations by the
corresponding F1F2 contrast coefficients
Block 1 Block 2 Block 3 Block 4

+1 +1 +1 +1
−1 −1 −1 −1
+1 −1 −1 −1
−1 +1 +1 +1

Block sums 0 0 0 0

Block sums are constant, being equal to zero, for the design of Table 4 corresponding to
the F1F2 interaction estimated with full efficiency in the design. It can be verified that
the block sums are also constant, being equal to zero, for the designs constructed similarly
corresponding to the other four unconfounded effects F1, F2, F3, and F1F3 respectively.
However, block sums are not constant for the designs of Tables 2 and 3 corresponding to the
partially confounded interactions F1F2F3 and F2F3 respectively.
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The pattern in block sums with respect to confounded and unconfounded contrasts
observed in the above example holds true in general. A completely unconfounded contrast s′τ
is estimated from within block comparisons, i.e. it is estimated orthogonal to blocks. Clearly,
its contrast coefficients falling in any block must sum to zero in order for the corresponding
block effect to be canceled out from within block comparisons. Thus, as observed in the
above example, block sum for a completely unconfounded contrast must be zero for each
and every block. Conversely, a partially or completely confounded contrast h′τ is mixed up
with some block contrast implying non-constancy of block sums.

Lemma: Let block contents of a partially confounded design be replaced by corresponding
coefficients of a treatment contrast. Then the property of constant block sum being equal to
zero holds for all contrasts that are estimated with full efficiency. Furthermore, this property
does not hold for the treatment contrasts that are partially or completely confounded in the
design.

Although, neither the block contents of +1 and −1 nor the block sum of zero are helpful
from a practical point of view, as will be seen later, useful constant block sum designs can
be easily derived through this approach.

The above lemma is closely related to the main result of Khattree (2022). He proved
that a necessary condition for existence of a constant block-sum design is that w ̸= 1v is an
eigenvector of A corresponding to a zero eigenvalue, where

A = NN ′ − rk

v
1v1′

v ,

and N is the incidence matrix of the design. Gupta (2021) showed that the term (rk/v)1v1′
v

in the expression of A is in fact redundant. Thus equivalently, a necessary condition for ex-
istence of constant block-sum design is that w ̸= 1v is an eigenvector of NN ′ corresponding
to a zero eigenvalue. Note that a treatment contrast is estimated with full efficiency if and
only if its contrast coefficient vector is an eigenvector of NN ′ with zero eigenvalue. Thus,
estimation of a treatment contrast orthogonal to blocks provides a direct and straightforward
proof of the necessary condition for existence of a constant block-sum design.

We now discuss constructions of constant block-sum designs. Let q denote the number
of treatment contrasts that are estimated with full efficiency in a factorial design, and let
these contrasts be denoted by

U ′τ =


u′

1
u′

2...
u′

q

 τ ,

where u′
i = (ui1 ui2 · · · uiv), with u′

i1v = 0, i = 1, 2, · · · , q. Consider θu, a linear function
of the q contrasts given by

θu = C ′U ′τ =
q∑

i=1
(ciu

′
i) τ = t′

uτ ,
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where
C ′ = ( c1 c2 · · · cq ) ,

t′
u =

( q∑
i=1

ciui1

q∑
i=1

ciui2 · · ·
q∑

i=1
ciuiv

)
= (tu1 tu2 · · · tuv) ,

and ci’s are some constants chosen such that all the elements of tu are different from each
other. Being a linear function of treatment contrasts that are estimated with full efficiency,
the treatment contrast θu is also estimated with full efficiency in the design. Thus, using
the Lemma, the property of constant block-sum holds when block contents of the design are
replaced by corresponding coefficients of the treatment effects in the linear function θu, i.e.
by the corresponding elements of tu. The tu being a contrast coefficient vector, ∑v

i=1 tui = 0,
which means that not all the tui ’s are greater than zero. However, it is easily seen, cf.
Khattree (2022), that the property of constant block-sum still holds if we add a constant
value, say c0, to all the elements of tu. Let t∗

u = (tu1 + c0 tu2 + c0 · · · tuv + c0), where
c0 is chosen such that all the elements of t∗

u are greater than zero. Finally, the treatment
combinations in the design are then replaced by the corresponding elements of t∗

u to arrive at
a constant block-sum design. For illustration, we again consider the 23 partially confounded
design of Example 1.

Example 1 contd.: Here we have five completely unconfouned contrasts, i.e. q = 5, given
by

U = ( u1 u2 u3 u12 u13 ) ,

and let T denote the vector of treatment combinations arranged in the lexicographic order,
i.e. in increasing numerical order,

T ′ = (000 001 010 011 100 101 110 111).

Taking C ′ = ( 0.44 − 0.10 − 0.08 0.18 − 0.20 ) and c0 = 1.2 gives,

t∗′
u = ( 0.92 1.16 0.36 0.60 1.84 1.28 2.00 1.44 ) .

Replacing the ith element of T in Table 1 by the ith element of t∗′
u , i = 1, 2, · · · , v, yields

a design with a constant block-sum of 4c0 = 4.8. A very large number of distinct constant
block-sum designs can be constructed in this fashion by choosing different values of C and
the constant c0. Tables 5 and 6 list five more solutions for the vector of treatment levels t∗′

u

obtained by trial and error. Many more solutions can be easily constructed in this way.

Table 5: Further solutions for Example 1
t∗′

u No. t∗′
u

1 0.56 1.12 0.40 0.96 1.48 1.24 2.04 1.80
2 1.09 0.89 0.99 0.79 0.55 1.07 1.85 2.37
3 0.21 0.71 1.17 1.67 0.39 2.29 0.63 2.53
4 1.07 1.57 0.83 1.33 1.13 3.03 0.17 2.07
5 0.72 1.92 0.48 1.68 1.08 2.28 0.12 1.32
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Table 6: The C ′ and c0 corresponding to t∗′
u listed in Table 5

t∗′
u No. c1 c2 c3 c4 c5 c0

1 0.44 0.10 0.08 0.18 -0.20 1.2
2 0.26 0.30 0.08 0.35 0.18 1.2
3 0.26 0.30 0.60 -0.18 0.35 1.2
4 0.20 -0.30 0.60 -0.18 0.35 1.4
5 0.00 -0.30 0.60 -0.18 0.00 1.2

The next two examples further illustrate the richness of confounded factorials as con-
stant block-sum designs.

Example 2: We now consider a 24 partially confounded design presented in Table 7, having
parameters v = 16, b = 8, r = 2, k = 4, obtained by confounding F1F2F3 and F2F3F4 in
one replication and F1F2F4 and F1F3F4 in the other replication. Note that the generalized
interactions F1F4 and F2F3 are also partially confounded in the design.

Table 7
F1F2F3, F2F3F4, F1F4 confounded F1F2F4, F1F3F4 F2F3 confounded

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8
0000 0001 1001 1000 0000 0010 0011 0001
0110 0111 1111 1110 0111 0101 0100 0110
1011 1010 0010 0011 1001 1011 1010 1000
1101 1100 0100 0101 1110 1100 1101 1111

As before, let T be the vector of treatment combinations arranged in the lexicographic order.
Further, let

J0 =
(

−1
+1

)
, and J2 =

(
+1
+1

)
.

The contrast coefficient vectors ui, ui1i2 , ui1i2i3 , and u1234 for the main effects and interac-
tions, i, i1 < i2 < i3 = 1, 2, 3, 4, are given by f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4 as below:

f 1⊗f 2⊗f 3⊗f 4 =


ui

ui1i2

ui1i2i3

u1234

where f j = J0


for j = i
for j = i1, i2
for j = i1, i2, i3
for j = 1, 2, 3, 4


, and fj = J2 otherwise

j = 1, 2, 3, 4


The completely unconfounded q = 9 contrast coefficient vectors are given by,

U = ( u1 u2 u3 u4 u12 u13 u24 u34 u1234 ) .

For instance, taking C ′ = (−0.22, 0.30 −0.25 0 0 0 0 −0.30 −0.25) and c0 = 1.2 gives,

t∗′
u = (0.79 1.95 1.45 0.29 1.89 2.05 1.55 1.39 0.85 1.01 0.51 0.35 0.95 2.11 1.61 0.45) ,
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which yields a design given in Table 8 with a constant block-sum of 4c0 = 4.8.

Table 8
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

0.79 1.95 1.01 0.85 0.79 1.45 0.29 1.95
1.55 1.39 0.45 1.61 1.39 2.05 1.89 1.55
0.35 0.51 1.45 0.29 1.01 0.35 0.51 0.85
2.11 0.95 1.89 2.05 1.61 0.95 2.11 0.45

Five more solutions are given in Tables 9 and 10.

Table 9: Further solutions for Example 2

t∗′
u No. t∗′

u

1 0.64 2.30 1.80 0.14 2.24 1.90 1.40 1.74 1.20 0.86 0.36 0.70 0.80 2.46 1.96 0.30
2 1.99 1.91 3.41 1.49 3.51 1.59 3.09 3.01 2.41 0.49 0.99 0.91 2.09 2.01 2.51 0.59
3 1.02 1.88 2.28 1.42 2.92 3.38 3.78 3.32 1.92 2.38 0.78 0.32 4.02 4.88 3.28 2.42
4 1.02 1.88 2.28 1.42 0.92 1.38 1.78 1.32 1.92 2.38 0.78 0.32 2.02 2.88 1.28 0.42
5 1.27 0.19 0.43 1.03 0.47 2.07 1.83 0.71 1.17 2.29 2.53 0.93 2.57 1.97 1.73 2.81

Table 10: The C ′ and c0 corresponding to t∗′
u listed in Table 9

t∗′
u No. c1 c2 c3 c4 c5 c6 c7 c8 c9 c0

1 -0.22 0.30 -0.25 0 0 0 0 -0.33 -0.50 1.3
2 -0.50 0.30 0 -0.50 0 -0.25 0 0 -0.46 2.0
3 0 1.00 -0.30 0 0.15 -0.50 0 -0.33 -0.10 2.5
4 0 0 -0.30 0 0.15 -0.50 0 -0.33 -0.10 1.5
5 0.50 0.27 0 0 0 0 0.12 -0.13 0.55 1.5

Example 3: 32 partially confounded factorial design with parameters v = 9, b = 6, r =
2, k = 3. Here the two main effects F1 and F2 have 2 d.f. each, and the two-factor interaction
F1F2 has 4 d.f. The treatment combinations vector is given by,

T ′ = (00 01 02 10 11 12 20 21 22) .

The 4 d.f. F1F2 interaction has two components: the 2 d.f. F1F2 component and the 2
d.f. F1F

2
2 component. The design of Table 11 below is obtained by confounding the 2

d.f. F1F2 component in one replication and the 2 d.f. F1F
2
2 component in the other replica-

tion.
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Table 11

2 d.f. F1F2 confounded 2 d.f. F1F
2
2 confounded

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
00 10 02 00 21 01
12 01 20 11 10 12
21 22 11 22 02 20

The four contrasts corresponding to the two main effects that are completely unconfounded
in the design are given by,

U =


u′

1ℓ

u′
1q

u′
2ℓ

u′
2q

 =


−1 −1 −1 0 0 0 +1 +1 +1
+1 +1 +1 −2 −2 −2 +1 +1 +1
−1 0 +1 −1 0 +1 −1 0 +1
+1 −2 +1 +1 −2 +1 +1 −2 +1

 ,

where ℓ and q respectively denote the linear and quadratic components. Taking C ′ =
(0.50 0 −0.20 −0.19) and c0 = 1.6 yields a design with constant block-sum of 3c0 = 4.8.
The treatment levels vector t∗′

u , arranged in the order of treatment combinations in T is given
by,

t∗′
u = (1.09 0.90 0.71 2.19 2.00 1.81 2.09 1.90 1.71) .

Five more solutions for this example are listed in Table 12.

Table 12: Further solutions for Example 3

t∗′
u c1 c2 c3 c4 c0

1 1.09 1.50 0.71 1.59 2.00 1.21 2.09 2.50 1.71 0.50 0.00 -0.19 -0.20 1.6
2 1.12 1.62 1.52 1.30 1.80 1.70 1.48 1.98 1.88 0.18 0.00 0.20 -0.10 1.6
3 0.30 0.80 0.70 1.30 1.80 1.70 2.30 2.80 2.70 1.00 0.00 0.20 -0.10 1.6
4 0.47 2.92 0.87 0.65 3.10 1.05 0.83 3.28 1.23 0.18 0.00 0.20 -0.75 1.6
5 2.17 0.12 2.57 2.35 0.30 2.75 2.53 0.48 2.93 0.18 0.00 0.20 0.75 1.8

The constant block-sum designs of this paper are derived by searching for a treat-
ment levels vector t∗

u through trial and error. Also, in practice treatment levels would be
determined by subject matter specialists based on their study objectives. Therefore, a syst-
matic method of finding t∗

u with treatment levels in line with the study objectives is highly
important from a practical point of view and deserves further research.
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Abstract 
 

Sri Lanka is a popular place that attracts foreign travelers, and the impact of the tourism 
industry has a major contribution to the Sri Lankan economy. The main objective of this study 
is to model the behavior and forecast tourist arrivals in Sri Lanka through a time-series 
approach with Change Point Analysis (CPA). Autoregressive Integrated Moving Average 
(ARIMA) was extended to Seasonal Autoregressive Integrated Moving Average (SARIMA) 
with the seasonality behavior of the tourist arrivals. The better performed models were 
identified using the minimum Akaike Information Criterion (AIC) while performance 
indicators of Mean Absolute Percentage Error (MAPE) and Normalized Root Mean Squared 
Error (NRMSE) were applied to evaluate the actual and fitted values. The model diagnostics 
were used to assess the goodness of fit of a selected model. Monthly data from January 2000 
to December 2019 was used in the analysis and during this period a total of 20,217,026 tourists 
arrived in Sri Lanka. Moreover, there are certain decline periods of this volume mainly due to 
the impacts of civil war, Tsunami and many others. The findings indicate that the model 
ARIMA (2,1,2) (3,1,4)[3] captures the behavior well with a minimum MAPE of 0.1941 and 
NRMSE of 0.8800. Meanwhile, with the application of CPA (at most one change and pruned 
exact linear time), data was split into two separate windows, which are Window 1 (W1) from 
January 2000 to October 2011 and Window 2 (W2) from November 2011 to December 2019. 
In W1, the better model that was used in the prediction was ARIMA (1,1,1) (4,1,1)[3] with a 
MAPE and NRMSE of 0.1727 and 1.1190 respectively. According to the results, the better 
performed model (MAPE of 0.2740 and NRMSE of 0.8700) in W2, was ARIMA (0,1,1) 
(3,1,3)[3] and this model captured the behavior until April 2019. However, due to the Easter 
bomb attack in April, there was a sudden drop in the arrival of tourists in May and June 2019. 
Nevertheless, from this point onwards the predicted line captured the behavior of the actual 
values even though they did not coincide with each other. Again, in December 2019, the 
predicted and actual values were very close. Thus, this study will be a benefit for both the 
private and public sectors as it has a prominent impact on the economy of the country. 

 
Key words: Tourism; Time-series; Change point analysis; Forecasting; Seasonal 
Autoregressive Integrated Moving Average. 

1. Introduction 

Tourism is a crucial scope that has a direct impact on the economy around the world. 
When a location becomes a major tourist destination this affects advantageously to a country. 
Some of them facilitate new job opportunities in different sectors like health, education, and 
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agriculture, revealing the cultural and social values of the country to the world, earning profits, 
developing the infrastructure and many others. 

 
According to the Sri Lanka Tourism Development Authority, modern commercial 

tourism was initiated in 1960 with a long history and in this period 18,969 tourists arrived in 
Sri Lanka. Nevertheless, the terrorist attacks from 1983 to 2009, had a negative impact on this 
industry for a long period. In addition, the Tsunami hazard that occurred in 2004, resulted in 
many deaths and property damages whereas it indicated a decline in the growth of the tourism 
industry. For more than 25 years, there were deprivations caused by the civil war and at the 
end of the war, there was a significant development in the industry of tourism in Sri Lanka. At 
the same time due to the Easter Sunday bomb attack in April 2019, the number of tourists who 
arrived in Sri Lanka decreased.  

 This study mainly focuses and attempts on forecasting tourist arrivals in Sri Lanka by 
identifying the patterns in arrivals using the time series models. Furthermore, sudden changes 
are identified by the change point detections.  

In Sri Lanka, the planning and policy implementation activities related to tourism are 
implemented by the Tourism Development Authority. Therefore, this work will benefit the 
government as well as the private sector for their future investments and progress. Moreover, 
this study will support the sustainability of the tourism industry and the processes related to the 
conservation of resources such as wildlife, cultural heritages and other natural resources.    

There are many studies conducted relevant to the prediction of tourist arrivals in many 
countries including Sri Lanka. However, there is no related work identified with the change 
point analysis (CPA) to predict the volume of tourists in Sri Lanka.  

This paper is organized as follows. The subsequent section is a review of previous related 
works. Sections 3 and 4 consist of the methodology and data analysis respectively. Section 5 
includes the discussion and section 6 consists of the conclusions of the study. 

 
2. Literature Review 
 

Different previous studies were conducted relevant to tourism in many countries with 
different techniques.  

In 1984, Jozef suggested that Harrison’s harmonic smoothing technique was more 
appropriate to predict the foreign tourists who arrived in Netherland compared to the 
decomposition technique and Box Jenkins generalized adaptive filtering. An exponentially 
weighted non-linear time series approach with a sine function in time was used by Chan (1993) 
to forecast the volume of tourist arrival in Singapore after de-seasonalizing data due to the 
seasonal behavior and model performance was evaluated from the Mean Absolute Percentage 
Error (MAPE). Using Seasonal Autoregressive Integrated Moving Average (SARIMA) and 
Multivariate Autoregressive Integrated Moving Average (MARIMA), Goh and Law (2002) 
forecasted the tourist demand for Hong Kong with ten arrival series and the non-stationary 
behavior was recognized from the Augmented Dickey-Fuller test. Lim et al. (2002) found that 
the number of tourist arrivals from Singapore to Australia followed an Autoregressive 
Integrated Moving Average (ARIMA) approach where arrivals to Malaysia and Hong Kong 
extended with the SARIMA method. Similarly, many studies applied the ARIMA and 
SARIMA techniques in forecasting the tourist arrivals such as Saayman and Saayman (2010); 
Singh (2013); Kumar and Sharma (2016); Chhorn and Chaiboonsri (2017), and many others. 
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Cho (2003) applied three techniques: Exponential smoothing, SARIMA and Artificial 
Neural Network (ANN) to identify the travel demand to Hong Kong from different countries 
and claimed that ANN exhibited better forecasting with minimum errors for the series with the 
fewer fluctuations and ARIMA approach was better for the arrival patterns with obvious 
patterns.  

ANN and hybrid models were built as the alternatives to the ARIMA models in the study 
of Aslanargun et al. (2007) and they stated that the models with components of non-linear 
indicated better performance. Moreover, the studies of Law and Au (1999) and Pai et al. (2006) 
have used the data science concept in forecasting tourist arrivals. 

Due to the impacts of the Civil war and political influence in Sri Lanka, there were ups 
and downs in the tourism industry from 2003 to 2009. After the end of the war in 2009, Sri 
Lanka became a significant tourist destination as per the study of Fernando et al. in 2017. They 
claimed that Sri Lanka needs to increase the accommodation and infrastructure facilities with 
the tourism workforce.  

Arrivals from the Western European countries (UK, Germany, France, Italy and 
Netherland) to Sri Lanka were considered by Konarasinghe et al. (2016) as they were the main 
contributors to the market of tourism in Sri Lanka. The patterns in arrivals were detected using 
time series plots and Auto-Correlation Functions (ACF) with the decomposition techniques. 
They concluded the additive decomposition model was better and recommended the circular 
model to increase the accuracy in forecasting. Peiris (2016) conducted a study after identifying 
seasonality in the monthly data for the period from January 1995 to July 2016 with the Hegy 
test. In this study, the SARIMA (1,0,16) (36,0,24)[12] model was identified as a better 
performed model to forecast the arrivals of tourists in Sri Lanka. However, using the monthly 
time series data from June 2009 to December 2018, the study of Nyoni in 2019 identified the 
optimal model with the minimum MAPE of 8.6877% value in the SARIMA (0, 1, 1) (0, 1, 
1)[12] to forecast tourist arrivals in Sri Lanka.  

The change point detections are vital in practical situations such as in financial analysis, 
climatology, and many other areas (Eckley et al., 2011). The At Most One Change Point 
(AMOC) method was repeatedly applied to detect multiple change points in climate by Wang 
in 2006. In addition, a study conducted by Lund et al. (2007) claimed the shifts in time series 
can be pointed out by the AMOC method.  

Bakka (2018) stated that the Pruned Exact Linear Method (PELT) performed well in the 
univariate Gaussian series compared to the Binary segmentation method. Chapman and Killick 
(2020) assessed the prediction with change points in software applications using the PELT 
method and suggested that CPA is very useful in the cases of a large amount of data.  

However, in this study, SARIMA models were built for the seasonal difference of 3, 6 
and 12 separately based on combined pre and post war eras. Further, this study used the CPA 
to detect the important changes in arrivals. Following the CPA, separate new time series models 
were built for the windows with different seasonal differences. Thereafter, an attempt was made 
to identify the appropriate models with the lowest Akaike Information Criterion (AIC) value 
for each seasonal difference and recognized the better model for the prediction of tourist 
arrivals using the performance measures MAPE and normalized root mean squared error 
(NRMSE). 
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3. Methodology 
 
Month wise data from January 2000 to December 2019 was obtained from the website 

of Sri Lanka Tourism Development Authority. Initially, the behavior of the data was 
recognized with the time-series plots where basic features were identified using descriptive 
analysis. For further analysis, time-series data was split for training and testing in a non-random 
manner. The stationary or the non-stationary behavior was pointed out using the ACF and 
PACF plots with the number of cut-off lags. Furthermore, unit root tests were applied to check 
the stationarity. Applied unit root tests are: 

 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 

𝐻!: The	series	is	stationary 

𝐻": The	series	is	not	stationary 

Augmented Dickey-Fuller test (ADF) test and Phillips-Perron test (PP) test 

𝐻!: The	series	possesses	a	unit	root	(	The	series	is	not	stationary) 

𝐻": The	series	do	not	possess	a	unit	root	(	The	series	is	stationary) 

For these three tests, if the p-value is less than the considered significant level, H0 (Null 
hypothesis) is rejected at the significance level.   

The non-stationary data was converted to stationary through the application of different 
transformations. Seasonality features were identified with the patterns in ACF, PACF plots and 
using the Webel-Ollech (WO) test. The WO is an overall seasonality test that merged results 
from QS-test and the Kwman-test. This test identifies the seasonality in the series by the QS-
test if the p-value is below 0.01 and by the Kwman-test if the p-value is lower than 0.002. 

ARIMA models are wide-ranging applications in time series analysis to realize the 
behavior of data and for prediction. The general form of the ARIMA model illustrates below: 

 ARIMA (p, d, q)   (1) 

where p is the number of parameters in the autoregressive (AR) model, d is the differencing 
degree, q is the number of parameters in the Moving Average (MA) model. However, with the 
seasonality behavior, the ARIMA was extended to SARIMA. The general form of the 
SARIMA model is in Equation 2: 

 ARIMA (p,d, q) (P,D,Q)s (2) 

where p is the number of parameters in the autoregressive (AR) model, d is the differencing 
degree, q is the number of parameters in the MA model, P is the number of parameters in the 
seasonal AR model, D is the seasonal differencing degree, Q is the number of parameters in 
seasonal MA model and s is the period of seasonality. 

The parameters of ARIMA and SARIMA models are identified by the Auto-Correlation 
Function (ACF) and Partial Auto-Correlation Function (PACF). For the built SARIMA 
models, Akaike Information Criterion (AIC) was used to identify the better model with the 
minimum AIC value. Model assumptions of heteroscedasticity, autocorrelation and normality 
of residuals (model diagnostics) were evaluated using the tests ARCH, Ljung-Box and Jarque-
Bera respectively for the selected models and they are below: 
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Heteroscedasticity: ARCH test 

𝐻!: There	is	no	heteroscedasticity	in	the	residuals 

𝐻": There	is	heteroscedasticity	in	the	residuals 

Autocorrelation: Ljung-Box Test on Residuals 

𝐻!: There	is	no	autocorrelation	in	the	residuals 

𝐻": There	is	autocorrelation	in	the	residuals 

Normality: Jarque –Bera Test 

𝐻!: Residuals	are	normally	distributed 

𝐻": Residuals	are	not	normally	distributed 

The ARCH test is used to identify the behavior of the error term variance and if the 
residuals are homoscedastic then the p-value of the test is greater than the considered significant 
level. Also, in time series modeling the error terms should be free of autocorrelation and if 
there is no autocorrelation then the p-value is greater than the significance level for the Ljung-
Box tests.  Jarque-Bera test is a goodness of fit test which is used to detect the normality 
behavior of the residuals and in the presence of the normality for this test, the p-value is greater 
than the given significance level. 

Then the selected model was used to predict the values in the test set (final 10% of data). 
The model accuracy was identified using Mean Absolute Percentage Error (MAPE) and 
Normalized Root Mean Squared Error (NRMSE) and calculated using Equations 3 and 4. 

																				𝑀𝐴𝑃𝐸 = 	 "
#
∑ |%!|

&!
× 100#

'("                                         (3) 

𝑁𝑅𝑀𝑆𝐸 = 	
)∑ (#!)%

&
&
!'(

&+
                                        (4) 

 
where t is the time-period, Yt is the actual value, 𝑦F is the average of the observations and et = 
𝑦' −	𝑦H' is the error in the period t and n is the number of observations. 

 
Detection of change points in modeling and prediction of time series is an important task. 

CPA is useful in identifying whether a change or more than one change has occurred in the 
data and at which time the changes have occurred. CPA is performed on a time ordered series 
to detect the changes that occurred (Hackl, 2013) where it identifies the multiple changes with 
smaller shifts. The CPA can consider both mean and variance changes and, in this study, 
AMOC was applied to detect the single change point (Eckley et al., 2011). This method is 
based on the likelihood-ratio approach and the hypothesis of the change is as follows: 

𝐻!: No	change	point 

𝐻": A	singel	change	point 

To find the test statistic from both hypothesis (null and alternative), the maximum log-
likelihood is calculated and is compared it with a threshold value to accept or reject the null 
hypothesis. If the test statistic is greater than the considered threshold, the null hypothesis is 
rejected. 
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PELT method was used to detect multiple change points as this method is 
fast and accurate than the binary segmentation and other methods (Wambui et al., 2015). This 
approach minimizes the general penalized likelihood from the Schwarz information criterion 
(SIC) (Yao, 1988) and points out the appropriate model. In the PELT method, the linear 
functions of the number of change points are the linear penalties as follows: 

pen(T) = β |T|      (5) 

where T is a set of indexes and β is a smoothing parameter that controls the goodness of fit and 
complexity. 

The pruning rule: 

If the Lmin𝑉	N𝑇, 𝑦!,...,'Q + 	𝛽	|𝑇|U + 𝑐	N𝑦',…,/Q ≥  Lmin𝑉	N𝑇, 𝑦!,...,'Q + 	𝛽	|𝑇|U then t cannot be 
the concluding change point before T (Truong et al., 2020). 

where y is a signal, t < s < T, t and s are indexes and V is a function of y and T. 

In this study, both AMOC and PELT methods were employed to identify the change 
points considering both mean and variance change in data using the package “changepoint” in 
R software (Killick & Eckley (2014)). This package calculates the number of change points 
with their optimal positions for given penalty functions and assumed test statistics. 

 
4. Data Analysis 
 

This section consists of the descriptive analysis of the data and results obtained through 
the SARIMA and CPA approaches for each case. Case I consists of the data from January 2000 
to December 2019 while case II describes the approach with the application of CPA for the 
data. 

 
4.1. Case I 
 

Figure 1 illustrates the number of tourists who arrived from January 2000 to December 
2019. There was a significant decline in the period from the year 2000 to mid of 2011. This 
huge decline may be due to the destructive terrorism phenomenon which was experienced in 
Sri Lanka. However, there is a gradual increase from the end of the year 2011 to the end of the 
year 2019.  

 
According to Figure 2, there are two outliers in the boxplot as December 2018 and 

February 2019. However, to implement the continuity of time series data points outliers are not 
removed. The right-skewed data imply that most numbers of tourist arrivals are relatively 
small, and only a few are long. There were no missing values in the dataset. 

The minimum value of the tourist arrival was 11,758 in September 2001 while the 
maximum amount was 253,169 in the month of December 2018. On average 84,238 tourists 
arrived in Sri Lanka. From the year 2000 to 2019 total of 20,217,026 tourists arrived and the 
Standard deviation value was 61132.3. This means that 68% of the total tourist arrivals are 
between 23,106 and 145,370. 

Data was split with an initial 90% for the training set from January 2000 to December 2017 
and the remaining 10% for the testing set from January 2018 to December 2019 for testing. 
There is a clear upward trend in the training data. Therefore, the series was not stationary, and 
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it was identified through the unit root tests. PP test indicated that the series was stationary 
where the ADF test and KPSS tests suggested it was not stationary at a 5% level of significance. 
Therefore, the log transformation was applied to the original data to make the data smoother 
(stabilize the variance). Then, differencing was applied to stabilize the mean of a time series by 
removing changes in the level of a time series (to reduce the trend). The trend was eliminated 
after this transformation. Through the unit root tests, the differenced log transformed training 
set was stationary at a 5% level of significance. 

 
Figure 1: Time-series plot of tourist arrivals in thousand from 2000 to 2019 

 
 

 
Figure 2: Boxplot of tourist arrivals 
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The ACF and PACF plots were used to identify the seasonal and non-seasonal lags as in 
Figures 3 (a) and 3 (b) respectively. 

 

 

 

 

 

 

 

 

(a) ACF     (b) PACF 

 

Figure 3: ACF and PACF plots of the transformed series of tourist arrivals  

From the ACF plot, it is visible that the significant lags are 2, 3, 6, 9, 10, 12, 14, 15 and 
18 and from the PACF plot, lags 1, 2, 6, 9, 10 and 12 are significant (Figure 3). The seasonality 
of the transformed data was identified using the WO test. Through the ACF and PACF plots, 
different seasonal lags were recognized as 3, 6 and 12.  Subsequently, candidate models for 
each case of seasonal differences were identified. 

Initially, the transformed data was seasonally differed by 3, 6 and 12 separately. By 
considering the results of unit root tests, all the series were stationary at a 5% level of 
significance. From the ACF and PACF plots of the seasonality differed series, significant non-
seasonal lags and seasonal lags were obtained as in Table 1. 

Table 1: Seasonal lags and non-seasonal lags from ACF plots and PACF plots for Case I 

 ACF PACF 
Seasonal 
difference 

Seasonal lags Non-seasonal 
lags 

Seasonal lags Non-seasonal 
lags 

3 3,9,12 1.2 3,6,9 1,2 
6 6,12,18 1,2,3 6,18 1,2,3 
12 12, 24 - 12,24,36 - 

 
The models (relevant to seasonal difference by 3) were built from identified lags as in 

Table 1 in Annexure. In the table, the minimum AIC was –229.76 in the model ARIMA (2,1,2) 
(3,1,4)[3]. For this model, the Jarque-Bera test violated the normality assumption and satisfied 
the assumptions of homoscedasticity and the absence of autocorrelation in residuals through 
the ARCH and Ljung-Box tests respectively. Aryani et al. (2018) stated that even the residual 
normality assumption of the ARIMA model is violated (it reflected the data with high 
volatility), the model can be used in forecasting. Hence, the model was used to forecast as all 
the other candidate models violated the assumption of normality in residuals.  

 
Using the seasonal lags and non-seasonal lags, appropriate models were recognized 

similar to the procedure in Table 1 in Annexure for the seasonal difference of 6 and 12. The 
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minimum AIC was –236.53 in the model ARIMA (1,1,1) (3,1,2)[6] and through the model 
diagnostic tests, it only violated the normality assumption. Therefore, the aforementioned 
model was used in prediction among the models with the seasonal difference of 6. 

The minimum AIC was –240.44 in the model ARIMA (0,1,0) (2,1,1)[12] (relevant to 
seasonal difference by 12) and in here, all the models violated the assumption of normality. 
Therefore, this model was used in forecasting tourist arrivals among all the models with the 
seasonal difference of 12. 

 
4.2. Case II 
 

In Case II, the CPA (both AMOC and PELT methods) were employed to identify the 
change points. There are many penalty functions that can be applied in the CPA which are AIC, 
Bayesian information criterion (BIC), SIC and Hannan-Quinn. In addition, the assumed test 
statistic can take Normal, Gamma, Exponential and Poisson distributions (Killick and Eckley 
(2014)). This study used AIC, BIC and SIC methods for the penalty functions in CPA (Wambui 
et al., 2015). The test of fit for the probability distribution of Gamma was identified using the 
test of variance ratio for Gamma distributions (see Villasenor and Gonzalez-Estrada, 2015; 
Gonzalez-Estrada, 2020). For the test of fit, the test statistic value was 2.0834 and the p-value 
was 0.1407. They indicated that the null hypothesis of data follow a Gamma distribution was 
not rejected at a 5% level of significance. As data follow a Gamma distribution, the assumed 
test statistic was considered with the Gamma distribution in this study. 

Multiple change points were not identified from the PELT method. From both AMOC 
and PELT methods only one change point was identified for all the information criteria. It is 
the 142nd observation as in Figure 4 and the change point was detected in the month of October 
2011. From 2000 to mid of 2011, there was a decline period in tourist arrivals and that might 
be due to the impact of civil war. However, from the end of 2011, there is an increase in tourist 
arrivals. Therefore, theoretically and practically, it can be concluded that a better change point 
was identified from the AMOC and PELT methods. 

 
Therefore, Window 1 (W1) was built based on the data from January 2000 to October 

2011 and Window 2 (W2) was based on the time period from November 2011 to December 
2019. 

4.2.1. Window 1 
 
In Window 1 (Figure 5), the minimum value of the tourist arrival was 11,758 in 

September 2001 while the maximum amount was 84,627 in the month of December 2010. On 
average 42,311 tourists had arrived in Sri Lanka from January 2000 to October 2011 which 
was a total of 6,008,152.   

Observations from January 2000 to October 2010 were used as the training set while 
observations from November 2010 to October 2011 were used as the testing set. 

ADF and PP tests exhibited that the training set was stationary at a 5% level of 
significance. However, the KPSS test indicated that the series was not stationary. The 
difference transformation for the log transformed variable was used to make data smooth and 
to remove the trend. The transformed series was stationary at a 5% level of significance. 
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Figure 4: Detection of Change point using AMOC and PELT methods 

 
Figure 5: Time-series plot of tourist arrivals from January 2000 to October 2011 

 

The WO test indicated the seasonality feature. Then the ACF and PACF plots were used 
to identify the seasonal and non-seasonal lags. 

From Figure 6, the ACF plot indicates that the significant lags are 2, 3, 6, 11, 12, 24, 36 
and 48 and the PACF plot indicates that the significant lags are 2, 6, 8, 9, 10 and 12. From the 
ACF and PACF plots, three seasonal differences were identified as 3, 6 and 12. The models 
were built separately for each seasonal difference of 3, 6 and 12. 

W1 W2 
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(a) ACF     (b) PACF 

 
Figure 6: ACF and PACF plots of the transformed series of tourist arrivals  

The seasonally differed series by 3, 6 and 12 were stationary at a 5% level of significance. 
As in Table 2, found the significant seasonal and non-seasonal lags from ACF and PACF plots 
to identify a better model in forecasting. Candidate models were built for each seasonal 
difference (same task as in Table 1 in Annexure) for Window 1. 

Table 2: Seasonal lags and non-seasonal lags from ACF plots and PACF plots for W1 

 ACF PACF 
Seasonal 
difference 

Seasonal lags Non-seasonal 
lags 

Seasonal lags Non-seasonal 
lags 

3 3,6,12,24 1,2 6,9,12 1,2 
6 6,12,24,36 1,2,3 6,12 1,2 
12 12,24,36,48 1,2,3 12 1,2 
 
The minimum AIC (relevant to seasonal difference by 3) was in the ARIMA (1,1,1) 

(4,1,1)[3]  which of –94.70. From the model diagnostic tests of ARCH, Ljung-Box and Jarque-
Bera, this model satisfied all the assumptions in residuals.  

 
The lowest AIC was in the model ARIMA (2,1,2) (1,1,4)[6] with a –103.39 value (relevant 

to seasonal difference by 6). However, the model violated the assumption of normality whereas 
all the other candidate models violated that assumption. Therefore, the aforementioned model 
was used to forecast the arrival of tourists among models with the seasonal difference of 6. 

 
The seasonality differed series by 12 was stationary and the least AIC was –107.57 in the 

model ARIMA (2,1,2) (1,1,4)[12]. This model violated the normality assumption. However, the 
model was used for forecasting as all other candidate models violated the assumption of 
normality in residuals. 

  
4.2.2. Window 2 
 

Window 2 was built based on the time period from November 2011 to December 2019. 
There is an upward trend in Figure 7. There is a sudden drop in May 2019 due to the 
Easter bombings on 28th April 2019 on Easter Sunday. In Window 2, the minimum value of 
the tourist arrival was 37,802 in May 2019 while the maximum amount was 253,169 in 
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December 2018. On average 144,989 tourists arrived in Sri Lanka from 2011 November to 
2019 December while a total of 14,208,874. 

 
Figure 7: Time-series plot of tourist arrivals from 2011 of November to 2019 of December 

The train set is from November 2011 to December 2018. The test set is from January 
2019 to December 2019. The train set consists of a clear upward trend. In addition, it seems to 
have a seasonal pattern. The series was not stationary and it was examined through the unit 
root tests. 

The difference transformation for the log transformed variable was used to make data 
smooth and to remove the trend. The transformed series was stationary at a 5% level of 
significance. The seasonality behavior was identified using the WO test. Significant lags from 
ACF and PACF plots (Figures 8) were used to build the models. From ACF plot, significant 
lags are 2, 3, 9, 10, 12, 14, 15, 22, 24, 26, 27, 34, 36, 39 and 48 while PACF plot illustrates the 
significant lags as 2, 3, 6, 7, 9, 10, 11, 12 and 18. The seasonality was identified in 3, 6 and 12 
seasonal differences. Therefore, applied the seasonal differences in 3, 6 and 12 separately and 
identified seasonal and non-seasonal lags for each case as in Table 3. 
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(a) ACF     (b) PACF 

 

Figure 8: ACF plot of the transformed series of tourist arrivals 

Table 3: Seasonal lags and non-seasonal lags from ACF plots and PACF plots for W2 

 ACF PACF 
Seasonal 
difference 

Seasonal lags Non-seasonal 
lags 

Seasonal lags Non-seasonal 
lags 

3 3,9,12,15 1,2 3,6,9,12,18 1,2 
6 12,24,36 1,2,3 6,12,18 1,2,3 
12 12,24,36,48 1,2,3 12 1,2,3 

 
Seasonally differed series by 3 was stationary and the least AIC was –146.09 in the model 

ARIMA (0,1,1) (3,1,3)[3] and it satisfied all the model diagnostics assumptions of the model.  
 
Seasonally differed series by 6 was stationary and the minimum AIC was –166.12 in the 

model ARIMA (2,1,3) (1,1,6)[6]. Moreover, this model satisfied all the model diagnostics 
assumptions.  

 
Seasonally differed series by 12 was stationary and among all the candidate models, 

minimum AIC was –155.55 in the ARIMA (0,1,1) (1,1,1)[12] model. Even the normality 
assumption is violated, used this model in forecasting. The next least AIC value –154.23 was 
in model ARIMA (1,1,2) (1,1,1)[12] and it satisfied all the assumptions of model diagnostics.  

 
5. Discussion 

 
In this section, the better performed models in forecasting tourist arrivals were identified 

for Case I and Case II. 
 

5.1. Case I 
 

Table 4 indicates the performance measures, assumption satisfaction or violation of 
model diagnostics with their AIC values for better performed models in each seasonal 
difference. ARIMA (0,1,0) (2,1,1)[12] has the lowest AIC value. However, among all the models 
in Table 4, it has the highest MAPE and NRMSE values. The MAPE value was minimum in 
the model ARIMA (2,1,2) (3,1,4)[3] (Model A).  However, it violated the assumption of 
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normality in residuals and satisfied all the assumptions of model diagnostics. Therefore, model 
A is the better model that can use in forecasting tourist arrivals in Case I.  

 
Table 4: Better performed models to identify the behavior of the arrival of tourists from 

January 2000 to December 2019 

 

 
Figure 9: Actual and Predicted values of tourist arrivals from ARIMA (2,1,2) (3,1,4)[3] 

Figure 9 indicates the actual and predicted values where the asterisk marks illustrate the 
actual values and the point marks show the predicted values for the test set from the beginning 
of 2018 to the end of 2019. Until April 2019, the fitted model captured the behavior of tourist 
arrivals in Sri Lanka and due to the Easter bomb attack in April 2019, there was a sudden drop 
in May 2019. However, model A identified the actual behavior till the end of 2019 even two 
lines do not coincide with each other. 

5.2 Window 1 
 

Window 1 was build based on the data from January 2000 to October 2011. From Table 
5, the minimum AIC is in Model F while it violated the normality of assumption of residuals 
and has higher MAPE and NRMSE values. The better model that can used in the prediction is 
ARIMA (1,1,1) (4,1,1)[3] (Model D). In addition, it satisfied all the assumptions of model 
diagnostics while all other models dissatisfied the assumption of the normality of the error 
terms. Compared to all the models in Table 5, the lowest performance measures were in Model 
D. Hence, Model D was used to forecast tourist arrivals in Window 1.  

Case I Model 
Assumptions 

AIC MAPE NRMSE Heterosce
dasticity 

Autocor
relation Normality 

ARIMA 
(2,1,2)(3,1,4)[3] A Absence Absence Absence –229.76 0.1941 0.8800 

ARIMA 
(1,1,1)(3,1,2)[6] 

B Absence Absence Absence –236.53 0.2340 0.9740 

ARIMA 
(0,1,0)(2,1,1)[12] C Absence Absence Absence –240.44 0.2786 1.2630 



2022]  FORECASTING TOURIST ARRIVALS IN SRI LANKA 117 
  

 
 

Table 5: Better performed models to identify the behavior of the arrival of tourists from 
January 2000 to October 2011 

Window 1 
Model 

Assumptions 
AIC MAPE NRMSE 

SARIMA Heterosce
dasticity 

Autocor
relation Normality 

ARIMA 
(1,1,1)(4,1,1)[3] D Absence Absence Presence –94.70 0.1727 1.1190 

ARIMA 
(2,1,2)(1,1,4)[6] E Absence Absence Absence –103.39 0.2751 1.5520 

ARIMA 
(2,1,2)(1,1,4)[12] F Absence Absence Absence –107.57 0.3034 1.7460 

 

 
Figure 10: Actual and Predicted values of tourist arrivals from ARIMA (1,1,1) (4,1,1)[3] 

Observations from November 2010 to October 2011 were used as the testing set. Sri 
Lankan civil war was ended in May 2009 and as a result of that, there are fluctuations in the 
actual values of tourist arrivals (asterisk marks) in Figure 10. Thus, the predicted values (point 
marks) are not very similar to actual values. 
 
5.3. Window 2 
 

Window 2 was built based on the data from November 2011 to December 2019. The 
lowest AIC is in Model H as per Table 6 and it has higher MAPE and NRMSE values compared 
to model G. The better model that can be used in forecasting tourist volume is ARIMA (0,1,1) 
(3,1,3)[3] (Model G) in Window 2. Further, it consists of the lowest MAPE and NRMSE 
compared to all other models in Table 6 and it satisfied all the assumptions in the model 
diagnostics with a lower AIC value. 
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Table 6: Better performed models to identify the behavior of the arrival of tourists from 
November 2011 to the December 2019 

Window 2 
Model 

Assumptions 
AIC MAPE NRMSE 

SARIMA Heterosce
dasticity 

Autocor
relation 

Normalit
y 

ARIMA 
(0,1,1)(3,1,3)[3] 

G Absence Absence Presence –146.09 0.2740 0.8700 

ARIMA 
(2,1,3)(1,1,6)[6] H Absence Absence Presence –166.12 0.3447 1.0520 

ARIMA 
(0,1,1)(1,1,1)[12] 

I Absence Absence Absence –155.55 0.3473 1.1050 

ARIMA 
(1,1,2)(1,1,1)[12] J Absence Absence Presence –154.23 0.3460 1.1000 

 

 
Figure 11: Actual and Predicted values of tourist arrivals from ARIMA (0,1,1) (3,1,3)[3] 

Figure 11 indicates the predicted (point marks) and actual data (asterisk marks) values in 
the test set from January 2019 to December 2019. The fitted model captures the behavior until 
April 2019. However, there was a sudden drop in the arrival of tourists in May 2019 due to the 
Easter bomb attack in April. Nevertheless, from this point onwards the predicted line captures 
the behavior of the actual values even though they do not coincide with each other. Again in 
December 2019, the predicted and Actual values are very close to each other. 

 
6. Conclusions 
 

The findings of the study are important to make the major decisions relevant to tourism 
to achieve sustainable development of the sector. Tourist arrivals in Sri Lanka indicate a 
seasonality pattern and a clear upward trend after 2010. According to this study, there were 
models built which were relevant to seasonal lags 3, 6 and 12. The outperformed model that 
can be used in forecasting tourist arrivals from January 2000 to December 2019 was the 
ARIMA (2,1,2) (3,1,4)[3] model which exhibits the lowest MAPE and NRMSE values with the 
satisfaction of all model diagnostics assumptions except the normality of the residuals. With 
the application of CPA, from January 2000 to October 2011 (Window 1) the better performed 
model was ARIMA (1,1,1) (4,1,1)[3]. However, the model did not capture the actual behavior 
of tourist arrivals due to the fluctuations in values of tourist arrivals after the end of the civil 
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war in May 2009. From November 2011 to December 2019 (Window 2), the better model that 
can be used in forecasting was ARIMA (0,1,1) (3,1,3)[3] and it satisfied all the model 
diagnostics assumptions. Thus, this study is a benefit for both the private and public sectors as 
tourist arrivals have a prominent impact on the economy of the country. Moreover, future 
forecasting information is vital in the decision making for industries related to tourism. For 
further implications, supervised machine learning algorithms can be used to build forecasting 
models to forecast the tourist arrivals in Sri Lanka with higher accuracy. 
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ANNEXURE 

 
Table 1: SARIMA Models with seasonal difference of 3 

 
Model AIC Model AIC 

ARIMA (1,1,1)(1,1,1)[3] ___–99.66 ARIMA (0,1,1)(1,1,3)[3] –117.70 
ARIMA (1,1,1)(1,1,3)[3] –122.20 ARIMA (0,1,1)(1,1,4)[3] –142.60 
ARIMA (1,1,1)(1,1,4)[3] –149.80 ARIMA (0,1,1)(2,1,1)[3] –109.30 
ARIMA (1,1,1)(2,1,1)[3] –115.00 ARIMA (0,1,1)(2,1,3)[3] –162.90 
ARIMA (1,1,1)(2,1,3)[3] –161.40 ARIMA (0,1,1)(2,1,4)[3] –151.30 
ARIMA (1,1,1)(2,1,4)[3] 155.96 ARIMA (0,1,1)(3,1,1)[3] –180.70 
ARIMA (1,1,1)(3,1,1)[3] –185.90 ARIMA (0,1,1)(3,1,3)[3] –195.70 
ARIMA (1,1,1)(3,1,3)[3] –196.70 ARIMA (0,1,1)(3,1,4)[3] –223.10 
ARIMA (1,1,1)(3,1,4)[3] –226.80 ARIMA (0,1,2)(1,1,1)[3] –111.30 
ARIMA (1,1,2)(1,1,1)[3] –115.40 ARIMA (0,1,2)(1,1,3)[3] –135.40 
ARIMA (1,1,2)(1,1,3)[3] –139.00 ARIMA (0,1,2)(1,1,4)[3] –158.30 
ARIMA (1,1,2)(1,1,4)[3] 158.51 ARIMA (0,1,2)(2,1,1)[3] –129.70 
ARIMA (1,1,2)(2,1,1)[3] –131.90 ARIMA (0,1,2)(2,1,3)[3] –166.00 
ARIMA (1,1,2)(2,1,3)[3] –181.20 ARIMA (0,1,2)(2,1,4)[3] –167.70 
ARIMA (1,1,2)(2,1,4)[3] –168.10 ARIMA (0,1,2)(3,1,1)[3] –184.70 
ARIMA (1,1,2)(3,1,1)[3] –183.80 ARIMA (0,1,2)(3,1,3)[3] –203.50 
ARIMA (1,1,2)(3,1,3)[3] –203.10 ARIMA (0,1,2)(3,1,4)[3] –223.20 
ARIMA (1,1,2)(3,1,4)[3] –227.80 ARIMA (1,1,0)(1,1,1)[3] –87.43 
ARIMA (2,1,1)(1,1,1)[3] –113.30 ARIMA (1,1,0)(1,1,3)[3] –117.60 
ARIMA (2,1,1)(1,1,3)[3] –142.00 ARIMA (1,1,0)(1,1,4)[3] –142.00 
ARIMA (2,1,1)(1,1,4)[3] –160.70 ARIMA (1,1,0)(2,1,1)[3] –106.00 
ARIMA (2,1,1)(2,1,1)[3] –144.50 ARIMA (1,1,0)(2,1,3)[3] –159.70 
ARIMA (2,1,1)(2,1,3)[3] –190.70 ARIMA (1,1,0)(2,1,4)[3] –150.30 
ARIMA (2,1,1)(2,1,4)[3] –176.00 ARIMA (1,1,0)(3,1,1)[3] 180.67 
ARIMA (2,1,1)(3,1,1)[3] –184.60 ARIMA (1,1,0)(3,1,3)[3] –195.70 
ARIMA (2,1,1)(3,1,3)[3] –204.50 ARIMA (1,1,0)(3,1,4)[3] –223.10 
ARIMA (2,1,1)(3,1,4)[3] –228.20 ARIMA (2,1,0)(1,1,1)[3] –109.00 
ARIMA (2,1,2)(1,1,1)[3] –147.50 ARIMA (2,1,0)(1,1,3)[3] –125.00 
ARIMA (2,1,2)(1,1,3)[3] –140.00 ARIMA (2,1,0)(1,1,4)[3] –156.80 
ARIMA (2,1,2)(1,1,4)[3] –158.70 ARIMA (2,1,0)(2,1,1)[3] –128.40 
ARIMA (2,1,2)(3,1,1)[3] –194.70 ARIMA (2,1,0)(2,1,3)[3] –171.10 
ARIMA (2,1,2)(3,1,3)[3] –211.00 ARIMA (2,1,0)(2,1,4)[3] –158.80 
ARIMA (2,1,2)(3,1,4)[3] –229.76 ARIMA (2,1,0)(3,1,1)[3] –183.20 
ARIMA (0,1,1)(1,1,1)[3] –89.47 ARIMA (2,1,0)(3,1,3)[3] –200.60 

  ARIMA (2,1,0)(3,1,4)[3] –222.80 
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Abstract 

Cyclic designs are incomplete block designs based on cyclic development of one or 
more initial blocks. John et al. (1972) described the advantages of cyclic designs as 
calibration designs and experimental designs and tabulated these designs in the useful range 
of parameters which was published by National Bureau of Standards, Washington, DC. The 
cyclic designs may have up to v/2 associate classes. The purpose of this survey is to present 
cyclic solutions of balanced incomplete block designs, group divisible designs, Latin square 
type designs and cyclic designs, wherever possible, which have at most two associate classes 
and higher efficiencies.  

Key words: Balanced incomplete block (BIB) designs; Semi–regular and regular group 
divisible designs; Latin square type designs; Cyclic Designs. 

1.  Introduction 

Cyclic designs are incomplete block designs based on cyclic development of one or 
more initial blocks. Their flexibility, ease in conduct of experiment and natural groupings for 
one-way elimination of heterogeneity, make them worthy of attention in their own right. All 
cyclic designs are partially balanced incomplete block (PBIB) designs with up to v/2 
associate classes. Among the class of cyclic designs, cyclic balanced incomplete block (BIB) 
designs are obviously best in the sense that all the pair-wise treatment comparisons are 
measured with same and maximum efficiency. When no cyclic BIB design exists, then we 
look for cyclic solution of two associate class PBIB design with same (v, b, r, k). These 
designs are used as calibration designs and experimental designs [see John et al. (1972), 
Clatworthy (1973), John and Williams (1995)]. Cyclic designs were catalogued by John et al. 
(1972). The cyclic solutions of BIB designs were given by Hall (1998), wherever possible. 
Clatworthy (1973) tabulated two associate classes PBIB designs. The purpose of this paper is 
to present a survey on cyclic solutions of BIB designs, group divisible designs, Latin square 
type designs and cyclic designs in the range of r, k ≤ 10. 

The concept of cyclic designs is extended to generalized cyclic designs which are useful 
as factorial experiments [see Jarrett and Hall (1978), Lamacraft and Hall (1982), Nigam et al. 
(1988), Dean and Lewis (1990), Bailey (1990)].  

A Group divisible design (GDD)  is an arrangement of v (= mn; m, n ≥ 2) treatments 
into b blocks such that each block contains k (<v) distinct treatments, each treatment occurs r 
times and any pair of distinct treatments which are first associates occur together in λ1 blocks 
and in λ2 blocks if they are second associates. Furthermore, if r–λ1 = 0 then the GD design is 
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singular (S); if r–λ1 > 0 and rk–vλ2 = 0 then it is semi–regular (SR); and if r–λ1 > 0 and rk–vλ2 
> 0, the design is regular (R). For definitions and terminologies, we refer to Dey (1986, 
2010), Raghavarao (1971), Raghavarao and Padgett (2005). 

2.  Cyclic Solutions of Block Designs 
 

Table 1: Cyclic Solutions: BIBD/ GD design/ Cyclic Design / Latin square type design  
No. BIBD/ GDD/ CD/ LSD: 

(v, r, k, b); Overall 
Efficiency  

John No.; 
Overall 
Efficiency 

Cyclic Solutions 

1M SR1: (4, 2, 2, 4); 0.60 - G: (1, 4) mod 4 
2* C1: (5, 2, 2, 5); 0.50 - C: (1, 3) mod 5 
3* C6: (5, 6, 2, 15); 0.61 - C: (1, 3); (1, 3); (1, 2) mod 5 
4* C7: (5, 8, 2, 20); 0.59 - C: (1, 3); (1, 3); (1, 3); (1, 2) mod 5 
5* C8: (5, 10, 2, 25); 0.58 - C: (1, 3); (1, 3); (1, 3); (1,3); (1, 2) 

 mod 5 
6* C9: (5, 10, 2, 25); 0.62 - C: (1, 3); (1, 3); (1, 3); (1, 2); (1, 2)  

mod 5 
7M SR7: (6, 6, 2, 18); 0.56 2×A2; 0.55 G: (0, 1); (0, 3); (0, 5) mod 6 
8M SR13: (12, 6, 2, 36); 0.52 2×A26; 0.39 G: (0,1); (0, 3); (0, 5) mod 12 
9* C10: (13, 6, 2, 39); 0.50 A36; 0.50 (1, 3); (1, 6); (1, 7) mod 13 
10M SR15: (16, 8, 2, 64); 0.52 A57; 0.52 G: (0, 1); (0, 3); (0, 5); (0, 7) mod 16 
11* C11: (17, 8, 2, 68); 0.50 A62; 0.51 (1, 4); (1, 6); (1, 7); (1, 8) mod 17 
12M SR17: (20, 10, 2, 100); 

0.51 
A81; 0.51 G: (0, 1); (0, 3); (0, 5); (0, 7); (0, 9)  

mod 10 
13* C12: (5, 3, 3, 5); 0.81 - C: (1, 2, 4) mod 5 
14* C15: (5, 9, 3, 15); 0.83 - (1, 3, 5); (1, 3, 5); (1, 2, 5) mod 5 
15* R42: (6, 3, 3, 6); 0.78 B1, 0.78 G: (1, 2, 4) mod 6 
16 H1: (7, 3, 3, 7); 0.78 B2; 0.78 B: (1, 2, 4) mod 7 
17* R54: (8, 3, 3, 8); 0.75 B3; 0.75 G: (1, 2, 4) mod 8 
18DN R55: (8, 6, 3, 16); 0.75 B5; 0.75 G: (1, 2, 3); (1, 3, 6) mod 8 
19* R58: (8, 9, 3, 24); 0.76 3× B3; 0.75 G: (1, 2, 3); (1, 2, 5); (1, 3, 6) mod 8 
20MD SR23: (9, 3, 3, 9); 0.73 B9; 0.72 G: (3, 5, 8); (2, 6, 8); (2, 5, 9); 

1↔3, 4↔6, 7↔9 (PC) 
21 H2: (9, 4, 3, 12); 0.75 - Add the blocks: (1+3x, 2+3x, 3+3x);  

0≤ x ≤2 
to the solution in Serial No. 20 

22M SR25: (9, 9, 3, 27); 0.73 3× B9; 0.72 G: (0, 1, 2); (0, 4, 8); (0, 5, 7) mod 9 
23MD R68: (9, 10, 3, 30); 0.74 - G:(1, 2, 3); (1, 2, 6); (1, 3, 5); (1, 4, 7) mod 9 
24 H26: (10, 9, 3, 30); 0.74 B14; 0.70 B: (∞, 0, 5); (0, 1, 4); (0, 2, 3); (0, 2, 7) mod 

9 
25* C16: (13, 3, 3, 13); 0.67 B50; 0.67 C: (1, 3, 9) mod 13 
26 H9: (13, 6, 3, 26); 0.72 - B: (1, 3, 9); (2, 5, 6) mod13 
27* C19: (13, 9, 3, 39); 0.72 B54; 0.72 C: (1, 12, 13); (3, 10, 13); (4, 9, 13)  

mod 13 
28* R80: (14, 9, 3, 42); 0.67 B64; 0.67 G: (1, 2, 8); (1, 8, 9); (1, 3, 8); (1, 8, 10); (1, 

4, 8); (1, 8, 11); 1↔7, 8↔14 (PC) 
29* R81: (15, 6, 3, 30); 0.71 B75; 0.71 G: (1, 4, 15); (2, 8, 15) mod 15 
30* R83: (15, 9, 3, 45); 0.71 B77; 0.71 G: (1, 7, 13); (1, 4, 5); (1, 3, 8) mod 15 

G: (1, 2, 5); (1, 3, 8); (1, 4, 10) mod15 
31 H14: (15, 7, 3, 35); 0.71 B76; 0.71 B: (11, 41, 02); (21, 31, 02); (12, 42, 03); 

(22, 32, 03); (13, 43, 01); (23, 33, 01); 
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(01, 02, 03) mod 5 
32* LS18: (16, 3, 3, 16); 0.63 C1; 0.63 L: (7, 10, 16); (4, 6, 13); (4, 7, 9);  

(2, 9, 16); 1↔4, 5↔8, 9↔12, 13↔16 (PC) 
33* R86: (16, 6, 3, 32); 0.70 2× C1; 0.63 G: (1, 2, 11); (1, 3, 6) mod 16 
34* R87: (16, 9, 3, 48); 0.71 C1; 0.63 G: (1, 5, 13); (1, 2, 11); (1, 3, 6) mod 16 
35* R89: (18, 9, 3, 54); 0.70 C11; 0.61 G: (1, 11, 13); (1, 10, 14); (1, 15, 18); 

(1, 16, 17); (1, 2, 5); (1, 3, 12); 
1↔9, 10↔18 (PC) 

36F R89a: (18, 10, 3, 60); 
0.69 

- G: (A1, A2, B1); (B1, B2, A1); (A1, A8, B1); 
(B1, B8, A4); (A1, A6, B4); (B1, B6, A1); 
!
"
{(A1, A4, A7), (B1, B4, B7)}  

mod 9 
37* R91: (21, 9, 3, 63); 0.70 3× C32; 0.60 G: (1, 2, 11); (1, 3, 7); (1, 4, 9) mod 21 
38 H38: (21, 10, 3, 70); 0.70 - B: (11, 61, 02); (21, 51, 02); (31, 41, 02); 

(12, 62, 03);(22, 52, 03); (32, 42, 03); (13, 63, 01); 
(23, 53, 01); (33, 43, 01); (01, 02, 03) mod 7 

39* R92: (24, 9, 3, 72); 0.69 3× C52; 0.58 G: (1, 2, 12); (1, 3, 8); (1, 4, 10) mod 24 
40* LS22: (25, 6, 3, 50); 0.67 2× C60; 0.57 L: (1, 5, 25); (9, 14, 15); (18, 23, 24); (2, 7, 

8); (11, 16, 17); (1, 3, 13); (12, 15, 22); (6, 
21, 24); (8, 10, 20); (4, 17, 19); 1↔5, 6↔10, 
11↔15, 16↔20, 21↔25 (PC) 

41* C20: (37, 9, 3, 111); 0.67 - (1, 10, 26); (1, 31, 34) (1, 11, 37)  
mod 37 

42* R94: (6, 4, 4, 6); 0.89 - G: (1, 2, 4, 6) mod 6 
43DB SR36: (8, 4, 4, 8); 0.84 B6; 0.85 G: (2, 3, 4, 5); (1, 6, 7, 8); 1↔4, 5↔8 (PC) 
44* R98: (8, 8, 4, 16); 0.85 2× B6; 0.85 G: (1, 2, 3, 5); (1, 2, 4, 6) mod 8 
45MD SR39: (8, 8, 4, 16); 0.84 2× B6; 0.85 G: (1, 4, 6, 7); (1, 2, 3, 4) mod 8 
46* R104: (9, 4, 4, 9); 0.80 B12; 0.83 G: (1, 2, 4, 7) mod 9 

J: (1, 2, 4, 5) mod 9 
47* R105: (9, 8, 4, 18); 0.80 2× B12; 0.83 G: (1, 2, 4, 7); (1, 2, 5, 8) mod 9 

2 copies of J: (1, 2, 4, 5) mod 9 
48 H20: (9, 8, 4, 18); 0.84 2× B12; 0.83 B: (0, 1, 2, 4); (0, 1, 4, 6) mod 9 
49DB R106: (10, 8, 4, 20); 0.82 2× B18; 0.83 G: (3, 4, 5, 6); (1, 8, 9, 10); (2, 4, 5, 6); 

(1, 7, 9, 10); 1↔5, 6↔10 (PC) 
50* R109: (12, 4, 4, 12); 0.81 - G: (1, 2, 5, 7) mod 12 
51F R109a: (12, 7, 4, 21); 

0.82 
- G: (A1, A2, A3, B4); (A1, A3, B1, B6); 

(A1, A4, B2, B6); !
#
(B1, B2, B4, B5) mod 6 

52MD R110: (12, 8, 4, 24); 0.81 B39; 0.82 G: (1, 2, 5, 7); (1, 2, 8, 10) mod 12 
53F R110b: (12, 10, 4, 30); 

0.81 
2× B37; 0.81 G: (A1, A2, A3, A6); (A1, A3, B4, B6); 

(B1, B2, B3, A6); (B1, B3, A4, B6); 
(A1, A2, B3, B5); (B1, B2, A3, A5); 
(mod 5) and 6 invariant 

54 H3: (13, 4, 4, 13); 0.81 B55; 0.81 B: (0, 1, 3, 9) mod 13 
55* C21: (13, 8, 4, 26); 0.80 B56; 0.81 C: (1, 4, 12, 13); (1, 4, 10, 13) mod 13 
56* R112: (14, 4, 4, 14); 0.80 B65; 0.80 G: (1, 2, 5, 7) mod 14 
57MD R113: (14, 8, 4, 28); 0.80 B67; 0.80 G: (1, 2, 5, 7); (1, 2, 10, 12) mod 14 
58F R113a: (14, 10, 4, 35); 

0.80 
B69; 0.80 G: (A1, A2, A4, B7); (B1, B2, B7, A7); 

(A1, A2, B1, B2); (A1, A3, B1, B3); 
(A1, A4, B1, B4) mod 7 

59* R114: (15, 4, 4, 15); 0.80 B79; 0.80 G: (1, 3, 4, 12) mod 15 
60* R115: (15, 8, 4, 30); 0.73 B81; 0.80 G: (1, 2, 6, 11); (1, 6, 7, 11); (1, 6, 11, 12); 

(1, 6, 8, 11); (1, 6, 11, 13); (1, 3, 6, 11); 1↔-
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5, 6↔10, 11↔15 (PC) 
J: (1, 2, 5, 6); (1, 3, 9, 11) mod 15 

61MD R116: (15, 8, 4, 30); 0.80 B81; 0.80 G: (0, 1, 3, 7); (1, 3, 4, 12) mod15 
62 * R117: (15, 8, 4, 30); 0.80 B81; 0.80 G: (1, 3, 11, 15); (1, 5, 7, 15) mod15 
63* LS38: (16, 8, 4, 32); 0.80 2× C2; 0.79 L: (5, 6, 8, 11); (1, 5, 9, 13); (1, 4, 10, 15); (7, 

13, 14, 16); (9, 10, 12, 15); (1, 2, 7, 12); (1, 5, 
9, 13); (1, 3, 6, 16); 
1↔4, 5↔8, 9↔12, 13↔16 (PC) 

64* C22: (17, 8, 4, 34); 0.79 2× C7; 0.78 C: (2, 9, 11, 17); (1, 4, 5, 17) mod 17 
65A C22A: (17, 10, 5, 34); 

0.85 
2× C8; 0.84 C: (0, 5, 12, 14, 3); (0, 7, 10, 11, 6) mod 17 

66F R123a: (18, 10, 4, 45); 
0.79 

- G: (A1, A2, A3, B4); (A1, A3, B5, C4); 
!
#
(A1, A4, B2, B5) perm A, B, C mod 6 

67 SR46: (20, 5, 4, 25); 0.78 - By deleting the treatments 21, 22, 23, 24, 25 
from SR60 

68F R124a: (22, 8, 4, 44); 
0.77 

2× C41; 0.76 G: (A1, A3, A4, B1); (A1, A7, B1, B8) 
perm A, B and mod 11 

69F R126a: (24, 9, 4, 54); 
0.77 

- G: (A1, A2, A9, B1); (B1, B2, B9, A1); 
(A1, A4, B1, B11); (B1, B4, A1, A11); 
!
#
(A1, A7, B1, B7) mod 12 

 
70 H22: (25, 8, 4, 50); 0.78 2× C61; 0.75 B: [(0, 0); (1, 0); (0, 1); (4, 4)]  

mod (5, 5); 
[(0, 0); (2, 0); (0, 2); (3, 3)] mod (5, 5) 

71* R128: (26, 8, 4, 52); 0.78 2× C68; 0.74 G: (2, 4, 10, 14); (1, 16, 19, 20); (3, 6, 7, 14); 
(1, 15, 17, 23); 1↔13, 14↔26 (PC) 

72F R128a: (26, 10, 4, 65); 
0.76 

- G: (A1, A6, A8, B1); (B1, B6, B8, A1); 
(A1, A2, B1, B4); (B1, B2, A1, A4); 
(A1, A5, B1, B5) mod 13 

73* R132: (30, 10, 4, 75); 
0.78 

- G: (1, 3, 15, 20); (5, 16, 18, 30); (1, 5, 11, 
17); (2, 16, 20, 26); (1, 9, 16, 24); 
1↔15, 16↔30 (PC) 

74* R133: (8, 5, 5, 8); 0.90 - G: (1, 2, 3, 5, 7) mod 8 
75* R134: (8, 5, 5, 8); 0.91 - G: (1, 3, 4, 5, 6) mod 8 
76DN R136: (8, 10, 5, 16); 0.91 - G: (1, 5, 6, 7, 8); (1, 3, 5, 6, 8) mod 8 
77* R137: (9, 5, 5, 9); 0.89 - G: (1, 3, 4, 6, 7) mod 9 
78* R138: (9, 10, 5, 18); 0.89 - G: (1, 3, 4, 6, 7); (1, 3, 4, 6, 9) mod 9 
79* R139: (10, 5, 5, 10); 0.88 B21; 0.88 G: (1, 2, 3, 6, 8) mod 10 
80* R141: (10, 10, 5, 20); 

0.89 
2× B21; 0.88 G: (1, 2, 3, 4, 7); (1, 2, 4, 6, 8) mod 10 

81 H5: (11, 5, 5, 11); 0.88 B27; 0.88 B: (1, 3, 4, 5, 9) mod 11 
82* R143: (12, 5, 5, 12); 0.81 B43; 0.87 G: (1, 2, 4, 7, 10) mod 12 

J: (1, 2, 3, 5, 8) mod 12 
83* R144: (12, 5, 5, 12); 0.87 B43; 0.87 G: (1, 2, 4, 9, 12) mod 12 
84* R145: (12, 5, 5, 12); 0.87 B43; 0.87 G: (1, 2, 4, 6, 7) mod 12 
85 * R146: (12, 10, 5, 24); 

0.81 
2× B43; 0.87 G: (1, 2, 4, 7, 10); (1, 3, 4, 7, 10) mod 12 

J: 2 copies of (1, 2, 3, 5, 8) mod 12 
86MD R147: (12, 10, 5, 24); 

0.87 
2× B43; 0.87 G: (0, 1, 2, 4, 9); (0, 1, 2, 5, 10) mod 12 

J: 2 copies of (1, 2, 3, 5, 8) mod 12 
87 * R148: (12, 10, 5, 24); 

0.87 
2× B43; 0.87 G: (1, 2, 3, 6, 12); (1, 3, 6, 8, 12) mod 12 

J: 2 copies of (1, 2, 3, 5, 8) mod 12 
88 * R149: (15, 10, 5, 30); 

0.82 
2× B82; 0.85 G: (1, 2, 6, 7, 11); (1, 3, 6, 8, 11)  

mod 15 
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J: 2 copies of (1, 2, 3, 5, 11) mod 15 
89* R150: (15, 10, 5, 30); 

0.86 
B82; 0.85 G: (1, 2, 3, 5, 8); (1, 2, 5, 9, 11) mod 15 

90S R150a: (15, 10, 5, 30); 
0.84 

B82; 0.85 G: (1, 2, 4, 7, 11); (1, 2, 4, 10, 13)  
mod 15 

91* R152: (20, 10, 5, 40); 
0.74 

- G: (1, 2, 6, 11, 16); (1, 6, 7, 11, 16); 
(1, 6, 11, 12, 16); (1, 6, 11, 16, 17); 
(1, 6, 8, 11, 16); (1, 6, 11, 13, 16); 
(1, 6, 11, 16, 18); (1, 3, 6, 11, 16); 
1↔5, 6↔10, 11↔15, 16↔20 (PC) 

92 H7: (21, 5, 5, 21); 0.84 C34; 0.84 B: (3, 6, 7, 12, 14) mod 21 
93F R152a: (22, 10, 5, 44); 

0.84 
 G: (A1, A2, A3, A6, B9) (A1, A3, A8, B2, 

B10); perm A, B and mod 11 
94* R153: (24, 5, 5, 24); 0.83 - G: (1, 2, 5, 10, 12) mod 24 
95MD R154: (24, 10, 5, 48); 

0.83 
2× C54; 0.83 G: (1, 2, 5, 10, 12); (1, 2, 4, 12, 21)  

mod 24 
96 SR60: (25, 5, 5, 25); 0.83 C62; 0.83 G: (1, 6, 11, 16, 21); (1, 7, 13, 19, 25); 

(1, 10, 14, 18, 22); (1, 9, 12, 20, 23); 
(1, 8, 15, 17, 24); 1↔5, 6↔10, 11↔15, 
16↔20, 21 ↔25 (PC) 

97 H11: (25, 6, 5, 30); 0.83 - Add the blocks: (1+5x, 2+5x, 3+5x, 4+5x, 
5+5x); 0≤ x ≤4 to the solution in Serial No. 
96  

98* R159: (35, 10, 5, 70); 
0.82 

- G: (2, 5, 6, 11, 21); (7, 10, 11, 16, 26); 
(12, 15, 16, 21, 31); (1, 17, 20, 21, 26); 
(6, 22, 25, 26, 31); (1, 11, 27, 30, 31); 
(1, 6, 16, 32, 35); (3, 4, 6, 11, 21); 
(8, 9, 11, 16, 26); (13, 14, 16, 21, 31); 
(1, 18, 19, 21, 26); (6, 23, 24, 26, 31); 
(1, 11, 28, 29, 31); (1, 6, 16, 33, 34); 
1↔5, 6↔10, 11↔15 16↔20, 21↔25, 
26↔30, 31↔35 (PC) 

99* R160: (39, 10, 5, 78); 
0.82 

- G: (2, 4, 10, 14, 27); (1, 15, 17, 23, 27); 
(1, 14, 28, 30, 36); (1, 14, 29, 32, 33); 
(1, 16, 19, 20, 27); (3, 6, 7, 14, 27); 
1↔13, 14↔26, 27↔39 (PC) 

100 H42: (41, 10, 5, 82); 0.82 - B: (1, 10, 16, 18, 37); (5, 8, 9, 21, 39) mod 41 
101* R166: (10, 6, 6, 10); 0.90 - G: (1, 2, 3, 5, 7, 9) mod 10 
102F R167a: (12, 9, 6, 18); 

0.91 
3× D5; 0.89 G: (A1, A2, A4, A6, B2, B3); 

(B1, B2, B4, B6, A2, A3); 
(A1, A2, A4, B1, B2, B4) mod 6 

103* C23: (13, 6, 6, 13); 0.90 - C: (1, 2, 4, 7, 9, 13) mod 13 
104* R168: (15, 6, 6, 15); 0.82 - G: (1, 2, 4, 7, 10, 13) mod 15 
105 H10: (16, 6, 6, 16); 0.89 - B: (1, 0, 0, 0); (0, 1, 0, 0); (0, 0, 1, 0); 

(0, 0, 0, 1); (1, 1, 0, 0); (0, 0, 1, 1) 
mod (2, 2, 2, 2) 

106 SR72: (18, 6, 6, 18); 0.90 C14; 0.88 G: (1, 4, 7, 10, 13, 16); (1, 4, 8, 11, 15, 18); 
(1, 6, 8, 12, 14, 16); (1, 6, 9, 11, 13, 17); (1, 
5, 7, 12, 15, 17); (1, 5, 9, 10, 14, 18); 1↔3, 
4↔6, 7↔9, 10↔12, 13↔15, 16↔18,19↔21 
(PC) 

107MD R170: (27, 6, 6, 27); 0.86 C77; 0.86 G: (0, 9, 12, 13, 16, 18) mod 27 
108MD R171: (28, 6, 6, 28); 0.86 C85; 0.86 G: (0, 1, 4, 15, 20, 22) mod 28 
109 SR76: (30, 10, 6, 50); 5× D59; 0.55 By deleting the treatments 31, 32, 33, 34, 35 
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0.86 from SR86a 
110 H12: (31, 6, 6, 31); 0.86 - B: (1, 5, 11, 24, 25, 27) mod 31 
111 SR77: (42, 7, 6, 49); 0.85 - By deleting the treatments 43, 44, 45, 46, 47, 

48, 49 from SR87 
112* LS82: (49, 6, 6, 49); 0.84 - 

 
 

L: (9, 19, 28, 32, 38, 43); (2, 13, 19, 24, 39, 
49); (7, 9, 20, 26, 31, 49); (7, 15, 25, 34, 38, 
44);(2, 12, 21, 25, 31, 36); (7, 13, 18, 33, 36, 
45);(3, 8, 23, 33, 42, 46); 1↔7, 8↔14, 
15↔21, 22↔28, 23↔29, 29↔35, 36↔42, 
43↔49 (PC) 

113* R172: (9, 7, 7, 9); 0.96 - G: (1, 2, 3, 5, 6, 8, 9) mod 9 
114* R173: (12, 7, 7, 12); 0.90 - G: (1, 2, 3, 5, 7, 9, 11) mod 12 
115* R174: (12, 7, 7, 12); 0.92 - G: (1, 2, 4, 5, 7, 8, 11) mod 12 
116* R175: (12, 7, 7, 12); 0.93 - G: (1, 2, 3, 4, 6, 7, 11) mod 12 
117* R176: (12, 7, 7, 12); 0.93 - G: (1, 4, 5, 6, 7, 8, 11) mod 12 
118MD R177: (14, 7, 7, 14); 0.92 - G: (0, 1, 2, 5, 7, 8, 12) mod 14 
119 H16: (15, 7, 7, 15); 0.92 B188; 0.92 B: (0, 1, 2, 4, 5, 8, 10) mod 15 
120* LS83: (16, 7, 7, 16); 0.91 C16; 0.92 L: (4, 8, 12, 13, 14, 15, 16); (4, 8, 9, 10, 11, 

12, 16); (4, 5, 6, 7, 8, 12, 16); (1, 2, 3, 4, 8, 
12, 16); 1↔4, 5↔8, 9↔12, 13↔16 (PC) 
 

121* R178: (18, 7, 7, 18); 0.82 C15; 0.90 G: (1, 2, 4, 7, 10, 13, 16) mod 18 
J: (1, 2, 3, 4, 6, 9, 13) mod 18 

122MD R179: (20, 7, 7, 20); 0.90 C29; 0.90 G: (0, 1, 2, 4, 8, 11, 16) mod 20 
123DN R180a: (21, 7, 7, 21); 

0.90 
C36; 0.90 G: (1, 2, 5, 7, 11, 12, 14) mod 24 

124F R180b: (24, 7, 7, 24); 
0.89 

C56; 0.89 G: (A1, A2, A4, A5, B6, B8, C7) perm A, B, C 
and mod 8 

125* C25: (29, 7, 7, 29); 0.88 - C: (1, 7, 16, 20, 23, 24, 25) mod 29 
126MD R182: (33, 7, 7, 33); 0.88 - G: (2, 4, 5, 6, 10, 12, 23); 

(1, 13, 15, 16, 17, 21, 23); 
(1, 12, 24, 26, 27, 28, 32); 
1↔11, 12↔22, 23↔33 (PC) 

127F R182a: (35, 7, 7, 35); 
0.87 

- G: (A1, A2, A4, B7, C7, D7, E7) 
perm A, B, C, D, E and mod 7 

128 SR86a: (35, 10, 7, 50); 
0.88 

- By deleting the treatments 36, 37, 38, 39, 40 
from SR95a 

129* R183: (48, 7, 7, 48); 0.87 - G: (1, 2, 5, 11, 31, 36, 38) mod48 
130 SR87: (49, 7, 7, 49); 0.87 - G: (1, 8, 15, 22, 29, 36, 43); 

(1, 9, 17, 25, 33, 41, 49); 
(1, 14, 20, 26, 32, 38, 44); 
(1, 13, 18, 23, 35, 40, 45); 
(1, 12, 16, 27, 31, 42, 46); 
(1, 11, 21, 24, 34, 37, 47); 
(1, 10, 19, 28, 30, 39, 48); 
1↔7, 8↔14, 15↔21, 22↔28, 29↔35, 
36↔42, 43 ↔49 (PC) 

131 H24: (49, 8, 7, 56); 0.87 - Add the blocks: (1+7x, 2+7x, 3+7x, 4+7x, 
5+7x, 6+7x, 7+7x); 0≤ x ≤6 to the solution in 
Serial No. 130 

132* R186: (12, 8, 8, 12); 0.95 2× D7; 0.95 G: (1, 3, 4, 5, 6, 7, 10, 11) mod 12 
133* R187: (14, 8, 8, 14); 0.90 2× D11; 0.94 G: (1, 2, 3, 5, 7, 9, 11, 13) mod 14 

J: 2 copies of (1, 2, 3, 5, 8, 9, 10, 12) mod 14 
134* C26: (17, 8, 8, 17); 0.93  C: (1, 2, 4, 8, 9, 13, 15, 16) mod 17 
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135* R188: (21, 8, 8, 21); 0.82 C37; 0.92 G: (1, 3, 6, 9, 12, 15, 18, 21) mod 21 
J: (1, 2, 3, 5, 6, 9, 15, 17) mod 21 

136 R189: (24, 8, 8, 24); 0.91 C57, 0.91 G: (2, 3, 4, 5, 6, 7, 13, 19); 
(1, 8, 9, 10, 11, 12, 13, 19); 
(1, 7, 14, 15, 16, 17, 18, 19); 
(1, 7, 13, 20, 21, 22, 23, 24); 
1↔6, 7↔12, 13↔18, 19 ↔24 (PC) 

137* LS101: (25, 8, 8, 25); 
0.91 

C65; 0.91 L: (1, 6, 11, 16, 22, 23, 24, 25); 
(1, 6, 11, 17, 18, 19, 20, 21); 
(1, 6, 12, 13, 14, 15, 16, 21); 
(1, 7, 8, 9, 10, 11, 16, 21); 
(2, 3, 4, 5, 6, 11, 16, 21); 1↔5, 6↔10, 
11↔15 16↔20, 21↔25 (PC) 

138* C27: (29, 8, 8, 29); 0.90 - C: (1, 2, 8, 17, 21, 24, 25, 26) mod 29 
 
 

139 SR95: (32, 8, 8, 32); 0.90 2× D66; 0.88 G: (1, 5, 9, 13, 17, 21, 25, 29); (1, 8, 11, 13, 
18, 23, 26, 32); (1, 7, 9, 14, 19, 22, 28, 32); 
(1, 5, 10, 15, 18, 24, 28, 31); (1, 6, 11, 14, 20, 
24, 27, 29); (1, 7, 10, 16, 20, 23, 25, 30); (1, 
6, 12, 16, 19, 21, 26, 31); (1, 8, 12, 15, 17, 
22, 27, 30); 1↔4, 5↔8, 9↔12, 13↔16, 
17↔20, 21↔24, 25↔28, 29↔32 (PC) 

140 SR95a: (40, 10, 8, 50); 
0.89 

5× D84; 0.62 By deleting the treatments 41, 42, 43, 44, 45 
from SR103a 

141F R189a: (42, 8, 8, 42); 
0.88 

2× D89; 0.89 G: (A1, A2, A4, B7, C7, D7, E7, F7) 
perm A, B, C, D, E, F and mod 7 

142 H25: (57, 8, 8, 57); 0.89 - B: (1, 6, 7, 9, 19, 38, 42, 49) mod 57 
143* R191: (63, 8, 8, 63); 0.89 - G: (1, 6, 8, 14, 38, 48, 49, 52) mod 63 
144* R193: (12, 9, 9, 12); 0.97 3× D8; 0.97 G: (1, 2, 3, 5, 6, 8, 9, 11, 12) mod 12 
145* R194: (15, 9, 9, 15); 0.94 3× D14; 0.94 G: (1, 2, 4, 5, 7, 8, 11, 13, 14) mod 15 
146* R195: (16, 9, 9, 16); 0.90 - G: (1, 2, 4, 6, 8, 10, 12, 14, 16) mod 16 
147 H30: (19, 9, 9, 19); 0.94 C24; 0.94 B: (1, 4, 5, 6, 7, 9, 11, 16, 17) mod 19 
148DN R197a: (20, 9, 9, 20); 

0.93 
C30; 0.93 G: (1, 2, 3, 4, 6, 10, 15, 17, 18) mod 20 

149* R198: (24, 9, 9, 24); 0.82 C58; 0.93 G: (1, 2, 4, 7, 10, 13, 16, 19, 22) mod 24 
J: (1, 2, 3, 4, 7, 12, 15, 19, 21) mod 24 

150* LS117: (25, 9, 9, 25); 
0.92 

- L: (1, 2, 3, 4, 5, 6, 11, 16, 21); 
(1, 6, 7, 8, 9, 10, 11, 16, 21); 
(1, 6, 11, 12, 13, 14, 15, 16, 21); 
(1, 6, 11, 16, 17, 18, 19, 20, 21); 
(1, 6, 11, 16, 21, 22, 23, 24, 25); 1↔5, 
6↔10, 11↔15 16↔20, 21↔25 (PC) 

151 SR102: (27, 9, 9, 27); 
0.92 

3× D52; 0.89 G: (1, 4, 7, 10, 13, 16, 19, 22, 25); (1, 6, 8, 
10, 15, 17, 19, 24, 26); (1, 5, 9, 10, 14, 18, 
19, 23, 27); (1, 4, 7, 12, 15, 18, 20, 23, 26); 
(1, 6, 8, 12, 14, 16, 20, 22, 27); (1, 5, 9, 12, 
13, 17, 20, 24, 25); (1, 4, 7, 11, 14, 17, 21, 
24, 27); (1, 6, 8, 11, 13, 18, 21, 23, 25); (1, 5, 
9, 11, 15, 16, 21, 22, 26); 1↔3, 4↔6, 7↔9, 
10↔12, 13↔15 16↔18, 19↔21, 22↔24, 
25↔27 (PC) 

152 R200: (28, 9, 9, 28); 0.91 C87; 0.92 G: (2, 3, 4, 5, 6, 7, 8, 15, 22); 
(1, 9, 10, 11, 12, 13, 14, 15, 22); 
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(1, 8, 16, 17, 18, 19, 20, 21, 22); 
(1, 8, 15, 23, 24, 25, 26, 27, 28) 
1↔7, 8↔14, 15↔21, 22 ↔28 (PC) 

153 H34: (37, 9, 9, 37); 0.91 - B: (1, 7, 9, 10, 12, 16, 26, 33, 34) mod 37 
154DN R200c: (40, 9, 9, 40); 

0.91 
- G: (1, 3, 4, 6, 10, 17, 18, 22, 35) mod 40 

155 SR103a: (45, 10, 9, 50), 
0.91 

- By deleting the treatments 46, 47, 48, 49, 50 
from SR109a 

156F R200e: (49, 9, 9, 49); 
0.89 

- G: (A1, A2, A4, B7, C7, D7, E7, F7, G7); 
perm A, B, C, D, E, F, G and mod 7 

157 H37: (73, 9, 9, 73); 0.90 - B: (1, 2, 4, 8, 16, 32, 37, 55, 64) mod 73 
158* R202: (80, 9, 9, 80); 0.90 - G: (1, 3, 6, 10, 22, 44, 57, 58, 75) mod 80 
159* LS134: (100, 9, 9, 100); 

0.89 
- L: (63, 95, 59, 11, 42, 78, 87, 24, 36); 

(90, 29, 77, 43, 51, 8, 34, 92, 15); 
(37, 85, 16, 51, 69, 23, 42, 10, 98); 
(4, 62, 47, 21, 99, 13, 78, 85, 60); 
(93, 18, 31, 6, 77, 60, 24, 69, 45); 
(55, 39, 21, 68, 86, 93, 7, 12, 80); 
(72, 7, 100, 84, 11, 35, 69, 43, 26); 
(1, 26, 49, 68, 77, 32, 85, 14, 53); 
(16, 57, 84, 32, 8, 45, 99, 80, 63); 
(47, 74, 6, 98, 22, 70, 53, 35, 89); 
1↔10, 11↔20, 21↔30, …, 91↔100 

160* R203: (12, 10, 10, 12); 
0.98 

- G: (1, 2, 3, 4, 6, 7, 8, 10, 11, 12) mod 12 

161* R204: (14, 10, 10, 14); 
0.97 

2× D12; 0.97 G: (1, 2, 3, 4, 6, 7, 8, 10, 12, 14) mod 14 

162MD R205: (14, 10, 10, 14); 
0.97 

2× D12; 0.97 G: (0, 1, 3, 5, 6, 7, 8, 9, 10, 11) mod 14 

163* R206: (18, 10, 10, 18); 
0.90 

2× D26; 0.95 G: (1, 2, 4, 6, 8, 10, 12, 14, 16, 18) mod 18 
J: 2 copies of (1, 2, 3, 4, 7, 10, 11, 12, 13, 16) 
mod 18 

164F R206a: (21, 10, 10, 21); 
0.94 

C39; 0.94 G: (A1, A2, A4, A7, B1, B2, B4, C1, C2, C4); 
perm A, B, C and mod 7 

165MD R206b: (21, 10, 10, 21); 
0.93 

C39; 0.94 G: (0, 1, 3, 4, 6, 9, 10, 12, 15, 18)  
mod 21 

166* R207: (27, 10, 10, 27); 
0.82 

C81; 0.93 G: (1, 2, 4, 7, 10, 13, 16, 19, 22, 25) mod 27 
J: (1, 2, 3, 4, 5, 8, 13, 17, 21, 23)  
mod 27 

167F R207a: (28, 10, 10, 28); 
0.93 

C88; 0.93 G: (A1, A2, A4, B1, B2, B4, C1, C2, C4, D7); 
perm A, B, C, D and mod 7 

168 R208: (32, 10, 10, 32); 
0.92 

2× D67; 0.92 G: (2, 3, 4, 5, 6, 7, 8, 9, 17, 25); 
(1, 10, 11, 12, 13, 14, 15, 16, 17, 25); 
(1, 9, 18, 19, 20, 21, 22, 23, 24, 25); 
(1, 9, 17, 26, 27, 28, 29, 30, 31, 32) 
1↔8, 9↔16, 17↔24, 25 ↔32 (PC) 

169* LS136: (36, 10, 10, 36); 
0.92 

2× D79; 0.92 L: (2, 3, 4, 5, 6, 7, 13, 19, 25, 31); 
(1, 8, 9, 10, 11, 12, 13, 19, 25, 31); 
(1, 7, 14, 15, 16, 17, 18, 19, 25, 31); 
(1, 7, 13, 20, 21, 22, 23, 24, 25, 31); 
(1, 7, 13, 19, 26, 27, 28, 29, 30, 31); 
(1, 7, 13, 19, 25, 32, 33, 34, 35, 36); 
1↔6, 7↔12, 13↔18, 19↔24, 25↔30, 
31↔36 
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170A C30: (37, 10, 10, 37); 
0.92 

- C: (0, 1, 16, 34, 26, 9, 33, 10, 12, 7)  
mod 37 

171 SR109a: (50, 10, 10, 50); 
0.92 

5×D108;0.67 G: (1, 10, 12, 17, 25, 26, 33, 39, 44, 48);(1, 9, 
15, 19, 21, 28, 32, 40, 42, 48); 
(1, 8, 13, 16, 22, 29, 35, 40, 44, 47); 
(1, 7, 11, 18, 23, 29, 32, 39, 45, 50); 
(1, 6, 14, 20, 24, 28, 33, 37, 45, 47); 
(1, 6, 11, 16, 21, 26, 31, 36, 41, 46); 
(1, 8, 15, 17, 24, 27, 34, 36, 43, 50); 
(1, 10, 14, 18, 22, 30, 34, 38, 42, 46); 
(1, 7, 13, 19, 25, 30, 31, 37, 43, 49); 
(1, 9, 12, 20, 23, 27, 35, 38, 41, 49) 
1↔5, 6↔10, 11↔15, 16↔20, 21↔25, 
26↔30, 31↔35, 36↔40, 41↔45, 46↔50 
(PC) 

172F R208a: (56, 10, 10, 56); 
0.89 

2× D125; 0.9 
 

G: (A1, A2, A4, B7, C7, D7, E7, F7, G7, H7); 
perm A, B, C, D, E, F, G, H and mod 7 

173 H46: (91, 10, 10, 91); 
0.91 

- B: (0, 1, 3, 9, 27, 49, 56, 61, 77, 81)  
mod 91 

*The cyclic solutions are reported in Clatworthy (1973). John numbers are from John et al. 
(1972). A part cycle, such as !

"
(B1, B2, B4, B5) for R109a, means that only half the six blocks 

are needed, since the same treatments would then recur [see Freeman (1976)]. m × No. X 
denotes design obtained by taking m copies of the design No. X. 
 
PC: the initial blocks are developed in partial cycles, B: BIBD, G: Group divisible design, C: 
the cyclic design from Clatworthy and Agrawal (1987), L: Latin square type designs; J: the 
cyclic design from John et al. (1972).  

HX numbers are from Hall (1998) and SRX, RX, LSX and CX (in the second column of the 
table) numbers are from Clatworthy (1973) and Agrawal (1987). 

The abbreviations A, M, F, MD, S, DN and DB stand for Agrawal (1987), Mukerjee et al. 
(1987), Freeman (1976), Midha and Dey (1995),  Sinha (1989), Dey and Nigam (1985) and 
Dey and Balasubramanian (1991) respectively.  

The overall efficiency of a partially balanced design is defined as the ratio of the average 
variance of a treatment comparison to the variance in a randomized block experiment with 
the same replication, assuming that the standard errors of individual plots are the same. The 
overall efficiency of a BIB design is obtained using 𝜆𝑣 𝑟𝑘⁄  and the overall efficiency E of a 
two associate class PBIB design is calculated as [see Clatworthy (1973)]: 

𝐸 =
(𝑘 − 1)(𝑣 − 1)

𝑛!(𝑘 − 𝑐!) + 𝑛"(𝑘 − 𝑐")
 

where the computational constants 𝑐!, 𝑐" are obtained by means of the following relations: 

𝑘" △= (𝑟𝑘 − 𝑟 + 𝜆!)(𝑟𝑘 − 𝑟 + 𝜆") + (𝜆! − 𝜆"){(𝑟(𝑘 − 1)(𝑝!"! − 𝑝!"" ) + 𝜆"𝑝!"! − 𝜆!𝑝!"" },  
𝑘 △ 𝑐! = 𝜆!(𝑟𝑘 − 𝑟 + 𝜆") + (𝜆! − 𝜆")(𝜆"𝑝!"! − 𝜆!𝑝!"" ) 
𝑘 △ 𝑐" = 𝜆"(𝑟𝑘 − 𝑟 + 𝜆!) + (𝜆! − 𝜆")(𝜆"𝑝!"! − 𝜆!𝑝!"" ). 
In case of GD designs, the expression for overall efficiency is given as [see Freeman (1976)]: 
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𝐸 =
𝑣(𝑣 − 1)𝜆"{𝜆! + (𝑚 − 1)𝜆"}

𝑟𝑘{(𝑚 − 1)𝜆! + (𝑚𝑣 − 2𝑚 + 1)𝜆"}
. 

The cyclic solutions of BIB designs: H2, H11, H24 and GD designs: SR60, SR72, SR87, 
SR95, SR102, R189, R200, R208 are new. Clatworthy (1973) reported six, seven and eight 
initial blocks for the cyclic solution of R189, R200 and R208 respectively whereas we have 
used four initial blocks only. For the design R68: the first three initial blocks give 9 blocks 
each and the fourth initial block gives three distinct blocks. Clatworthy (1973) did not report 
the solutions in cyclic form for Latin square designs except four. We have reported cyclic 
solutions for such designs. The cyclic block designs which are m – multiple of smaller block 
designs and are with non – repeated initial blocks are included in the above table. For each of 
these designs, Clatworthy (1973) reported a solution that is obtained by repeating the blocks 
of a smaller block design m times. A resolvable solution of SR109a may be found in Saurabh 
and Sinha (2022).  

The GD scheme for the cyclic semi – regular GD designs: SR60, SR72, SR87, SR95, SR102, 
SR109a and cyclic regular GD designs: R189, R200, R208 is given as:       

1 2 3 ⋯ 𝑛
𝑛 + 1 𝑛 + 2 𝑛 + 3 ⋯ 2𝑛
⋮ ⋮ ⋮ ⋱ ⋮

(𝑚 − 1)𝑛 + 1 (𝑚 − 1)𝑛 + 2 (𝑚 − 1)𝑛 + 3 ⋯ 𝑚𝑛

 

for suitable choices of m and n. 
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Abstract 
 

In this paper, we propose to examine sensitivity of the Bayes estimate of normal 
coefficient of variation to a moderately non-gamma prior distribution of the unknown 
precision. Non-negativity and unimodality region of the considered K-prior distributions are 
computed for illustration purpose. Kullback-Leibler Divergence measure is employed to study 
the effect as the K-prior becomes much different from the conjugate gamma prior. 
 
Key words: Positive and unimodal region; Kullback-Leibler divergence; Bayes estimate; 
Coefficient of variation; K-prior; MELO approach. 
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1. Introduction 

 
The concept of coefficient of variation (CV) has been intriguing researchers for many 

years because of its use in assessing the variability of a series since it is independent of the 
unit of measurement. It has applications in various areas ranging from medical sciences to 
finance. Here, we study Bayesian estimation of CV for Normal distribution, with mean and 
precision both unknown, using Zellner’s Minimum Posterior Expected Loss (MELO) 
approach. Zellner (1978) addressed the problem of estimating the reciprocals and the ratios of 
the population mean and the regression coefficients. He pointed out the situations in which 
maximum likelihood and other estimators of these problems do not possess finite moments 
and have infinite risk relative to quadratic and other loss functions, whereas MELO 
estimators using relative squared error loss function (RSELF) have finite moments and risk, 
and are hence, admissible.  

 
In Bayes estimation for normal distribution with unknown precision, a conjugate 

gamma prior is used to obtain the posterior distribution. However, subjectivity involved in 
choosing a single prior distribution, as observed by Berger (1984), has drawn severe criticism 
of Bayesian methodology. A reasonable approach is to consider a family of plausible priors 
that are in the neighbourhood of a specific assessed approximation to the ‘true’ prior. Not 
much attention has been paid by the investigators to study the problem of sensitivity to a 
possible misspecification of the gamma distribution as the conjugate prior distribution in 
Bayesian analysis. In this paper, we follow Bansal and Singh (1999) and Aggarwal and 
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Bansal (2017) to use Khamis’ class (K-class) of moderately non-gamma prior distributions 
for the unknown precision of the normal distribution and study the robustness of the Bayes 
estimate with respect to the prior. 

 
Many researchers including Barton and Dennis (1952), and Draper and Tierney (1972) 

exhibited the importance of deriving the conditions under which Gram-Charlier and 
Edgeworth curves are positive definite and unimodal. Spiring (2011) determined the regions 
where Edgeworth expansion and Gram-Charlier series upto the 4th moment is positive and 
unimodal. Till now, no attempt has been made in this direction for K-class of moderately 
non-gamma densities. In this paper, the boundaries of positive and unimodal regions are 
obtained for K-class of moderately non-gamma densities. The corresponding plot of the 
region is also displayed.  

 
In Section 2, Bayes estimate of the CV of the normal distribution using MELO 

approach is derived. In Section 3, we discuss the positive definite and unimodal region for K-
class of non-gamma densities. In Section 4, the distance between gamma density and some 
non-gamma densities are computed using KLD for arbitrarily chosen values of parameters. 
The derived results are further illustrated using hypothetical data in Section 5.  
  
2. Bayes Estimate of Coefficient of Variation of the Normal Distribution 
 

In this Section, the Bayes estimate of Coefficient of Variation (CV) using MELO 
approach is obtained for Normal distribution with mean and precision both unknown. The 
conditional normal prior for unknown mean and K-prior for the unknown precision of the 
normal distribution are used. The posterior distribution is derived below which shall be 
further used to obtain Bayes estimate of CV. 
 
2.1. Likelihood function 

 
Let us suppose that 𝐗	 = 	 (𝑋!, 𝑋", … , 𝑋#) is a random sample from 𝑁(q, 𝑟) with mean q	 

and precision 𝑟, both unknown. The likelihood function of q	and 𝑟, given observed sample 
𝐗	 = 	𝐱, is 

ℓ(𝜃, 𝑟|𝐱) = *
𝑟
2𝜋
-
!
" 𝑒𝑥𝑝1−

𝑟
2
3(𝑥# − 𝜃)"
!

#$%

4 

= * &
"'
-
!
" 𝑒𝑥𝑝 *− &

"
∑ (𝑥# − �̅�)"!
#$% − !&

"
(�̅� − 𝜃)"- ; 𝜃	 ∈ (−∞,∞), 𝑟 > 0.                                          (1) 

 
2.2. Prior distributions 

 
2.2.1. Conditional normal prior for unknown mean 

 
The prior distribution of unknown mean 𝜃, given 𝑟, is 𝑁(𝜇, 𝜏𝑟), both 𝜇 and 𝜏 known, 

given by 

𝑔(𝜃|𝑟) = ?
𝜏𝑟
2𝜋

𝑒𝑥𝑝 *−
𝜏𝑟
2
(𝜃 − 𝜇)"- ;−∞ < (𝜃, 𝜇) < ∞, (𝑟, 𝜏) > 0. 
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2.2.2. Khamis’ class of moderately non-gamma distributions as a prior for unknown 
precision (K-prior) 
 
To study the sensitivity of Bayes estimator with respect to the prior when the ‘true’ 

prior is not the conventional natural conjugate gamma prior, we consider a class of K-prior 
for the unknown precision of the normal distribution. Khamis (1960), in his pioneering work, 
obtained a class of non-gamma densities using Laguerre expansion with Gamma function as 
the weight function. The application of such series expansion was discussed in Tiku and Tan 
(1999). Recently, Aggarwal and Bansal (2017) used K-class of moderately non-gamma 
distributions as a prior (K-prior) for the unknown mean of the Poisson regression super 
population model. 
 

Consider density ℎ(𝑟) (may be unknown) with first k moments about origin known for 
𝑟	 ∈ (0,∞) and the Laguerre expansion 

ℎ$(𝑟) = ∑ 𝐶%𝐿%(𝑟)𝑝(𝑟|𝛼, 𝛽)$
%&'  with 𝑚 ≤ 𝑘 

where 𝑝(𝑟|𝛼, 𝛽) = 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), and 
𝐿%(𝑟) = 	∑ (−1)( A𝑗𝑖D

)(+,%)
)(+,%.()

(𝛽𝑟)%.( 			%
(&' , 𝐿'(𝑟) = 1, 𝑗 = 1,2, … ,𝑚 

is the Laguerre polynomial of degree 𝑗 and 𝐶% are arbitrary constants. Using Khamis (1960)’s 

expression for 𝐶% =
∫ 0!(1)2(1)31
"
#

∫ 40!(1)5
$"

# 2(1)31
,	𝑗 = 0,1, … ,𝑚, the expansion ℎ$(𝑟) can be used to 

approximate ℎ(𝑟) for appropriate values of 𝛼. Bansal and Singh (1999) considered a 
particular case of Khamis’ class of non-gamma distributions wherein only the first four 
moments (𝑚 = 4) were used. This particular case was referred to as K-class of moderately 
non-gamma densities, given by 
																										ℎ6(𝑟) ≈ 𝑔(𝑟) = 𝐾(𝑟)𝑝(𝑟|𝛼, 𝛽), 	𝑟, 𝛼, 𝛽 > 0                                                  (2) 
with  

𝐾(𝑟) = D1 +
𝛿(√𝛼

6(𝛼 + 1)(𝛼 + 2)
K𝐿((𝑟) −

3
𝛼 + 3

𝐿)(𝑟)N +
𝛿)𝛼

24(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)
𝐿)(𝑟)P. 

The excess of skewness and kurtosis of K-class of non-gamma densities 𝑔(𝑟) over 
gamma density 𝑝(𝑟|𝛼, 𝛽) are measured by the parameters 𝛿7 and 𝛿6, respectively.  
 
Remark 1: In particular, if we take 𝛼 = 4, 𝛽 = 1, 𝛿7 = 0.15, 𝛿6 = 2,	then skewness of 
gamma 𝑝(𝑟|𝛼, 𝛽) = 6

8(+)
= 2 and kurtosis of gamma 𝑝(𝑟|𝛼, 𝛽) = 3 + 9

+
= 4.5. Hence, 

skewness and kurtosis of K-prior 𝑔(𝑟) are 2.15 and 6.5, respectively. 
 

2.3. Posterior distribution 
 

The joint prior for q and 𝑟 is  
𝑔(𝜃, 𝑟) = 𝑔(𝜃|𝑟)𝑔(𝑟) 

where 𝑔(𝜃|𝑟) is 𝑁(𝜇, 𝜏𝑟), and 𝑔(𝑟) is K-prior given in (2). 
 

Using Bayes Theorem, the posterior distribution of q and r, given observed sample X = 
x, is 

𝑔(𝜃, 𝑟|𝐱) = 𝑔(𝜃|𝑟, 𝐱)𝑔(𝑟|𝐱)
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where  

													𝑔(𝜃|𝑟, 𝐱) = A(#,:)1
";

D
#/"

𝑒𝑥𝑝 A− 1
"
(𝑛 + 𝜏)(𝜃 − 𝜇∗)"D ≡ 𝑁(𝜇∗, (𝑛 + 𝜏)𝑟),            (3) 

and           𝑔(𝑟|𝐱) = T>(1)?@𝑟A𝛼
∗, 𝛽∗, 𝐱B

C(D%,D&)
U,                                                                            (4) 

with 

															𝛼∗ = 𝛼 +
𝑛
2 , 𝛽

∗ = 𝛽 +
1
2V

(𝑥( − �̅�)" +
#

(&!

1
2

𝑛𝜏
𝑛 + 𝜏

(𝜇 − �̅�)", 𝜇∗ =
𝑛�̅� + 𝜏𝜇
𝑛 + 𝜏 , 

															𝐺(𝛿7, 𝛿6) = 1 − 𝛿7
𝛼
7
"

6 𝐶!(𝛼∗) + 𝛿6
𝛼"

24𝐶"
(𝛼∗), 

																				𝐶!(𝛼∗) = 3𝑅6 − 13𝑅7 + 21𝑅" − 15𝑅! + 4𝑅', 
															𝐶"(𝛼∗) = 𝑅6 − 4𝑅7 + 6𝑅" − 4𝑅! + 𝑅', 
and  
              𝑅% = A)(+

∗,%)
)(+∗)F∗!

D A)(+,%)
)(+)F!

DZ , 𝑗 = 0,1, … ,4. 
(See Appendix A.1 for the details of derivation) 
 
2.4.   Bayes estimate using Zellner’s MELO approach 
 

Zellner (1978) pointed out that the usual Bayes estimate of the reciprocal of normal 
mean often fails to exist. He recommended MELO estimate as a solution to overcome the 
problem of non-existence. Following him, consider 𝑎[ as the estimate of CV 𝑎 =
𝜎/𝜃		, A𝜎" = !

1
D. Upon minimizing posterior expected loss 𝐸((𝑎[𝜃 − 𝜎)"|𝐱) =

𝐸(𝜃"(𝑎[ − 𝑎)"|𝐱), the MELO estimate is given by  

                      𝑎[GH0I =
H4𝜃"𝑎J𝐱5
H4𝜃"J𝐱5 =

HK
L
√1
N𝐱O

H4𝜃"J𝐱5                                                                           (5) 

where the expectations are with respect to posterior distribution and are given by 
												𝐸(𝜃"|𝐱) = 𝜇∗" + F∗

(+∗.!)(:,#)
C((D%,D&)
C(D%,D&)

,                                                                      (6) 

											𝐸 A L
√1
_𝐱D = 𝜇∗

8F∗)4+∗.($5

)(+∗)
C$(D%,D&)
C(D%,D&)

,                                                                            (7) 
with 

												𝐺!(𝛿7, 𝛿6) = 1 − 𝛿7
+
%
$

9
𝐶!(𝛼∗ − 1) + 𝛿6

+$

"6
𝐶"(𝛼∗ − 1),  

and 

												𝐺"(𝛿7, 𝛿6) = 1 − 𝛿7
+
%
$

9
𝐶! A𝛼∗ −

!
"
D + 𝛿6

+$

"6
𝐶" A𝛼∗ −

!
"
D.  

(See Appendix A.2 for the details of derivation of the posterior expectations (6) and (7)) 
 

Remark 2: The value of 𝑎[GH0I in (5) depends on the observed sample values. 
 
Remark 3: If we consider gamma prior for 𝑟, that is 𝛿7 =	𝛿6 = 0, then the MELO estimate 

reduces to 𝜇∗
8F∗)4+∗.($5

)(+∗)
A𝜇∗" + F∗

(+∗.!)(:,#)
D` 		.     

                                                             
Remark 4: For non-informative prior, that is 𝑔(𝜃, 𝑟) ∝ !

1
, the MELO estimate can be 

obtained by letting 𝛼 → − !
"
, 𝛽 → 0, 𝜏 → 0 (See De Groot (1970), page 195) and is given by 
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P̅R
∑*+,-+./

$

$
012-($ -($3

012-($ 3

P̅$, ∑*+,-+./
$

$212-($ -(3

= cd#
"

)42$.!5

)42-($ 5
e ST
P̅
A1 + ST$

P̅$
!

#.7
D
.!
	,                         (8) 

where 𝜎[" = ∑(P,.P̅)$

#
. This conforms with the result obtained by Bansal (2007).  

 
Remark 5: If we further use the result lim

$→W
𝑚X.Y )($,Y)

)($,X)
= 1, (see Abramowitz and Stegun 

(1964), formula 6.1.46, page 257), then on taking 𝑚 = #
"
, 𝑎 = −1 and 𝑏 = − !

"
, the first 

factor on the right-hand side of (8) tends to one for large samples. Hence, it is seen that the 
MELO Bayes estimate of CV reduces to the product of the usual estimate, 𝜎[/�̅�, of CV and 

the shrinkage factor A1 + ST$

P̅$
!

#.7
D
.!

 which has a value between zero and one. Thus, we may 
expect that the MELO Bayes estimate of CV to be smaller than the corresponding classical 
estimate for large samples and moderately non-gamma prior densities of the precision. 
 

In the next Section, we obtain the regions in which 𝑔(𝑟) is non-negative and 
unimodal so that the above obtained results can be illustrated numerically using hypothetical 
data. 
 
3.  Positive Definite and Unimodal Region for Khamis’ Class of Non-gamma 

Distributions  
 

Figure 1 below exhibits the graphs of 𝑔(𝑟) for various combinations of 𝛿7	and 𝛿6 with 
a	 = 	4, b	 = 	1. The Graph 1 of Figure 1 represents Gamma Distribution. Graphs 2, 3 and 4 
of Figure 1 shows that the graphs change in shape and peakedness with change in 𝛿7	and 𝛿6. 
It may be noticed that there are combinations of 𝛿7	and 𝛿6 for which 𝑔(𝑟) is negative and 
multimodal. For example, for (𝛿7, 𝛿6) = (3, 4) and (𝛿7, 𝛿6) = (0.1, 15), 𝑔(𝑟) is negative and 
multimodal respectively as shown in Graph 5 and 6 of Figure 1 below. Thus, there is a need 
to obtain the regions in which 𝑔(𝑟) is non-negative and unimodal.  

  

  
Figure 1: Graphs of 𝒈(𝒓) for various combinations of 𝜹𝟑	and 𝜹𝟒 with a	 = 	𝟒, b	 = 	𝟏	 
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We now determine the region where 𝑔(𝑟) is non-negative for a specific range of 𝑟. We 
have tabulated the combinations of (𝛿7, 𝛿6) where 𝑔(𝑟) is non-negative for 𝛼 = 4, 𝛽 = 1 and 
the boundaries of the positive regions are provided in Table 1. Figure 2 exhibits the plot of 
the boundary points in Table 1. This positive region is then checked for unimodality using 
second derivative test. It is found that the unimodality exists throughout in this positive 
region. For the region beyond the boundary values given in Table 1, 𝑔(𝑟) may be unimodal 
but not positive. Thus, such regions are not considered. It may be noted that we are providing 
regions only for 𝛼 = 4, 𝛽 = 1. The entire work is done using Mathematica. The same 
procedure may be employed as discussed above, to obtain positive and unimodal regions for 
other choices of 𝛼 and 𝛽.  

 
Table 1:  Positive and unimodal boundary points (𝛿4, L < 𝛿3< U) for 𝒈(𝒓|𝟒, 𝟏) 

 
d4 L U 
0 0 0.18 

0.1 0 0.2 
0.2 0 0.21 
0.3 0 0.22 
0.4 0 0.23 
0.5 0 0.25 
0.6 0 0.26 
0.7 0 0.27 
0.8 0 0.28 
0.9 0 0.3 
1 0 0.31 

1.1 0 0.32 
1.2 0 0.33 
1.3 0 0.35 
1.4 0 0.36 
1.5 0 0.37 
1.6 0 0.38 
1.7 0 0.4 
1.8 0 0.41 
1.9 0 0.42 
2 0 0.43 

2.1 0.01 0.45 
2.2 0.02 0.46 
2.3 0.03 0.47 
2.4 0.04 0.48 
2.5 0.06 0.5 
2.6 0.07 0.51 
2.7 0.08 0.52 
2.8 0.1 0.53 
2.9 0.11 0.55 
3 0.12 0.56 

3.1 0.14 0.57 
3.2 0.15 0.58 
3.3 0.16 0.6 

3.4 0.18 0.61 
3.5 0.19 0.62 
3.6 0.2 0.63 
3.7 0.22 0.65 
3.8 0.23 0.66 
3.9 0.25 0.67 
4 0.26 0.68 

4.1 0.27 0.7 
4.2 0.29 0.71 
4.3 0.3 0.72 
4.4 0.32 0.73 
4.5 0.33 0.75 
4.6 0.35 0.76 
4.7 0.36 0.77 
4.8 0.38 0.78 
4.9 0.39 0.8 
5 0.41 0.81 

5.1 0.42 0.82 
5.2 0.44 0.83 
5.3 0.45 0.85 
5.4 0.47 0.86 
5.5 0.48 0.87 
5.6 0.5 0.88 
5.7 0.5 0.9 
5.8 0.53 0.91 
5.9 0.54 0.92 
6 0.56 0.93 

6.1 0.57 0.95 
6.2 0.59 0.96 
6.3 0.61 0.97 
6.4 0.62 0.98 
6.5 0.64 1 
6.6 0.65 1.01 
6.7 0.67 1.02 
6.8 0.69 1.03 

6.9 0.7 1.05 
7 0.72 1.06 

7.1 0.74 1.07 
7.2 0.75 1.08 
7.3 0.77 1.1 
7.4 0.78 1.11 
7.5 0.8 1.12 
7.6 0.82 1.13 
7.7 0.84 1.15 
7.8 0.85 1.16 
7.9 0.87 1.17 
8 0.89 1.18 

8.1 0.9 1.2 
8.2 0.92 1.21 
8.3 0.94 1.22 
8.4 0.96 1.23 
8.5 0.97 1.25 
8.6 0.99 1.26 
8.7 1.01 1.27 
8.8 1.03 1.28 
8.9 1.04 1.3 
9 1.06 1.31 

9.1 1.08 1.32 
9.2 1.1 1.33 
9.3 1.12 1.35 
9.4 1.14 1.36 
9.5 1.15 1.37 
9.6 1.17 1.38 
9.7 1.19 1.4 
9.8 1.21 1.41 
9.9 1.23 1.42 
10 1.25 1.43 

10.1 1.27 1.45 
10.2 1.29 1.46 
10.3 1.31 1.47 
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10.4 1.33 1.48 
10.5 1.35 1.5 
10.6 1.37 1.51 
10.7 1.39 1.52 
10.8 1.41 1.53 
10.9 1.43 1.55 

11 1.45 1.56 
11.1 1.47 1.57 
11.2 1.49 1.58 
11.3 1.52 1.6 
11.4 1.54 1.61 
11.5 1.56 1.62 

11.6 1.58 1.63 
11.7 1.61 1.65 
11.8 1.63 1.66 
11.9 1.65 1.67 
12 1.68 1.68 

12.1 1.7 1.7 
 

 
 

Figure 2: Plot of Positive and unimodal region for 𝒈(𝒓)	𝒘𝒊𝒕𝒉	𝜶 = 𝟒, 𝜷 = 𝟏 
 

4. Quantitative Robustness using Kullback-Leibler Divergence (KLD) Measure 
 

By virtue of the significance of Gamma distribution in problem of statistical estimation, 
it is deemed necessary to study the sensitivity of the estimates to its possible 
misspecification. In this direction, we make an effort to study the quantitative robustness 
employing Kullback-Leibler divergence (KLD) measure. 

 
To examine quantitative robustness with respect to the K-class of moderately non-

gamma densities 𝑔(𝑟), we compute its distance from gamma 𝑝(𝑟|𝛼, 𝛽) using KLD as 

															𝐼(𝑝, 𝑔) = ∫ log T\@𝑟A𝛼, 𝛽B
?(1)

U 𝑝(𝑟|𝛼, 𝛽)𝑑𝑟 =W
'

𝐸 Tlog T\@𝑟A𝛼, 𝛽B
?(1)

U	U	 .																									(9) 

The expectation is taken with respect to 𝑝(𝑟|𝛼, 𝛽). Observe that 𝐼(𝑝, 𝑔) is not a 
symmetric distance. 

 
Aggarwal and Bansal (2010) used KLD to evaluate the distance between Normal and 

Edgeworth distributions for some selected values of 𝜆7	(= 𝛿7)	and 𝜆6	(= 𝛿6) lying in 
region given by Barton and Dennis (1952). Aggarwal and Bansal (2017) computed 
𝐼(𝑝, 𝑔)	and it is found that there is an error in its computation. Thus, we extend the study on 
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quantitative robustness using corrected 𝐼(𝑝, 𝑔) while considering 𝐾𝐿$(# =
min{𝐼(𝑝, 𝑔), 𝐼(𝑔, 𝑝)}	as a measure to find distance between 𝑝(𝑟|𝛼, 𝛽) and 𝑔(𝑟). It may be 
observed that the distance 𝐾𝐿$(# is a symmetric distance as specified in Bernardo and 
Rueda (2002). 

 
Table 2 provides computed values of 𝐾𝐿$(# for arbitrarily chosen a	 = 	4, b	 = 	1 and 

some selected values of 𝛿7	and 𝛿6. The chosen values of 𝛿7	and 𝛿6 are those in which 𝑔(𝑟) 
is unimodal and non-negative. 

 
Table 2: Values of 𝑲𝑳𝒎𝒊𝒏	for a	 = 	𝟒, b	 = 	𝟏 and some selected values of 𝜹𝟑	and 𝜹𝟒 

 
d3 d4 𝑲𝑳𝒎𝒊𝒏 d3 d4 𝑲𝑳𝒎𝒊𝒏 d3 d4 𝑲𝑳𝒎𝒊𝒏 

0 
0 0 

0.4 
2 0.0061 

0.9 
6 0.016 

2 0.0144 4 0.005 8 0.0209 

0.15 
0 0.0049 

0.6 
4 0.0064 

1.05 
7 0.0226 

2 0.0023 6 0.0139 8 0.0192 

0.3 
2 0.0011 

0.75 
5 0.0107 

1.35 
9.5 0.0358 

4 0.0118 7 0.0167 10.3 0.0354 

 
 From Table 2, it may be observed that  

(1)  Out of the chosen combinations of (d3, d4), 𝐾𝐿$(# is minimum for (0, 0) as it 
corresponds to Gamma distribution, and is maximum for (1.35, 9.5). 

(2) 𝐾𝐿$(# could be approximately same for different choices for (d3, d4). In particular, 
for the combinations (0, 2) and (0.6, 6),  𝐾𝐿$(# is approximately 0.014. However, 
the graphs of 𝑔(𝑟) for these values of (d3, d4) are different as shown in Figure 3.   

(3) For (0.6, 4), 𝐾𝐿$(# = 0.0064, and for (0.15, 2), 𝐾𝐿$(# = 0.0023. So, 𝑔(𝑟) 
corresponding to (0.6, 4) is more non-gamma than gamma distribution as compared 
to the 𝑔(𝑟) corresponding to (0.15, 2). 
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Figure 3: Graph of 𝒈(𝒓) 
In the next section, Bayes estimates of CV, obtained in Section (2.4), will now be 

calculated for hypothetical data using some values of 𝛿7	and 𝛿6 selected based on 𝐾𝐿$(# 
discussed in this section. 

 
5. Numerical Illustration 

 
To study the effect of non-gamma prior, we generate a hypothetical data of size 𝑛 = 10 

from 𝑁(4,4) distribution given by 0.0660, 5.2140, 3.7548, 5.4743, 6.2490, 2.0363, 4.8134, 
9.4950, 6.6342, 4.4920. It is clear that the true CV is 0.5 whereas the classical estimate of 
CV, the ratio of observed standard deviation and observed mean, is 0.505187. The MELO 
estimate under non-informative prior is 0.5622. 

 
The Bayes estimates of CV, with 𝛼 = 4, 𝛽 = 1, 𝜇 = 0, 𝜏 = 1, and various values of 

𝛿7	and 𝛿6 selected using Table 2, are tabulated in Table 3. 
 

Table 3: Bayes estimate of CV for various values of 𝜹𝟑	and 𝜹𝟒 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Table 3, one may observe that the Bayes estimates 𝑎[GH0I	of CV are close to the 

Bayes estimate of CV under gamma prior for all chosen combination of 𝛿7	and 𝛿6. The 
difference in the maximum and minimum value of		𝑎[GH0I is 0.013 which is insignificant 
and hence, we may say that the moderate deviation from gamma prior may not significantly 
affect Bayes estimate of coefficient of variation under MELO. We may, therefore, conclude 
that the Bayes estimate is robust with respect to misspecification of the prior distribution for 
precision in our illustration.  

 
6. Conclusion 

 
In this paper, Bayes estimate of coefficient of variation is derived for normal model 

with both mean and variance unknown. The normal conditional prior for unknown mean 
and K-prior for the unknown precision of the normal distribution are considered. The 
positive and unimodal regions for K-class of non-gamma densities are obtained for 𝛼 = 4 
and 𝛽 = 1. The boundary values of 𝛿7 and 𝛿6 where the pdf of non-gamma distribution 
changes from the positive definite to non-positive definite are provided. It is seen that in the 
region bounded by the above values, pdf is unimodal as well. For other values of 𝛼 and 𝛽, 
one may find region where pdf is positive and unimodal using the same procedure. It is 
found that for two or more members of K-class of non-gamma distributions, 𝐾𝐿$(#	could 

𝛿𝟑 𝛿𝟒 𝑲𝑳𝒎𝒊𝒏 𝒂�𝑴𝑬𝑳𝑶 

0 0 0 0.4978 

0.15 2 0.0023 0.4998 

0.40 4 0.0050 0.5001 

0.75 5 0.0107 0.4924 

1.05 8 0.0192 0.4980 

1.35 9.5 0.0358 0.4871 
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be approximately same which means that these members are equally non-gamma as 
compared to the gamma distribution. A numerical illustration is also discussed and therein, 
it is observed that Bayes estimate of coefficient of variation under K-prior distributions are 
very close to that based on gamma prior distribution for all chosen combinations of 𝛿7 and 
𝛿6. We may also conclude that the Bayes estimate of CV under MELO is reasonably 
insensitive to moderate deviation from generally assumed gamma prior distribution. 
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Appendix 

 
A.1. (Derivation of posterior distribution given in Section 4.1) 
 

It is known that  

																				𝑔(𝜃, 𝑟|𝐱) =
ℓ(𝜃, 𝑟│𝐱)𝑔(𝜃, 𝑟)

∫ ∫ ℓ(𝜃, 𝑟|𝐱)𝑔(𝜃, 𝑟)𝑑𝜃𝑑𝑟W
'

W
.W  

Using  

															ℓ(𝜃, 𝑟|𝐱) = A
𝑟
2𝜋D

#/"
𝑒𝑥𝑝 �−

𝑟
2V

(𝑥( − �̅�)"
#

(&!

−
𝑛𝑟
2
(�̅� − 𝜃)"�, 

and																				 

																											𝑔(𝜃, 𝑟) = 𝑔(𝜃|𝑟)𝑔(𝑟) 	= 1?
𝑟
2𝜋

𝑒𝑥𝑝 *−
𝜏𝑟
2
(𝜃 − 𝜇)"-4 (𝐾(𝑟)

𝛽*

Γ(𝛼)
exp(−𝛽𝑟) 𝑟*+%, 

we get 

𝑔(𝜃, 𝑟|𝐱) =
𝑟
#
$%

&
$%'(&𝐾(𝑟) exp .−𝑟 0𝛽 + 12∑ (𝑥) − �̅�)$#

)*& 89exp :− 𝑟2 (𝑛(𝜃 − �̅�)
$ + 𝜏(𝜃 − 𝜇)$)>		

∫ ∫ 𝑟
#
$%

&
$%'(&𝐾(𝑟) exp .−𝑟 0𝛽 + 12∑ (𝑥) − �̅�)$#

)*& 89 exp :− 𝑟2(𝑛(𝜃 − �̅�)
$ + 𝜏(𝜃 − 𝜇)$)>𝑑𝜃𝑑𝑟+

,
+
(+

. 

Using a result that 

𝐴(𝑧 − 𝑎)" + 𝐵(𝑧 − 𝑏)" = (𝐴 + 𝐵)(𝑧 − 𝑐)" +
𝐴𝐵
𝐴 + 𝐵

(𝑎 − 𝑏)", 𝑐 =
𝐴𝑎 + 𝐵𝑏
𝐴 + 𝐵 , 

we can write  

𝑛(𝜃 − �̅�)" + 𝜏(𝜃 − 𝜇)" = (𝑛 + 𝜏)(𝜃 − 𝜇∗)" +
𝑛𝜏
𝑛 + 𝜏

(𝜇 − �̅�)", 𝜇∗ =
𝑛�̅� + 𝜏𝜇
𝑛 + 𝜏 . 

Thus,  
𝑔(𝜃, 𝑟|𝐱)
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𝑟
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&
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1
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where  

𝐺(𝛿7, 𝛿6) = 1 + 𝐴!
Γ(𝛼 + 3)
Γ(𝛼) V(−1)( A3𝑖 D𝑅7.( 	+𝐴"

Γ(𝛼 + 4)
Γ(𝛼) V(−1)( A4𝑖 D 𝑅6.( 	

6

(&'

7

(&'

 



146 PRIYANKA AGGARWAL AND SAMRIDHI MEHTA [Vol. 20, No. 2 

 

																															= 1 − 𝛿7
𝛼
7
"

6 𝐶!(𝛼∗) + 𝛿6
𝛼"

24𝐶"
(𝛼∗), 

																𝐶!(𝛼∗) = 3𝑅6 − 13𝑅7 + 21𝑅" − 15𝑅! + 4𝑅', 
          					𝐶"(𝛼∗) = 𝑅6 − 4𝑅7 + 6𝑅" − 4𝑅! + 𝑅', 
and   

𝑅% = c
Γ(𝛼∗ + 𝑗)
Γ(𝛼∗)𝛽∗%e c

Γ(𝛼 + 𝑗)
Γ(𝛼)𝛽% e` . 

n% and µ% are the moments about origin of order 𝑗 of gamma prior and posterior gamma, 
respectively. 

 
A.2. (Derivation of the posterior expectations given in Section 4.2) 
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Abstract
In this paper dual exponential type estimators of population mean have been proposed.

The large sample properties of the proposed estimators have been studied by obtaining the
bias and mean square error (MSE) expressions. The proposed estimators under optimum
conditions were found to be unbiased and more efficient than sample mean, ratio estimator
of Cochran (1940), product estimator of Robson (1957), exponential ratio and product esti-
mators of Bahl and Tuteja (1991), exponential ratio estimators of Singh et al. (2009) and
the exponential product type estimators of Onyeka (2013). A numerical study has also been
carried out to support the theoretical findings of the paper.

Key words: Dual estimator; Exponential estimator; Auxiliary variable; Unbiased estimator;
Mean square error.
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1. Introduction

Whenever a researcher intends to get the precise estimates, the best choice is to make
the wise use of auxiliary information. The auxiliary information can be used either at the
design stage or at the estimation stage or at both stages. The ratio, product, difference
and regression estimators are defined by using the available auxiliary information at the
estimation stage. At this stage the auxiliary information may be available in the form of
correlation coefficient, mean, median, coefficient of variation, skewness, kurtosis etc. The
pioneer work for estimation of population mean using auxiliary information was done by
Cochran (1940) while proposing classical ratio estimator, used when there is a high positive
correlation between study variable (Y) and auxiliary variable (X) with the regression line
passing through origin. If the correlation between Y and X is negative high, product method
of estimation proposed by Robson (1957) can be used. While as the linear regression esti-
mator is preferred when there is a very high (positive or negative) correlation between X
and Y and the regression line of Y on X has intercept on y-axis. Many researchers such as
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Sisodia and Dwivedi (1981), Singh and Tailor (2003), Khoshnevisan et al. (2007), Sharma
and Bhatnagar (2008), Sharma et al. (2010), Yadav and Kadilar (2013), Kumar et al. (2018)
and others proposed modified ratio or product type estimators by utilizing different known
values of the parameters of auxiliary variable and these estimators have gained relevance in
estimation theory because of their improved precision than conventional ratio and product
estimators. The modified ratio and product estimators can work well only when correlation
between Y and X is high, therefore Bahl and Tuteja (1991) proposed exponential ratio and
product type estimators and these estimators can be employed even when there is not a
high degree of correlation between X and Y. Later Singh et al. (2007, 2009), Onyeka (2013),
Yasmeen et al. (2016), Panigrahi and Mishra (2017) and Hussain et al. (2021) proposed
some improved versions of the exponential ratio and product type estimators.

On taking a note of the above discussion, it was observed that most of the estimators
available in the literature are biased. They lack the very first property of a good estimator
which may lead to over or under estimation of the population mean. Therefore, the authors
Singh and Singh (1993), Yadav et al. (2012), Singh et al. (2016) and others worked in
this direction and proposed almost unbiased estimators of population mean. Further, it
is also observed that for positively correlated variables ratio estimators are used and for
negatively correlated variables product estimators are used. So the authors Singh et al.
(2009a), Tailor and Sharma (2009), Sharma and Tailor (2010), Tailor et al. (2012) and
others proposed ratio cum product estimators which can be employed for both positively
and negatively correlated variables. It is also observed that the exponential estimators can
also be employed for low degree of correlation. By keeping the stated points in view, two
almost unbiased dual exponential type estimators of population mean have been proposed
in the paper.

Consider a finite population containing N number of units in total and draw a random
sample of size n (n < N) by simple random sampling without replacement (SRSWOR) sam-
pling scheme. Associated with every unit, there are two variables Y and X, the population
mean of X is assumed to be known. The sample mean of Y and X i.e ȳ = 1

n

∑n
i yi and

x̄ = 1
n

∑n
i xi are the unbiased estimates of X̄ = 1

N

∑N
i Xi and Ȳ = 1

N

∑N
i Yi respectively.

Other formula and notations that are used in the paper (John and Inyang (2015)) are as

Study Variable
Cy = Sy

Ȳ
is the coefficient of variation .

S2
y = 1

N−1
∑N

i=1(Yi − Ȳ )2 is the population mean
square.
s2

y = 1
n−1

∑n
i=1(yi − ȳ)2 is the sample mean

square.

Auxiliary Variable
: Cx = Sx

X̄
is the coefficient of variation.

: S2
x = 1

N−1
∑N

i=1(Xi − X̄)2 is the population
mean square.
: s2

x = 1
n−1

∑n
i=1(xi − x̄)2 is the sample mean

square.

Further,
Syx = 1

N−1
∑N

i=1(Yi − Ȳ )(Xi − X̄) is the population covariance between Y and X.
syx = 1

n−1
∑n

i=1(yi − ȳ)(xi − x̄) is the sample covariance between y and x.
ρ = Sxy√

S2
xS2

y

is the population correlation coefficient between X and Y.

θ = aX̄
2(aX̄+b) and γ = 1−f

n
, where the sampling fraction f = n

N
.
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The Percent relative efficiency (PRE) of the estimators is obtained using the formula as
PRE = MSE of existing estimator

MSE of proposed estimator
× 100

2. Review of Some Existing Ratio and Product Type Estimators

The sample mean estimator is

t1 = 1
n

n∑
i=1

yi.

With the Bias and MSE are as
Bias(t1) = 0. (1)

MSE(t1) = γȲ 2C2
y . (2)

The ratio estimator proposed by Cochran (1940) which is more efficient than the estimator
t1, if Cx

2Cy
< ρ ≤ +1 is

t2 = ȳ
X̄

x̄
.

The expressions of Bias and MSE for the estimator t2 are as

Bias(t2) = γȲ (C2
x − Cyx). (3)

MSE(t2) = γȲ 2(C2
y + C2

x − 2Cyx). (4)

When the variables X and Y are negatively correlated and −1 ≤ ρ < − Cx

2Cy
, Robson (1957)

proposed product estimator of population. The main advantage of this estimator is that the
exact expressions of Bias and mean squared error were obtained. The proposed estimator is
given as

t3 = ȳ
x̄

X̄
.

The Bias and MSE expressions are as

Bias(t3) = γȲ Cyx. (5)

MSE(t3) = γȲ 2(C2
y + C2

x + 2Cyx). (6)
The exponential ratio (t4) and product (t5) type estimators proposed by Bahl and Tuteja
(1991) which are efficient even when there is a low degree of correlation between X and Y
are as

t4 = ȳ exp
(

X̄ − x̄

X̄ + x̄

)
,

with the Bias and MSE as

Bias(t4) = γȲ
(3

8C2
x − 1

2Cyx

)
, (7)

MSE(t4) = γȲ 2
(

C2
y + C2

x

4 − Cyx

)
, (8)
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and
t5 = ȳ exp

(
x̄ − X̄

X̄ + x̄

)
,

with the Bias and MSE as

Bias(t5) = γȲ
(1

2Cyx − 1
8C2

x

)
, (9)

MSE(t5) = γȲ 2
(

C2
y + C2

x

4 + Cyx

)
. (10)

A class of modified exponential ratio estimators proposed by Singh et al. (2009) using the
constants a(̸= 0) and b, where a and b are either the real number or functions of some
known parameters of auxiliary variable such as coefficient of variation, skewness, correlation
etc. The proposed estimators are as

t6 = ȳ exp
[

(aX̄ + b) − (ax̄ − b)
(aX̄ + b) + (ax̄ − b)

]
.

The Bias and MSE expressions of t6 are as

Bias(t6) = γȲ (θ2C2
x − θCyx). (11)

MSE(t6) = γȲ 2(C2
y + θ2C2

x − 2θCyx). (12)
Onyeka (2013) proposed a class of product type estimators as

t7 = ȳ exp
[

(aX̄ + b) − (ax̄ + b)
(aX̄ + b) + (ax̄ + b)

]
.

The expressions of Bias and MSE for the estimator t7 are as

Bias(t7) = γȲ
(1

2θCyx − 1
8θ2C2

x

)
. (13)

MSE(t7) = γȲ 2
(

C2
y + 1

4θ2C2
x + θCyx

)
. (14)

3. Proposed Estimators

The proposed dual type exponential estimators are as

tde1 = ȳ

[
α exp

(
X̄ − x̄

pX̄

)
+ (1 − α) exp

(
x̄ − X̄

pX̄

)]
and

tde2 = ȳ

[
β exp

(
X̄ − x̄

qx̄

)
+ (1 − β) exp

(
x̄ − X̄

qx̄

)]
.

Where p and q are non zero constants whose value is chosen such that the estimators tde1
and tde2 should be unbiased. The value of constants α and β are chosen such that the MSE
of tde1 and tde2 is minimum. The expressions of Bias and MSE are obtained through the
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following methodology.
Let

e0 = ȳ − Ȳ

Ȳ
; e1 = x̄ − X̄

X̄
.

Therefore, the following expected values are obtained

E(e0) = E(e1) = 0.

E(e2
0) = γC2

y ; E(e2
1) = γC2

x; E(e0e1) = γρCyCx.

On writing the estimator tde1 and tde2 in terms of ei(i = 0, 1), the following equations are
obtained as

tde1 = Ȳ (1 + e0)
[
α exp

(
−e1

p

)
+ (1 − α) exp

(
e1

p

)]
. (15)

tde2 = Ȳ (1 + e0)
[
β exp

(
−e1

q
(1 + e1)−1

)
+ (1 − β) exp

(
e1

q
(1 + e1)−1

)]
. (16)

After solving equation (15) & (16) and keeping the terms up 2nd degree, the equations reduce
to

tde1 = Ȳ

[
1 + e0 + (1 − 2α)e1

p
+ e2

1
2p2 + (1 − 2α)e0e1

p

]

⇒ tde1 − Ȳ =
[
e0 + (1 − 2α)e1

p
+ e2

1
2p2 + (1 − 2α)e0e1

p

]
. (17)

tde2 = Ȳ

[
1 + e0 + (1 − 2β)e1

q
+
(

1
2q

+ 2β − 1
)

e2
1
q

+ (1 − 2β)e0e1

q

]

⇒ tde2 − Ȳ =
[
e0 + (1 − 2β)e1

q
+
(

1
2q

+ 2β − 1
)

e2
1
q

+ (1 − 2β)e0e1

q

]
. (18)

Now taking expectation on both sides of (17) and (18), the bias of the estimators tde1 and
tde2 is obtained as

Bias(tde1) = γȲ

[
1

2p2 C2
x + 1

p
(1 − 2α)ρCxCy

]
and (19)

Bias(tde2) = γȲ
1
q

[(
1
2q

+ 2β − 1
)

C2
x + (1 − 2β)ρCxCy

]
respectively. (20)

On squaring the equations (17) & (18) and taking expectation on both sides. After solving
and retaining the terms up to 2nd degree only, the mean square error of tde1 and tde2 is
obtained as

MSE(tde1) = γȲ 2
[
C2

y + (1 − 2α)2 C2
x

p2 + 2
p

(1 − 2α)ρCxCy

]
and (21)

MSE(tde2) = γȲ 2
[
C2

y + (1 − 2β)2 C2
x

q2 + 2
q

(1 − 2β)ρCxCy

]
respectively. (22)
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The estimator tde1 is unbiased, if

p = Cx

2(2α − 1)ρCy

, (23)

and the estimator tde2 is unbiased, if

q = Cx

2(2β − 1)(ρCy − Cx) . (24)

Substituting the values of (23) and (24) in equations (21) and (22) respectively, the following
equations are obtained as

MSE(tde1) = γȲ 2
[
C2

y + 4(1 − 2α)4ρ2C2
y − 4(1 − 2α)2ρ2C2

y

]
. (25)

MSE(tde2) = γȲ 2
[
C2

y + 4(1 − 2β)4(ρCy − Cx)2 − 4(1 − 2β)2(ρCy − Cx)ρCy

]
. (26)

For obtaining optimum value of α and β differentiate equations (25) and (26) with respect
to α and β respectively and equating to zero.

Therefore, α = 0.146, 0.854 and β = 1
2 ± 1

2

√
ρCy

2(ρCy − Cx) .

The value of unknown quantity (Cy) used to find the values of p, q and β can be obtained
quite accurately from some previous survey or from the experience of the researcher (See
Reddy (1974), Singh and Vishwakarma (2008), Singh and Kapre (2010)). Now by using the
values of α (0.146 or 0.854) and β

(
1
2 + 1

2

√
ρCy

2(ρCy−Cx) or 1
2 − 1

2

√
ρCy

2(ρCy−Cx)

)
in equations (25)

and (26) respectively, the minimum value of MSE of the estimators tde1 and tde2 is obtained as

MSEmin(tdei) = γȲ 2C2
y (1 − ρ2). i = 1, 2 (27)

4. Efficiency Comparisons

From equations (2), (4), (6), (8), (10), (12), (14) and (27), the conditions under which the
proposed estimators will be preferred for better precision are obtained as

MSEmin(tdei) < V (t1)

⇒ γȲ 2C2
y (1 − ρ2) < γȲ 2C2

y , if ρ2Ȳ 2 > 0. (28)
MSEmin(tdei) < MSE(t2)

⇒ γȲ 2C2
y (1 − ρ2) < γȲ 2(C2

y + C2
x − 2Cyx), if (ρCy − Cx)2 > 0. (29)

MSEmin(tdei) < MSE(t3)
⇒ γȲ 2C2

y (1 − ρ2) < γȲ 2(C2
y + C2

x + 2Cyx), if (ρCy + Cx)2 > 0. (30)
MSEmin(tdei) < MSE(t4)

⇒ γȲ 2C2
y (1 − ρ2) < γȲ 2

(
C2

y + C2
x

4 − Cyx

)
, if (2ρCy − Cx)2 > 0. (31)

MSEmin(tdei) < MSE(t5)
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⇒ γȲ 2C2
y (1 − ρ2) < γȲ 2

(
C2

y + C2
x

4 + Cyx

)
, if (2ρCy + Cx)2 > 0. (32)

MSEmin(tdei) < MSE(t6)

⇒ γȲ 2C2
y (1 − ρ2) < γȲ 2(C2

y + θ2C2
x − 2θCyx), if (ρCy − θCx)2 > 0. (33)

MSEmin(tdei) < MSE(t7)

⇒ γȲ 2C2
y (1 − ρ2) < γȲ 2

(
C2

y + 1
4θ2C2

x + θCyx

)
, if (2ρCy − θCx)2 > 0. (34)

The conditions (28) to (34) hold, therefore the estimators tdei(i = 1, 2) are more efficient than
t1, t2, t3, t4, t5, t6 and t7.

5. Numerical Illustration

The performance of the estimators proposed and considered for comparison in the paper have
been evaluated by using the data of four populations P1, P2, P3 and P4 (See Table 1). In the
populations P1 and P2, the variables X and Y are positively correlated while as for P3 and P4 are
negatively correlated. The source of the population P1 is Sukhatme and Chand (1977) where the
variable Y represents the apple trees of bearing age in 1964 and the variable X represents bushels
harvested in 1964. The population P2 is from Murthy (1967), where the variable Y is fixed capital
and the variable X is the output of 80 factories. The source of population P3 is Onyeka (2013)
where the variable Y represents percentage of hives affected by disease and X the date of flowering
of a particular summer species (no. of days from Jan. 1). The population P4 is from Gujarati
(2004) where the variable Y is average miles per gallon and the variable X is top speed, miles per
hour.

Table 1: Summary statistics of the population data sets.
Population N n Ȳ X̄ Cy Cx ρ

P1 200 20 1031.82 2934.58 1.598 2.006 0.93
P2 80 20 11.264 51.826 0.750 0.354 0.94
P3 10 4 52 200 0.156 0.046 −0.94
P4 81 13 33.835 112.457 0.297 0.126 −0.69

Table 2: MSE, Bias and PRE of the estimators t1, t2, t4, t6 and tdei.
Population

Estimator P1 P2
MSE | Bias | PRE MSE | Bias | PRE

t1 122341.540 0.000 100.000 2.676 0.000 100.000
t2 29476.060 48.421 415.054 0.898 0.052 297.995
t4 27711.550 0.855 441.482 1.638 0.033 163.379
t6 27745.680 22.518 440.939 1.644 0.039 162.773

tdei 16528.340 0.000 740.192 0.311 0.000 860.450

It can be observed from Table-2 that the proposed estimators have minimum MSE amongst sample
mean estimator (t1) and the ratio estimators t2, t4, t6 considered. The percent relative efficiency
(PRE) of the proposed estimators is highest among all other estimators considered.
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Table 3: MSE, Bias and PRE of the estimators t1, t3, t5, t7 and tdei.
Population

Estimator P3 P4
MSE | Bias | PRE MSE | Bias | PRE

t1 9.871 0.000 100.000 6.521 0.000 100.000
t3 5.257 0.053 187.769 3.877 0.056 168.197
t5 7.349 0.028 134.318 4.906 0.033 132.919
t7 8.556 0.014 115.369 5.639 0.015 115.641

tdei 1.149 0.000 859.095 3.416 0.000 190.896

Table-3 depicts that the proposed estimators have minimum MSE amongst sample mean estimator
(t1) and product estimators t3, t5, t7 considered and are also unbiased. The percent relative
efficiency (PRE) of proposed estimators is highest among all other estimators considered.

Thus, it can be concluded from Table-2 and Table-3 that the proposed estimators are un-
biased and work efficiently in estimating the population mean irrespective of negative or positive
correlation between the study and auxiliary variable.

6. Discussion

The population mean can be estimated using the proposed dual exponential type estimators
of population mean by plugging in the values of p = Cx

2(2α−1)ρCy
, q = Cx

2(2β−1)(ρCy−Cx) and the opti-

mum values of α (0.146 or 0.854) and β
(

1
2 + 1

2

√
ρCy

2(ρCy−Cx) or 1
2 − 1

2

√
ρCy

2(ρCy−Cx)

)
in the respective

estimators tue1 and tue2. The constants p, q, β are dynamic in nature and therefore depend upon
the parameters of population data whereas the value of constant α is static and results an estimator
as

tde1 = ȳ

[
0.854 exp

(
1.414ρCy(X̄ − x̄)

CxX̄

)
+ 0.146 exp

(
1.414ρCy(x̄ − X̄)

CxX̄

)]
.

7. Conclusion

• The proposed almost unbiased dual exponential type estimators of population mean are as

tde1 = ȳ

[
α exp

(
X̄ − x̄

pX̄

)
+ (1 − α) exp

(
x̄ − X̄

pX̄

)]
.

tde2 = ȳ

[
β exp

(
X̄ − x̄

qx̄

)
+ (1 − β) exp

(
x̄ − X̄

qx̄

)]
.

• The proposed estimators are always more efficient than sample mean, ratio estimator of
Cochran (1970), product estimator of Robson (1957), exponential ratio and product estima-
tors of Bahl and Tuteja (1991), exponential ratio estimators of Singh et al. (2009) and the
exponential product type estimators of Onyeka (2013).

• The proposed estimators tde1 and tde2 are unbiased and can be used for both positively and
negatively correlated variables equal efficiently.
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Abstract
As a bridge between the exponential and Lindley distributions, the modified Lind-

ley distribution was created. It has been used successfully in a variety of fields related to
survival analysis. In this study, we present a novel distribution that extends the modified
Lindley distribution using the traditional weighted (or length/size-biased) approach. It is
named as weighted modified Lindley distribution. This idea is mainly used to flexibilize
the former modified Lindley distribution through the use of a one-parameter polynomial
weight. This weight is intended to modulate the functionalities of the new distribution, well
beyond those of the former modified Lindley distribution. The related probability density
function, cumulative density function, hazard rate function, moments, moment generating
function and characteristic function are analysed from a theoretical and practical point of
view. Estimation of the parameters is done by the classical method of maximum likelihood
and a simulation study is carried out to check the consistency of the maximum likelihood
estimates. A data set is used to illustrate the application of the proposed distribution.

Key words: Data analysis; Lindley distribution; Estimation; Modified Lindley distribution;
Moments; Weighted distributions.

AMS Subject Classifications: 60E05, 62E15

1. Introduction

Lindley is the inventor of the Lindley (L) distribution (see Lindley (1958)). For many
statistical settings, the L distribution is established as an alternative to the exponential
distribution. It is governed by the following one-parameter cumulative density function
(cdf):

FL(x; υ) = 1−
[
1 + υx

1 + υ

]
e−υx, x > 0,
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where υ > 0, and FL(x; υ) = 0 for x ≤ 0. Then its probability density function (pdf) is
derived as

fL(x; υ) = υ2

1 + υ
(1 + x)e−υx, x > 0,

and fL(x; υ) = 0 for x ≤ 0.

Several authors have researched and generalized this distribution during the last few
decades. There is a vast literature in this area. Some examples of such distributions in-
clude the three-parameter L distribution by Zakerzadeh and Dolati (2009), generalized L
distribution by Nadarajah et al. (2011), generalized Poisson-L distribution by Mahmoudi
and Zakerzadeh (2010), power L distribution by Ghitany et al. (2013), two parameter-L
distribution by Shanker and Mishra (2013a), quasi L distribution by Shanker and Mishra
(2013b), transmuted L distribution by Merovci (2013), transmuted L-geometric distribution
by Merovci and Elbatal (2014), beta-L distribution by Merovci and Sharma (2014), negative
binomial-L distribution Zamani and Ismail (2010) and gamma-L distribution by Zeghdoudi
and Nedjar (2016). For more details, see a comprehensive review study of the L distribution
by Tomy (2018).

Among its generalizations, Ghitany et al. (2011) introduced the weighted L (WL)
distribution, with pdf determined as

fWL(x;α, υ) = Ψ−1
α xα−1fL(x; υ),

where α > 0, Ψα represents the normalizing constant corresponding to the expectation of
Xα−1, X being a random variable with the L distribution with parameter υ. The pdf of the
WL distribution can also be expressed as

fWL(x;α, υ) = υα+1

(υ + α)Γ(α)x
α−1(1 + x)e−υx, x > 0,

where Γ(α) denotes the Euler gamma function at α, and fWL(x;α, υ) = 0 for x ≤ 0. It is
proved that the polynomial weight xα−1 modulates the shape properties of the functions of
the former L distribution, increasing their capabilities in terms of modeling. As a conse-
quence, the hazard rate function (hrf) of the WL distribution exhibits bathtub or increasing
shapes. Furthermore, for some non-grouped or grouped survival data, the WL model is
better than several well-known two-parameter survival models.

Recently, an intermediary distribution between the classical exponential and the L
distribution has been proposed by Chesneau et al. (2019), called the modified L (ML) dis-
tribution. Its cdf is specified by

FML(x; υ) = 1−
[
1 + υx

1 + υ
e−υx

]
e−υx, x > 0,

with υ > 0 and FML(x; υ) = 0 for x ≤ 0, and the related pdf is obtained as

fML(x; υ) = υ

1 + υ
[(1 + υ)eυx + 2υx− 1] e−2υx, x > 0,
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and fML(x; υ) = 0 for x ≤ 0. In Chesneau et al. (2019), it is proved that a strong first
order stochastic ordering property relates the exponential, L and ML distributions. In this
precise mathematical sense, the ML distribution is “sandwiched” between the exponential
and L distributions. Also, the hrf of the ML distribution is non-monotonic, contrary to the
hrf of the exponential distribution, which is constant, and the one of the L distribution,
which is increasing. In addition, an important structural property of the ML distribution
is that fML(x; υ) can be expressed as a linear combination of exponential and gamma pdfs.
Furthermore, in Chesneau et al. (2019), it is discussed the applicability of the ML model and
illustrated its workability via several relevant practical data sets. More recently, Chesneau
et al. (2020a,c) introduced two extensions of the ML distribution, namely the inverse ML
distribution and the wrapped ML distribution, respectively.

The aim of this study is to offer an extension of the ML model that allows for more
flexibility in modeling lifetime data. Following the idea of Ghitany et al. (2011), we propose
the weighted ML (WML) distribution by considering the following weighted pdf:

fWML(x;α, υ) = Φ−1
α xα−1fML(x; υ),

where α > 0, Φα represents the normalizing constant corresponding to the expectation
of Xα−1, X being a random variable with the ML distribution with parameter υ. After
simplifications, we arrive at the following analytical expression:

fWML(x;α, υ) = (2υ)α
[(υ + 1)2α + α− 1]Γ(α)x

α−1 [(1 + υ)eυx + 2υx− 1] e−2υx, x > 0, (1)

and fWML(x;α, υ) = 0 for x ≤ 0. Thus, the WML distribution is to the ML distribution,
what the WL distribution is to the L distribution, with the hope of the same additional
benefit from the statistical modelling point of view. This study develops all these aspects,
respecting the rules of the art in the field.

The sections of this article are arranged as follows: Section 2 concerns some characteris-
tics and properties of the WML distribution. Section 3 is devoted to the estimation of model
parameters as well as real data applications. Section 4 ends the paper with conclusions.

2. Theoretical Work

Some relevant theoretical results on the WML distribution are presented in this section.

2.1. Analysis of the pdf

The pdf of the WML distribution as defined by Equation (1) satisfies the following
asymptotic properties. In the case where x tends to be in the neighborhood of 0; an equivalent
function is described below:

fWML(x;α, υ) ∼ (2υ)αυ
[(υ + 1)2α + α− 1]Γ(α)x

α−1.

Hence, we see the importance of the new parameter α is the behavior of this function in 0;
When α < 1, fWML(x;α, υ) diverges to +∞, when α = 1, fWML(x;α, υ) tends to υ2/(υ+1),
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and when α > 1, fWML(x;α, υ) tends to 0.

For the behavior at x→ +∞, the following result holds:

fWML(x;α, υ) ∼ (2υ)α(1 + υ)
[(υ + 1)2α + α− 1]Γ(α)x

α−1e−υx → 0.

In this case, the dominant term in the convergence is e−υx; α plays a secondary role. The criti-
cal points of fWML(x;α, υ) are the solutions to the following equation: d log fWML(x;α, υ)/dx =
0, which is equivalent to the following analytical equation:

(α− 1)1
x

+ υ
(υ + 1)eυx + 2

(1 + υ)eυx + 2υx− 1 = 2υ.

We see that α only modulates the term (α−1)/x, which can be of great impact on the small
values of x. The described critical points contain the possible mode of the WML distribution.
They are not expressible in the strict mathematical sense, but can be determined numerically
via any scientific software.

In order to provide a comprehensive study of the characteristics of fWML(x;α, υ), we
end this part with a graphical analysis in Figure 1; it shows the panel of its possible shapes,
depending on the conjoint values of the parameters α and υ. From Figure 1, one can observe
various kinds of non-monotonic or monotonic shapes, such as reverse J-shaped, right-skewed
and unimodal shapes.
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Figure 1: Examples of graphs of the pdf of the WML distribution
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2.2. Expression of the cdf

Based on Equation (1), the cdf of the WML distribution can be determined; it can
be expressed according to the lower incomplete Euler gamma function defined as γ(s, x) =´ x

0 t
s−1e−tdt with s > 0 and x > 0. Concretely, for any x > 0, we have

FWML(x;α, υ) =
ˆ x

−∞
fWML(t;α, υ)dt

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
(1 + υ)

ˆ x

0
tα−1e−υtdt+ 2υ

ˆ x

0
tαe−2υtdt−

ˆ x

0
tα−1e−2υtdt

]

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
1 + υ

υα
γ(α, υx) + 1

(2υ)αγ(α + 1, 2υx)− 1
(2υ)αγ(α, 2υx)

]
.

By using the relation: γ(s+ 1, x) = sγ(s, x)− xse−x, we arrive at the simple expression:

FWML(x;α, υ) =
1

[(υ + 1)2α + α− 1]Γ(α)
[
(1 + υ)2αγ(α, υx) + (α− 1)γ(α, 2υx)− (2υx)αe−2υx

]
. (2)

For x ≤ 0, we put FWML(x;α, υ) = 0.

Some technical comments on this cdf are now given. As expected, by taking α = 1, we
get

FWML(x;α, υ) = 1
2(υ + 1)

[
2(1 + υ)(1− e−υx)− 2υxe−2υx

]
= FML(x; υ).

Moreover, since −(2υx)αe−2υx < 0, the following first-order stochastic dominance holds:
FWML(x;α, υ) ≤ FMixG(x;α, υ) for all x ∈ R, where FMixG(x;α, υ) denotes the following
generalized mixture cdf:

FMixG(x;α) = λFG(x;α, υ) + (1− λ)FG(x;α, 2υ),

where λ = (1 + υ)2α/[(υ + 1)2α + α − 1] and FG(x;α, υ) = γ(α, υx)/Γ(α) corresponds to
the cdf of the classical gamma distribution with parameters α and υ. Note that λ is always
positive, but 1 − λ can be negative if α < 1. In this case, since FG(x;α, υ) ≤ FG(x;α, 2υ),
for all x ∈ R, we have

FWML(x;α, υ) ≤ FMixG(x;α, υ) ≤ FG(x;α, υ).

Thus, in this case, the WML distribution first-order stochastically dominates the gamma
distribution. For α > 1, there is no such dominance; the situation is more complex. For
illustrative purposes, Figure 2 shows the variation of FWML(x;α, υ) for varying α and υ.
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Figure 2: Examples of graphs of the cdf of the WML distribution

Last but not least, the cdf is essential for defining other distributional functions, such
as the quantile function (qf) and hrf, which will be the subject of two coming subsections.

2.3. Quantile function

The qf is defined by the inverse function of FWML(x;α, υ), say F−1
WML(u;α, υ) with u ∈

(0, 1). In view of Equation (2), it is not possible to express it in an analytical way. However,
it is always possible to do a numerical evaluation by giving values for the first quartile (when
u = 1/4), the median (when u = 1/2) and the third quartile (when u = 3/4). In addition,
this qf has a simple functional lower bound; the following inequality holds: For all u ∈ (0, 1)
and α < 1, F−1

WML(x;α, υ) ≥ F−1
G (x;α), where F−1

G (x;α, υ) denotes the qf of the classical
gamma distribution with parameters α and υ defined by F−1

G (x;α, , υ) = υ−1γ−1(α, uΓ(α))
with u ∈ (0, 1), γ−1(α, y) being the inverse function of γ(α, x).

2.4. On the hrf

From fWML(x;α, υ) and FWML(x;α, υ) as given by Equations (1) and (2), respec-
tively, we can present the hrf of the WML distribution by the following ratio function:
hWML(x;α, υ) = fWML(x;α, υ)/[1− FWML(x;α, υ)]. When x > 0, it is given as

hWML(x;α, υ) =
(2υ)αxα−1 [(1 + υ)eυx + 2υx− 1] e−2υx

[(υ + 1)2α + α− 1]Γ(α)− (1 + υ)2αγ(α, υx)− (α− 1)γ(α, 2υx) + (2υx)αe−2υx .

and hWML(x;α, υ) = 0 for x ≤ 0. The possible shapes of hWML(x;α, υ) are of great interest
in understanding the modelling capability of the WML model (see, Aarset (1987)). Since
the expression of hWML(x;α, υ) is mathematically complex, we conduct a visual analysis in
Figure 3, showing the diverse shapes possessed by this model. From Figure 3, it is clear that
hrf has various kinds of non-monotonic shapes, such as reverse J-shaped, reversed N-shaped,
right-skewed and unimodal shapes, which makes the proposed distribution more flexible to
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fit different data sets. As we know, the L and ML distributions have only unimodal hrf.
Hence, the WML distribution is more flexible than its parent distributions, such as the L
and ML distributions.
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Figure 3: Examples of graphs of the hrf of the WML distribution

2.5. Mathematical moments

In this section, we study the useful moment characteristics and measures of the WML
distribution. Let X be a random variable that follows the WML distribution. Besides, we
discuss the incomplete moments of X, from which we derive moments and discuss some
related quantities. The moment generating and characteristic functions are also expressed.

2.5.1. Incomplete moments

As a first information, the sth incomplete moment of X exists, and it is classically de-
fined by ms(x) = E(XsI(X ≤ x)), where E denotes the mathematical expectation operator.
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Therefore, by taking into account the definition of fWML(x;α, υ), the integral definition of
ms(x) becomes

ms(x) =
ˆ x

0
tsfWML(t;α, υ)dt

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
(1 + υ)

ˆ x

0
ts+α−1e−υtdt+ 2υ

ˆ x

0
ts+αe−2υtdt−

ˆ x

0
ts+α−1e−2υtdt

]

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)×[

1 + υ

υs+α
γ(s+ α, υx) + 1

(2υ)s+αγ(s+ α + 1, 2υx)− 1
(2υ)s+αγ(s+ α, 2υx)

]
.

Since γ(s+ α+ 1, 2υx) = (s+ α)γ(s+ α, 2υx)− (2υx)s+αe−2υx, the sth incomplete moment
is reduced to

ms(x) = 1
(2υ)s[(υ + 1)2α + α− 1]Γ(α)×[

(1 + υ)2s+αγ(s+ α, υx) + (s+ α− 1)γ(s+ α, 2υx)− (2υx)s+αe−2υx
]
. (3)

From this expression, by taking s = 0, we logically obtain the expression of FWML(x;α, υ).
Furthermore, some uses of this manageable expression are described below. Also, by taking
α = 1, we rediscover the sth incomplete moment of a random variable with the former ML
distribution.

2.5.2. Ordinary moments and related measures

Also, the ordinary moments of X can be easily obtained by applying x → +∞ in
Equation (3). That is, the sth ordinary moment of X is given as

ms = ms(+∞) = 1
(2υ)s[(υ + 1)2α + α− 1]Γ(α)

[
(1 + υ)2s+α + s+ α− 1

]
Γ(s+ α).

In particular, by using the relation: Γ(x + 1) = xΓ(x) for x > 0, the four first ordinary
moments of X are

m1 = α [(1 + υ)21+α + α]
2υ[(υ + 1)2α + α− 1] , m2 = α(α + 1) [(1 + υ)22+α + α + 1]

(2υ)2[(υ + 1)2α + α− 1] ,

m3 = α(α + 1)(α + 2) [(1 + υ)23+α + α + 2]
(2υ)3[(υ + 1)2α + α− 1]

and

m4 = α(α + 1)(α + 2)(α + 3) [(1 + υ)24+α + α + 3]
(2υ)4[(υ + 1)2α + α− 1] .



2022] ON THE WEIGHTED MODIFIED LINDLEY DISTRIBUTION 165

The classical central and dispersion moment parameters of X follow immediately, including
the mean given as m = m1, variance given as V = m2 −m2

1, coefficient of variation
√
V /m,

as well as the skewness and kurtosis coefficients obtained as

S = m3 − 3m2m+ 2m3

V 3/2

and
K = m4 − 4m3m+ 6m2m

2 − 3m4

V 2 ,

respectively. The numerical pliancy of these important probabilistic measures is shown in
Table 1. Since the skewness has positive values, the WML distribution is skewed to the right.
In addition, the WML distribution can be platykurtic (when K < 3) and leptokurtic (when
K > 3). Furthermore, the mean of the proposed distribution can be smaller or greater than
its variance.

2.5.3. Some related functions

Incomplete and ordinary moments are the main ingredients of various functions or
indexes that are useful in various applied areas. For instance, from the first incomplete and
ordinary moments, one can express the mean residual function given as

MWML(x) = E(X − x | X > x)

= m1 −m1(x)
1− FWML(x;α, υ) − x

=
[
(1 + υ)21+α + α

]
Γ(α+ 1)− (1 + υ)21+αγ(α+ 1, υx)− αγ(1 + α, 2υx) + (2υx)1+αe−2υx

2υ[(υ + 1)2α + α− 1]Γ(α)− (1 + υ)2αγ(α, υx)− (α− 1)γ(α, 2υx) + (2υx)αe−2υx − x

and the mean reversed residual function defined as

M rev
WML(x) = E(x−X | X ≤ x)

= x− m1(x)
FWML(x;α, υ)

= x− 1
2υ

(1 + υ)21+αγ(1 + α, υx) + αγ(1 + α, 2υx)− (2υx)1+αe−2υx

(1 + υ)2αγ(α, υx) + (α− 1)γ(α, 2υx)− (2υx)αe−2υx .

In terms of reliability and life testing, these functions play a crucial role. See, for instance,
Barlow and Proschan (1975) and Nanda et al. (2003). They can be used in the setting of
the WML distribution for further purposes in this direction.

2.5.4. Moment functions

Based on Equation (1), the moment generating and characteristic functions of the WML
distribution can be obtained using the lower incomplete Euler gamma function. Indeed, for
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any x < υ, we have

RWML(x) = E(exX) =
ˆ +∞

0
extfWML(t;α, υ)dt

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)×[

(1 + υ)
ˆ +∞

0
tα−1e−(υ−x)tdt+ 2υ

ˆ +∞

0
tαe−(2υ−x)tdt−

ˆ +∞

0
tα−1e−(2υ−x)tdt

]

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
1 + υ

(υ − x)αΓ(α) + 2υ
(2υ − x)α+1 Γ(α + 1)− 1

(2υ − x)αΓ(α)
]

= (2υ)α
(υ + 1)2α + α− 1

[
1 + υ

(υ − x)α + 2υ(α− 1) + x

(2υ − x)α+1

]
.

By taking α = 1, we rewrite the moment generating function of the former ML distribution.
By using the standard formula, we have ms = RWML(x)(s) |x=0. Also, the rth cumulant of
X can be obtained through the following equation: κs = {logRWML(x)}(s) |x=0. Also, the
characteristic function of X is immediately deduced from RWML(x); it is given as

ΨWML(x) = E(eixX) = (2υ)α
(υ + 1)2α + α− 1

[
1 + υ

(υ − ix)α + 2υ(α− 1) + ix

(2υ − ix)α+1

]
, x ∈ R,

where i2 = −1. This function fully characterizes the WML distribution, and can be used for
further results in distribution involving the WML distribution.

3. Estimation and Application

In this section, we will discuss estimation and its applicability in a concrete data
analysis scenario.

3.1. Parametric estimation

The maximum likelihood (MaxLik) method can be applied to obtain efficient estimates
of the WML model parameters. In this context, what is necessary is specified below. Let
x1, . . . , xn be realizations of n independent random variables, all distributed following the
WML distribution with parameters α and υ. Then, the estimates suggested by the MaxLik
method are given by the arguments of the maxima of the likelihood function, or the log-
likelihood function defined by

`(α, υ) =
n∑
i=1

log fWML(xi;α, υ) = nα log 2 + nα log υ − n log Γ(α)− n log[(υ + 1)2α + α− 1]

+ (α− 1)
n∑
i=1

log xi − 2υ
n∑
i=1

xi +
n∑
i=1

log [(1 + υ)eυxi + 2υxi − 1] .

The maximum likelihood estimates (MaxLikEs) are denoted by α̂ and υ̂, satisfying `(α, υ) ≤
`(α̂, υ̂) for any α > 0 and υ > 0, by construction. They are also the solutions of the two
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following equations with respect to the parameters:

∂

∂α
`(α, υ) = n log 2 + n log υ − n∂Γ(α)/∂α

Γ(α) − n(υ + 1)2α log(2) + 1
(υ + 1)2α + α− 1 +

n∑
i=1

log xi = 0

and

∂

∂υ
`(α, υ) = n

α

υ
− n 2α

(υ + 1)2α + α− 1 − 2
n∑
i=1

xi +
n∑
i=1

xi[(υ + 1)eυxi + 2] + eυxi

(1 + υ)eυxi + 2υxi − 1 = 0.

Explicit formulations for α̂ and υ̂ are not possible due to the intricacy of these equations. As
a result, numerical methods involving Newton-type algorithms must be used to solve them.
Alternatively, one can investigate the maximization of `(α, υ) numerically through specific
functions in the R package, such as the constrOptim function, optim function or maxLik
function.

The theory of MaxLikEs ensures that α̂ and υ̂ are efficient in several senses, including
their fast numerical convergence to the underlying true values of the parameters. Other
important properties are described in Casella and Berger (1990).

Using the asymptotic normal distribution of the MaxLikEs, we can evaluate the confi-
dence intervals (CIs) of unknown parameters. In this regard, the observed Fisher information
matrix I(α, υ) formed of the negative second derivatives of the log-likelihood function must
be determined. In this asymptotic framework, the 100(1 − γ)% CI for α is defined by the
interval with the following lower bound (LB) and upper bound (UB):

LB = α̂± zγ/2

√
Iα̂α̂, UB = α̂± zγ/2

√
Iα̂α̂,

where zγ/2 is the percentile of the standard normal distribution with right tail probability
γ/2, and Iα̂α̂ is the first diagonal component of I−1(α̂, υ̂). The same holds for the parameter
υ by the consideration of υ̂ instead of α̂, and Iυ̂υ̂ instead of Iα̂α̂.

3.2. Simulation study

We are now conducting a simulation research to assess the performance of the MaxLikEs
of the parameters of the WML distribution. The Newton formula is used because the qf of
this distribution is not available in closed form. The simulation experiment was repeated
1000 times with sample sizes of 25, 80 and 150 from the WML distribution. The assessment
was based on the following steps of simulation study:

1. Generate 1000 samples of size N .

2. Assign the sample size of n and the values of the parameters.

3. Assign the initial value for the random start y0.

4. For j = 1, . . . , n, generate uj from a random variable Uj following the unit uniform
distribution.
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5. Change y0 by y∗ by using the Newton formula as follows:

y∗ = y0 −
{
FWML(y0;α, υ)− uj
fWML(y0;α, υ)

}
.

6. If |y0 − y∗| ≤ ε for small ε > 0, ε being considered as a tolerance limit, then y = y∗ is
considered as a generated value from the WML distribution with parameters α and υ,
else set y0 = y∗ and go to the previous step.

7. Repeat steps 4 to 6 for j = 1, . . . , n to obtain n values y1, . . . , yn.

8. Compute the MaxLikEs of α and υ from y1, . . . , yn.

9. Repeat steps 2 to 8, N times.

10. Compute the Bias and mean square error (MSE) for each parameter, defined as

Bias(α) = 1
N

N∑
i=1

(α̂i − α), MSE(α) = 1
N

N∑
i=1

(α̂i − α)2,

Bias(υ) = 1
N

N∑
i=1

(υ̂i − υ), MSE(υ) = 1
N

N∑
i=1

(υ̂i − υ)2,

where α̂i and υ̂i are the MaxLikEs of α and υ, respectively, obtained at the ith repli-
cation.

The parameter combinations are given below:

1. α = 1.5, υ = 1.5

2. α = 2, υ = 3.5

3. α = 3.5, υ = 2.5

4. α = 4, υ = 2.5

Table 2 presents the Bias, MSE, LB and UB related to the CIs of the parameters for
different sample sizes. The Bias and MSE decrease as n increases. As a result, the MaxLik
approach for estimating the parameters of the WML distribution using Bias and MSE works
fairly well.

3.3. Application

This portion contains an application of the WML distribution to real lifetime data.
To demonstrate the potential of the WML distribution, a comparison is made using two-
parameter extensions or modifications of the L distribution, which are the WL distribution
by (Ghitany et al., 2011) and some other extended L distributions. Below is a list of the
competing distributions.
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1. The quasi L (QL) distribution (Shanker and Mishra, 2013b) with pdf

f(x;α, υ) = υ(α + xυ)
α + 1 e−υx, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

2. The two-parameter L (SL) distribution (Shanker and Mishra, 2013a) with pdf,

f(x;α, υ) = υ2

αυ + 1(α + x)e−υx, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

3. The exponentiated L (EL) distribution (see, Cordeiro et al., 2013) with pdf,

f(x;α, υ) = αυ2

υ + 1e
−υx(1 + x)

[
1−

(
1 + υx

1 + υ

)
e−υx

]α−1
, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

4. The power L (PL) distribution (Ghitany et al., 2013) with pdf,

f(x;α, υ) = αυ2

υ + 1(1 + xα)xα−1e−υx
α

, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

For the pdfs above, it is supposed that υ > 0 and α > 0.

The MaxLik method is applied to estimate the unknown parameters, along with the de-
termination of the related standard errors (SEs). The following criteria are used to choose the
best-fitting distribution: negative maximized Log-likelihood value (− logL), Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC). The value of the Kolmogorov-
Smirnov (K-S) statistic and the p-value are also provided.

The real data set corresponds to the life of a fatigue fracture of Kevlar 373/epoxy
that was subjected to steady pressure (at 90% stress) until it failed. Therefore, we have
comprehensive data with accurate failure periods. The data set has been obtained from
Barlow et al. (1984) and Andrews and Herzberg (1985). For previous studies on the data,
see Chesneau et al. (2020a).

The values of this data set are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763,
0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851,
0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503,
1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375,
1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846,
3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960
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The findings of a descriptive evaluation of the fitted models for the data set are shown
in Table 3. The R program is used to perform the necessary calculations.

Based on the goodness-of-fit measures, the smallest −logL, AIC, BIC, K-S statistics
and the highest p-values are obtained for the WML distribution. These observations indicate
that the WML model provides the best fit for the data set. Moreover, from the study,
the competing distributions can be ranked in the following order (best to the least): EL
distribution, SL distribution, WL distribution, QL distribution, and PL distribution.

As a graphical approach, in Figure 4, we present the estimated pdfs against the fitted
pdfs. In addition, the empirical cdf against the fitted cdfs is also given in Figure 5. From
these figures, we see that the two fits of the estimated functions of the WML model have well
captured the forms or curvatures of the empirical objects, confirming the previous numerical
analysis.
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Figure 4: Graphs of the estimated pdfs of the considered distributions
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Figure 5: Graphs of the estimated cdfs of the considered distributions
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4. Conclusions

In this paper, we introduced a weighted scheme for the modified L distribution, referred
to as the weighted modified Lindley distribution. The main motivations for introducing this
new distribution are provided. Various shapes of pdf and hrf, which are attractive for
statistical modeling, are highlighted. In particular, we have exhibited that the pdf and hrf
can be unimodal and monotonically decreasing. In addition, detailed and elegant discussions
of incomplete moments, ordinary moments with their related measures, moment generating
function and characteristic function are given. Parameter estimation is approached by the
use of the maximum likelihood function in a simulation study. The usefulness of the new
distribution is illustrated in an analysis of real data. Thus, the proposed model can be used
quite effectively for analysing lifetime data.
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ANNEXURE
Table 1: Some numerical values of moment measures of the WML distribution

(α, v)→ (2, 0.02) (2, 2) (0.2, 0.2) (0.2, 2) (0.75, 70)

m 0.0015 1.0000 0.5182 9.9910 64.7160

m2 0.0008 1.4711 3.1704 143.5341 5751.618

m3 0.0008 2.8846 31.9664 2741.3372 514672.4

m4 0.0012 7.1034 461.7491 66105.4505 46346481

V 7.9357 0.4712 2.9019 43.5341 1563.458

S 11.1390 1.4569 5.5259 1.5155 0.9691

K 185.9511 6.2699 47.5460 6.6337 2.0563
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Table 2: Simulation results related to the parameters of the WML distribution

Combinations n Bias MSE LB UB

α = 1.5, υ = 1.5

100
α 0.0585 0.0751 1.4990 1.6110
υ 0.0644 0.0780 1.4981 1.6177

200
α 0.0295 0.0346 1.4941 1.5550
υ 0.0336 0.0348 1.4962 1.5591

500
α 0.0169 0.0138 1.49067 1.5271
υ 0.0173 0.0132 1.4973 1.5273

α = 2, υ = 3.5

100
α 0.0635 0.1055 1.9999 2.1259
υ 0.1309 0.3794 3.4981 3.7489

200
α 0.0352 0.0477 1.9988 2.0651
υ 0.0677 0.1700 3.4911 3.6241

500
α 0.0120 0.0207 1.9994 2.0246
υ 0.0215 0.0704 3.4913 3.5447

α = 3.5, υ = 2.5

100
α 0.1240 0.3002 3.4993 3.7287
υ 0.0947 0.1818 2.4992 2.6762

200
α 0.0453 0.1397 3.4930 3.5968
υ 0.0450 0.0887 2.4988 2.5858

500
α 0.0103 0.0555 3.4897 3.5310
υ 0.0146 0.0325 2.4942 2.5303

α = 4, υ = 2.5

100
α 0.1163 0.3703 3.9992 4.2334
υ 0.0826 0.1625 2.4905 2.6600

200
α 0.0556 0.1778 3.9976 4.1135
υ 0.0368 0.0839 2.4970 2.5767

500
α 0.0162 0.0667 3.9936 4.0388
υ 0.0135 0.0307 2.4982 2.5288
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Table 3: Descriptive evaluation of the fitted models for the data set

Model MaxLikE (SE) −logL AIC BIC K-S p-value

WML υ̂ = 0.7020 (0.1303) 121.4213 246.8426 251.5041 0.0931 0.4965
α̂ = 1.2723 (0.2657)

WL υ̂ = 1.0007 (0.1469) 122.0275 248.055 252.7164 0.10413 0.3573
α̂ = 1.3809 (0.2339)

QL υ̂ = 0.9543 (0.0954) 121.6503 247.3006 251.962 0.13049 0.1374
α̂ = 0.1498 (0.1437)

SL υ̂ = 0.9544 (0.0954) 121.6503 247.3006 251.962 0.10247 0.3765
α̂ = 6.3676 (6.4571)

EL υ̂ = 9364 (0.1047) 121.8991 247.7981 252.4596 0.10221 0.3796
α̂ = 1.3905 (0.2376)

PL υ̂ = 0.7046 (0.0819) 122.4001 248.8001 253.4616 0.11233 0.2719
α̂ = 1.1425 (0.0908)
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Abstract 

 
Bayesian credible intervals are obtained for Generalized Inverse Weibull distribution 

using different priors. Gibbs sampling procedure is used to draw Markov Chain Monte Carlo 
(MCMC) samples which are used to construct the Bayesian estimates and corresponding 
credible intervals. Simulation study is conducted by taking different configurations of 
parameter points and sample sizes to highlight the properties and comparison of the credible 
intervals. Illustrative example based on a real data set is also provided. 
 
Key words: Generalized inverse Weibull distribution; Credible interval; MCMC algorithm; 
Posterior distribution. 
___________________________________________________________________________ 
 

1. Introduction 
 

The three-parameter Generalized Inverse Weibull distribution (GIWD), introduced  by 
Gusmao et al. (2011), is a positively skewed distribution used to model the income data and 
because of  its ability of possessing decreasing and unimodal failure rate, is also useful in 
reliability and biological studies. Generalized inverse Weibull distribution is the generalization 
of various well-known and useful distributions, including inverse Weibull, inverse exponential, 
inverse Rayleigh and Fr�́�chet distributions as special sub-models. 

 
These distributions play an important role in many applications, including the dynamic 

components of diesel engines, several data sets such as the times to breakdown of an insulating 
fluid subject to the action of a constant tension, failure characteristics such as infant mortality, 
useful life and wear-out periods, analyzing the wind speed data (Drapella (1993), Jiang et al. 
(2001), Nelson (1982), Khan (2008), Zaharim et al. (2009)). Most of the sub-cases of 
generalized inverse Weibull distribution are families of inverse distributions, which can be 
easily fitted to income related data. These distributions have two parameters but in order to fit 
better at the tails, three parameters distribution (GIWD) is used in the present study. 

 
The cdf of generalized inverse Weibull distribution is 

𝐹(𝑥) 	= 𝑒
!"#$!"%

#
&
 , 𝑥 > 0	; 		𝛼, 𝛽, 𝛾 > 0 , 

 
where 𝛼 is scale parameter and 	𝛽, 𝛾 are shape parameters. 

The pdf of generalized inverse Weibull distribution is 
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𝑓(𝑥) = 𝛾𝛽𝛼'𝑥"(')*)𝑒
!"#$!"%

#
&
. 

 
Sub-models: 

• For 𝛼 = 1, it reduces to inverse Weibull (IW) distribution. 
• For 𝛾 = 𝛼 = 1, it reduces to Fr�́�chet (F) distribution. 
• For 𝛽	 = 	2, 𝛼 = 1, it reduces to inverse Rayleigh (IR) distribution. 
• For 𝛾 = 𝛽 = 1, it reduces to inverse exponential (IE) distribution. 

 
In this paper, credible intervals for the parameters of the generalized inverse Weibull 

distributions are obtained. Some work using Generalized Pareto Distribution (Hosking (1987)), 
Weibull distribution (Kundu (2008)), Generalized Exponential Distribution (Kundu et. al. 
(2009)) and Generalized Inverted Exponential Distribution (Dey et. al. (2014) is already 
available in the literature in the case of credible interval, however, in the context of Bayesian 
and income inequality measure is already available in the literature for GIWD and some other 
distributions (Bhattacharya et al. (1999), Mahajan et. al. (2015), Arora et. al. (2017), Kaur et. 
al.  (2018), Kaur et. al.  (2021)). In the context of Credible interval, no work has been done for 
Generalized inverse Weibull distribution.    

Credible interval is an interval in the domain of a posterior probability distribution or 
predictive distribution in Bayesian statistics. The Bayesian equivalent of the confidence 
interval in the classical inference is the credible interval. Bayesian interval estimators have a 
clearer and more direct interpretation than classical confidence intervals. Like classical 
confidence interval, the 95% Bayesian credible interval contains the true value with 
approximately 95% confidence. Bayesian intervals treat their bounds as fixed and the estimated 
parameter as a random variable, whereas frequentist confidence intervals treat their bounds as 
random variables and the parameter as a fixed value.  95% credible interval is any interval 
which contains a 95% percent of the posterior probability. Because the posterior density is a 
true probability density, we can compute quantiles and percentiles of the parameter. The 
simplest 95% credible interval is bounded by the 2.5th and 97.5th percentiles. This interval is 
called a symmetric credible interval because it removes equal probability (2.5%) from both 
tails of the distribution.  

 
According to Eberly and Casella (2003) the 100	(1 − α)% equal tail credible interval for 

exact posterior distribution can be defined as 
 

                       𝑃(𝜃 < 𝐿) 	= ∫ 𝜋(𝜃|𝑥),
"∞ 𝑑𝜃 = -

.
  ,   𝑃(𝜃 > 𝑈) 	= ∫ 𝜋(𝜃|𝑥)∞

/ 𝑑𝜃 = 	-
.
            (1) 

 
where, 
 
𝜋(𝜃|𝑥)is posterior density of 𝜃 and  
(𝐿	, 𝑈)are the lower and upper limits of the credible interval respectively for specified value 
of 𝛼 (level of significance). 

 
The posterior distribution is always available, although in realistically complex problems 

it cannot be represented analytically and becomes difficult in generation of random samples.  
There are two types of algorithms used to draw samples from the true posterior.  The first 

type is a direct method, when we draw a sample from an easily sampled density and reshape 
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this sample by only accepting some of the values into the final sample in such a way that the 
accepted values constitute a random sample from the posterior. This method is inefficient as 
the number of parameters increases in the posterior distribution. 

 
Secondly, the simulation method for sampling from posterior distribution is called the 

Markov Chain Monte Carlo (MCMC) method (Metropolis et. al. (1949)). The advantage of 
MCMC is that it gives not only a point estimator of the parameter,  but  also  gives  an interval 
estimation based on the final simulated empirical distribution. MCMC is essentially an iterative 
sampling algorithm, drawing values from the posterior distribution of the parameter in the 
model concerned. The simulation method for sampling from posterior distribution which 
computes posterior quantities of interest is called the Markov Chain Monte  
Carlo (MCMC) method. A Markov chain is a well-known stochastic process model that can be 
used to characterize the probability of moving from one state to another. Numerous algorithms 
have been developed that will simulate samples from a discrete-time continuous-space Markov 
chain such that, after reaching a steady-state, the sequence of samples constitutes a sample from 
the desired joint posterior distribution. These simulated samples estimate the mean and 
especially the quantiles (used to compute credible intervals) of marginal posterior distributions 
for the parameters of interest. MCMC involves two methods, Metropolis–Hastings’ algorithm 
and Gibbs sampling for generating samples from the posterior distribution (Metropolis et al. 
(1953), Hastings (1970)). For more details about MCMC and the related methodologies, one 
can refer to Gentle (1998), Chen et al. (2000) and Robert and Casella (2004). Gibbs sampling 
procedure and Metropolis-Hastings (M-H) method are used to generate samples from the 
posterior density function to compute the Bayesian point estimates and credible intervals. 
When using a Markov Chain Monte Carlo algorithm such as the Gibbs sampler to generate a 
sample from the posterior distribution (marginal) of interest, calculations are often easier. 
 
1.1. Metropolis-Hastings (Bolstad, 2010) algorithm 

 
The algorithm of Metropolis-Hastings (Bolstad, 2010) is as follows: 

 
Let the proposed density using the Metropolis-Hastings algorithm is denoted by  𝑞(𝜃, 𝜃 ′), 

which is close to target density 𝑔(𝜃|𝑥),  
 
where 
 
𝜃is starting value, 
𝜃 ′is the next generating value of 𝜃 and 
𝑔(𝜃|𝑥)is the posterior target density from which we need to generate 𝜃. 
1.  Start at an initial value𝜃(0). 
2.  Do for  𝑛		 = 	1,2, . . . . . . , 𝑛  (𝑛 is the number of iterations) 

(a) Draw a sample from  𝑞(𝜃(1"*), 𝜃 ′). 
(b) Calculate 𝑟	 = probability of acceptance = 𝛼(𝜃(1"*), 𝜃 ′). 
(c)Draw 𝑢 from the uniform distribution 𝑈(0,1). 
(d) If  𝑢 < 𝑟, then let 𝜃(1) =	𝜃 ′, else let 𝜃(1) =	𝜃(1"*). 

 
The density 𝑞(𝜃, 𝜃 ′) close to the target density 𝑔(𝜃|𝑥) leads to more points being 

accepted. In fact, proposed density has the same shape as the target density. 
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𝑞(𝜃, 𝜃 ′) = 𝑘𝑔(𝜃′|𝑥) 
 
the acceptance probability 

𝛼(𝜃, 𝜃 ′) = 𝑚𝑖𝑛 I1, 2(3
′|5)6(3′,3)

2(3|5)6(3,3′)
J 

             = 𝑚𝑖𝑛 I1, 2(3
′|5)2(3|5)

2(3|5)2(3′|5)
J 

                                                                = 1 
 
i.e in this case, all points will be accepted. 

 
After generating the sample from the posterior distribution using MCMC simulation 

method, one important question is: how many samples are needed to accurately approximate 
the characteristics of the posterior distribution? This question is difficult to answer because 
samples generated on successive iterations are not independent of one another. Frequently, the 
values from one iteration and the next will be highly correlated, and a very large number of 
iterations will be necessary to make sure that the sample covers the entire range of the 
distribution. We would like our Markov chain to move about the space covered by the 
distribution freely. When outcome of one iteration has little effect on the next iteration, we say 
that the chain is mixing quickly. If the outcomes on successive iterations are highly linked, then 
we say that the chain is mixing slowly. If the chain is mixing slowly then it will have to be run 
for a long time until we can be sure that our sample properly represents the posterior 
distribution. 
 
1.2.  Trace plots 

 
The simplest tool for visualizing the convergence of a Markov chain is the trace plot, 

the plot of the values generated from the Markov chain versus the iteration number. This plot 
shows that the chain is mixing well, moving back and forth over the space and suggests how 
much sample values are enough to produce accurate approximation of the posterior summaries. 

 
It may be noted that if the chain does not converge to its stationary distribution, then there 

will be long burn-in period.  One can observe from a trace plot that there is a relatively constant 
mean and variance in case of stationarity.   
 
1.3.  Burn-in period 

 
To discard the initial portion of a Markov chain, so that the effect of initial values on the 

posterior inference is minimized, we use Burn-in procedure. The initial samples are not 
completely valid because the Markov Chain has not stabilized to the stationary distribution or 
at beginning of sequence, we need to run MCMC for a while to achieve convergence to target 
pdf. The burn in samples allows us to discard these initial samples that are not yet at the 
stationary distribution. 

 
This study focuses on the generation of samples using MCMC algorithm from the 

posterior distribution. Then the generated samples using Metropolis–Hastings’ algorithm and 
Gibbs sampling are used to compute the credible intervals for the parameters of interest using 
different prior and squared error loss function (SELF) in case of generalized inverse Weibull 
distribution. 
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The outline of the paper is: the Posterior distributions of generalized inverse Weibull 
distribution using different priors are given in Section 2. In Section 3, algorithms are given to 
compute credible intervals for the above said distributions. The convergence and mixing of 
Markov chain through graphical method are presented in Section 4. In this section, simulation 
study along with real life illustration is also carried out to compute credible intervals using 
different priors in case of generalized inverse Weibull distribution. Finally, Section 5 gives the 
conclusion of the study. 
 
2.   Posterior Distributions for Parameters of Generalized Inverse Weibull Distribution 
 

The pdf of generalized inverse Weibull distribution is 

𝑓(𝑥) = 𝛾𝛽𝛼'𝑥"(')*)𝑒
!"#$!"%

#
&
,  𝛼, 𝛽, 𝛾 > 0. 

          The likelihood function of generalized inverse Weibull distribution is given by 

𝐿(𝑥|𝛾, 𝛼, 𝛽) = 𝛾1𝛽1𝛼1' 	K∏ 𝑥8
"(')*)		1

89* M 𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8
"'1

89* ). 
 

2.1.  Posterior densities of parameters of GIWD using informative prior 
 

Informative prior depends on the elicitation of prior distribution based on pre-existing 
scientific knowledge in the area of investigation. This information may be available from the 
previous investigation or from non-statistician experts. Assuming parameters 𝛼, 𝛽, 𝛾 have 
independent Gamma priors with the pdf's 

 
																																																								𝑔(𝛼; 𝑎.,𝑏.) = :$

%$-%$&';5<	("-:$)
>(?$)

, 

𝑔(𝛽; 𝑎@,𝑏@)= :(
%('%'&';5<	("':()

>(?()
, 

 
𝑔(𝛾; 𝑎*,𝑏*)= :'

%'#%'&';5<	("#:')
Γ(?')

, 
 
where 𝑎8 , 𝑏8 for  𝑖 = 1,2,3 are hyperparameters. 

 
Assuming that the parameters are mutually independent, the posterior distribution is 

proportional to the product of the prior and the likelihood function given by 
 

𝑔∗(𝛼, 𝛽, 𝛾|𝑥) ∝ 𝛾1𝛽1𝛼1'T𝑥8
"(')*) 𝑒𝑥𝑝 U−𝛾𝛼'V𝑥8

"'
1

89*

W𝛾?'"* 𝑒𝑥𝑝(−𝛾𝑏*) 𝛼?$"*
1

89*

 

 
𝑒𝑥𝑝	(−𝛼𝑏.)𝛽?("*𝑒𝑥𝑝(−𝛽𝑏@) 
 
The full conditional posterior density of 𝛼 is 

 
𝑔∗(𝛼|𝛽, 𝛾, 𝑥) ∝ 𝛼1')?$"*𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8

"'1
89* − 𝑏.𝛼). 

 
The full conditional posterior density of 𝛽 is 
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𝑔∗(𝛽|𝛼, 𝛾, 𝑥) ∝ 𝛽1)?("*𝛼1')?("*∏ 𝑥8
"(')*)𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8

"'1
89* − 𝑏@𝛽)1

89* . 
 
The full conditional posterior density of 𝛾 is         
 
𝑔∗(𝛾|𝛼, 𝛽, 𝑥) ∝ 𝛾1)?'"*𝑒𝑥 𝑝 K−K𝛼' ∑ 𝑥8

"'1
89* − 𝑏*M𝛾M~	𝐺𝑎𝑚𝑚𝑎(𝑛 +

														𝑎*, 	𝛼' ∑ 𝑥8
"' −1

89* 𝑏*). 
 
2.2.  Posterior densities of parameters of GIWD using Jeffreys’ prior 

 

Jeffreys’ (1946) prior based on the Fisher’s information, is defined as            

𝜋(𝜃) 		∝ [𝐼(𝜃) , 

where 𝐼(𝜃) =	−𝐸 I B
$

B3$
	𝑙𝑛𝐿(𝜃|𝑥)J is Fisher’s information based on likelihood function 𝐿(𝜃|𝑥). 

 
The expected value of double derivatives is not in the closed form, hence the explicit 

experrsion for the Jeffreys’ prior is not obtained. For simplicity it is assumed that all the three 
parameters are independent, therefore joint prior in case of Jeffreys’ prior (Guure, 2012), Singh 
(2011) is written as 

𝑔(𝛼, 𝛽, 𝛾) ∝  *
#-'

 . 

The full conditional posterior density of 𝛼 is 
 

𝑔∗(𝛼|𝛽, 𝛾, 𝑥) ∝ 𝛼1'"*𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8
"'1

89* ). 
 
The full conditional posterior density of 𝛽 is 

 
𝑔∗(𝛽|𝛼, 𝛾, 𝑥) ∝ 𝛽1"*𝛼1'"*∏ 𝑥8

"(')*)𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8
"'1

89* )1
89* . 

 
The full conditional posterior density of 𝛾 is          

 
𝑔∗(𝛾|𝛼, 𝛽, 𝑥) ∝ 𝛾1"*𝑒𝑥 𝑝 K−K𝛼' ∑ 𝑥8

"'1
89* M𝛾M		~			𝐺𝑎𝑚𝑚𝑎(𝑛, 𝛼' ∑ 𝑥8

"'1
89* ). 

 

Note: The full conditional posterior densities of 𝛼, 𝛽 and 𝛾 using Jeffreys’ prior are obtained 
by taking hyperparametres as zero (	𝑎* 	= 	 𝑏* 	= 	 𝑎. 	= 	 𝑏. 	= 	 𝑎@ 	= 𝑏@ 	= 	0). 

3.  Algorithms to Compute Credible Intervals for Generalized Inverse Weibull 
Distribution 

The posterior densities using different priors cannot be solved directly to compute lower 
limit (L) and upper limit (U) of credible interval as stated in equation 1. MCMC simulation 
techniques allow us to generate a sample from these posterior densities using Metropolis-
Hastings (M-H) method and Gibbs sampling method.  

 
The conditional posterior distributions of  𝛼 and 𝛽 cannot be reduced analytically to well-

known distributions and therefore it is not possible to simplify it directly by standard methods, 
but their graphs indicate that they are like the Gamma and Weibull distributions, respectively.  
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So, to generate random numbers from these distributions, use the Metropolis-Hastings (M-H) 
method with Gamma and Weibull as the proposed distributions. To generate 𝛾 from the 
posterior density, Gibbs sampling method is used. 

 
The following algorithm is given to generate 𝛼, 𝛽	and	𝛾 from their posterior density 

functions and in turn to obtain the Bayes estimates and the corresponding credible intervals. 
 

• Start with 𝛼0 =	𝛼b and	𝛽0 =	𝛽c  as their initial approximation. 
• Set 𝑗	 = 	1, using Metropolis – Hasting generate 𝛼C from conditional posterior density 

of 𝛼 with the Gamma (𝛼C"*, 2) as the proposal distribution and also generate 𝛽C from      
conditional posterior density of 𝛽 with the Weibull (𝛽C"*, 2) as the proposal 
distribution. Generate 𝛾C from Gamma (𝑛 + 𝑎*, (𝛼' ∑ 𝑥8

"'1
89* + 𝑏*)) using Gibbs 

sampling. 
• Set 𝑗	 = 	𝑗 + 1 
• Repeat step 2, 𝑁 times. 
• Obtain the Bayes estimates of  𝛼, 𝛽and𝛾 using SELF as 

𝛼b=  ∑ -)
*
)+,-'
E"F

,  where𝑀 is the burn-in period. 

𝛽c=  ∑ ')
*
)+,-'
E"F

  , where 𝑀 is the burn-in period. 

𝛾b=  ∑ #)
*
)+,-'
E"F

 , where 𝑀 is the burn-in period. 
• To compute the credible intervals of 𝛼, 𝛽	and	𝛾, order 𝛼F)*, 𝛼F).…… . , 𝛼E ;       

𝛽F)*, 𝛽F).…… . , 𝛽E and 𝛾F)*, 𝛾F).…… . , 𝛾E in ascending order as   
𝛼(*), 𝛼(.)…… . , 𝛼(E"F) ; 𝛽(*), 𝛽(.)…… . , 𝛽(E"F) ; 𝛾(*), 𝛾(.)…… . , 𝛾(E"F). Then the 
100(1 − 𝜂)% credible intervals for 𝛼, 𝛽and𝛾 are 

• i𝛼$(*&,)0$ %, 𝛼$*"0$%(E"F)
j,       i𝛽$(*&,)0$ %, 𝛽$*"0$%(E"F)

j  and  i𝛾$(*&,)0$ %, 𝛾$*"0$%(E"F)
j 

, 
where 𝜂 is the level of significance. 
 
In the next section, credible intervals are computed using R-software by the above algorithm. 
 
4.  Simulation Study 

Statistical simulation study is carried out to compute the 95% and 99% credible intervals 
using different priors for generalized inverse Weibull distribution. The comparisons of priors 
are also done based on the width of the credible intervals; smaller the width better is the 
interval. According to distributions, combinations of parameters, hyper parameters and sample 
size should be chosen, and these are discussed below for all the three parameters. The credible 
intervals are computed based on 10,000 MCMC samples and first 500 values are discarded as 
burn-in. We plot the trace plots of the chains to determine whether the chain is exploring the 
parametric space well for all the parameters of GIWD. The monitoring MCMC convergence 
and mixing is also checked using trace and autocorrelation plots. The autocorrelation shows 
the mixing rate, and it is measured by autocorrelations of different lags. 
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The  credible   interval   are   computed   for  Jeffreys’  and   informative  prior  for  the  
parametres of GIWD obtained  using squared error loss function. These intervals are computed 
for different sample sizes 𝑛	 = 	30, 50 with parameters combinations 𝛼 = 𝛽 = 𝛾= 2. The 
combinations of  hyperparameters are taken as 𝑎* =𝑏* = 	6,𝑎. = 𝑏. = 𝑎@ = 𝑏3 = 	4 (Kaur et. 
al. (2018)) according to  misfit measure. The trace, posterior density and autocorrelation plots 
of 𝛼, 𝛽 and 𝛾 are plotted in case of informative prior. 
 
 

   
 

Figure 1: Trace, posterior density and autocorrelation plots of 𝛼 

 

 

   
 

Figure 2: Trace, posterior density and autocorrelation plots of 𝛽 
 
 

   
 

Figure 3: Trace, posterior density and autocorrelation plots of 𝛾 
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Based on trace, autocorrelation and posterior plots (Figure 1-3), we conclude that 
 

• Markov Chain (MC) has reached convergence, 
• trace plot is perfect and the centre of the chain having small fluctuations 

indicates that the MC has reached the right distribution, 
• all autocorrelations are close to zero for  𝛼 and 𝛾	i.e., MCMC sampling is done in 

independent manner and stationarity is reached. The autocorrelation plots for 𝛽 shows 
low mixing at the starting lags and good mixing after 10th lag. 
 

The credible intervals are reported in the following Tables 1-3. From the Tables, it may be 
seen that  
 

(i) Credible intervals using informative priors lead to smaller width of the interval as 
compared to non-informative prior for all the three parameters both for 95% and 
99% C.I.  

(ii) As the sample size increases, the width of the credible intervals decreases 
 

 

Table 1: Credible intervals for 𝛼 
 

n Prior Estimate 95% C.I. 
(width) 

99% C.I. 
(width) 

30 
Jeffrey 1.93205 (0.56643,4.87645) 

4.31002 
(0.35410,6.02160) 

5.6675 

Informative 2.17695 (0.51799,4.46347) 
3.94548 

(0.36721,5.68138) 
5.31417 

50 
Jeffrey 2.01670 (0.57516,4.48867) 

3.91351 
(0.34895, 5.91940) 

5.57045 

Informative 2.05906 (0.54841,4.37218) 
3.82377 

(0.33537,5.60383) 
5.26846 

 
 

Table 2: Credible intervals for 𝛽 
 

N Prior Estimate 95% C.I 
(width) 

99% C.I 
(width) 

30 
Jeffrey 2.17912 (1.73348, 2.67003) 

0.93655 
(1.60958, 2.86279) 

1.25321 

Informative 2.05582 (1.62910, 2.53639) 
0.90729 

(1.49765, 2.71638) 
1.21873 

50 
Jeffrey 1.82986 (1.55504, 2.13338) 

0.57834 
(1.48468, 2.25778) 

0.7731 

Informative 1.90897 (1.59993, 2.15669) 
0.55676 

(1.51976, 2.27387) 
0.75411 
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Table 3: Credible intervals for 𝛾 
 

n Prior Estimate 95% C.I. 
(width) 

99% C.I. 
(width) 

30 
Jeffrey 2.01406 (1.49211, 2.60510) 

1.11299 
(1.46391, 2.92407) 

1.46016 

Informative 2.13966 (1.61030, 2.71203) 
1.10173 

(1.36377, 2.81584) 
1.45207 

50 
Jeffrey 2.15621 (1.75397, 2.59709) 

0.84312 
(1.65186, 2.76850) 

1.11664 

Informative 2.00077 (1.64707, 2.39050) 
0.74343 

(1.55070, 2.51419) 
0.96349 

 
Table 4: Credible intervals for 𝛼, 𝛽	and g 

 

Parameters Prior estimate 95%  C.I 
(width) 

99% C.I. 
(width) 

𝛼 
Jeffrey 1.01693 

 
(0.29426, 2.72271) 

2.42845 
(0.18097, 3.62492) 

3.44395 

Informative 1.14379 
 

(0.26616, 2.34805) 
2.08189 

(0.17551, 2.97161) 
2.7961 

𝛽 
Jeffrey 2.20413 

 
(1.81032, 2.65222) 

0.8419 
(1.69353, 2.83398) 

1.14045 

Informative 2.04210 
 

(1.67144, 2.46173) 
0.79029 

(1.56256, 2.63407) 
1.07151 

g 

Jeffrey 
 5.12292 (3.53113, 6.96405) 

3.43292 
(3.12454, 7.53388) 

4.40934 
Informative 

 4.83125 (3.36143, 6.57182) 
3.21039 

(2.95502, 7.17773) 
4.22271 

 
Real Life Example 

 
The real-life data of percentage of GDP of different countries is taken from Dataset: 

Central Government Dept of 2009. The GIWD is used to fit this data set. To check the validity 
of the model, we compute of Kolmogorov-Smirnov test and p-value for this test is 0.1859, 
suggesting thereby the appropriateness of the GIWD. The credible intervals are computed 
based on 10,000 MCMC samples and first 500 values are discarded as burn-in. The trace plots 
are also plotted to determine whether the chain is exploring the parametric space well for all 
the parameters of three distributions in case of real-life example. 
 
It is seen from the above tables, for all three parameters of GIWD the informative prior 
performs better as compared with non-informative prior (Jeffreys’ prior). 

 
5.  Conclusion 
 

The informative prior performs better as compared to non-informative prior and findings 
from the analysis of real life example are in accordance with those of simulation study in case 
of generalized inverse Weibull distribution. One can further infer that as the sample sizes 
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increases, the width of the credible interval decreases for both 95% and 99% credible intervals 
in case of Generalized inverse Weibull distribution. 
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Abstract 
 

Taguchi’s parameter design technique for improving product quality has aroused a 
great deal of interest among statisticians and quality practitioners. He proposed the use of 
product array for reducing variation and improving product quality. However, in some 
applications, his approach results in an exorbitant number of runs. As an alternative to the 
product array approach, Welch et al. (1990), Shoemaker et al. (1991) and Montgomery 
(1991a), proposed the use of combined arrays wherein control and noise factors are combined 
in a single array. Further, Shoemaker et al. (1991) used an optimal design algorithm to reduce 
the size of the combined array. 
 

In this paper, we have exploited the non-orthogonal column structure of the 20-run 
Plackett-Burman Design. It is shown that by making use of the columns of the 20-run 
Plackett-Burman design, the size of the experiment can further be reduced. The results have 
been shown for designs with six factors and the results for three, four and five factors are 
given in the annexure. 
 
Key words: Robust parameter design; Orthogonal arrays; Fractional factorial designs; 
Combined array; Plackett-Burman designs;  D-efficiency;  Projective rationale. 
 
1. Introduction 

 
Taguchi (1959, 1987) introduced an off-line quality control technique known as robust 

parameter design for reducing variation and improving product quality. The root of this idea 
is the notion that products lack in quality because of inconsistency in performance produced 
by factors that are controllable in the design of the product. He thus classifies the factors into 
two groups: Control factors and Noise factors. 

 
The overall objective of Taguchi’s approach is to determine the levels of control factors 

at which the effect of the noise factors on the performance characteristics is minimized. To 
achieve this objective he made use of product arrays by taking the Kronecker product of two 
orthogonal arrays, one involving only the control factors (inner array) and the other involving 
only the noise factors (outer array). Direct products of orthogonal arrays are themselves 
orthogonal arrays but the product operation greatly increases the number of observations in 
the array without generally increasing its strength. Several different methods of construction 
have been suggested, with the underlying idea of choosing levels for the controllable factors 
so that the uncontrollable factors have least influence on the response. Welch et al. (1990), 
Borkowski and Lucas (1991, 1997), Montgomery (1991 a, b), Myers (1991), Shoemaker et 
al. (1991), Welch and Sacks (1991), Box and Jones (1992) and Lucas (1994) suggested the 
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use of combined arrays, wherein the control factors and noise factors are combined in a single 
array. A combined array lets the experimenter choose the interactions to be estimated. This 
provides more flexibility so that the experimental budget can be used to fit models more 
refined than the main effects only models frequently used in Taguchi’s loss model approach. 
An excellent review of the robust parameter technique is made by Nair (1992) and Myers and 
Montgomery (1995). Kunert et al. (2007) compared Taguchi’s product array with a combined 
array. 

 
In this paper we have exploited the non-orthogonal column structure of the 20-run 

Plackett-Burman (PB) design to generate non-orthogonal combined arrays. 
 

2. The Role of Interactions 
 

In parameter design, one is interested in choosing the levels of control factors so that 
the product’s performance is insensitive to noise factors and can be adjusted on target as 
appropriate. The control	×	noise (C ×	N) interactions are exploited to accomplish this. The 
structure of these interactions provides special insights in the combined array/response model 
approach because they are the effects that can be exploited to reduce response variability. The 
noise	×	noise (N	×	N) interactions play little role in making a product’s performance 
insensitive to noise factors. The presence of large C	×	C interactions is considered highly 
undesirable; thus, every attempt is made to reduce the number of C	×	C interactions through 
judicious choice of the quality characteristics. 
 
3. Objectives and the Supportive Models 
 

Keeping in view the above justification for the inclusion of various terms in the models 
we now specify our objectives: 
 

Let there be r control factors, say, x1, x2, ……,xr  and s noise factors viz. z1, z2 , ……,zs. 
 

Then our objective is: 
 

1. To estimate the main effects of all the control factors and noise factors. 
2. To estimate C ×	N interactions. 
3. To estimate if possible, (depending on the degrees of freedom) the C	×	C 

interactions. 
 

The above objectives can be explained more precisely with the help of regression 
models. Let y denote a quality characteristic associated with a product. We can then express: 

 
                      y = f (x, z)                  (1) 

 
If the response is well modelled by a linear function of the independent variables, then 

the approximating function is the first order model:  
 

𝑦 = 𝛽! + ∑𝛽"𝑥" + ∑𝛾#𝑧# + 	𝜖	                                                          (2) 
   

But, in model (2), the settings of x have no influence on variability. For robust 
parameter design to be successful, the functional relationship between control factors and 
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noise variables should be such that they interact. Thus, a second order model will be more 
appropriate:  

 
𝑦 = 𝛽! +%𝛽"𝑥" +%𝛽""𝑥"# +%%𝛽""!𝑥"𝑥"! +%𝛾$𝑧$ +%𝛾$$𝑧$# +%%𝛾$$!𝑧$𝑧$! +%%𝛿"$𝑥"𝑧$ + 𝜖 

 
where i≠𝑖$= 1,2,….,r;  j≠𝑗$= 1,2,….,s                                                                             (3) 
 

In order to meet the first two objectives mentioned above the reduced model, by 
keeping the origin at (0, 0), would be: 

 
                          𝑦 = ∑𝛽"𝑥" + ∑𝛾#𝑧# + ∑∑𝛿"#𝑥"𝑧# + 𝜖.                           (4) 

 
Whereas, when one is also interested in estimating the C	×	C interactions (the third 

objective), the corresponding model would be:  
 

𝑦 = ∑𝛽"𝑥" +∑𝛾#𝑧# + ∑∑𝛿"#𝑥"𝑧# + ∑∑𝛽""%𝑥"𝑥"% + 𝜖                    (5)  
 
4. Efficiency Criterion 
 

We have used the following D-criterion for measuring the overall efficiency for 
estimating a collection of effects: 

       
D-efficiency = |X$X|%/'               (6) 

 
where, X = [x1/||x1||,…., xk/||xk||]; and xi is the coefficient vector of the ith effect. To find the 
efficiency of each individual effect, we have used the following Ds criterion:  
 

()&
%)&*)&

%+(&),+(&)
% +(&)-

)*
+(&)
% +(&).

)&
%)&

                                                                (7) 

 
where, X(i) is obtained from X by deleting xi. 
 
5. Steps Used for Combined Array Approach  
 

We give below the steps used in the combined array approach: 
 
i. Choose p columns from the totality of n–1 columns and consider all the non-

equivalent designs. 
ii. For each design allocate the control factors and noise factors to p columns. 
iii. Write the appropriate model by considering the required set of C ×	N interactions 

and C	×	C interactions (depending upon run-size). 
iv. For all possible choices of the control and noise factors find the D value for the 

whole design and Ds values for the various effects. 
v. Compare the D value of all the designs obtained and take the one with maximum 

D value. If there are more designs with the maximum D value, consider all of 
them. 

vi. Sort the Ds values of these designs on the basis of C ×	N interactions and take the 
design for which it is maximum. If there are more than one designs with the same 
values of Ds for C ×	N interactions, consider all of them. 
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vii. Sort the Ds values of these designs on the basis of C	×	C interactions and take the 
design for which it is minimum. If there are more than one designs with the same 
values of Ds for C	×	C interactions, take all of them. 

viii. Among the designs chosen by step (vii), finally sort these designs on the basis of 
the Ds values for control factors and noise factors and select the design for which 
it is maximum. 

ix. Once a design has been selected by following the aforesaid steps, the Ds values of 
the various effects are reported according to the order of column allocations of 
respective control factors, noise factors and their interactions in the tables. 
 
 

6. Plackett-Burman Designs 
 
Plackett and Burman (1946) provided a series of two-level fractional factorial designs, 

for examining (n–1) factors in n runs, where n is a multiple of 4 and n ≤ 100. These are non-
orthogonal designs in which the aliasing coefficient between any two effects lies between –1 
and +1. They gave the following design for 20-runs: 

 
Table 1: 20-Run Plackett-Burman design 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
– + – – + + + + – + – + – – – – + + – 
– – + – – + + + + – + – + – – – – + + 
+ – – + – – + + + + – + – + – – – – + 
+ + – – + – – + + + + – + – + – – – – 
– + + – – + – – + + + + – + – + – – – 
– – + + – – + – – + + + + – + – + – – 
– – – + + – – + – – + + + + – + – + – 
– – – – + + – – + – – + + + + – + – + 
+ – – – – + + – – + – – + + + + – + – 
– + – – – – + + – – + – – + + + + – + 
+ – + – – – – + + – – + – – + + + + – 
– + – + – – – – + + – – + – – + + + + 
+ – + – + – – – – + + – – + – – + + + 
+ + – + – + – – – – + + – – + – – + + 
+ + + – + – + – – – – + + – – + – – + 
+ + + + – + – + – – – – + + – – + – – 
– + + + + – + – + – – – – + + – – + – 
– – + + + + – + – + – – – – + + – – + 
+ – – + + + + – + – + – – – – + + – – 
– – – – – – – – – – – – – – – – – – – 

 
We shall now discuss the projection properties of this design. The choice of p columns, 

where p < (n–1) may result in a number of designs for given n and p, not all of which may be 
equivalent. Two such designs are said to be equivalent if one can be obtained from the other 
by permutations of rows, columns and sign changes. Draper and Lin (1990) have given 
detailed tables giving the number of distinct designs for 12-, 20- and 24-run PB designs for 
different values of p. Each design is characterized by the number of repeat runs, mirror 
images or distinct runs it has. For p = 2, Draper and Lin (1990, Table 3B), Lin and Draper 
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(1992, 1995) found that projection is a 22 design, n/4 times over. For p	=	3, they found that 
there are two different projections, each one consisting of at least a full 23 factorial. For p	=	4, 
there are three non-isomorphic 20	×	4 submatrices: designs 4.1, 4.2 and 4.3. The 20 points in 
design 4.1 have one treatment combination omitted and five duplicated. Both designs 4.2 and 
4.3 have each 4 points missing, 5 points appear once, 6 points appear twice and one point 
appears three times. For p	=	5, Draper and Lin (1990, Table 3B) found that there are nine 
non-isomorphic 20	×	5 submatrices viz. designs 5.1, 5.2, …, and 5.9. Design 5.1 has no run 
with repeats, design 5.4 has one run with 2 repeats and the remaining designs have at least 
two runs with repeats. For p	=	6, there are 50 non-isomorphic 20	×	6 submatrices. To save 
the enormity of calculations, we consider only the 17 designs considered by Draper and Lin 
(1990, Table 3B) viz. designs 6.1, 6.2,…, and 6.17 based on their mirror image patterns or 
repeat run pairs. Designs 6.1, 6.2, 6.4, 6.9 and 6.13 have no runs with repeats while rest of the 
designs have at least one run with a repeat. We now discuss the combined array concept for 
this design. 

 
7. Combined Array Results for the 20-Run PB Design 
  

There are 19 independent columns for studying the factor effects and 20 design points. 
We shall discuss here only one case as others can be obtained in a similar manner. Suppose 
we have six factors we then need to choose six columns from the 19 columns. Now 6 factors 
can be divided into control and noise factors in five different ways: 

 
(a) r = 5, s = 1 (b) r = 1, s = 5  (c) r = 4, s = 2  (d) r = 2, s = 4  (e) r	= 3, s = 3 

 
Consider the first possibility: 
 
(a) r = 5, s = 1 
 

Allocate five columns to the control factors and one to the noise factor. There are 21 
parameters to be estimated including the C	×	C interactions. Out of 17 designs given by 
Draper and Lin (1990, Table 3B), 5 designs have no repeats and thus enable us to estimate 19 
parameters in 20 runs. Out of these, design 6.1 is the best having maximum D-efficiency. The 
following Table gives the allocation of control and noise factors which have come out to be 
the best for this design:  

 
Table 2: r = 5, s = 1 

 
Design 6.1 (1,2,3,4,5,6), (20) 

D. 
No. 

C N C ×	N C	×	C D Ds 

1 1,3,4,5,6 2 12,32,42,52,62 14,15,34,35, 
36,45,46,56 

.73 .31,.31,.56,.44,.64,.58,.28,.57,.64,.51,.56, 
.58,.41, .57,.43,.32,.51,.28,.44 

 
In the Table after giving the design number we give the column allocation of the 

selected design in the first parenthesis and the number in the second parenthesis gives the 
number of distinct runs in the design. 

 
Five out of 17 designs have one run with a repeat and thus enable us to estimate 18 

parameters. Design 6.5 is the best. We call a design to be good if it has the highest D-
efficiency and provides maximum flexibility in the allocation of control and noise factors. 
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We give below the allocations of control and noise factors that have come out to be the best 
for this design:  

Table 3: r = 5, s = 1 
 

Design 6.5 (1,2,4,5,6,7), (19) 
D. 
No. 

C N C ×	N C	×	C D Ds 

1 1,2,4,6,7 5 15,25,45,65,75 12,14,16,17, 
26, 27,46 

.74 .68,.49,.36,.64,.64,.68,.66,.59,.56, 
.38,.33,.59,.56,.38,.33,.53,.33,.49 

2 2,4,5,6,7 1 21,41,51,61,71 25.26,27,45, 
46,56,57 

.74 .49,.36,.68,.64,.64,.68,.59,.56,.66, 
.38,.33,.59,.53,.33,.56,.49,.38,.33 

   
There are 4 designs with 2 repeats, out of which, design 6.10 is the best having the 

highest D-efficiency, which enables us to estimate 17 parameters in 18 runs. The following 
Table gives the allocation of control and noise factors that has come out to be the best for this 
design:  

Table 4: r = 5, s = 1 
 

Design 6.10 (1,4,5,6,7,9), (18) 
D. 
No. 

C N C ×	N C	×	C D Ds 

 1 1,4,5,6,9 7 17,47,57,67,97 14,16,45,46,
56,59 

.71 .57,.77,.51,.67,.28,.67,.4,.54,.4, 
.67, .41,.31,.23,.49,.22,.31,.22 

 
There are 3 designs with 3 repeats, out of which design 6.16 is the best having highest 

D-efficiency. This design enables us to estimate 16 parameters in 17 runs. The following 
table gives the allocation of control and noise factors that have come out to be the best for 
this design:  

Table 5: r = 5, s = 1 
 

Design 6.16 (1,2,3,6,9,12), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 1,2,3,6,9 12 112,212,312, 

612,912 
12,13,16,23, 26 .69 .28,.77,.18,.18,.10,.29,.77,.31,   

.54, .54,.10, .24,.05,.28,.16,.54 
 

(b) r = 1, s = 5 
 

Allocate one column to the control factor and five to the noise factors. In this case 11 
parameters are to be estimated as there are no C	×	C interactions. Design 6.17 is the best 
having highest D-efficiency, which estimates all the 11 parameters in minimum number of 
runs. We give below the allocations of control and noise factors which have come out to be 
the best for this design:  

Table 6: r = 1, s = 5 
 

Design 6.17 (1,2,3,5,8,13), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 1 2,3,5,8,13 12,13,15,18,113 - 0.93 .93,.83,.86,.80,.86,.86,.86, 

.86,.81, .86,.86 
2 2 1,3,5,8,13 21,23,25,28,213 - 0.93 .92,.86,.86,.86,.80,.86,.86, 

.86,.86, .81,.86 
3 13 1,2,3,5,8 131,132,133,135,138 - 0.93 .93,.83,.86,.80,.86,.86,.86, 

.86,.81, .86,.86 
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(c) r =	4, s = 2 
 

Allocate four columns to the control factors and two to the noise factors. There are in 
all 20 parameters to be estimated. However, in 20 runs one can estimate at the most 19 
parameters. Out of 5 designs, having no repeats, design 6.1 is the best having maximum D-
efficiency. The following table gives the allocation of control and noise factors which has 
come out to be the best for this design:  

 
Table 7: r = 4, s = 2 

 
Design 6.1 (1,2,3,4,5,6), (20) 

D. No. C N C ×	N C	×	C D Ds 
1 1,2,3,6 4,5 14,15,24,25,34,

35,64,65 
12,13,23,26,36 .68 .25,.56,.31,.13,.39,.3,.56,.46, 

.64, .2,.56,.47, .32, .29, .23, 

.13, .39, .56, .37 
 

Out of 5 designs having one repeat, design 6.6 performs the best. We give below the 
allocation of control and noise factors that has come out to be the best for this design:  

 
Table 8: r = 4, s = 2 

 
Design 6.6 (1,2,4,5,7,8), (19) 

D. No. C N C ×	N C	×	C D Ds 
1 1,2,5,8 4,7 14,17,24,27,54,

57, 84,87 
12,15,25,28 .74 .53,.66,.66,.53,.38,.38,.64,.64,.36, 

.36,.49,.49,.56,.56,.53,.36,.66,.33 
 

There are 4 designs with 2 repeats, out of which design 6.10 is the best having the 
highest D-efficiency, which enables us to estimate 17 parameters in 18 runs. The following 
table gives the allocation of control and noise factors that has come out to be the best for this 
design:  

 
Table 9: r = 4, s = 2 

 
Design 6.10 (1,4,5,6,7,9), (18) 

D. No. C N C ×	N C	×	C D Ds 
1 1,4,5,9 6,7 16,17,46,47,56,

57,96,97 
14,15,19 .71 .55,.29,.55,.42,.67,.67,.31,.32,.27, 

.58, .23,.32,.22,.55,.49,.67,.49 
 

There are 3 designs with 3 repeats, out of which design 6.16 is the best having the 
highest D-efficiency. This design enables us to estimate 16 parameters in 17 runs. The 
following Table gives the allocation of control and noise factors that has come out to be the 
best for this design: 

Table 10: r = 4, s = 2 
 

Design 6.16 (1,2,3,6,9,12), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 1,3,6,9 2,12 12,112,32,312,62,612, 

92,912 
13,16 .63 .14,.31,.07,.23,.77,.47,.33,.24, 

.33,.54,.33,.54, .08,.24,.05,.28 
 

Consider the following example discussed by Shoemaker et al. (1991) to illustrate the 
flexibility afforded by a combined array: 
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7.1. Example 1  
 

Suppose there are 4 two-level control factors, A, B, C and D, and 2 two-level noise 
factors, r and s. Assume that the control × control interactions – AB, AC and AD are 
potentially important and that we wish to estimate them. If we use the product array 
approach, we first construct a control array (CA) that estimates all main effects – A, B, C and 
D and the three important interactions – AB, AC and AD. We then construct a noise array 
(NA) that estimates the two main effects – r and s, and the interaction – rs. The defining 
relation of this plan is I = ABCD. According to the general result concerning estimation 
capacity of CA	×	NA designs, the resulting 32-run product array allows us to estimate six 
main effects – A, B, C, D, r, and s, the 12 two-factor interactions – AB, AC, AD, rs, Ar, Br, 
Cr, Dr, As, Bs, Cs, and Ds and 13 higher-order interactions. On the other hand, a combined 
array 26-1 with resolution VI using 

 
I = x1x2x3x4z1z2 

 
is much more appropriate. This design allows the estimation of all the six main effects and all 
15 two-factor interactions. 
 

As yet a better approach, Shoemaker et al. (1991) used an optimal design algorithm to 
reduce the size of experiment further. As the 13 higher order interactions are less likely to be 
important, they constructed a linear model consisting of six main effects and 12 two-factor 
interactions mentioned above. Three combined arrays of size 20, 22, and 24 were generated 
from an optimal design algorithm DETMAX (Mitchell 1974), used in the software system 
RS/ DISCOVER (1988). All the three designs are approximately two-third the size of the 
product /combined array but allow efficient estimation of all the main effects and two-factor 
interactions mentioned earlier. 
 

For the above example, we exploited the non-orthogonal column structure of the 20-run 
PB design. Also, as the role of noise	×	noise interactions in making a product’s performance 
insensitive to noise factors is almost negligible, we therefore exclude them from our model. 
We are now left with 17 parameters to be estimated. There are 4 designs with 2 repeats each, 
viz, 6.8, 6.10, 6.11, and 6.14 given by Draper and Lin (1990, Table 3B). As a result, they 
have only seventeen degrees of freedom for estimating factor effects. Out of these four 
designs, design 6.10 estimates the 17 parameters with highest D-efficiency. Table 9 gives the 
allocation of control and noise factors that has come out to be the best for this design. 
 

Thus, if we allocate the four control factors to columns 1, 4, 5, and 9 and noise factors 
to columns 6 and 7 of design 6.10, this design allows us to estimate all the 17 parameters in 
18 runs only as compared to the design given by Shoemaker et al. (1991). 

 
(c) r = 2, s = 4 
 

Allocate two columns to the control factors and four to the noise factors. There are in 
all 15 parameters to be estimated. Out of 17 designs, designs 6.15, 6.16, and 6.17 enable us to 
estimate 15 parameters in 17 runs. However, as design 6.17 provides more flexibility for the 
allocation of control and noise factors, we give below the results for this design only:  

          
 
 



2022]     ROBUST PARAMETER DESIGN USING 20 RUN PLACKETT-BURMAN DESIGN                   197 
 

Table 11: r  =  2, s  =  4 
 

Design 6.17 (1,2,3,5,8,13), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 2,3 1,5,8,13 21, 25, 28, 213, 31, 

35, 38, 313 
23 .66 .35,.52,.35,.12,.25,.30,.46,.20,.24, 

.20, .28,.37, .06, .16, .48 
2 8,13 1,2,3,5 81, 82, 83, 85, 131, 

132, 133, 135 
813 .66 .52,.35,.35,.30,.25,.12,.28,.16,.06, 

.37,.46,.20,.24,.20,.48 
 
(d) r = 3, s = 3 
 

Allocate three columns to the control factors and three to noise factors. Out of 17 
designs, 5 designs have one repeat and thus enable us to estimate 18 parameters in 19 runs. 
Out of these 5 designs, design 6.5 is the best having maximum D value. The following table 
gives the allocation of control and noise factors that has come out to be the best for this 
design: 

 
Table 12: r = 3, s = 3 

 
Design 6.5 (1,2,4,5,6,7), (19) 

D. No. C N C ×	N C	×	C D Ds 
1 1,2,5 4,6,7 14,16,17,24,26,27, 

54,56,57 
12,15,25 .68 .66,.42,.66,.36,.64,.12,.48,.19, 

.36,.12,.36,.26,.48,.19,.36,.42, 

.66,.42 
  

Out of 4 designs having 2 repeats, design 6.10 performs the best and enables us to 
estimate 17 parameters in 18 runs. The following Table gives the allocation of control and 
noise factors that has come out to be the best for this design: 

 
Table 13: r = 3, s = 3 

 
Design 6.10 (1,4,5,6,7,9), (18) 

D. No. C N C ×	N C	×	C D Ds 
1 1,6,7 4,5,9 14,15,19,64,65,69, 

74,75,79 
16,17 .71 .55,.67,.67,.29,.55,.42,.48,.67,.48,

.27,.23,.22,.58,.32,.55,.31,.32 
 

Out of 3 designs having 3 repeats, design 6.17 performs the best and enables us to 
estimate 16 parameters in 17 runs. The following Table gives the allocation of control and 
noise factors which have come out to be the best for this design: 

 
Table 14: r =3, s = 3 

 
Design 6.17 (1,2,3,5,8,13), (17) 

D. No. C N C ×	N C	×	C D Ds 
1 1,3,13 2,5,8 12,15,18,32,35,38, 

132, 135,138 
13 .63 .32,.53,.53,.28,.14,.28,.77,.28, 

.30,.28, .20,.05,.10,.12,.17,.34 
2 2,3,13 1,5,8 21,25,28,31,35,38, 

131, 135,138 
23 .63 .32,.53,.53,.28,.28,.14,.77,.30, 

.28, .28,.05,.20,.10,.17,.12,.34 
 

In the presence of 3 two-level control factors and 3 two-level noise factors, Shoemaker 
et al. (1991) have shown with the help of an example, the flexibility offered by a combined 
array vis-a-vis a product array. 
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8. Concluding Remarks 
 

Many authors have advocated the use of combined arrays as an alternative to Taguchi’s 
product arrays by modelling the response itself as a function of control and noise factors. 
These combined arrays are based on orthogonal fractional factorial designs, which do not 
exist for all values of n. Also, a major concern of most of the industries is to reduce the 
number of runs or minimize it. In this paper, we have exploited the non-orthogonal column 
structure of the 20-run Plackett-Burman design, giving a systematic method for choosing 
columns of a PB design for the allocation of control and noise factors.  It has been shown that 
most of the designs using this approach, though not orthogonal, result in the reduction of the 
size of the experiment, a major benefit to the industry. 
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ANNEXURE 
 

Combined Array Designs for Three, Four and Five Factors 
 
For p = 3 
 
(a) r	=	2, s	=	1 

 
 

 
The other designs can be obtained by renaming the control and noise factors. 
 
(b) r = 1, s	=	2 

 
 
The other designs can be obtained by renaming the control and noise factors. 
 

 
 
 

Design 3.1, (1,2,3), (8) 
D. No. C N C ×	N C	×	C D DS 
1 1,2 3 13, 23 12 1 1,1,1,1,1,1 

Design 3.2, (1,3,6), (8) 
D. No. C N C ×	N C	×	C D DS 
1 1,3 6 16,36 13 1 1,1,1,1,1,1 

Design 3.1, (1,2,3), (8) 
D. No. C N C ×	N C	×	C D DS 
1 1 2,3 12,13 - 1 1,1,1,1,1 

Design 3.2, (1,3,6), (8) 
D. No. C N C ×	N C	×	C D DS 

1 1 3,6 13,16 - 1 1,1,1,1,1 
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For p = 4 
 
(a)   r =  3, s =  1 
 
 
 
 
The other designs can be obtained by renaming the control and noise factors. 
 
(b) r =  1, s =  3 
 
 
 
 
 
The other designs can be obtained by renaming the control and noise factors. 
 
(c) r =  2, s =  2 
 
 
 
 
 
The other designs can be obtained by renaming the control and noise factors. 
 

For p = 5 

(a) r =  4, s =  1 
 
 
 
 
 
 
 
 
 
 
 
(b) r =  1, s = 4 
 
 
 
 
 
 
 
 
 

Design 4.3, (1,5,6,7), (12) 
D. No. C N C ×	N C	×	C D DS 
1 1,5,6 7 17,57,67 15,16,56 0.86 .73,.73,.73,.73,.67,.67,.67,.67,.67,.67 

Design 4.3, (1,5,6,7), (12) 
D. No. C N C ×	N C	×	C D DS 
1 1 5,6,7 15,16,17 - 0.95 .91,.91,.91,.91,.89,.89,.89 

Design 4.3, (1,5,6,7), (12) 
D. No. C N C ×	N C	×	C D DS 
1 1,5 6,7 16,17,56,57 15 0.88 .78,.78,.78,.78,.67,.67,.67,.67,.89  

Design 5.3, (1,2,3,5,6), (18) 
D. No. C N C ×	N C	×	C D DS 
1 1,2,3,6 5 15,25,35,65 12,13,16,23, 

26,36 
0.76 .44,.77,.44,.21,.45,.77,.44, 

.77,.45,.45, .21,.44,.45,.77,.44 

Design 5.5, (1,2,5,6,7), (18) 
D. No. C N C ×	N C	×	C D DS 
1 1,5,6,7 2 12,52,62,72 15,16,17,56, 

57,67 
0.76 .77,.77,.45,.45,.44,.45,.45,.77, 

.77,.21, .44,.44,.44,.44,.21  

Design 5.9, (1,2,3,6,9), (14) 
D. No. C N C ×	N C	×	C D DS 
1 3 1,2,6,9 31,32,36,39 - 0.86 .91,.61,.79,.61,.76,.61, 

.76,.61,.79 
2 9 1,2,3,6 91,92,93,96 - 0.86 .91,.61,.61,.76,.79,.61, 

.61,.79,.76 
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(c) r =  3, s = 2 
 

 
(d) r =  2, s =	3 

 

Design 5.8 (1,3,5,6,8), (16) 
D. No. C N C × N C	×	C D DS 
1 1,3,5 6,8 16,18,36,38,56,58 13,15,35 0.68 .32,.17,.39,.32,.39,.39,.29,.39, 

.32,.29,.39,.39, .50,.32 
2 1,3,8 5,6 15,16,35,36,85,86 13,18,38 0.68 .39,.17,.32,.32,.39,.29,.39,.39, 

.32,.39,.29,.32, .50,.39 
3 3,5,6 1,8 31,38,51,58,61,68 35,36,56 0.68 .17,.32,.39,.39,.32,.32,.39,.29, 

.39,.39,.29,.39, .32,.50 

Design 5.9, (1,2,3,6,9), (14) 
D. No. C N C ×	N C × C D DS 
1 1,2 3,6,9 13,16,19,23,26,29 12 0.72 .46,.46,.43,.29,.43,.30,.43,.46, 

.57,.61,.33,.43 
2 1,6 2,3,9 12,13,19,62,63,69 16 0.72 .46,.46,.29,.43,.43,.43,.46,.30, 

.61,.33,.57,.43 
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Abstract
In this paper, we consider the problem of estimation of R = P (X < Y ), when X

and Y are dependent. The maximum likelihood estimates and Bayes estimates of R are
obtained based on record values when (X, Y ) follows Morgenstern type bivariate exponential
distribution. The percentile bootstrap and HPD confidence intervals for R are also obtained.
Monte Carlo simulations are carried out to study the accuracy of the proposed estimators.

Key words: Morgenstern type bivariate exponential distribution; Record values; Maximum
likelihood estimation; Bayes estimation.
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1. Introduction

Record value data arise in a wide variety of practical situations. Examples include
destructive stress testing, mateorological analysis, hydrology, seismology, sporting and ath-
letic events and oil and mining surveys. Interest in records has increased steadily over the
years since Chandler (1952) formulation. Let {Xi, i ≥ 1} be a sequence of independent and
identically distributed (iid) random variables having an absolutely continuous cumulative
distribution function (cdf) F (x) and probability density function (pdf) f(x). An observa-
tion Xj is called an upper record if Xj > Xi, for every i < j (see Arnold et al. 1998, p.8). An
analogous definition deals with lower record values. Let (X1, Y1), (X2, Y2),. . . be a sequence
of iid random variables with common continuous joint cdf F (x, y), (x, y) ∈ R×R. Let FX(x)
and FY (y) be the marginal cdfs of X and Y respectively. Let Rn, n ≥ 1 be the sequence of
upper record values arising from the sequence of X’s. Then the Y-variate associated with the
X-value, which qualified as the nth record will be called the concomitant of the nth record
and will be denoted by R[n]. Suppose in an experiment, individuals are measured based
on an inexpensive test, and only those individuals whose measurement breaks the previous
records are retained for the measurement based on an expensive test; then the resulting data
involves record values and concomitants of record values. For a detailed discussion on the
distribution theory of concomitants of record values see, Arnold et al. (1998), Ahsanullah
and Nevzorov (2000), Barakat et al. (2013) and Ahsanullah and Shakil (2013). Chacko and
Thomas (2006,2008) considered the problem of estimation of parameters of Morgenstern

Corresponding Author: Shiny Mathew
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type bivariate logistic distribution and bivariate normal distribution based on concomitants
of record values.

The joint pdf of first n upper record values and its concomitants
(R(n),R[n]) = ((R(1), R[1]), (R(2), R[2]), . . . , (R(n), R[n])) is given by

f(R(n),R[n])(r(n), r[n]) =
n∏
i=1

f(r[i]|r(i))f1,2,...,n(r(1), r(2), . . . , r(n)), (1)

where f1,2,...,n(r(1), r(2), . . . , r(n)) is the joint pdf of first n upper record values and is given by

f1,2,...,n(r(1), r(2), . . . , r(n)) = f(r(n))
n−1∏
i=1

f(r(i))
1− F (r(i))

. (2)

Now a days the inference on R = P (X < Y ) is studied in many branches of sciences
and social sciences such as psychology, medicine, pedagogy, pharmaceutics and engineering.
In the context of reliability the stress-strength model describes the life of a component which
has a random strength Y and is subjected to a random stress X. The component fails at the
instant that the stress applied to it exceeds the strength and the component will function
satisfactorily whenever X < Y . Thus R = P (X < Y ) is a measure of component reliability.
It has found applications in many life testing problems and engineering. The application of R
in engineering includes deterioration of rocket motors, static fatigue of ceramic components,
fatigue failure of aircraft structures etc. For example, if X and Y are future observations
on the stability of an engineering design, then R would be predictive probability that X is
less than Y . Similarly, if X and Y represents life times of two electronic devices, then R
is the probability that one fails before the other. For more details on applications of R in
engineering see, Nadarajah and Kotz (2006).

The estimation of R has been extensively investigated in the literature when X and Y
are independent random variables belonging to the same bivariate family of distributions.
However, there is a relative little work when X and Y are dependent random variables.
The problem of estimating R when the X and Y are dependent was considered by Abu-
Salih and Shamseldin (1988), Awad et al. (1981), Jana and Roy (1994) and Cramer (2001).
Estimation of R when (X, Y ) follows bivariate normal distribution has been discussed by
Enis and Geisser (1971) and Mukherjee and Saran (1985). Jana(1994) and Hanagal (1995)
discussed the estimation of R when (X, Y ) follows Marshall-Olkin bivariate exponential
distribution. Hanagal (1997) discussed the estimation of R when (X, Y ) has a bivariate
Pareto distribution. Chacko and Mathew (2019) considered the estimation of R = P (X < Y )
for bivariate normal distribution based on ranked set sample. Chacko and Mathew (2020)
considered the estimation of R = P (X < Y ) for bivariate normal distribution based on
record values. In this paper, we focus on estimation of R = P (X < Y ) based on upper
record values and its concomitants, corresponding to a bivariate random variable (X, Y )
which follows a Morgenstern Type Bivariate Exponential distribution (MTBED) with pdf
given by (see, Kotz et al., 2000, P.353)

f(x, y) =


θ1θ2exp(−θ1x− θ2y)[1 + α(1− 2exp(−θ1x))(1− 2exp(−θ2y))],

x > 0, y > 0;−1 ≤ α ≤ 1; θ1 > 0, θ2 > 0
0, otherwise

(3)
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It may be noted that if (X, Y ) has a MTBED as defined in (3) then the marginal distributions
of both X and Y have exponential distributions. The correlation between X and Y is α/4.
As α lies between -1 and 1, MTBED accomodates correlation in the range of (-1/4,1/4).
Exponential distributions are the most popular and the most applied life time models in
many areas, including life testing and reliability studies. Let T1 and T2 be two dependent
components of a system with lifetimes X and Y respectively. Then R = P (X < Y ) is the
probability that the first component T1 fails before second component T2. If (X,Y) follows
a bivariate exponential distribution and the data available are in the form of upper record
values and its concomitants then the methods describe in this paper can easily be used to
estimate R = P (X < Y ).

The organization of the paper is as follows. In section 2, we consider maximum like-
lihood estimation of R and also obtain the bootstrap confidence interval (CI) based on the
maximum likelihood estimator (MLE). In section 3, we consider the Bayes estimation of
R using importance sampling method under both symmetric and assymetric loss functions.
Section 4 is devoted to some simulation studies and in section 5, we give concluding remarks.

2. Maximum Likelihood Estimation

Let (X,Y) follows MTBED with pdf defined in (3), then R = P (X < Y ) is given by

R = P (X < Y )

= θ1

θ1 + θ2
[1 + α

θ1(θ1 − θ2)
(2θ1 + θ2)(2θ2 + θ1) ]. (4)

If we denote θ = (θ1, θ2, α) then we can write R as

R = R(θ).

In this section, we obtain the MLE of R for MTBED using record values and its concomitants.
Let (R(i), R[i]), i = 1, 2, . . . , n be the upper record values and its concomitants arising from
MTBED. Then from (1), the likelihood function is given by

L(θ) = (θ1θ2)n
n∏
i=1

exp(−θ1r(i) − θ2r[i])[1 + α(1− 2exp(−θ1r(i)))

×(1− 2exp(−θ2r[i]))]
n−1∏
i=1

1
exp(−θ1r(i))

.

Then the log-likelihood function is given by

logL(θ) = n log θ1 + n log θ2 − θ1r(n) − θ2

n∑
i=1

r[i]

+
n∑
i=1

log[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))].

Thus we have
∂ logL
∂θ1

= n

θ1
− r(n) +

n∑
i=1

2αr(i)(1− 2exp(−θ2r[i]))exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

,
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∂ logL
∂θ2

= n

θ2
−

n∑
i=1

r[i] +
n∑
i=1

2αr[i](1− 2exp(−θ1r(i)))exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

and

∂ logL
∂α

=
n∑
i=1

(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

.

The MLEs of θ1, θ2 and α can be obtained as the solutions of the following non-linear
equations

n

θ1
− r(n) +

n∑
i=1

2αr(i)(1− 2exp(−θ2r[i]))exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

= 0,

n

θ2
−

n∑
i=1

r[i] +
n∑
i=1

2αr[i](1− 2exp(−θ1r(i)))exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

= 0

and
n∑
i=1

(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

= 0.

If θ̂ = (θ̂1, θ̂2, α̂) is the MLE of θ obtained by solving the above nonlinear equations, then
the MLE of R is given by

R̂ML = θ̂1

θ̂1 + θ̂2

1 + α̂
θ̂1(θ̂1 − θ̂2)

(2θ̂1 + θ̂2)(2θ̂2 + θ̂1)

 . (5)

2.1. Asymptotic confidence interval

In this subsection, the asymptotic confidence interval of R is obtained. Towards this,
we consider the observed information matrix of θ. Let

I(θ) =

I11 I12 I13
I21 I22 I23
I31 I32 I33

 ,
where

I11 = ∂2 logL
∂θ2

1
= −n

θ2
1
−

n∑
i=1

2αr(i)(1− 2exp(−θ2r[i]))

×
(

1− αr(i)exp(−θ1r(i))(1− 2exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

)
,

I12 = ∂2 logL
∂θ1∂θ2

=
n∑
i=1

2αr(i)exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,
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I13 = ∂2 logL
∂θ1∂α

=
n∑
i=1

2r(i)exp(−θ1r(i))(1− 2exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I21 = ∂2 logL
∂θ2∂θ1

=
n∑
i=1

2αr[i]exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I22 = ∂2 logL
∂θ2

2
= −n

θ2
2

+
n∑
i=1

2αr[i](1− 2exp(−θ1r(i))

×
(

1− αr[i]exp(−θ2r[i])(1− 2exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

)
,

I23 = ∂2 logL
∂θ2∂α

=
n∑
i=1

2r[i]exp(−θ2r[i])(1− 2exp(−θ1r(i)))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I31 = ∂2 logL
∂α∂θ1

=
n∑
i=1

(1− 2exp(−θ2r[i]))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I32 = ∂2 logL
∂α∂θ2

=
n∑
i=1

(1− 2exp(−θ1r(i)))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

and

I33 = ∂2 logL
∂α2 = −

n∑
i=1

(1− 2exp(−θ1r(i))2(1− 2exp(−θ2r[i])2

[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2
.

Let θ̂ = (θ̂1, θ̂2, α̂) be the MLE of θ. Then the observed information matrix is given by I(θ̂).
Thus by using delta method, we obtain the asymptotic distribution of R̂. For that we have

ˆV ar(R̂ML) = ˆV ar(R(θ̂))
≈ h(θ̂)[I(θ̂)]−1h(θ̂)>.

where
h(θ̂) =

(
∂R

∂θ1
,
∂R

∂θ2
,
∂R

∂α

)∣∣∣∣∣
θ=θ̂

with
∂R

∂θ1
= θ2

(θ1 + θ2)2 + α
θ1θ2(4θ3

2 + 7θ1θ
2
2 − 2θ3

1)
(2θ3

1 + 2θ3
2 + 7θ1θ2

2 + 7θ2
1θ2)2 ,

∂R

∂θ2
= −θ1

(θ1 + θ2)2 + α
θ2

1(2θ3
1 − 4θ3

2 − 7θ1θ
2
2)

(2θ3
1 + 2θ3

2 + 7θ1θ2
2 + 7θ2

1θ2)2

and
∂R

∂α
= θ2

1θ2

(2θ3
1 + 2θ3

2 + 7θ1θ2
2 + 7θ2

1θ2) .

Thus R̂−R√
ˆvar(R̂)

is aymptotically distributed as N(0, 1). Thus a (1−ν)100% confidence interval

for R based on the MLE is (R̂ − zν/2

√
ˆV ar(R̂), R̂ + zν/2

√
ˆV ar(R̂)), where zν/2 is the (1 −

ν/2)100th percentile of N(0,1).
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2.2. Bootstrap confidence interval

In this subsection, we consider percentile bootstrap CI for R based on MLEs. For that
we do the following.

1. Compute the MLEs θ̂1
(0), θ̂2

(0) and α̂(0) of θ1, θ2 and α using original record values and
its concomitants and set k=1.

2. Generate a bootstrap sample using θ̂1
(0), θ̂2

(0) and α̂(0) from MTBED and obtain the
MLEs θ̂1

(k), θ̂2
(k) and α̂(k) using the bootstrap sample.

3. Obtain the MLE R̂k = R(θ̂1
(k)
, θ̂2

(k)
, α̂(k)).

4. Set k = k + 1.

5. Repeat steps (2)to(4) B times to obtain the MLEs R̂1, R̂2, · · · , R̂B, for sufficiently large
B .

6. Arrange R̂1, R̂2, · · · , R̂B in ascending order as R̂(1) ≤ R̂(2), . . . ,≤ R̂(B). Then the
100(1 − ν) percentile bootstrap CI for R is given by

(
R̂([B(ν/2)]), R̂([B(1−ν/2)])

)
, [.] is

the greatest integer function.

3. Bayesian Estimation

In this section, we consider Bayesian estimation of R for MTBED under symmetric as
well as asymmetric loss functions. For symmetric loss function we consider squared error
loss (SEL) function and for asymmetric loss function we consider both LINEX loss (LL) and
the general entropy loss (EL) function. The Bayes estimate of any parameter µ under SEL
function is the posterior mean of µ. The Bayes estimate of any parameter µ under LL is
given by

d̂LB(µ) = −1
h

log{Eµ(e−hµ|x)}, h 6= 0, (6)

provided Eµ exists. The Bayes estimate of any parameter µ under EL function is given by

d̂EB(µ) = (Eµ(µ−q|x))
−1
q , q 6= 0, (7)

provided Eµ exists.
Let (R(i), R[i]), i = 1, 2, . . . , n be the vector of record value and its concomitants arising from
MTBED (θ1, θ2, α). Then from (1) the likelihood function is given by

L(θ) = (θ1θ2)n
n∏
i=1

exp(−θ1r(i) − θ2r[i])[1 + α(1− 2exp(−θ1r(i)))

×(1− 2exp(−θ2r[i]))]
n−1∏
i=1

1
exp(−θ1r(i))

.

Assume that the prior distributions of θ1 ∼ Gamma(a, b), θ2 ∼ Gamma(c, d) and α ∼
U [−1, 1]. Thus the prior density functions of θ1, θ2 and α are respectively given by

π1(θ1|a, b) = ba

Γ(a)θ
a−1
1 e−bθ1 ; a > 0, b > 0, (8)
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π2(θ2|c, d) = dc

Γ(c)θ
c−1
2 e−dθ2 ; c > 0, d > 0 (9)

and
π3(α) = 1

2 ,−1 ≤ α ≤ 1. (10)

Then the joint prior distribution of θ is given by

π(θ) = 1
2
ba

Γ(a)
dc

Γ(c)θ
a−1
1 θc−1

2 e−bθ1e−dθ2 (11)

Then the joint posterior density of θ is given by

π∗(θ) = L(θ)π(θ)´
L(θ)π(θ)dθ . (12)

Therefore the Bayes estimate of R(θ) under SEL, LL and EL are respectively given by

R̂S =
´
R(θ)L(θ)π(θ)dθ´
L(θ)π(θ)dθ , (13)

R̂L = −1
h

log
´
e−hR(θ)L(θ)π(θ)dθ´

L(θ)π(θ)dθ (14)

and

R̂E =
[´

R(θ)−qL(θ)π(θ)dθ´
L(θ)π(θ)dθ

]−1
q

. (15)

It is not possible to compute (13)-(15) explicitly. The popular approach to perform the
integrals (13) to (15) is the Markov Chain Monte Carlo (MCMC) method which replace the
expectation values of the parameters with the average values over Monte Carlo (posterior)
samples obtained through the Markov Chain. A drawback of the MCMC method is that
the time series of the Monte Carlo samples obtained through the Markov Chain are usually
correlated. The importance sampling method introduces an importance sampling density
which should be handled easily and can generate Monte Carlo data randomly. The Monte
Carlo data generated randomly by the importance sampling method can be autocorrelation-
free. The autocorrelation-free nature of the importance sampling could be considered to be
an advantage over the MCMC method. Thus we consider importance sampling method to
find the Bayes estimates for R.

3.1. Importance sampling method

In this subsection, we consider the importance sampling method to generate samples
from the posterior distributions and then find the Bayes estimate of R. The numerator in
the posterior distribution given in (12) can be written as

L(θ)π(θ) ∝ Q(θ)f1(θ1)f2(θ2)f3(α),

where
Q(θ) =

n∏
i=1

[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))], (16)
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f1(θ1) ∝ θn+a−1
1 exp[−θ1(r(n) + b)] (17)

f2(θ2) ∝ θm+c−1
2 exp

[
−θ2

(
n∑
i=1

r[i] + d

)]
(18)

and
f3(α) = 1

2 . (19)

Thus from (17) we can see that distribution of θ1 follows Gamma distribution with parameters
(n + a) and (r(n) + b). Again from (18) one can see that distribution of θ2 follows gamma
distribution with parameters (m+c) and (

n∑
i=1

r[i]+d). From (19) we can see that α ∼ U(−1, 1).

Let θ(t) = (θ(t)
1 , θ

(t)
2 , α(t)), t = 1, 2, . . . , N be the observations generated from (17),(18) and

(19) respectively. Then by importance sampling method the Bayes estimators under SEL,
LL and EL given by (13)-(15) can be respectively written as

R̂S =

N∑
t=1

R(θ(t))Q(θ(t))
N∑
t=1

Q(θ(t))
, (20)

R̂L = −1
h

log


N∑
t=1

exp(−hR(θ(t))Q(θ(t))
N∑
t=1

Q(θ(t))

 (21)

and

R̂E =


N∑
t=1

(R(θ(t)))−qQ(θ(t))
N∑
t=1

Q(θ(t))


−1/q

. (22)

3.2. HPD interval

In this subsection, we construct HPD intervals for R as described in Chen and Shao
(1999). In this method a Monte Carlo approach is used to approximate the pth quantile of
R and then obtain an estimate of Bayesian credible or HPD interval. Define Rt = R(θ(t)),
where θ(t) = (θ(t)

1 , θ
(t)
2 , α(t)) for t = 1, 2, . . . ,M are posterior samples generated respectively

from (17), (18) and (19) for θ1, θ2 and α. Let R(t) be the ordered values of Rt. Define

wt = Q(θ(t))
M∑
t=1

Q(θ(t))
.

Then the pth quantile of R can be estimated as

R̂(p) =


R1 if p = 0

R(i) if
i−1∑
j=1

w(j) < p <
i∑

j=1
w(j),
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where w(j) is the weight associated with jth ordered value R(j). Then the 100(1 − ν)%,
0 < ν < 1, confidence interval for R is given by (R̂(j/M), R̂(j+[(1−ν)M ])/M)), j = 1, 2, . . . ,M ,
where [.] is the greatest integer function. Then the required HPD interval for R is the
interval with smallest width.

4. Simulation Study

In this section, we carry out a simulation study for illustrating the estimation proce-
dures developed in the previous sections. First we obtain the MLE of R using (5). We have
obtained the bias and MSE of MLEs for different combinations of θ1, θ2 and α and are given
in Table 1. The bootstrap CI for R are also obtained. The average interval length (AIL) and
coverage probability (CP) are also obtained and are included in Table 1. We consider four
sets of true parameter values, (θ1, θ2)= (5,1), (3,2), (2,4) and (0.5,5). Since prior distribution
of θ1 follows gamma distribution with mean a

b
, we take the hyperparameters for θ1 =5, 3,

2, and 0.5 as (a, b)=(5,1), (3,1), (2,1) and (0.5,1) respectively. Similarly we take the hyper-
paramerters of θ2=1,2,4, and 5 as (c, d) = (1,1), (2,1), (4,1) and (5,1). We have obtained
the Bayes estimators for R of MTBED under SEL, LL and EL functions using importance
sampling method and are given in Table 2. For importance sampling method we use the
following algorithm.

1. Generate n upper record values and its concomiants from MTBED distribution with
parameters θ1, θ2 and α.

2. Calculate the Bayes estimators of R as described below.

(a) Set t=1
(b) Generate θ(t)

1 from Gamma distribution with parameters n+ a and r(n) + b.

(c) Generate θ(t)
2 from Gamma distribution with parameters m+ c and

n∑
i=1

r[i] + d.

(d) Generate α(t) from Uniform(−1, 1) distribution.
(e) Calculate R̂(θ(t)) using (5) and Q(θ(t)) using (16).
(f) Set t=t+1.
(g) Repeat steps (b) to (f) 50,000 times.
(h) Calculate the Bayes estimators for R using (20)-(22)

3. Repeat steps 1 and 2 for 500 times to obtain the estimators R̂1, R̂2, · · · , R̂500.

4. Calculate the average bias= 1
500

∑500
i (R̂i−R) and MSE = 1

500
∑500
i (R̂i− R̄) + bias2 of

the estimators.

We repeat the simulation study for different values of α and n. From the tables we can see
that the bias and MSE of all estimators decrease when the number of records increase. We
can also see that among different estimators Bayes estimator under SEL have minimum bias
and MSE. From Table 1 we can see that the AILs of HPD intervals are smaller than that of
bootstrap CIs and the CPs of HPD intervals are higher than that of bootstrap CIs.
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Table 1: The AIL and CP for bootstrap CIs and HPD intervals

α n θ1 θ2 R Bootstrap HPD
AIL CP AIL CP

-0.75 6 5 1 0.67100 0.22830 0.85 0.11755 0.94
3 2 0.57589 0.21336 0.85 0.13603 0.92
2 4 0.34583 0.18995 0.87 0.12971 0.93

0.5 5 0.09334 0.18229 0.86 0.12178 0.92
8 5 1 0.67100 0.17457 0.87 0.14590 0.95

3 2 0.57589 0.16680 0.87 0.11195 0.94
2 4 0.34583 0.15912 0.88 0.12494 0.95

0.5 5 0.09334 0.15215 0.88 0.11086 0.94
10 5 1 0.67100 0.14993 0.88 0.11234 0.96

3 2 0.57589 0.13375 0.87 0.08454 0.96
2 4 0.34583 0.16985 0.89 0.12985 0.95

0.5 5 0.09334 0.21065 0.85 0.14707 0.95
-0.5 6 5 1 0.72511 0.23566 0.85 0.13176 0.94

3 2 0.58393 0.17582 0.84 0.11582 0.93
2 4 0.34167 0.17737 0.84 0.13245 0.93

0.5 5 0.09253 0.16639 0.86 0.11629 0.94
8 5 1 0.72511 0.18512 0.86 0.12621 0.95

3 2 0.58393 0.15397 0.86 0.13670 0.95
2 4 0.34167 0.14288 0.88 0.12190 0.94

0.5 5 0.09253 0.15278 0.87 0.13116 0.95
10 5 1 0.72511 0.14377 0.88 0.11098 0.94

3 2 0.58393 0.16415 0.87 0.18154 0.95
2 4 0.34167 0.16366 0.88 0.08478 0.96

0.5 5 0.09253 0.23831 0.85 0.12197 0.95
-0.25 6 5 1 0.77922 0.22563 0.85 0.13355 0.93

3 2 0.59196 0.14293 0.84 0.11844 0.94
2 4 0.33750 0.14189 0.85 0.12333 0.93

0.5 5 0.09172 0.16277 0.86 0.16214 0.94
8 5 1 0.77922 0.15815 0.86 0.12882 0.95

3 2 0.59196 0.14140 0.87 0.11425 0.95
2 4 0.33750 0.13703 0.85 0.12929 0.95

0.5 5 0.09172 0.14633 0.88 0.11552 0.94
10 5 1 0.77922 0.12808 0.87 0.12552 0.95

3 2 0.59196 0.13565 0.89 0.12982 0.96
2 4 0.33750 0.12893 0.88 0.11873 0.95

0.5 5 0.09172 1.12536 0.89 0.11320 0.96
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Table 1: Continued

α n θ1 θ2 R Bootstrap HPD
AIL CP AIL CP

0.25 6 5 1 0.88745 0.15200 0.84 0.09624 0.93
3 2 0.60804 0.17320 0.84 0.11650 0.93
2 4 0.32917 0.18756 0.85 0.08888 0.92

0.5 5 0.09010 0.16752 0.85 0.09039 0.92
8 5 1 0.88745 0.13493 0.85 0.09131 0.95

3 2 0.60804 0.16607 0.85 0.11750 0.94
2 4 0.32917 0.16677 0.86 0.08159 0.95

0.5 5 0.09010 0.15563 0.86 0.08744 0.95
10 5 1 0.88745 0.12890 0.86 0.08205 0.93

3 2 0.60804 0.13831 0.87 0.10826 0.95
2 4 0.32917 0.12724 0.88 0.07175 0.95

0.5 5 0.09010 0.13398 0.88 0.07624 0.96
0.5 6 5 1 0.94156 0.16974 0.85 0.11738 0.94

3 2 0.61607 0.15253 0.86 0.12961 0.93
2 4 0.32500 0.14018 0.83 0.11854 0.94

0.5 5 0.08929 0.14557 0.84 0.12974 0.95
8 5 1 0.94156 0.13592 0.85 0.11546 0.94

3 2 0.61607 0.13528 0.85 0.10860 0.95
2 4 0.32500 0.12432 0.86 0.10255 0.96

0.5 5 0.08929 0.12819 0.88 0.11897 0.95
10 5 1 0.94156 0.12177 0.88 0.12423 0.94

3 2 0.61607 0.12387 0.86 0.12557 0.96
2 4 0.32500 0.11362 0.88 0.12771 0.96

0.5 5 0.08929 0.11695 0.89 0.08317 0.95
0.75 6 5 1 0.99567 0.18762 0.84 0.11731 0.93

3 2 0.62411 0.17517 0.85 0.12341 0.92
2 4 0.32083 0.16081 0.83 0.09304 0.94

0.5 5 0.08847 0.16947 0.84 0.09253 0.94
8 5 1 0.99567 0.14872 0.85 0.12235 0.93

3 2 0.62411 0.13736 0.87 0.13994 0.95
2 4 0.32083 0.12521 0.87 0.09638 0.95

0.5 5 0.08847 0.13757 0.88 0.09070 0.96
10 5 1 0.99567 0.12422 0.86 0.10111 0.95

3 2 0.62411 0.12523 0.88 0.11063 0.96
2 4 0.32083 0.12777 0.87 0.08842 0.96

0.5 5 0.08847 0.12388 0.89 0.09357 0.96
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5. Illustration Using Simulated Data

In this section, we illustrate the estimation procedures developed in the previous sec-
tions using a simulated data. For that we have generated 10 upper record values and its
concomitants from MTBED with parameters θ1 = 2, θ2 = 1 and α = 0.5. The generated
record values and its concomitants are given below.

i 1 2 3 4 5 6 7 8 9 10
r(i) 0.201 0.383 0.868 1.433 1.589 1.7034 2.258 3.123 3.657 4.166
r[i] 0.245 0.066 0.563 3.379 0.685 0.411 1.111 3.526 2.721 5.317

Based on the simulated data we have obtained the MLE of R = P (X < Y ) and also the
bootstrap CL of R based on the MLE. For the Bayesian estimation we took hyperparameters
as a = 2, b = 1, c = 2 and d = 2. The HPD interval of R under SEL is also obtained. The
estimated values are given below.

MLE (Bootstrap CI) Bayes estimates
SEL (HPD Interval) LL EL

0.6375 (0.4124,0.7124) 0.6587 (0.4841, 0.7124) 0.6457 0.6387

6. Conclusion

In this work, we considered the problem of estimation of R = P (X < Y ) for Mor-
genstern type bivariate exponential distribution using record values and its concomitants.
The maximum likelihood and Bayesian estimators were obtained for R. For obtaining the
Bayes estimates, importance sampling method was applied. Based on the simulation study
we concluded that among different estimators, Bayes estimators under squared error loss
function perform better in terms of bias and MSE. AILs of HPD intervals are smaller and
the associated CPs are higher than that of bootstrap confidence intervals.
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Abstract
Model-based clustering techniques are based on the finite mixture models. In this pa-

per, an attempt is made to explore effect of the skewness in heterogeneous data using finite
mixture models to clustering. In particular, this paper deals with model-based clustering
using finite mixtures of multivariate lognormal distributions which can deal with skewness
effectively. The Expectation Maximization (EM) algorithm is used for computing maxi-
mum likelihood estimates for model parameters. To examine the performance of clustering
multivariate log normal mixtures models, some simulation studies are presented for hetero-
geneous data with asymmetric behavior. A real dataset is also used to illustrate the use of
finite mixtures of multivariate lognormal distributions to clustering.

Key words: Multivariate log normal distribution; Finite mixture model; Model based clus-
tering; EM algorithm.

AMS Subject Classifications: 62K99, 62J05

1. Introduction

Clustering is an unsupervised learning technique. Clustering is grouping of a set of data
objects into several clusters so that objects within a cluster have high level of similarity, but
they are dissimilar to the objects in other clusters. Clustering is also defined in a probabilistic
approach, where the notion of clusters is formalized through their probability distributions.
One of the main advantages of this probabilistic approach is that it can be interpreted from
a statistical point of view for the obtained clusters. In the model-based clustering methods,
the observations are generated from a mixture of probability distributions, in which each
component represents a different cluster. An extensive review of finite mixture models and
their clustering applications are given by Everitt and Hand (1981), Titterington et al. (1985)
and McLachlan and Peel (2000). Finite mixtures of multivariate Gaussian distribution are
widely used in model-based clustering. One may refer to McLachlan and Basford (1988),
McNicholas and Murphy (2008), Beak and McLachlan (2010) and among others. Melnykov
and Semhar (2016) have discussed about the challenges of model-based clustering such as
initialization techniques, dimension reduction and variable selection. However, clustering
based on Gaussian mixture models is not capable of reasonably fittings for heavy tails,
asymmetric and outliers to the heterogeneous data.
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Model-based clustering using finite mixture models with non-normal distributions have
received increasing attention and showed advantages in modeling heterogeneous data with
heavy tails, asymmetric and outliers. Non-normal finite mixture distribution plays an im-
portant role in clustering applications when the component densities are skewed and heavy
tailed. Karlis et al. (2002), Lin et al. (2007), Pyne et al. (2009), Soltyk and Gupta
(2011) have given application of univariate and multivariate finite mixtures of skew-normal
and skew-t distributions to clustering. Schnatter et al. (2010) have proposed Bayesian
approach for finite mixture models of univariate and multivariate skew-t and skew normal
distributions. The estimation of parameters in these mixture models is carried out by EM
algorithm. Lee and McLachlan (2013a) have provided finite mixture models with skew nor-
mal and skew-t distributions and it has increased importance in modeling data withequal
asymmetry and heavy tails simultaneously. Also, they have classified multivariate skew dis-
tributions into four types namely, ‘restricted’, ‘unrestricted’, ‘extended’ and ‘generalized’
forms. Lee and McLachlan (2013b) have compared the clustering performance of mixture
in multivariate skew normal and skew-t distributions with other non-normal mixture distri-
butions like generalized hyperbolic distributions, multivariate inverse-Gaussian distributions
and shifted asymmetric Laplace distributions. Lee and McLachlan (2014) have provided
some recent developments of mixtures in multivariate skew-t distributions. Also, they have
discussed about various characterizations of multivariate skew-t distribution. Further, they
have used existing EM algorithms for estimating the parameters of the restricted and unre-
stricted forms of multivariate skew-t mixture models. Sanjeena et al. (2014) have considered
univariate and multivariate normal inverse Gaussian distribution for model-based clustering
approach in finite mixture models and parameter estimation is carried out by the EM algo-
rithm. A shifted asymmetric Laplace distribution is considered for model-based clustering
by Franczak et al. (2014). A multivariate generalized hyperbolic mixture model was pro-
posed by Browne and McNicholas (2015). Adrian et al. (2016) proposed clustering using
multivariate normal inverse Gaussian distribution for heavy tails and asymmetric data. Mel-
nykov et al. (2018) have developed finite mixture modeling with components that can handle
skewness in matrix-valued data.

Although many non-symmetric distributions are available, model-based clustering us-
ing finite mixtures of multivariate lognormal distribution is considered in this paper. A finite
mixture of multivariate lognormal distribution is useful in modeling heterogeneous data with
asymmetric behaviour. In the present study, an attempt is made to obtain clusters for skewed
data based on model-based clustering using finite mixtures of multivariate lognormal dis-
tribution. A parsimonious family of finite mixtures of multivariate lognormal distribution
is also developed. Algorithms for model parameter estimation and initialization technique
are presented in this paper. Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC) are used for model selection. The clustering performance is evaluated using
Adjusted Rand Index (ARI) and Misclassification Rate (MR). The performance of multi-
variate lognormal mixture models in clustering for real and simulated data are studied. The
proposed initialization method to determine the initial value for the component parameters
using EM algorithm is presented in the next section. The methodology for initialization
technique considered in this paper overcomes the issue of initial values in EM algorithm by
using K-means clustering with Mahalanobis distance measures.

The rest of this paper is organized as follows. Section 2 presents the initialization tech-
niques for model-based clustering approach. Section 3 describes the multivariate lognormal
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mixture models using EM algorithm. In Section 4 real and simulated datasets are applied for
multivariate lognormal mixture models to clustering and are compared to some well-known
existing methods in Section 5. In Section 6, some concluding remarks are given.

2. Initialization Technique for Multivariate Lognormal Mixture Models

The EM algorithm relies on the specified starting values for component parameters.
However, it is difficult to specify good starting values. Several research works have been
done for initialization for component parameters in EM algorithm. Mahalanobis distance
measure is used to capture the covariance structures of clusters. Mahalanobis distance
measure is used to identify and correctly classify non-spherical clusters for non-homogeneous
data. Mahalanobis distance measure overcomes the variable standardization by yielding
scale invariant classification. The proposed algorithm is presented below.

Algorithm

Input: Data X and the number of groups G

Output: Cluster Indicator z1, z2, ..., zn

1. Randomly select the mean vector according to G groups from the dataset X.

2. Compute Euclidean distance based on the mean vectors. Assigning each observation
nearest to the group mean vector. Compute the new mean vector ck; k = 1, 2, ..., G and
the covariance matrix Sk; k = 1, 2, ..., G based on the assignments.

3. While for 1, 2, ..., G do

4. Compute the Mahalanobis distance measure based on the new mean vector ck and the
covariance matrix Sk

D(xi, ck) =
√

(xi, c
(q)(t)

k )S−1(q)
k (xi, c

(q)
k )

5. Assignment: Assign each observation nearest to cluster center zik = 1 if D(xi, ck)

6. Update: Recalculate the mean and covariance matrix for (k = 1, 2, . . . , G) based on
the assignments.

c
(q+1)
k =

∑n
i=1 zikxi∑n

i=1 zik

S
(q+1)
k =

∑n
i=1 zik(xi, c

(q+1)
k )(xi, c

(q+1)
k )(t)∑n

i=1 zik

where, q is the iteration number and t represents the transpose.

7. end While

Based on the cluster indicators z1, z2, ..., zn the initial component parameter values
π

(0)
k , mu

(0)
k , Σ(0)

k . The initial values are used to initiate the EM algorithm for Multivariate
Lognormal (MLN) mixture models to clustering. The parameter estimation procedure is
derived in the following section.
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3. Parameter Estimation Procedure for Multivariate Lognormal Mixture Mod-
els

Let data X be a d-dimensional random variable which follows a multivariate lognormal
distribution with mean vector µ

k
and the covariance matrix Σk. The G-component finite

mixture model of multivariate lognormal distributions is given by

f(xi|Θ) =
G∑

k=1
πk

1
(2π)1/2|Σk|1/2|xi

e− 1
2 (ln(xi)−µ

k
)tΣ−1

k
(ln(xi)−µ

k
) (1)

where πk represents the mixing proportion with ∑G
k=1 πk = 1, 0 < πk < 1. The unknown

parameter Θ is {π1, π2, ..., πG−1, x1, x2, ..., xG, Σ1, Σ2, ..., ΣG}.

Consider the random sample of size n from multivariate Lognormal mixture models
defined the probability density function given in (1). EM algorithm [Dempster et al. 1977] is
used for the parameter estimation. The complete data in EM algorithm is written as (X, Z).
The observed data vector X = (x1, x2, ..., xn)T is viewed as incomplete. The component
label vector is defined as Z = z1, z2, ..., zn. The likelihood of complete data of multivariate
lognormal mixture model is given by

L(Θ; X, Z) =
n∏

i=1

G∏
k=1

[πkf(xi; µ
k
, Σk)]zik (2)

=
n∏

i=1

G∏
k=1

[πk
1

(2π)1/2|Σk|1/2|xi

e− 1
2 (ln(xi)−µ

k
)tΣ−1

k
(ln(xi)−µ

k
)]zik

The log-likelihood of complete data of multivariate lognormal mixture models is given by

l(Θ; X, Z) =
n∑

i=1

G∑
k=1

zik[logπk + log[ 1
(2π)1/2|Σk|1/2xi

] + −1
2(ln(xi) − µ

k
)tΣ−1

k (ln(xi) − µ
k
)]

(3)
The conditional expectation of the log-likelihood of multivariate lognormal mixture models
is given by

EZ|X l(Θ; X, Z) =
n∑

i=1

G∑
k=1

τik[logπk + f(xi; µ
k
, Σk)]

=
n∑

i=1

G∑
k=1

τik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|Σk|−1 − 1

2[(ln(xi) − µ
k
)tΣ−1

k (ln(xi) − µ
k
)]]

E-step:

The expectation of l(Θ; X, Z) over Z|X based on current parameter choice Θs is
Q(Θ, Θ(s))

Q(Θ, Θ(s)) = EZ|X [l(Θ; X, Z); Θ(s)] (4)

=
n∑

i=1

G∑
k=1

τ̂iklogπk − nd

2 log(2π) +
n∑

i=1

G∑
k=1

τ̂iklog(xi) −
n∑

i=1

G∑
k=1

τ̂ik

2 log|Σk|−1

−
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)tΣ−1

k (ln(xi) − µ
k
)]
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where τ̂ik is the probability of observation i belonging to the group k based on the current
parameter choice Θ(s). It can be calculated by

τ̂
(s)
ik =

π
(s)
k f(xi; µ(s)

k
, Σ(s)

k )∑G
k=1 π

(s)
k f(xi; µ

(s)
k , Σ(s)

k )
(5)

M-step:

Find the estimate Θ̂, which maximizes Q(Θ, Θ(s)) for fixed Θ(s) subject to the equation∑G
k=1 πk = 1. Using Lagrangian method, we have

Ψ = Q(Θ, Θ(s)) + γ(1 −
G∑

k=1
) (6)

Maximizing the function Ψ with respect to πj and equation them zero, we get

π̂j =
∑n

i=1 τ̂ij

n
; j = 1, 2, ..., G (7)

Maximizing the function Q(Θ, Θ(s)) with respect to µ
j

and equating them zero, we get

∂(Θ, Θ(s))
∂µ

j

= 0

µ̂
j

=
∑n

i=1 τ̂ijln(xi)∑n
i=1 τ̂ij

(8)

To maximize the function Q(Θ, Θ(s)) with respect to Σj

= −1
2[

n∑
i=1

τ̂ijlog|Σj| + trΣ−1
j

n∑
i=1

[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]]

So, maximizing the function Q(Θ, Θ(s)) with respect to Σj is equivalent to maximizing
the above expression with respect to Σj. Here, Σ̂j is obtained by using the Lemma 3.2.2 of
Anderson (1984) and we get

Σ̂j =
∑n

i=1 τ̂ij[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]

τ̂ij

(9)

Another important objective of model-based clustering is to study the covariance struc-
tures. Fraley et al. (1998) have considered different covariance structures for Gaussian
mixture models to clustering techniques. Different covariance structures for multivariate
lognormal mixture models are developed in the following section.
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4. Estimation via Geometric Decomposition

To provide easy and simple interpretable models, Banfield et al. (1993) have param-
eterized the covariance matrices in terms of the eigen-value decompositions for Gaussian
mixture models. Fraley et al. (1998) considered an eigen-value decomposition of the cluster
covariance matrices to provide a wide range of parsimonious covariance structures. Fraley
et al. (2002) have provided an in-depth discussion of the eigen-value decomposition ap-
proach for finite mixture models to clustering. This work is implemented in the MCLUST
package. MCLUST package consists of 14 mixture models that arise from the imposition
of constraints upon the group of covariance matrix. MCLUST is the most well-established
package for model-based clustering technique using Gaussian mixture models. Details of the
constraints that can be imposed are summarized in Fraley et al. (2003, 2006) which is avail-
able in the R software. Fraley et al. (2012) summarized the covariance structures available
in the MCLUST package, corresponding to geometric characteristics such as shape, volume
and orientation. If the number of components is not specified, it assumes that the num-
ber of components lies between one to nine. Following this, EM algorithm is implemented
corresponding to each initial classification and estimates for parameters are obtained. Then
BIC is computed for each resulting mixture model. The model having highest BIC value is
identified as the best model.

Browne et al. (2014) have pointed out that the covariance technique of Celeux et al.
(1995) for the EVE and VVE models are computationally infeasible in higher dimensions.
They have proposed an alternative algorithm for these two models, based on an accelerated
line search on the orthogonal model. Browne et al. (2015) have developed another approach,
using fast maximization-minimization algorithms, for the EVE and VVE models. This ap-
proach is implemented in the mixture packages for R. Several other approaches have been
presented, and the excellent review of covariance structures is given by Bouveyron et al.
(2007).

From the above existing procedures, it is observed that different covariance structures
are important for multivariate non-normal mixture models. This paper considers the dif-
ferent covariance structures based on eigen-value decomposition techniques. Let us recall
the conditional expectation of the log-likelihood for multivariate lognormal finite mixture
models as given in the equation (4).

4.1. The Parsimonious MLN family of models

An eigen-value decomposition of the component covariance matrices is given by
Σk = λkDkAkDt

k (10)
where λk is a constant of proportionality, Dk is a orthogonal matrix of eigen vectors and Ak

is a orthogonal matrix of eigen vectors and det Ak = 1. Celeux et al. (1995) developed eight
eigen-value decomposition of a component covariance matrix. The volume of the cluster is
determined by λk. Dk determines the orientation of the clusters and Ak determines the shape
of the density contours. d is the number of dimensions in the datasets. The parsimonious
MLN mixture models, herein referred to as PMLN, whose density is given by

f(xi|Θ) =
G∑

k=1
πkf(xi; µ

k
, λkDkAkDt

k) (11)
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To fit the parsimonious MLN mixture models, EM algorithm is used. The details of pa-
rameter estimation methods are like those described in Section 3. To compute Σ̂k To fit
the parsimonious MLN mixture models, EM algorithm is used. The details of parameter
estimation methods are like those described in Section 3. For the most general MLN family
member (VVV model), the complete-data likelihood is given by

L(Θ; X, Z) =
n∏

i=1
[

G∏
k=1

[πk]zik [
G∏

k=1
f(xi; µ

k
, λkDkAkDt

k)]zik ]] (12)

where f(xi; µ
k
, λkDkAkDt

k) is the density of multivariate lognormal distribution with mean
vector µ

k
and covariance matrix Σk = λkDkAkDT

k .The conditional expectation of the com-
plete data log-likelihood Q is given by

Q(Θ, Θ(s)) = EZ|X [l(Θ; X, Z); Θ(s)] (13)

=
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|Σk|−1 − 1

2[(ln(xi) − µ
k
)tΣ−1

k (ln(xi) − µ
k
)]]

The E-step of sth iteration consists of the component membership labels with their condi-
tional expected values is given by

τ̂
(s)
ik =

π
(s)
k f(xi; µ(s)

k
, λkDkAkDT

k
(s))∑G

k=1 π
(s)
k f(xi; µ

(s)
k , λkDkAkDT

k
(s))

To perform the decomposition for MLN mixture models, we follow the procedures outlined
in Celeux et al. (1995).

Sperical Family

In spherical family, the shape of the clusters is spherical. The shape of the covariance
matrix is always diag(1,1). Two spherical families are considered here.

(1) Fitting of EII model (Σ = λI )

First consider the simplest structure where every component has spherical shape and
equal volume. Substitute the Σk = Σ = λI in equation (13). The complete data log-
likelihood for the EII model is given by

l(λI) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λI|−1 − 1

2[(ln(xi) − µ
k
)tλI−1(ln(xi) − µ

k
)]]

(14)

= K −
n∑

i=1

G∑
k=1

τ̂ik

2 log det λI −
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)T (λI)−1(ln(xi) − µ

k
)]

= λ−1
G∑

k=1
tr(Wk) + dlog

G∑
k=1

n∑
i=1

τ̂ik
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= λ−1
G∑

k=1
tr(W ) + dlogλ

where K is the constant with respect to model parameters µ
k

and λ. Maximizing the equation
(13) with respect to λ, we get

Σ̂ = λ̂ = tr(W )
nd

=
∑G

k=1
∑n

i=1 τ̂ik[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]

nd

where n = ∑G
k=1

∑n
i=1 τ̂ik

(2) Fitting of VII model (Σk = λkI )

This is the second simplest model where the component has spherical shape and differ-
ent volume. Substitute in the equation (14) Σk = λkI in equation (13). The complete data
log-likelihood for the EII model is given by

l(λkI) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λkI|−1 − 1

2[(ln(xi) − µ
k
)tλkI−1(ln(xi) − µ

k
)]]

(15)

= K −
n∑

i=1

G∑
k=1

τ̂ik

2 log det λkI −
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)t(λkI)−1(ln(xi) − µ

k
)]

= λ−1
G∑

k=1
tr(Wk) + dlog

G∑
k=1

n∑
i=1

τ̂ik

= λ−1
G∑

k=1
tr(W ) + d

G∑
k=1

logλk

n∑
i=1

τ̂ik

where K is the constant with respect to model parameters µ
k

and λk. Maximizing the
equation (15) with respect to λk, we get

Σ̂k = λ̂k =
∑G

k=1
∑n

i=1 τ̂ik[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]

τkd
; k = 1, 2, ..., G

where τk = ∑n
i=1 τ̂ik

General Family

(3) Fitting an EVV model (Σk = λDkAkDT
k )

This is generalized model and the component has the same volume but different shape
and orientation. Substitute in the equation (13) Σk = λDkAkDT

k and Ck = DkAkDT
k ; Σk =

λCk. The complete data log-likelihood for the EVV model is given by

l(λCk) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λCk|−1

−1
2[(ln(xi) − µ

k
)tλC−1

k (ln(xi) − µ
k
)]]

(16)
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= K − 1
2

n∑
i=1

G∑
k=1

τ̂ik2log|λCk| +
G∑

k=1
tr(Wk)(λCk)−1

where K is the constant with respect to model parameters Ck and λ. The equation (16) is
maximizing with respect to Ck and λ and equating them zero. We get,

Ĉk =
∑n

i=1 τ̂ik(ln(xi) − µ
k
)(ln(xi) − µ

k
)T

| ∑n
i=1 τ̂ik(ln(xi) − µ

k
)(ln(xi) − µ

k
)t|

1
d

and

λ̂k =
| ∑n

i=1 τ̂ik(ln(xi) − µ
k
)(ln(xi) − µ

k
)t |

1
d

n

Σ̂k = λ̂Ĉk

(4) Fitting an EEE model (Σk = Σ = λDADt)

This model is a common model for all components and it considers same size, volume
and orientation. Substitute in the equation (13) Σk = Σ = λDADt. The complete data
log-likelihood for the EEE model is given by

l(λDADt) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|(λDADt)|−1

−1
2[(ln(xi) − µ

k
)t(λDADT )−1(ln(xi) − µ

k
)]]

(17)

= K −
n∑

i=1

G∑
k=1

τ̂ik

2 log|λDADT | −
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)t(λDADt)−1(ln(xi) − µ

k
)]

= K − 1
2[tr(WΣ−1) + nlog|Σ|]

where k is the constant with respect to the model parameters µk, λ, DandA.

W =
G∑

k=1
Wk =

n∑
i=1

τ̂ik[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t)]

and

n =
n∑

i=1

G∑
k=1

τ̂ik

EEE model is unconstrained model and it’s considered common covariance matrix.

Σ̂k = W

n
=

∑n
i=1

∑G
k=1 τ̂ik(ln(xi) − µ

k
)(ln(xi) − µ

k
)t

n
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(5) Fitting an VVV model (Σk = λkDkAkDt
k)

This is the most generalized model. This is the model where every component has
different shape, different volume and different orientation. VVV model is the unconstrained
model. Substitute in the equation (13) Σk = λkDkAkDt

k. The complete data log-likelihood
for the VVV model is given by

l(λkDkAkDt
k) =

n∑
i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λkDkAkDt

k|−1

−1
2[(ln(xi) − µ

k
)t(λkDkAkDt

k)−1(ln(xi) − µ
k
)]]

(18)

= K − 1
2

n∑
i=1

G∑
k=1

τ̂ik2log|λkDkAkDt
k| +

G∑
k=1

tr(Wk)(λkDkAkDt
k)−1

where K is the constant with respect to model parameters µk, Dk, Ak and λk.

Σk =
∑G

k=1 Wk

n
=

∑n
i=1 τ̂ik[(ln(xi) − µ

k
)(ln(xi) − µ

k
)t)]

τk

; k = 1, 2, ..., G

where
τk =

n∑
i=1

τ̂ik

The summary of eigen-value decomposition covariance structures is given in the Table 1.

Table 1: Nomenclature, scale matrix structure and the number of free scale pa-
rameters for the eigen-decomposed family of models

Model λk Ak Dk Σk NumberofCovarianceParameters

EII Equal Spherical - λI 1
VII Variable Spherical - λkI G

EVV Equal Variable Variable λDkAkDT
k

Gd(d+1)
2 − (G − 1)d

EEE Equal Equal Equal λDADT d(d+1)
2

VVV Variable Variable Variable λkDkAkDT
k

Gd(d+1)
2

Covariance Estimation

An alternative estimation method for covariance matrix is presented in this paper.
The decomposed elements of the covariance matrix are updated according to the following
algorithm. τik represents the probability that observation i belongs to group k given the
current component parameters

nk = τik =
πkf(xi; µ

k
, Σk)∑G

j=1 πjf(xj; µ
j
, Σj)

; j ̸= k
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M-step involves the conditionally maximizing the parameters with respect to complete log-
likelihood. The estimated mixing proportion and sample cross-product matrix for the kth
component is given by

π̂k = nk

n
; k = 1, 2, ..., G

Wk =
n∑

i=1
nk(xi − µ

k
)(xi − µ

k
)t; k = 1, 2, ..., G

1. Iteration q = 1

2. Update

λk =
∑G

k=1 tr(nk.Wk)
nd

where n is the number of observations and d is the dimension.

3. Update
Ak = diag(nk.Wk)

|nk.Wk| 1
d

4. Update
Dk = nkWkak

Where ak is the largest eigen value of Wk

5. Update Ak, Dk, λk in Σk

6. Calculate Eq = 1
λ
tr(nkλkDkAkDT

k + n ∗ dlog(λ))

7. If t > 1, Eq − Eq − 1 > ϵ . If true t = t + 1 and return step 2 , or else end.

Five types of covariance structures are considered for finite mixtures of multivariate
lognormal distributions to clustering. All covariance models based on eigen-value decompo-
sition structures are used in the M-step of the EM algorithm. The description of the EM
algorithm for MLN mixture models is given below.

EM Algorithm

1. Initialization: The initial values of π
(0)
k , mu

(0)
k , Σ(0)

k are obtained using the algo-
rithm in Section 2.

2. E-step: The conditional Expectation (τ̂ik
(q)) of the group membership for each

observation is obtained using the equation (5).

3. Mstep: Update the parameters π̂j
(q) and µ̂j

(q) using the formula (7) and (8). Five
parsimonious covariance models for MLN mixtures which are derived in the Section 4.1 are
updated in the M-step.

4. Compute the log-likelihood l
(q)
j and l

(q+1)
j and Compare l

(q+1)
j and l

(q)
j . —— l

(q+1)
j −

l
(q)
j || < ϵ. STOP.
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5. E-step and M-step are repeated till the same log-likelihood values are met.

After the convergence is reached, the (τ̂ik
(q)) is the posterior probability of compo-

nent membership for each observation and it is used to cluster the observation into groups.
Predicated membership is obtained through Maximum A Posterior probability (MAP).

5. Experimental Results

In this section, the clustering performance of PLMN mixture models is assessed in
terms of BIC, AIC, ARI and misclassification rate through simulated as well as real datasets.
Numerical comparison of PMLN mixture models have been made with Multivariate Skew
Normal (MSN) and Multivariate Normal (MN) mixture models. All numerical computations
have been implemented through a program developed in R.

5.1. Simulation Experiment

Here, we consider a finite mixture of multivariate Lognormal distribution with three
components. Random sample of size n = 262, 270 and 268 are simulated with parame-
ters µ1 = (0.29, 0.685), µ2 = (1.68, 0.69), µ3 = (0.88, 1.71) with same covariance matrix

Σ =
[
0.1986 0.8876
0.8876 0.8876

]
. The mean vectors and covariance matrix are generated from the

clusterGeneration package which is available in R. Figure 1 displays the scatter plot of the
simulated dataset.

Figure 1: Scatter plot for simulated data

The initial component parameter values are obtained using the algorithm in Section
2. All the covariance models are initiated with the same initial values of the component
parameters. The initial values are obtained iteratively till the same cluster membership
labels are met. From the cluster membership labels, the initial mixing proportion, initial
mean vector and initial covariance matrix are calculated. The initial values are presented in
Table 2.
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Table 2: Initial parameter values of three-component MLN mixture models

Component 1 π1 = 0.5211 µ1 = (0.29, 0.685) Σ1 =
[
0.1986 0.8876
0.8876 0.8876

]

Component 2 π2 = 0.238 µ2 = (2.27, 0.57) Σ2 =
[
0.5392 1.0275
1.0275 6.2978

]

Component 3 π3 = 0.2409 µ3 = (1.24, 2.65) Σ3 =
[
0.9786 2.9376
2.9376 9.2136

]
Table 3: Clustering performance of various multivariate mixture models

Distributions Model BIC AIC MR ARI Log likelihood
MLN EII 3380.15 3279.15 0.10 0.7169 -1523.851
MLN VII 3256.14 3126.86 0.11 0.7328 -1503.132
MLN EEE 3178.23 2814.25 0.09 0.8354 -1523.57
MLN EVV 3445.76 3437.52 0.04 0.8369 -1529.57
MLN VVV 3045.28 3012.19 0.07 0.7425 -1496.09
MSN EEV 3389.461 3145.58 0.155 0.8269 -1467.04
MN EEE 3193.09 3436.29 0.133 0.7932 -1498.96

Figure 2: Scatter plot for five MLN mixture models

Different covariance structures in multivariate lognormal mixture models are consid-
ered. The clustering results of the simulated dataset are provided in Table 3. From Table
3, it is observed that EVV model gives lowest misclassification rate (0.04). The ARI is 83
% with BIC 3445.76 and AIC 3437.52. Among five covariance structures of MLN mixture
models, EVV model achieved the highest ARI. The best model (EVV) is compared with
other multivariate mixture models. The ARI value for MLN mixture model ranges from
0.71 to 0.83 which indicates that the dataset is classified with greater precision. EEV model
gives better clustering performance for multivariate skew normal mixture models and EEE
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Figure 3: Contour plot for the EVV model

model provides better clustering results for multivariate normal mixture models. The results
of both model are shown in Table 3. Table 4 provides the estimated parameter values of
EVV model in case of MLN mixture models.

Table 4: Estimated parameter values of three-component MLN mixture (EVV)
model

component 1 π1 = 0.5901 µ1 = (1.07, 0.974)t Σ1 =
[
0.09379 0.9396
0.9396 4.2789

]

Component 2 π2 = 0.111 µ2 = (2.005, 0.772)t Σ2 =
[
0.3327 2.0235
2.0235 5.1936

]

Component 3 π3 = 0.3989 µ3 = (1.984, 2.728)t Σ3 =
[
0.9726 2.9506
2.9506 8.9349

]

From the table, correctly classified samples are presented here. That is, Almost 81% of
samples are correctly classified for all models of MLN mixture models. The best model for
MLN mixture gives 95% correct classification of the simulated dataset. For multivariate skew
normal mixture, EEV model achieved 85 correct classification. Multivariate normal mixture
models EEE model gives 87% correct classification. Figure 2 depicts the estimation of the
cluster memberships into three clusters for the five models. In these figures, the clusters are
indicated by three different characters (+, o and D). The volume of the five models is:

i) λI : λ = 0.2996

ii) λkI : λ1 = 0.983, λ2 = 2.371, λ3 = 0.693

iii) λDADt : λ = 3.2996

iv) λDkAkDt
k : λ = 5.2996

v) λkDkAkDt
k : λ1 = 1.283, λ2 = 3.591andλ3 = 7.753
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The contour plot of the best (EVV) model is shown in Figure 3. The contour plot
shows the different volume, size and orientation of the three clusters. The best fitted model
is selected based on BIC and AIC value. It is also noticed that from the simulated dataset,
general models perform better than spherical models.

5.2. Real Data (Old Faithful Dataset)

In this section, old faithful dataset is used for the PMLN mixture models. This dataset
contains two variables (eruptions and waiting) and 275 observations. It is a bivariate dataset
measuring the length of eruption and time to eruption, both variables are in millimeters.
This dataset is available in R software. Many researchers have analyzed this dataset for
model-based clustering approach. This dataset does not have true class labels. The original
plot of the faithful dataset is shown in Figure4, where the observations are displayed into
two clusters very clearly.

Figure 4: The bivariate Old faithful dataset

Table 5: Initial parameter values of two-component faithful dataset

Component 1 π1 = 0.5389 µ1 = (3.457, 70.794)t Σ1 =
[

1.3899 14.3525
14.3525 182.461

]

Component 2 π2 = 0.4611 µ2 = (3.518, 71)t Σ2 =
[

1.2232 13.7003
13.7003 188.5333

]

We compare the clustering performance of MLN, MSN and MN mixture models. The
initial values of component parameters are calculated based on the algorithm as given in
Section 2. Initial values of faithful datasets are presented in the Table 5.

For MSN and MN mixture models the best results are given in Table 6. The classifica-
tion plot of each model for MLN mixture models are displayed in Figure 5. The clusters are
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Table 6: Clustering performance of various multivariate mixture models

Distributions Model BIC AIC Log likelihood
MLN EII 1876.912 1844.562 -796.53
MLN VII 1887.072 1854.825 -769.94
MLN EEE 1889.649 1883.544 -868.27
MLN EVV 1825.195 1852.052 -893.82
MLN VVV 1895.839 1869.302 -788.28
MSN EVV 1892.361 1825.427 -834.25
MN VVV 2371.702 2148.597 -919.29

Table 7: Estimated parameter values of two-component faithful dataset

Component 1 π1 = 0.653 µ1 = (3.093, 71.814)t Σ1 =
[

1.2903 14.1739
14.1739 181.281

]

Component 2 π2 = 0.347 µ2 = (2.948, 70.542)t Σ2 =
[

1.2232 13.8103
13.8103 187.4933

]

Figure 5: Scatter plot for five models using multivariate lognormal mixture mod-
els

represented by different symbols. VVV model gives good clustering results for multivariate
normal mixture models. The parsimonious family of multivariate lognormal distributions
shows that the clusters have different volume and size. The contour plot in Figure 6 shows
different volume and size of clusters. Estimated parameters of VVV models for MLN mix-
tures are given in the Table 7.

The number of observations in each cluster for MLN, MSN and MN mixture models
are presented in Table 8. The volume of the clusters is given below:

i) λI : λ = 197.17

ii) λkI : λ1 = 180, λ2 = 69

iii) λDADt : λ = 109.26
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Table 8: Clustering table for multivariate mixture models

MLN Mixture Model MSN MN
Clusters EII VII EEE EVV VVV EVV VVV
Cluster 1 177 99 174 170 178 175 168
Cluster 2 95 173 98 102 94 97 104

Figure 6: Contour plot for VVV model for multivariate lognormal mixture model

iv) λDkAkDt
k : λ = 166.1296

v) λkDkAkDt
k : λ1 = 170, λ2 = 110

6. Conclusion

In this paper, a family of parsimonious MLN mixture models is introduced through
an eigen-value decomposition of the components covariance matrix. From simulation exper-
iments, the general (EVV) covariance model provides best clustering results than spherical
models. The results of real dataset showed that all covariance model gives better clustering
results according to BIC and AIC criteria. Proposed initialization techniques plays impor-
tant role, because it gives reliable and true estimated parameter values for components. It is
noticed that among general covariance models from numerical experiments, VVV gives good
clustering results. VVV model allows with different size, volume, and orientation. Some
parsimonious models give good clustering results, because those covariance models are close
to the structure of the data.
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Abstract 

Zheng (2013) provided the penalized maximum likelihood estimators (PMLEs) of the 
location and scale parameters of two-parametric exponential distribution and proved that 
these estimators are uniformly minimum variance unbiased estimators (UMVUE). In this 
paper, a test procedure has been proposed, on the basis of the PMLEs of the location and 
scale parameters of the two-parametric exponential distribution. The purpose of the proposed 
procedure is to construct the simultaneous confidence intervals (SCIs) for the ordered pair-
wise comparisons of location parameters of multi-sample two-parameter exponential 
distributions under the heteroscedasticity of scale parameters. A Monte Carlo simulation 
study has revealed that the proposed procedure is better than the existing procedure of Singh 
and Singh (2013) in terms of coverage probability, average volume, and power. 
Implementation of the proposed procedure is illustrated through real-life numerical data.  
 
Key words: Simultaneous confidence interval (SCIs); Penalized maximum likelihood 
estimators (PMLEs); Heteroscedasticity; Simulated power comparison. 
 
1.  Introduction 

Suppose the 𝑘	(≥ 3) independent populations are such that the statistical model for the 
observations from the 𝑖𝑡ℎ population is a two-parameter exponential distribution, denoted 
by		𝐸!(𝜇! , 𝜃!), with probability density function (pdf) 

 

𝑓(𝑥|𝛾! , 𝛿!) = 4
1
𝜃!
𝑒"(

$"%!
&!

), 𝑥 ≥ 𝜇! , 𝜃! > 0

0,																									𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,					
 

 
where 𝜇! and 𝜃!are the location and the scale parameters respectively, 𝑖 = 1,… , 𝑘. 
 

In some of the practical situations, there is prior information of the ordering among the 
location parameters. For example, in dose-response experiments, the effect of a treatment 
may be related monotonically to the increasing levels of dose of a drug. Similarly, in against 
accelerated life testing, the higher stress level may lead to lowering the guaranteed lifetime. 
Many researchers have proposed statistical tests to test the null hypothesis 𝐻(: 𝜇) = ⋯ =
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𝜇* the simple ordered alternative	𝐻):	𝜇) ≤ ⋯ ≤ 𝜇* , with at least one strict inequality, for  
normal and exponential probability models. This problem of simple ordered alternative is a 
member of the class of order restricted alternatives. A detailed discussion on order restricted 
statistical inferences can be found in Barlow et al. (1972) and Robertson and Dykstra (1988). 
Marcus (1976), Hayter (1990), Lee and Spurrier (1995), Liu et al. (2000) have also proposed 
tests for the simple ordered alternatives under normal probability model. Chen (1982) and 
Dhawan and Gill (1997) inverted the test procedures for testing homogeneity of the location 
parameters of 𝑘	(≥ 3)  two-parameter exponential distributions to construct simultaneous 
confidence intervals (SCIs) for the ordered pair-wise differences of location parameters under 
the assumption of homogeneity of scale parameters. Singh et al. (2006) proposed a procedure 
for successive comparisons of the location parameters of exponential distributions by 
assuming the equality of scale parameters. Maurya et al. (2011) came up with one-stage and 
two-stage multiple comparison procedures using Lam’s (1987,1988) technique and obtained 
the conservative simultaneous confidence intervals (SCIs) for successive differences of the 
location parameters of several exponential distributions under the heteroscedasticity of scale 
parameters, i.e., 𝜃! ≠ 𝜃+ , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . Later, Singh and Singh (2013) put forward less 
conservative SCIs by extending Maurya et al. (2011) procedure. Kharrati Kopaei (2014) 
introduced a new lemma and used the same to provide SCIs for the successive differences of 
the location parameters which were less conservative than the SCIs of Maurya et al. (2011).  
It may be noted that Maurya et al. (2011), Singh and Singh (2013) and Kharrati Kopaei 
(2014) used the maximum likelihood estimator (MLE) of the location parameter. Although, 
the MLEs have a few desirable properties like efficiency and consistency but may not be 
unbiased. Zheng (2013) provided the penalized maximum likelihood estimators (PMLEs) of 
the location and scale parameters of two-parameter exponential distribution which are 
uniformly minimum variance unbiased estimators (UMVUEs). In this article, we have 
proposed one-stage and two-stage multiple comparison procedures to construct SCIs using 
the PMLEs of the location parameters for the ordered pair-wise differences of location 
parameters under heteroscedasticity of scale parameters. The layout of the paper is as 
follows. 

 
In this paper, Sections 2 and 3 respectively contain the proposed one-stage and two-

stage multiple comparison procedures to construct the simultaneous confidence intervals 
(SCIs) for the ordered pair-wise differences of location parameters. In Section 4, the results 
of Monte Carlo simulation studies conducted to compare the power, coverage probabilities 
(CP), and average volume (AV) of the proposed procedures with the procedure of Singh and 
Singh (2013), are presented. The implementation and the better performance ability of the 
proposed procedures over the more conservative procedure of Singh and Singh (2013), is 
demonstrated by taking a real-life example in Section 5. Finally, a brief conclusion is 
presented in Section 6.  

 
2.  One-Stage Procedure for the Simultaneous Testing of the Ordered Differences of 

Location Parameters  
 

Let there be 𝑘  independent exponential populations and that 𝑋!), 𝑋!,, … , 𝑋!- be a 
random sample of size 𝑚	(> 2)  from the 𝑖𝑡ℎ  population 𝐸!(𝜇! , 𝜃!), 𝑖 = 1,… , 𝑘 . The 
maximum likelihood estimators (MLEs) of 𝜇!and 𝜃! are 𝑋! = min(𝑋!), 𝑋!,, … , 𝑋!-)	and 𝑉! =
∑ (𝑋!+ − 𝑋!)/𝑚-
+ , respectively and these MLEs are not unbiased estimators. In literature, an 

approach exists in which a penalty is added to the regular likelihood function so that the new 
function no longer remains a monotone function of the location parameter. Let 𝑋![)] ≤
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𝑋![,]… ≤ 𝑋![-]  be the ordered values corresponding to the above random sample. Zheng 
(2013) used the penalty term 𝑥![)] − 𝜇! in the regular likelihood function, where 𝑥![)] is the 
realized value of	𝑋![)], and gave the penalized maximum likelihood function as follows: 

𝐿(𝜇! , 𝜃!) = Q𝑥![)] − 𝜇!RS𝑓Q𝑥![)]T𝜇! , 𝜃!R
-

+0)

= Q𝑥![)] − 𝜇!R
1
𝜃!-

𝑒"
)
& ∑ 2$!""%!3#

"$% , 𝑥![)] ≥ 𝜇! 

The penalized maximum likelihood estimators (PMLEs) of  𝜇! and 𝜃! obtained from the 
above likelihood function are 𝑌! =

-4![%]"45

(-"))
 and 𝑆! =

-(45"4![%])
(-"))

 respectively, where 𝑋W =
∑ 𝑋!+-
+0) /𝑚, is the sample mean. It is also proven that these estimators of the location and 

scale parameters are unique minimum variance unbiased estimators (UMVUEs). Previously, 
the same estimators have also been obtained by Cohen and Helm (1973) and Sarhan (1954) 
using different methods of estimation such as modified moment and least square, 
respectively.  

 
Consider the family of hypotheses for the ordered location parameters 
 

(i) 	𝐻(!: 𝜇+ − 𝜇! = 0		against	𝐻)!: 𝜇+ − 𝜇! > 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘   (One-sided problem) 
(ii) 	𝐻(!: 𝜇+ − 𝜇! = 0		against	𝐻,!: 𝜇+ − 𝜇! ≠ 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘    (Two-sided problem) 

 
For the testing of these hypotheses, we can use the one-stage multiple comparison 

procedure given by Lam (1987, 1988) to construct simultaneous confidence intervals (SCIs) 
for the one-sided and two-sided sets of pair-wise differences of the ordered location 
parameters when the scale parameters are unknown and 𝜃! ≠ 𝜃+ , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘,  i.e., 
heteroscedasticity of scale parameters exists. One-stage multiple comparison procedure has 
the merit over a two-stage procedure (as described in detail in Section 3) in practical 
situations where the second stage of sampling is not possible due to the shortage of time, 
budget, and destructive type of experiments or some other factors.  
 

The PMLEs of the location and scale parameters have been utilized instead of the 
MLEs for the simultaneous testing of the ordered location parameters. It is easy to verify that 
the PMLEs of the location and scale parameter can be written 𝑌! = 𝑋! − 𝑆! 𝑚⁄  and 𝑆! =
∑ (𝑋!+ − 𝑋!)/(𝑚 − 1)-
+ . Define a constant		𝑑 = max)6!6*(𝑆!/𝑚). The random variables 𝑇! =

(𝑋! − 𝜇!)/𝜃!and 2(𝑚 − 1)𝑆! 𝜃!⁄  are stochastically independently distributed as 𝐸(0,1) and 
Chi-square with	2(𝑚 − 1) degree of freedom (d.f.), respectively. Hence, the statistic 𝑊!

∗ =
𝑚(𝑋! − 𝜇!)/𝑆! is distributed as Snedecor		𝐹 with (2, 2𝑚 − 2)	degree of freedom (d.f.). Using 
a one-stage procedure on the similar lines of Lam’s (1987, 1988), the proposed one-sided and 
two-sided simultaneous confidence intervals (SCIs) for the ordered pair-wise differences of 
location parameters under heteroscedasticity of scale parameters are given in the following 
theorem. 

 
Theorem 1: Let 𝑞*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*")) − 1  and 		𝑟*,-,9 = 𝐹,,,-",") (1 − 𝛼))/* − 1 , 
for given 0 < 𝛼 < 1 
 

(i) 𝑃Q𝜇+ − 𝜇! ≥	𝑌+ − 𝑌! − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼.  
Then Q𝑌+ − 𝑌! − 𝑑𝑞*,-,9 , ∞R  is the set of one-sided simultaneous confidence 
intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼).  

(ii) 𝑃Q𝑌+ − 𝑌! − 𝑑𝑟*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑌+ − 𝑌! + 𝑑𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼.  
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Then ( 𝑌+ − 𝑌! − 𝑑𝑟*,-,9 , 𝑌+ − 𝑌! + 𝑑𝑟*,-,9 ) is the set of two-sided simultaneous 
confidence intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼). 

We applied the following lemma of Lam (1987, 1988) to prove Theorem 1. 
 
Lemma 1: Suppose X and Y are two random variables, and a and b are two positive 
constants; then 
 

[𝑎𝑋 ≥ 𝑏𝑌 − 𝑑𝑚𝑎𝑥(𝑎, 𝑏)] ⊇ [𝑋 ≥ −𝑑, 𝑌 ≤ 𝑑	𝑎𝑛𝑑	𝑋 ≥ 𝑌 − 𝑑]. 
  
The proofs of the part (i) and (ii) of Theorem 1 on the basis of Lemma 1 are as follow 
 
Proof of part (i): 𝑃Q𝜇+ − 𝜇! ≥	𝑌+ − 𝑌! − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
=𝑃Q𝑋! − 𝜇! − 𝑆!/𝑚 ≥	𝑋+ − 𝜇+ − 𝑆+/𝑚 − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃Q𝑆!/𝑚(𝑊!

∗ − 1)) ≥ 	𝑆+/𝑚Q𝑊+∗ − 1R − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃Q𝑊+∗ − 1 ≤ 𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 1 − 𝛼 QSince	𝑞*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*")) − 1	R. 
 
Proof of part (ii): 𝑃Q𝑌+ − 𝑌! − 𝑑𝑟*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑌+ − 𝑌! + 𝑑𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃Q𝑋+ − 𝑆+/𝑚 − 𝑋! + 𝑆!/𝑚 − 𝑑𝑟*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑋+ − 𝑆+/𝑚 − 𝑋! + 𝑆!/𝑚 + 𝑑𝑟*,-,9 , 1

≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃(𝑆! 𝑚⁄ (𝑊!

∗ − 1) ≥ 𝑆+/𝑚Q𝑊+∗ − 1R − 𝑑𝑟*,-,9 ∩ 𝑆+/𝑚Q𝑊+∗ − 1R
≥ 𝑆!/𝑚(𝑊!

∗ − 1) − 	𝑑𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘
= 𝑃Q𝑊+∗ − 1 ≤ 𝑟*,-,9 ∩𝑊!

∗ − 1 ≤ 𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 1 − 𝛼. QSince	𝑟*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*) − 1	R. 
 
Here 𝐹,,,-",") (𝑥) denotes the 𝑥𝑡ℎ quantile of the snedecor 𝐹  distribution with (2, 2𝑚 − 2)	 
degree of freedom (d.f.).  
 
3.  Two-Stage Procedure for the Simultaneous Testing of the Ordered Differences of 

Location Parameters 

A two-stage multiple comparison procedure has been used on the similar lines of Lam’s 
(1987, 1988) to construct one-sided and two-sided simultaneous confidence intervals (SCIs) 
for the ordered pair-wise comparisons of location parameters of several exponential 
populations under the heteroscedasticity of scale parameters, which is explained below: 

 
 

Stage 1: In the first stage, the procedure begins by taking random sample	𝑋!), 𝑋!,, … , 𝑋!-, of 
size 𝑚	(≥ 2) from the 𝑖𝑡ℎ  population 	𝐸!(𝜇! , 𝜃!) . Let 𝑌q! = 𝑋! − 𝑆!/𝑚 and 𝑆! = ∑ (𝑋!+ −-

+
𝑋!)/(𝑚 − 1) be the PMLEs of 𝜇! and	𝜃!, respectively, where	𝑋! = min(𝑋!), 𝑋!,, … , 𝑋!-), 𝑖 =
1,… , 𝑘 . The random variables 𝑇! = (𝑋! − 𝜇!)/𝜃!  and 2(𝑚 − 1)𝑆!/𝜃!  are independently 
distributed as 𝐸(0,1) and Chi-square with	2(𝑚 − 1) d.f., respectively. 
 

Stage 2: In the second stage	(𝑁! −𝑚) additional observations are taken, for that we defined 
𝑁! = max[𝑚, [𝑆!/𝑐] + 1]	, 𝑖 = 1,… , 𝑘, where 𝑐 is an arbitrary positive constant to be chosen 
to control the width of the confidence intervals and [𝑥] denotes the greatest integer less than 
or equal to	𝑥. If	𝑁! = 𝑚, we do not take any more sample observations from each population. 
If	𝑁! > 𝑚, then take (𝑁! −𝑚) more/additional sample observations 𝑋!,-;), . . . , 𝑋!<! , from the 



2022]  TESTING OF THE LOCATION PARAMETER UNDER HETEROSCEDASTICITY   243 

𝑖𝑡ℎ population	𝐸!(𝜇! , 𝜃!). This is known as the second stage of the two-stage procedure. Now, 
based on the combined sample observations 𝑋!,), … , 𝑋!,-, 𝑋!,-;), … , 𝑋!,<! ,	 let𝑋q! = 𝑋q!<! =
minQ𝑋!,), … , 𝑋!,-, 𝑋!,-;), … , 𝑋!,<!R and		𝑌q! = 𝑋q! − 𝑆!/𝑁!. It can be noted that 𝑈! = 𝑁!Q𝑋q!<! −
𝜇!R/𝜃!  and 2(𝑚 − 1)𝑆! 𝜃!⁄  are stochastically independently distributed as 𝐸(0,1) and Chi-
square with 	2(𝑚 − 1)  d.f., respectively. Hence 	𝑊! = 𝑁!Q𝑋q!<! − 𝜇!R/𝑆!  is distributed as 
Snedecor 𝐹 with (2, 2𝑚 − 2) d.f. 

 
The following theorem will provide us the one-sided and two-sided simultaneous 

confidence intervals (SCIs) for the ordered pair-wise differences of location parameters under 
heteroscedasticity of scale parameters. 
 

Theorem 2: Let	𝑢*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*")) − 1 and	𝑣*,-,9 = 𝐹,,,-",") (1 − 𝛼))/* − 1, 
for given 0 < 𝛼 < 1 
 

(i)  𝑃Q𝜇+ − 𝜇! ≥	𝑌q+ − 𝑌q! − 𝑐𝑢*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼. 
Then (𝑌q+ − 𝑌q! − 𝑐𝑢*,-,9 , ∞)  is the set of one-sided simultaneous confidence 
intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼). 

(ii) 𝑃Q𝑌q+ − 𝑌q! − 𝑐𝑣*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑌q+ − 𝑌q! + 𝑐𝑣*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼.  
 

Then (𝑌q+ − 𝑌q! − 𝑐𝑣*,-,9 , 𝑌q+ − 𝑌q! + 𝑐𝑣*,-,9) is the set of two-sided simultaneous 
confidence intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼). 
 
Proof: The proof of the Theorem 2 is based on the similar lines of Theorem 1, by replacing 𝑐  
with		𝑑.  
 

4.  Simulation Study 
 
For the purpose of comparison of the proposed procedures, say Prop, with the 

procedure of Singh and Singh (2013), say SS, a Monte Carlo simulation study has been 
performed using 10=  iterations. The simulated power, coverage probability (CP), and the 
average volume (AV) of SCIs under each of these procedures have been computed. In each 
iteration fresh random samples were generated from each of the 𝑘 = 4  exponential 
distributions with location parameters (𝜇), 𝜇,, 𝜇>, 𝜇?) and scale parameters	(𝜃), 𝜃,, 𝜃>, 𝜃?). 
We have used the values of sample size and parametric configuration, i.e., the value of	𝑚, 
(𝜇), 𝜇,, 𝜇>, 𝜇?) and (𝜃), 𝜃,, 𝜃>, 𝜃?), as taken by Singh and Singh (2013) so that their simulated 
results can be incorporated in the comparison Tables 1-4. The simulated coverage probability 
is the proportion of repetitions in which all the ordered differences of location parameters are 
contained in the respective confidence intervals among 105 repetitions.  The volume of 
simultaneous confidence intervals in a repetition is the product of lengths of all the 
underlying confidence intervals. The average volume is the average of the volumes obtained 
under 105 repetitions. Thus, the average volume is with respect to two-sided SCIs where the 
lower and upper limits are finite. Simulated power is the proportion of repetitions in which at 
least one of the ordered differences	𝜇+ − 𝜇!, 1 ≤ 	𝑖 < 𝑗	 ≤ 	𝑘 falls outside the corresponding 
confidence interval.  
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Table 1: Simulated powers of one-stage procedure at 𝟏 − 𝜶 =. 𝟗𝟓, for varied 
configuration of (𝝁𝟏, 𝝁𝟐, 𝝁𝟑, 𝝁𝟒) when (𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒) = (𝟏, 𝟏. 𝟏, 𝟏. 𝟐, 𝟏. 𝟑) 

 

𝑚 (𝜇), 𝜇,, 𝜇>, 𝜇?) 
One-sided case Two-sided case 

SS Prop SS Prop 
10 

(0,0,0, .4) 

.069 .180 .044 .117 
15 .434 .761 .313 .631 
16 .666 .933 .425 .746 
17 .792 .972 .548 .835 
18 .885 .989 .670 .902 
19 .943 .996 .772 .942 
20 .926 .987 .860 .969 
25 .999 1 .986 .998 
30 1 1 1 1 
10 

(0, .2, .3, .4) 

.066 .16 .039 .090 
15 .369 .629 .218 .424 
16 .469 .724 .357 .611 
17 .572 .803 .455 .706 
18 .672 .863 .559 .787 
19 .764 .908 .658 .851 
20 .832 .941 .666 .846 
25 .981 .995 .944 .982 
30 .998 1 .994 .998 

 
Table 2: Simulated powers of one-stage procedure at 𝟏 − 𝜶 =. 𝟗𝟓,  for varied 

configuration of (𝝁𝟏, 𝝁𝟐, 𝝁𝟑, 𝝁𝟒) when	(𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒) = (𝟏, 𝟏, 𝟏, 𝟏) 
 

𝑚 (𝜇), 𝜇,, 𝜇>, 𝜇?) 
One-sided case Two-sided case 

SS Prop SS Prop 
10 

(0,0,0, .4) 

.087 .271 .056 .172 
15 .660 .937 .517 .862 
16 .791 .973 .667 .933 
17 .885 .989 .790 .971 
18 .943 .996 .884 .989 
19 .976 .999 .943 .996 
20 .990 1 .975 .999 
25 1 1 1 1 
30 1 1 1 1 
10 

(0, .2, .3, .4) 

.080 .225 .050 .145 
15 .524 .812 .402 .718 
16 .641 .878 .530 .811 
17 .750 .924 .646 .877 
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18 .833 .955 .775 .925 
19 .892 .973 .831 .954 
20 .932 .984 .892 .972 
25 .994 .999 .990 .998 
30 1 1 .999 1 

 
Table 3: The Coverage Probabilities (CP) and Average Volumes (AV) of two-sided SCIs 

under one-stage procedure for𝟏 − 𝜶 =	. 𝟗𝟓 
 

𝑚 (𝜃), 𝜃,, 𝜃>, 𝜃?) 
SS Prop 

CP AV CP AV 
10 

(1,1,1,1) 

.996 24.853 .987 7.66 
15 .993 .724 .977 .196 
16 .993 .428 .976 .114 
17 .992 .263 .974 .069 
18 .991 .167 .972 .063 
19 .990 .108 .971 .028 
20 .990 .073 .969 .019 
25 .989 .013 .963 .003 
30 .986 .004 .957 .001 
10 

(1,1.1,1.2,1.3) 

.996 68.961 .987 21.255 
15 .992 2.031 .978 .551 
16 .992 1.195 .975 .319 
17 .992 .742 .974 .195 
18 .991 .469 .973 .122 
19 .991 .308 .971 .079 
20 .991 .327 .972 .083 
25 .988 .061 .965 .015 
30 .987 .016 .962 .004 

 
Table 4: Simulated powers of two-stage procedure for varied configurations of 

(𝝁𝟏, 𝝁𝟐, 𝝁𝟑, 𝝁𝟒) and (𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒) for 𝟏 − 𝜶 =. 𝟗𝟓 
 

𝐿 𝑚 (𝜃), 𝜃,, 𝜃>, 𝜃?) (𝜇), 𝜇,, 𝜇>, 𝜇?) 
One-sided case Two-sided case 
SS Prop SS Prop 

0.6 

10 

(1,1.1,1.2,1.3) 

(0,0,0, .3) 
.755 .748 .757 .749 

20 .772 .718 .767 .724 
30 .782 .691 .783 .692 
10 

(0, .1, .2, .3) 
.555 .546 .552 .545 

20 .580 .514 .570 .518 
30 .581 .478 .578 .475 
10 

(1,1.1,1.2,1) 
(0,0,0, .3) 

.751 .757 .754 .756 
20 .739 .773 .742 .771 
30 .734 .784 .734 .783 
10 (0, .1, .2, .3) .549 .550 .547 .546 
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20 .537 .535 .540 .539 
30 .519 .516 .519 .517 
10 

(1,1,1,1) 

(0,0,0, .3) 
.755 .755 .754 .754 

20 .750 .754 .749 .750 
30 .751 .752 .751 .751 

 
10 

(0, .1, .2, .3) 
.543 .544 .542 .544 

20 .530 .530 .525 .525 
30 .509 .510 .509 .509 

 
Tables 1-2 show that the power of the proposed one-stage procedure using the PMLEs 

is substantially higher for small and moderate sample sizes than the power of the MLEs based 
procedure of Singh and Singh (2013). The analysis of Table 3 also suggests that the simulated 
coverage probability (CP) of the proposed procedure is closer to the nominal level .95 for 
moderate and large sample sizes whereas it is too high (close to .99) under the procedure of 
Singh and Singh (2013). Further, the average volume is also substantially smaller under the 
proposed procedure than the Singh and Singh (2013) procedure and it indicates that the 
length of the SCIs under the proposed procedure is smaller than the Singh and Singh (2013) 
procedure. The simulated powers under a two-stage setup are the same for the Proposed and 
Singh and Singh (2013) procedures. 
 
5.  Real Life Example 

 
We have taken the same data set as illustrated in Maruya et al. (2011) and Singh and 

Singh (2013), presented in Table 5. The data is about the survival times of inoperable lung 
cancer patients, categorized on the basis of histological type of tumor (squamous, small, 
adeno and large), who were subjected to standard chemotherapeutic agents. 

 
Singh and Singh (2013) have constructed one-sided and two-sided simultaneous 

confidence (SCIs) by taking		𝑐 = 11.862. Note that the choice of 𝑐 determines the size of the 
sample from each population. In this numerical example, the choice of	𝑐	 = 	11.862, gives 
the same sample sizes (9, 9, 9, 9) from all the four populations under the proposed and Singh 
and Singh (2013) procedures so that the comparison is feasible. Therefore for  𝑐	 = 	11.862, 
the length 𝑙 = 2𝑐𝑢*,-,9  of SCIs under the proposed two-stage procedure are 187.656, 
143.981 and 113.92 at 𝛼 = .01, 𝛼 = .025		and	𝛼 = .05, respectively. The lengths of these 
SCIs are smaller than those reported in Singh and Singh (2013). 
 

Table 5: Survival time (days) of inoperable lung cancer patients 
 

Type of Tumor 

Survival 
Days 

Squamous Small Adeno Large 
72 30 8 177 
10 13 92 162 
81 23 35 553 
110 16 117 200 
100 21 132 156 
42 18 12 182 
8 20 162 143 
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25 27 3 105 
11 31 95 103 

 
We have constructed simultaneous confidence intervals (SCIs) using Theorem 1, 

since for	𝑐 = 	11.862 the sample sizes are same under both the one-stage and two-stage 
procedures. The estimates of the scale and location parameters respectively, for the above 
reported data in Table 5 are, 	𝑆) = 48.375, 𝑆, = 10.25, 𝑆> = 78.265, 𝑆? = 106.7and 𝑌)′ =
8 − ?D.>F=

D
= 2.625, 𝑌,′ = 13 − )(.,=

D
= 11.861, 𝑌>′ = 3 − FD.,G=

D
= −5.696, 𝑌?′ = 103 −

)(G.F
D

= 91.144. The required values of the critical constants for	𝑚 = 9, 𝑘 = 4 and at the level 
of significance 𝛼 = .01, .025  and . 05 are 	𝑞*,-,.(= = 4.318, 𝑞*,-,.(,= = 5.539, 𝑞*,-,.() =
7.314 , and 	𝑟*,-,.(= = 4.080, 𝑟*,-,.(,= = 6.069, 𝑟*,-,.() = 7.910 . The constructed one-sided 
and two-sided simultaneous confidence intervals are presented in Table 6.  
 
Table 6: Simultaneous confidence intervals (SCIs) under the proposed (Prop) and Singh 

and Singh (2013) (SS) procedures 
 

 Difference 
SS Prop 

𝛼 = .01 𝛼 = .01 

One-Sided 
SCI 

𝜇, − 𝜇) (-93.620,	∞) (-77.522,	∞) 
𝜇> − 𝜇, (-108.620,	∞) (-104.315, ∞) 
𝜇> − 𝜇) (-103.690,	∞) (-95.079, ∞) 
𝜇? − 𝜇> (1.379, ∞) (10.076, ∞) 
𝜇? − 𝜇, (-8.620, ∞) (-7.480, ∞) 
𝜇? − 𝜇) (-3.620, ∞) (1.755, ∞) 

Two-Sided 
SCI 

𝜇, − 𝜇) (-100.690,110.690) (-84.592, 103.064) 
𝜇> − 𝜇, (-115.690,95.690) (-111.385, 76.271) 
𝜇> − 𝜇) (-110.690,100.690) (-102.149,85.507) 
𝜇? − 𝜇> (-5.690,205.690) (3.006,190.663) 
𝜇? − 𝜇, (-15.690,195.690) (-14.550,173.106) 
𝜇? − 𝜇) (-10.690,200.690) (-5.314,182.342) 

 
A pair-wise difference is declared to be significant if the corresponding simultaneous 

confidence interval (SCI) does not contain zero. Accordingly, at the level	𝛼	 = 	 .01, we infer 
that: (i) Under one-sided SCIs the Singh and Singh (2013) procedure declares the difference 
𝜇? − 𝜇>  as significant whereas the proposed procedure declares two differences 𝜇? − 𝜇> 
and	𝜇? − 𝜇) as significant (the corresponding SCIs do not contain zero); (ii) Under two-sided 
SCIs, the proposed procedure declares the difference 𝜇? − 𝜇)  as significant whereas the 
Singh and Singh (2013) procedure does not declare any difference as significant. 
 
6.  Conclusion 

 
We have observed that lengths of SCIs of the proposed one-stage and two-stage 

procedures, based on the PMLEs, are significantly smaller and that their coverage probability 
is also close to the nominal level as compared to the MLEs based procedure of Singh and 
Singh (2013). Thus, the Singh and Singh (2013) procedure is too conservative than the 
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proposed procedure. Further, the power of the proposed one-stage procedure is higher than 
the one-stage procedure of Singh and Singh (2013) and both procedures have almost the same 
power under the two-stage setup. Keeping in view the dominance of the proposed procedures 
in terms of lengths of SCIs, coverage probability, and average volume, we recommend the 
use of proposed procedures, particularly, the one-stage procedure when there are smaller 
samples from the populations. In most of the practical situations we get smaller samples on 
life lengths and the use of the proposed one-stage procedure, based on the PMLEs, is 
recommended since it dominates the procedure of Singh and Singh (2013) in terms of lengths 
of SCIs, power, coverage probability and average volume. 
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Abstract
In this paper, we study some important reliability characteristics of auto-relevation

transform. Various ageing and ordering concepts are discussed. Important results in terms
of reliability and information measures are studied. Some characterizations are presented. A
new lifetime distribution called auto-relevated Lomax (ARL) is introduced and its practical
applicability is illustrated with a real dataset.
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1. Introduction

LetX and Y be two absolutely continuous non-negative random variables, with survival
functions F̄ (.) and Ḡ(.) respectively. Consider an item from a population with survival
function F̄ (x), which is being replaced at the time of its failure at age x, by another item
of the same age x from another population with survival function Ḡ(x). Then the survival
function

T̄ (x) = F̄#Ḡ(x) = F̄ (x) − Ḡ(x)
ˆ x

0

1
Ḡ(t)

dF̄ t. (1)

is called the relevation transform of X and Y introduced by Krakowski (1973). Let Y (X)
denote the total lifetime of the random variable Y given it exceeds a random time X, (i.e
Y (X) d= {Y |Y > X}). Then (1) is the survival function of the random variable Y (X). The
probability density function (p.d.f.) of the relevation random variable is obtained as

t(x) = T ′(x) = g(x)
ˆ x

0

f(t)
Ḡ(t)

dt. (2)

Grosswald et al. (1980) presented two characterizations of the exponential distribution
based on relevation transform. The concept of dependent relevation transform and its im-
portance in reliability analysis is given in Johnson and Kotz (1981). Baxter (1982) discussed
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certain reliability applications of the relevation transform. Shanthikumar and Baxter (1985)
provided closure properties of certain ageing concepts in the context of relevation transforms.
Improved versions of the results in Grosswald et al. (1980) are given by Lau and Rao (1990).
Chukova et al. (1993) established characterizations of the class of distributions with almost
lack of memory property based on the relevation transform. Sankaran and Dileepkumar
(2019) studied important reliability properties of the relevation transform in the context of
proportional hazards model.

When the random variables X and Y are identically distributed, the tail distribution
of the random variable Y (X) can be simplified to

T̄ ∗(x) = F̄ (x)(1 − log(F̄ (x))). (3)

The survival function (3) is known as the auto-relevation of F̄ (x). Kapodistria and
Psarrakos (2012) studied properties and applications of a sequence of random variables with
weighted tail distribution functions based on the auto-relevation transform. In this paper
we focus our attention on various properties, applications and characterizations of the auto-
relevation transform in the context of reliability theory.

The rest of the paper is organized as follows. We provide the concept and basic charac-
teristics of auto-relevation transform in Section 2. Section 3 presents some important char-
acterization results based on reliability and information measures. Various ageing properties
and stochastic orders of auto-relevation are presented in Section 4 and Section 5 respectively.
Finally, in Section 6, we provide major conclusions of the study.

2. Auto-Relevation Transform (ART)

Let X and Y be two non-negative continuous random variables with survival functions
F̄ (x) and Ḡ(x) respectively. Then the survival function of the relevation random variable
Y (X) is given in (1). When X and Y are identically distributed, the random variable X(X)
is known as the auto-relevation of X. Survival function of X(X) is obtained as

T̄ ∗(x) = F̄ (x) − F̄ (x)
ˆ x

t=0

1
F̄ (x)

dF̄ (x)

= F̄ (x)(1 − log(F̄ (x)). (4)

The probability density function (p.d.f) of X(X) is obtained as

t∗(x) = −f(x) log(F̄ (x)). (5)
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From (4) and (5), we have, X(X) is the auto-relevation of X if and only if

hX(X)(x) = t∗(x)
T̄ ∗(x)

⇔ hX(X)(x) = − f(x) log(F̄ (x))
F̄ (x)(1 − log(F̄ (x)))

⇔ hX(X)(x) = hX(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
= hX(x)

(
ΛX(x)

1 + ΛX(x)

)
, (6)

where ΛX(x) = − log(F̄ (x)) is the cumulative hazards function of X.

An important class of distributions used in risk theory and queueing theory is the class
L distribution. A distribution F belongs to the class L if

lim
x→∞

F̄ (x− y)
F̄ (x)

= 1,∀ y ∈ R. (7)

Kluppelberg (1988) showed that,
F ∈ L if and only if lim

x→∞
hF (x) = 0,where hF (x) is the hazard rate function of F (x).

Proposition 1: if X ∈ L then X(X) ∈ L .

Proof: We have

lim
x→∞

hX(X)(x) = lim
x→∞

hX(x) lim
x→∞

(
log(F̄ (x))

log(F̄ (x)) − 1

)
. (8)

Now by applying L’Hospitals’s rule and noting that lim
x→∞

h(x) = 0, we get
lim

x→∞
hX(X)(x) = 0. This completes the proof.

Let QX(.) and QX(X)(.) be the quantile functions of the random variables X and
X(X) with respective distribution functions F (x) and T ∗(x). In the following, we establish
the relation between the quantile functions of X and X(X).
Proposition 2: Suppose QX(.) and QX(X)(.) are the quantile functions of the random
variables X and X(X) respectively. Then

QX(u) = QX(X)(u+ (1 − u) log(1 − u)). (9)

Proof: From (4), we have

T ∗(x) = 1 − F̄ (x)(1 − log(F̄ (x))). (10)

By taking F (x) = u where u ∈ (0, 1), we get X = QX(u). Using this in (10), we have

T ∗(QX(u)) = 1 − (1 − u)(1 − log(1 − u))
=⇒ QX(u) = QX(X)(u+ (1 − u) log(1 − u)).

Remark 1: When the cumulative distribution function of X(X) is non-invertibe, we can
effectively employ the identity (9) to simulate random samples of X(X) using the quantile
function of X.
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3. Characterization Results

Glaser (1980) established a general theorem that facilitates the determination of whether
hX(x) is increasing (IHR), decreasing (DHR), Bath-tub (BT) or upside-down bathtub (UBT).
He made use of the function ψ(x) = −f ′(x)

f(x) , known as the Glaser’s function. In the next
proposition, we present an interesting identity connecting the Glaser’s functions of the ran-
dom variables X and X(X).
Proposition 3: Let X be a non-negative continuous random variable with survival function
F̄ (x). Then X(X) is the auto-relevation of X if and only if

ψX(X)(x) = ψX(x) − hX(x)
ΛX(x) , (11)

where ψX(x) and ψX(X)(x) are the Glaser’s function of X and X(X) respectively.

Proof: If X(X) is the auto-relevation of X then we have

ψX(X)(x) = −t∗′(x)
t∗(x)

ψX(X)(x) = −f ′(x)
f(x) + f(x)

F̄ (x) log(F̄ (x))

ψX(X)(x) = ψX(x) − hX(x)
log(F̄ (x))

. (12)

Conversly (11) gives

d

dx
(log(t∗(x)) = d

dx

(
log(−f(x) log(F̄ (x)) + C

)
, (13)

where C is a constant. Since t∗(x) is a density function, on integration, we get C = 0 and
(13) reduces to

t∗(x) = −f(x) log(F̄ (x)). (14)

This completes the proof. The odds function of a random variable X is defined by

ϕX(x) = P (X > x)
P (X ≤ x) = F̄X(x)

FX(x) .

Note that the odds function is a decreasing function of x. In the coming proposition, we
provide an interesting connection between the odds functions of X(X) and X.
Proposition 4: X(X) is the auto-relevated random variable of X if and only if

ϕX(X)(x) = 1 + Λ(x)
ϕ−1

X (x) − Λ(x)
, (15)

where ϕX(X)(x) and ϕX(x) are the odds functions of X(X) and X respectively.
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Proof: Assume X(X) is the auto-relevated random variable of X. From (4), We have

ϕX(X)(x) = T̄ ∗(x)
1 − T̄ ∗(x)

⇔ ϕX(X)(x) = F̄ (x) − F̄ (x) log(F̄ (x))
F (x) + F̄ (x) log(F̄ (x))

⇔ ϕX(X)(x) = ϕX(x)(1 − log(F̄ (x)))
1 + ϕX(x) log(F̄ (x))

⇔ ϕX(X)(x) = 1 + Λ(x)
ϕ−1

X (x) − Λ(x)
, (16)

which completes the proof.

To measure the distance between two probability distributions, Kullback-Leibler diver-
gence (K-L divergence) has been popularly used in modelling of statistical data. The K-L
divergence, which is closely related to relative entropy, information divergence, and informa-
tion for discrimination is a non-symmetric measure of the difference between two probability
distributions f(x) and g(x). When f(x) and g(x) are non-negative continuous distributions,
then the K-L divergence I(f, g) is defined as

I(f, g) =
ˆ ∞

0
f(x) log

(
f(x)
g(x)

)
dx. (17)

Specifically, the K-L divergence of g(x) from f(x), denoted I(f, g), is a measure of the
information lost when g(x) is used to approximate f(x). In the following we present a
relationship between I(t∗, f) and I(f, t∗) in the context of ART.
Proposition 5: Let X(X) be the ART random variable corresponding to the non-negative
random variable X. Then

I(X,X(X)) = 1 − I(X(X), X), (18)

where I(X,X(X)) is the Kullback-Leibler divergence between X and X(X).

Proof: From (17), we have

I(X(X), X) =
ˆ ∞

0
t∗(x) log

(
t∗(x)
f(x)

)
dx. (19)

Since X(X) is the ART random variable corresponding to X, using (5) in (19), we get

I(X(X), X) = −
ˆ ∞

0
f(x) log(F̄ (x)) log(− log(F̄ (x)))dx. (20)

by taking u = − log(F̄ (x)), the integral in (20) became

I(X(X), X) =
ˆ ∞

0
u log(u)e−udu.
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Now by applying integration by parts, we obtain

I(X(X), X) = −Lim
x→∞

(
x log(x)
ex

)
+ Lim

x→0

(
x log(x)
ex

)
+
ˆ ∞

0
(1 + log(x))e−xdx

=
ˆ ∞

0
(1 + log(x))e−xdx. (21)

Again applying integration by parts on (21), we get

I(X(X), X) = 1 +
ˆ ∞

0
log(x)e−xdx = 1 − γ, (22)

where γ = −
´∞

0 log(x)e−xdx is the Euler–Mascheroni constant (γ ≃ 0.5772). Now, we have

I(X,X(X)) =
ˆ ∞

0
f(x) log

(
f(x)
t∗(x)

)

= −
ˆ ∞

0
f(x) log(− log(F̄ (x)))dx. (23)

Using the transformation u = − log(F̄ (x)), (23) becomes

I(X,X(X)) = −
ˆ ∞

0
log(u)e−udu = γ. (24)

From (22) and (24), the result follows.

4. Ageing Properties

We describe ageing properties of the relevation random variable X(X) in connection
with the ageing behaviour of the baseline random variable X. Various ageing classes and
their properties and applications can be seen in Barlow and Proschan (1975), Shaked and
Shanthikumar (2007), and Nair et al. (2013). From (6), we have

hX(X)(x) = hX(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
. (25)

Differentiating (25), we obtain

h′
X(X)(x) = h′

X(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
+
(

hX(x)
(log(F̄ (x) − 1)

)2

. (26)

Note that
(

log(F̄ (x))
log(F̄ (x))−1

)
> 0 and

(
hX(x)

(log(F̄ (x)−1)

)2
> 0 for all x > 0. Thus when X is IHR, we

have h′
X(x) > 0 for all x > 0, which gives h′

X(X)(x) > 0 for all x > 0. Thus X(X) is also IHR.
Hence IHR property is preserved under auto-relevation. When X is an exponential random
variable with hazard rate hX(x) = C, where C > 0, a constant. Then, from (26) we obtain

h′
X(X)(x) =

(
C

(log(F̄ (x) − 1)

)2

≥ 0. (27)
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Thus auto-relevated exponential distribution is always IHR. However, the case when X is
DHR gives different options, which is presented in the next proposition.
Proposition 6: Let X be a non-negative continuous random variable with survival function
F̄ (x). Suppose X is DHR. Then the auto-relevation random variable X(X) is IHR (DHR)
if and only if

h′
X(x)

(hX(x))2 ≥ (≤) −1
ΛX(x)(ΛX(x) + 1) for all x > 0. (28)

Proof: We have

h′
X(X)(x) = h′

X(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
+
(

hX(x)
(log(F̄ (x) − 1)

)2

. (29)

X(X) is IHR(DHR) if and only if h′
X(X)(x) ≥ (≤)0. Now, since X is DHR, we have h′

X(x) < 0
for all x > 0. By using the facts that

(
log(F̄ (x))

log(F̄ (x))−1

)
and

(
hX(x)

(log(F̄ (x)−1)

)2
are non-negative, we

get X(X) is IHR(DHR) if and only if, for all x > 0,

− h′
X(x)

(
log(F̄ (x))

log(F̄ (x)) − 1

)
≤ (≥)

(
hX(x)

(log(F̄ (x) − 1)

)2

⇔ − h′
X(x)

(hX(x))2 ≤ (≥) 1
log(F̄ (x)(log(F̄ (x) − 1))

⇔ h′
X(x)

(hX(x))2 ≥ (≤) −1
ΛX(x)(ΛX(x) + 1) , for all x > 0.

Remark 2: Note that X(X) accommodates non-monotonic shapes when the equality holds
in (28). The change point of the non-monotonic hazard function will be obtained by solving
the equality (28).

From Proposition 6, it is clear that the auto-relevation of DHR class of distributions
can provide new lifetime models with non-monotonic hazard rate functions. Note that the
auto-relevated distribution consists of the same number of parameters as in the parent distri-
bution. Thus we can efficiently use the auto-relevation transformation for developing more
flexible lifetime models from the existing ones without introducing additional parameters.
To illustrate this, consider the Lomax distribution with survival function

F̄ (x) =
(

α

x+ α

)c

, α > 0, c > 0 and 0 < x < ∞, (30)

and hazard function
hX(x) = c

α + x
. (31)

We have hX(x) is non-increasing for all parameter combinations. Thus X is always DHR.
The survival function of the auto-relevated Lomax random variable (ARL) X(X) has the
form

T̄ ∗(x) =
(

α

α + x

)c (
1 − log

((
α

α + x

)c))
. (32)
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The corresponding hazard function is obtained as

hX(X)(x) = c

α + x

 log
((

α
α+x

)c)
log

((
α

α+x

)c)
− 1

 . (33)

On differentiating, we get

h′
X(X)(x) =

c
(
c+ log

((
α

α+x

)c)
−
(
log

((
α

α+x

)c))2)
(α + x)2

(
log

((
α

α+x

)c)
− 1

)2 . (34)

Thus the sign of h′
X(X)(x) depends only on the function
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Figure 1: hX(X)(x) of ARL distribution for different parameter combinations.

γ(x) =
(
c+ log

((
α

α + x

)c)
−
(

log
((

α

α + x

)c))2)
.

We can write this as
γ(x) = c+ k(x) − (k(x))2, (35)

where k(x) = log
((

α
α+x

)c)
. We can observe that k(x) < 0 for all x > 0 and strictly

decreasing for all α, c > 0. Since k(0) = 0, it is clear that γ(x) takes a positive sign
initially and then became negative as x progresses. Correspondingly, the hazard function
first increase then decrease in x for all parameter combinations. Thus the hazard function
of ARL distribution is always Bathtub shaped. The change point of h(x) will be attained
by solving the equation γ(x) = c+ k(x) − (k(x))2 = 0, which is obtained as

x0 = α (eη − 1) , where η = 1
2 +

√
1 + 4c

2 .
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To show the practical importance of the proposed model, we consider a real data
reported in Bekker et al. (2000), which corresponds to the survival times (in years) of a group
of 45 patients given chemotherapy treatment alone. The method of maximum likelihood is
employed to estimate the parameters. The estimates obtained are

α̂ = 0.97003 and ĉ = 2.70067. (36)

Recently, Handique and Chakraborty (2016) fitted this data with Beta generalized Ku-
maraswamy Weibull(BKw-W) distribution and compared with Kumaraswamy Weibull (Kw-
W) and Beta generalized Weibull(B-W) distributions. They compared the goodness of fit
using the AIC measure. The AIC values of the ARL, BKw-W, Kw-W and B-W models are
presented in Table 1.

Table 1: AIC values

Distribution AIC
ARL 118.831

BKw-W 122.92
Kw-W 123.44
B-W 124.14
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Figure 2

It is evident that the ARL model gives a better fit than the other models concerning the
values of AIC. Note that the ARL model contains fewer number of parameters as compared
to the competing alternatives. Plot of the fitted density with the histogram of the observed
data is given in Figure 2(a). To check the physical closeness of the model, we use the Q-
Q plot, which is given in Figure 2(b). We also carry out the Kolmogorov–Smirnov (K–S)
goodness of fit test. The K–S test statistic with the associated p-value for the fitted model
are 0.093 and 0.80 respectively.

In the context of coherent systems with ‘n’ identical components, Navarro et al. (2013)
established that the component survival function F̄c(x) and the system survival function
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F̄S(x) are connected through the relation

F̄S(x) = q(F̄c(x)), (37)

where q(u) is a distortion function, which is a concave non-decreasing function from [0, 1] to
[0, 1], such that q(0) = 0 and q(1) = 1.

From (5), the survival function T̄ ∗(x) satisfies

T̄ ∗(x) = q(F̄ (x)), where q(u) = u (1 − log(u)) u ∈ [0, 1]. (38)

The function q(u) is a concave distortion function. From this, we can infer that X(X) is
the distorted random variable obtained from X by the distortion q(u). Distorted random
variables have many applications in reliability theory. Navarro et al. (2013, 2014) developed
various stochastic orders and preservation properties of ageing classes and for the general
distorted distributions in the context of coherent systems. For more details on this topic,
one could refer to Wang (1996), Sordo and Suarez-Llorens (2011), Sordo et al. (2015), and
Navarro et al. (2016).

Let X and S denotes the lifetimes of the component and system respectively in the
context of coherent systems. Then, Navarro et al. (2014) showed that If X is NBU (NWU)
and q(u v) ≤ (≥) q(u) q(v) for all 0 ≤ u, v ≤ 1, ( submultiplicative (supermultiplicative))
holds then S is NBU (NWU). Similarly, if X is IHRA (DHRA) and q(ua) ≥ (≤) (q(u))a holds
for all 0 ≤ u, v ≤ 1 and 0 < a < 1, then S is IHRA (DHRA). Now for the model (4), we have
X(X) is the distorted random variable of X, with distortion function q(u) given in (38). We
can easily verify that q(u) is submultiplicative and satisfies the condition q(ua) ≥ (≤)(q(u))a

for all 0 ≤ u, v ≤ 1 and 0 < a < 1. Thus, NBU (NWU) and IHRA (DHRA) properties are
preserved under auto-relevation transform.

5. Stochastic Orders

There are many situations in practice where we need to compare the characteristics
of two distributions. Stochastic orders are used for the comparison of lifetime distributions.
In this section, we provide some important stochastic orders between the random variables
X and X(X). We shall consider the following stochastic orders. Important properties and
interrelations of various stochastic orders can be seen in Shaked and Shanthikumar (2007) and
Barlow and Proschan (1975). Suppose F̄1(x) and F̄2(x) be the survival functions obtained
by distorting F̄ (x) using the distortion functions q1(u) and q2(u) respectively. Let S1 and S2
be the random variables corresponding to F̄1(x) and F̄2(x) respectively. Now from Navarro
et al. (2014) (Theorem 2.5), we have

S1 ≤lr (≥lr)S2 if and only if q
′
1(u)
q′

2(u) is increasing (decreasing) in u ∈ (0, 1), (39)

where q′
i(u) is the derivative of qi(u), i = 1, 2. To study different stochastic order relations

between X and X(X), we take S1 = X(X) and S2 = X, with distortion functions q1(u) =
u (1 − log(u)) and q2(u) = u respectively.
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Note that,
d

du

(
q′

1(u)
q′

2(u)

)
= d

du
(− log(u)) = −1

u
≤ 0.

Thus q′
1(u)

q′
2(u) is decreasing in u ∈ (0, 1). Now from (39), we get X ≤lr X(X). Moreover, from

Shaked and Shanthikumar (2007), we have the following implications,

X ≤lr X(X) =⇒ X ≤hr X(X) =⇒ X ≤st X(X).

Kochar and Wiens (1987) have defined an IHR order by saying that X is more IHR
than Y if X ≤

c
Y . Further, X is more IHRA (NBU) than Y if G−1(F (x)) is star-shaped

denoted by X ≤∗ Y (super additive denoted by X ≤su Y ). We have also X ≤DMRL Y

if mX(x)
mY (x) is non-decreasing, X ≤NBUE Y if mX(x)

mY (x) ≤ E(X)
E(Y ) , X ≤NBUHR Y if hX(x)

hY (x) ≥ hX(0)
hY (0) ,

and X ≤NBUHRA Y if F−1
Y (FX(x)) ≥ x

(
F−1

Y (F (x)
)

x=0
(Nair et al., 2013). Among these

stochastic orders X ≤c Y =⇒ X ≤DMRL Y =⇒ X ≤NBUE Y and X ≤NBU Y =⇒
X ≤NBUHRA Y . Later Sengupta and Deshpande (1994) proved that X ≤

c
Y if and only

if hX(x)
hY (x) is non-decreasing in x, provided hY (x) ̸= 0. The following proposition establishes

various interrelationships among these orderings.
Proposition 7: Let X be a non-negative random variable and X(X) be the auto-relevation
of X with survival function (4). Then X(X) ≤

c
X.

Proof: From (25), we have
hX(X)(x)
hX(x) = log(F̄ (x))

log(F̄ (x)) − 1
.

Upon differentiating, we obtain

d

dx

(
hX(X)(x)
hX(x)

)
= f(x) log(F̄ (x))
F̄ (x)(log(F̄ (x)) − 1)2

− f(x) (log(F̄ (x)) − 1)
F̄ (x)(log(F̄ (x)) − 1)2

= hX(x)
F̄ (x)(log(F̄ (x)) − 1)2

≥ 0. (40)

Thus hX(X)
hX(x) is non-decreasing in x and hence X(X) is more IHR than X. The

implications, consequence of the Proposition 7, are exhibited in the following diagram;

X(X) ≤cw� X =⇒ X(X) ≤∗w� X =⇒ X(X) ≤suw� X

X(X) ≤DMRL X =⇒ X(X) ≤NBUE X =⇒ X(X) ≤NBUHR X =⇒ X(X) ≤NBUHRA X.

Proposition 8: Let Y1 and Y2 be the auto-relevated random variables corresponding to X1
and X2 respectively. Then the following results hold;

(i) If X1 ≤st X2 then Y1 ≤st Y2.

(ii) If X1 ≤hr X2 then Y1 ≤hr Y2.
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(iii) If X1 ≤icx X2 then Y1 ≤icx Y2.

Proof: The proof for (i) is direct from (4). Now to prove (ii), we have
u q′(u)
q(u) = − log(u)

1 − log(u) .

Note that d
du

(
u q′(u)

q(u)

)
= − 1

u(1−log(u))2 ≤ 0 for all u ∈ (0, 1). Now from Theorem 2.6 of Navarro
et al. (2014), we get Y1 ≤hr Y2. From Theorem 2.6 of Navarro et al. (2014), (iii) follows
since q(u) is concave in (0,1).

6. Conclusion

In this paper, we have presented the auto-relevation transform, which is useful in the
context of lifetime studies. Various properties and characterizations in terms of reliability
measures were presented. Ageing and ordering properties, which will be useful in the relia-
bility context were studied. We also introduced the ARL distribution having non-monotonic
hazard function and compared the performance with some existing competing alternatives.
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Abstract
Cure rate models have been widely applied in the analysis of lifetime data in the

presence of cured fractions. Regression models need more attention when investigators are
interested to study the effects of given treatments. The presence of competing risks is an
additional challenge for researchers to analyze lifetime data with cured proportion. In this
paper, we propose a parametric cure rate regression model incorporating competing risks for
the analysis of survival data. The parameters of the model are estimated by the maximum
likelihood estimation procedure via EM algorithm. A simulation study is carried out to
evaluate the performance of the proposed model. The practical relevance of the model is
illustrated by applying the model to a dataset on heart transplantation.

Key words: Cure rate model; Competing risks; Maximum likelihood; EM algorithm; Weibull
distribution

AMS Subject Classifications: 62K05, 05B05

1. Introduction

The recent advancements in diagnostic and other drug design experiments resulted
increased rate of favorable response of patients to their received treatments and a good
proportion of patients have become free from diseases. These disease-free individuals in a
set of survival data are said to be immunes and the proportion of immunes that exists in
the data is called cured proportion. The presence of immunes in survival data influences
the outcome measures in survival studies. While analysing such data, it can be seen that
the survival curve does not taper off to zero at the end of the study period. Hence ordinary
survival analysis techniques are not suitable to analyse such data and new models have been
developed incorporating cured proportions. Such models are said to be cure rate models
in survival analysis. Boag (1949) first proposed cure rate model to estimate the cured
proportion of breast cancer patients. Cure rate models have been extended its applicability
in several areas like financial, criminology, demography, and industrial reliability. Nelson
(1982) explained the life expectancy of electric motors with cure rate model. Yamaguchi
(1992) applied the cure rate model to describe inter-firm job mobility in Japan. For further
reading one can refer to Maller and Zhou (1996), Sy and Tailor (2000), Ortega et al. (2014),
Shen et al. (2019), and Sreedevi and Sankaran (2021).
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Competing risks occur when the study subjects experience more than one events that
compete the event of interest. For example, when a researcher observing peritoneal dialysis
patients until they develop peritonitis, kidney transplantation can be regarded as a competing
cause because the chance of occurrence of peritonitis is very less among patients who have
undergone kidney transplantation. The competing risks aspect seeks more attention in the
analysis and interpretation of survival data. It is known that age-related mortality is high
among older people than others. Also, the probability of death due to the disease is found
to be low in clinical trials with the desired effect. In both cases, deaths occur due to other
competing causes rather than the event of interest. Hence failure to consider competing
risks in the analysis of such data yields reporting of inaccurate and misleading results. The
competing risks models are discussed by many authors. Crowder (2001) and Kalbfleisch and
Prentice (2011) are prime among them. Wright et al. (2020) and Papastefanou et al. (2021)
are two recent works that draw out the significance of competing risks in the medical field.

In survival studies carry out in the field of medicine and epidemiology, the investigators
focus on determining the effect of factors associated with the time to occurrence of the event
such as death or disease recurrence. Regression models such as Cox proportional hazards
models or parametric models are usually used to study the effect of covariates present in
the data. The presence of competing risks, immune proportions and covariates altogether
enhance the complexity of data and burden of analysis. All of these prominent scenarios
are encountered by formulating competing risks cure rate regression models. Development
of such models needs special attention and less available in literature.

In cure rate models, parametric or semiparametric proportional hazards assumptions
can be made for lifetime distribution in latency. In recent times, some semiparametric models
are proposed for the analysis of competing risks data in the presence of cured proportions.
The interested readers can refer to Choi et al. (2018) and Rejani and Sankaran (2020). If a
particular probability distribution of survival data can be identified and validated, statistical
inference based on a parametric regression perceptive will be considered as more efficient and
precise than those derived from survival models in the absence of an explicit distributional
function (Collett, 2015). Yusuf et al. (2016) discussed Weibull distribution as a suitable
distribution for the analysis of data in the presence of cured proportion.

In this paper, we introduce a parametric cure rate regression model based on Weibull
distribution for the analysis of survival data in competing risks setting. The model and
methods focus on the estimation of regression parameters and the probability of cure in the
presence of competing risks. The innovative feature of the proposed model is the proficiency
to explain the impact of covariates on the survival time of a group of subjects in the presence
of immunes and at the same time, the influence of competing causes is also taken into account.

Heart transplantation is the gold standard for the treatment of end-stage heart failure.
Rejection and infection are the two major causes of mortality among patients undergoing
heart transplantation. Larson and Dince (1985) considered 65 transplant recipient data,
there were 29 (45%) rejection deaths, 12 (18%) deaths from other causes, and 24 (37%)
censored observations. They analyzed data by mixture model approach without considering
the chance of occurrence of cured proportion. A cure rate regression model separates short
and long-term survival of patients. It is useful to determine the proportion of cured patients
and to identify the associated factors on survival of patients under study. It helps the public
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health professionals in decision making. In this context, we use data on heart transplantation
in Section 5 for an illustration of our proposed model.

The rest of the paper is structured as follows. We introduce the parametric compet-
ing risks cure rate regression model in Section 2. The likelihood function formulation and
estimation procedures are explained in Section 3. In Section 4, we report the results of
simulation work to explain the bias of estimators on variations in samples size. Section 5
illustrates the application of the proposed model to real data set. Some concluding remarks
are given in Section 6.

2. The Model

Suppose that population consists of two groups of subjects say, susceptibles and im-
munes. Let T be the time to occurrence of the event. Define the indicator variable function
to define the status of cure

Y =
{

1, if the individual eventually experience the event of interest
0, otherwise.

Let p be the probability of occurrence of the event. The survival function of the uncured
population at time t is S(t|Y = 1) = P (T > t|Y = 1). Then survival function of cure rate
model is

S(t) = (1 − p) + pS(t|Y = 1) (1)

where t < ∞. Note that S(t) tends to (1 − p) as t → ∞. Let C = cause of death and the
probability of uncured subjects pj = Pr(Y = 1, C = j), j = 1, 2, . . . , k. Assume that the
time to occurrence of the event T is defined only when Y = 1 and C = j, j = 1, 2, . . . , k. Let
fj(t|Y = 1) be the probability density function and Sj(t|Y = 1) be the sub-survival function
(Carriere and Kochar (2000)),of the random variable t due to jth cause, j = 1, 2, . . . , k. For
a censored individual, Y is not observed.

In the presence of competing risks, the survival function of cure rate model is

S(t) = 1 −
k∑

j=1
pj +

k∑
j=1

pjSj(t|Y = 1) (2)

Let X be a p + 1 × 1 vector of covariates at incidence part and Z be a p × 1 covari-
ate vector at latency part of the model that is independent of X. In practical situations,
the covariates X and Z can be same or may share common elements between them. Let
bj = (b0j, b1j, . . . , bpj)′ be a vector of regression coefficients with b = (b1, b2, . . . , bk)′ for
j = 1, 2, . . . , k.

Then, in a competing risks Weibull regression model, the sub-survival function of t due
to jth cause of failure with probability density function

fj(t|Y = 1, θ, Z) = α exp (βjZ) tα−1 exp(−tα exp (βjZ)) (3)

is
Sj(t|Y = 1, θ, Z) = exp (−tα exp (βjZ)) (4)
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where α > 0 , βj = (βj0, βj1, ...βjp)′ is the vector of regression coefficients associated with
the covariate Z, θ = (α, βj) and β = (β1, β2, ...βk)′ for j = 1, 2, . . . , k.

Under logistic regression model assumption, the probability of occurrence of the event
due to jth cause is

pj(b) = Pr(Y = 1, X) =
exp(b′

jX)

1 +
k∑

j=1
exp(b′

jX)
(5)

for j = 1, 2, . . . , k

Let Fj(t) = Pr(T ≤ t, C = j) be the cumulative incidence function due to jth cause
which measures the probability of occurrence of the event before time t due to cause j,
j = 1, 2, . . . , k.

Now, the cumulative incidence function due to jth cause in the presence of covariates
X and Z and in the presence of Y = 1 is

Pr(T ≤ t, C = j|X,Z, Y = 1) = Pr(T ≤ t|Z, Y = 1, C = j) Pr(C = j, Y = 1|X)
= pj(b)(1 − Sj(t|Y = 1, θ, Z))

Now, the survival function of competing risks cure rate regression model is defined as

S(t,Θ) = p0(b) +
k∑

j=1
pj(b)Sj(t|Y = 1, θ, Z) (6)

where Θ = (b, θ) denotes the entire set of parameters and p0(b) = 1−
k∑

j=1
pj(b), the probability

of immunes in the model. Suppose that the model parameters are linked to a single covariate
Z. (ie., we use the assumption X = Z throughout the paper). We also assume that
an independent, non-informative, random censoring model and the censoring variable is
statistically independent of Y . Inference procedure of the proposed model is given in the
next Section .

3. Inference Procedures

Suppose we have data in the form (tij, δij, zi) for i = 1, 2, . . . , n, j = 1, 2, . . . , k and
i ̸= j where the notations

tij = the observed event or censoring time due to jth cause and the n distinct event
times be t1j < t2j < · · · < tnj.

δij =
{

1, tij is uncensored
0, otherwise.

and zi = a vector of covariates.
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The likelihood equation under multiple modes of failures is

L =
n∏

i=1

k∏
j=1

(fj(ti))δij (S(ti))1−δij (7)

Under the model assumptions made, likelihood function of the cure rate regression model is

L(Θ) =
n∏

i=1

k∏
j=1

(pj(b)fj(ti|Y = 1, θ, Z))δij

p0(b) +
k∑

j=1
pj(b)Sj(ti|Y = 1, θ, Z)

1−δij

(8)

Let the complete data be (tij, δij, zi, yij), i = 1, 2, . . . , n, j = 1, 2, . . . , k which includes
the observed data and the unobserved yij’s, where yij be the value taken by the random
variable Yi for jth cause. If δij = 1, yij = 1 and if δij = 0, yij is unobserved. Then the
complete - data full likelihood is

Lc(Θ) =
n∏

i=1

k∏
j=1

(pj(b)fj(ti|Y = 1, θ, Z))δijyij (p0(b))
(1−δij)(1−

k∑
j=1

yij)

(pj(b)Sj(ti|Y = 1, θ, Z))(1−δij)yij

(9)

By substituting the probability density function and the survival function given in
(3) and (4), the above likelihood equation can be expressed as a product of two likelihood
functions as

Lc(Θ) = L1(b)L2(β, θ) (10)

where

L1(b) =
n∏

i=1

k∏
j=1

(pj(b))yij (p0(b))
(1−δij)(1−

k∑
j=1

yij)

and

L2(β, θ) =
n∏

i=1

k∏
j=1

(
eβjziαti

α−1
)δijyij

e(−ti
α exp(βjzi)yij)

The likelihood function (10) contains missing observations since partial information of
random variable Y is missing. Hence we employ EM Algorithm (Dempster et al. (1977)) to
estimate the parameters of the model.
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3.1. EM algorithm

E-Step : The expectation step (E-step) in the EM algorithm compute the conditional
expectation of the complete data log-likelihood function l(Θ; y) with respect to yij’s, given
the observed data and current estimates of the parameters.

Let the observed data be {O = (Observed yij’s, tij, δij, zi); i = 1, ..., n}. Now we have
to compute π(m)

j = E(yij|Θ(m), O) where Θ(m) denotes the values of parameters Θ at the
mth iteration step. For uncensored i, E(yij|Θ(m), O) = yij = 1. Now for the i’th censored
observation, we compute

π
(m)
j = Pr(Yi = 1, |Tij > tij, δij = 0, zi; Θ(m))

=

 pj(b)Sj(ti|Y =1,θ,zi)

p0(b)+
k∑

j=1
pj(b)Sj(ti|Y =1,θ,zi)


|Θ(m)|

i.e., at the m th iteration, the E-step value of yij is

w
(m)
ij =

{
1, if the ith individual is uncensored
πij

(m), if censored
(11)

lc(Θ;w(m)) = l1(b;w(m)) + l2(θ;w(m)) (12)

denote the conditional expectation of the complete data log-likelihood function, where w(m)

denote the vector of w(m)
ij values.

M-Step : In M-Step, we maximise the conditional expectation of the complete data
log-likelihood function lc(Θ;w(m)) with respect to each parameter in Θ = (b, θ) given wij to
obtain an improved estimate Θ(m+1) at the (m+ 1)th iteration.

The procedures in E-step and M-step are then continued iteratively until we meet
the convergence criteria to obtain maximum likelihood estimators of each parameter in the
parameter set Θ = (b, θ).

3.2. Asymptotic property of estimators

Let Θ̂ = (b̂, θ̂) denote the maximum likelihood estimates of Θ = (b, θ), where b̂ = b̂j

and θ̂ = (α̂, β̂j), j = 1, 2, . . . , k. Now consider the following regularity conditions.

(a) The first and second order derivatives of the log-likelihood function l with respect
to Θ viz., ∂l

∂Θ and ∂2l
∂Θ2 exist and are continuous functions of Θ in a range R (including the

true value Θ0 of the parameter) for almost all t. For every Θ in R
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∣∣∣ ∂l
∂Θ

∣∣∣ < H1(t) and
∣∣∣ ∂2l

∂Θ2

∣∣∣ < H2(t) where H1(t) and H2(t) are integrable functions over
(−∞,∞).

(b) The third order derivative with respect to Θ, ∂3l
∂Θ3 exists such that

∣∣∣ ∂3l
∂Θ3

∣∣∣ < M(t)
where E[M(t)] < Q, a positive quantity.

(c) For every Θ in R,

E
(
− ∂2l

∂Θ2

)
=

∞́

−∞

(
− ∂2l

∂Θ2

)
Ldt = I(Θ)

is finite and non-zero.

(d) The range of integration is independent of Θ. This assumption is to make differ-
entiation under the integral sign valid.

Under the above mentioned regularity conditions, as n → ∞,
√
n(Θ−Θ̂) → N8(0, I−1(Θ)), where the Fisher information matrix I(Θ) can be replaced

by a consistent estimate I(Θ̂) =
(

−∂2l
∂Θi∂Θj

)
Θ=Θ̂

. The observed information matrix is obtained
by applying Louis (1982) method. The variance of the estimates can be determined from
diognal elements of I−1(Θ̂). The asymptotic normality property of maximum likelihood
estimates is useful to determine the (1 −α) × 100% confidence interval of each parameter in
the parametric set Θ = (b, θ). Let b̂j is the maximum likelihood estimator (MLE) of bj. Then
MLE of cured proportion 1 − pj is 1 − p̂j=g(b̂j) is also asymptotically normally distributed
by the invariance property of maximum likelihood estimators.

4. Simulation Studies

Simulation studies are conducted to evaluate the performance of the proposed model.
Let C be the cause of failure and we assumed that there are two causes of failure. We consider
a single covariate Z, which is generated from a uniform distribution over the interval (0,1).
The censoring variable K is generated from uniform distribution over the interval (0,k) where
k chosen in such a way that the lifetimes are mildly or heavily censored. The observations
are followed up to a maximum time τ = 10. The data for each observation be (t, δ, Z, C),
where t = min (T ,K,τ) and δ be the event indicator. The data generated from the model
with incidence probabilities

pj(b) = exp(b0j + b1jZ)

1 +
2∑

j=1
exp(b0j + b1jZ)

(13)

for jth cause of failure, j = 1, 2. The cause specific survival functions are generated at
random using the following sub distribution functions suggested by Dewan and Kulathinal
(2007). Let,

F1(t) = P (T ≤ t, C = 1) = ϕF a(t)
F2(t) = P (T ≤ t, C = 2) = F (t) − ϕF a(t) (14)
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where 1 ≤ a ≤ 2, 0 ≤ ϕ ≤ 0.5 and F (t) is the distribution function at time T . Note
that ϕ = P (C = 1) and for a = 1, T and C are independent. The variables T and C
are dependent for other choices of a. The nonnegative condition of cause specific density
function of T is maintained by imposing these restrictions on the parameters. We choose the
values ϕ = 0.25 and a = 1.5 for simulating data. We fix the initial values b0j = 2, b1j = −1,
β0j = 1.5, j = 1, 2, β1 = −0.3, β2 = 0.2 and α = 0.2 . The initial values of the estimates
are chosen using Kaplan-Meier estimate of cured proportion and log-likelihood equation of
proposed the model (Balakrishnan and Pal (2012)). We generated random samples of sizes
n = 50, 100 and 200 and maximum likelihood estimation of the parameters is carried out
for the proposed model. The effect of censoring was studied in two situations viz, mild
censoring (on an average, 20% of the observations are censored) and heavy censoring (40%
of the observations are censored at average level). For the described configuration, 1000
replications are made. The results of absolute bias and MSE of the estimates are reported.
The coverage probabilities (CP) of the 95% confidence intervals based on the asymptotic
normality of the estimators are also reported. Table 1 shows the average absolute bias
and MSE of estimates at different censoring levels. It seems that the proposed model and
method work well. The parameters of the model are estimated with lower bias and MSE.
There is a slight increase in bias and MSE as the censoring scheme changes from mild to
heavy. The coverage probabilities of the asymptotic confidence intervals are also close to the
pre-determined levels and it is found to be better for samples of increased size.

Table 1: Absolute Bias and MSE of estimators of parameters

20% Censored 40% Censored
Sample size Parameter True value Bias MSE CP Bias MSE CP

b01 2.0 0.05822 0.013144 95.27273 0.090346 0.016547 95.03546
b11 -1.0 0.04495 0.01547 95.43568 0.05786 0.003348 95.19231
b02 2.0 0.07299 0.010114 95.00000 0.07698 0.013841 94.35028

50 b12 -1.0 0.05181 0.013698 95.50562 0.05601 0.014436 95.00000
β01 1.5 0.09006 0.027625 95.23810 0.099391 0.028006 94.83568
β02 1.5 0.09772 0.211936 95.70896 0.12413 0.242311 95.06173
β1 -0.3 0.09006 0.027625 95.23810 0.099391 0.028006 94.83568
β2 0.2 0.09772 0.211936 95.70896 0.20013 0.242311 95.06173
α 0.2 0.00756 0.000681 95.84463 0.00979 0.001025 95.3125

b01 2.0 0.02504 0.00976 96.29630 0.05485 0.01495 95.29220
b11 -1.0 0.04387 0.00360 97.72727 0.04486 0.00360 96.96970
b02 2.0 0.03678 0.00850 95.13880 0.04312 0.00931 96.23552

100 b12 -1.0 0.04452 0.00476 95.74468 0.04532 0.008003 95.55556
β01 1.5 0.07145 0.027625 95.23810 0.08236 0.028006 94.83568
β02 -1.5 0.08320 0.211936 95.70896 0.09008 0.242311 95.06173
β1 -0.3 0.05586 0.02350 95.58854 0.07920 0.01083 95.45455
β2 0.2 0.07491 0.06091 96.31902 0.08921 0.08549 96.31512
α 0.2 0.00515 0.00049 95.94229 0.00594 0.00034 95.83333

b01 2.0 0.02044 0.00112 98.53000 0.02144 0.01180 97.59450
b11 -1.0 0.01842 0.00335 98.54369 0.02253 0.00356 97.80220
b02 2.0 0.02052 0.00277 96.90000 0.02385 0.00622 95.45455

200 b12 -1.0 0.02765 0.00308 96.50000 0.03839 0.00479 96.35036
β01 1.5 0.04431 0.027625 95.23810 0.05319 0.028006 94.83568
β02 1.5 0.04749 0.211936 95.70896 0.05283 0.242311 95.06173
β1 -0.3 0.04488 0.01006 97.16981 0.05049 0.01329 95.50000
β2 0.2 0.06634 0.03085 97.29730 0.07233 0.05392 96.22302
α 0.2 0.00254 0.00025 97.73960 0.00437 0.00023 96.51452
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5. Data Analysis

To illustrate the applicability of the proposed model, we consider the data set from the
Stanford Heart Transplant Program. The data contains the details of 103 patients selected
for cardiac transplantation. A detailed description of data is available in Crowley and Hu
(1977). We consider a subset of this data set with 63 patients who received the transplant
to explain the application of the model. Out of these 63 transplant recipients, there were 27
(43%) deaths that occurred that due to rejection, 12 (19%) deaths from other causes and, the
remaining 24 (38%) were censored observations. Survival time was measured in days from
the date of transplant surgery. There are nine covariates in the original data set. We select
only one covariate, the mismatch score, a key factor that influences survival of patients after
heart transplantation (Miller (1976), Opelz, G. and Wujciak, T. (1994), Osorio-Jaramillo et
al. (2020)) for the analysis of data. The mismatch score measures the degree of dissimilarity
between the donor and recipient tissue concerning HLA antigens, and it is therefore related
to the phenomenon of rejection of the donor heart by the recipient’s immune mechanisms.
If the mismatch score is less than one, it is a sign of good match, and if the score is high,
greater than one represents a poor match (Miller (1976)). Hence we transform the selected
continuous covariate mismatch score into a categorical variable of two categories with cut-off
value one as per aforesaid classification criteria of matching and considered for the analysis
of data. There are two causes of failure in the data. The cause of death attributable to
rejection of the donor heart is labeled as cause 1 and cause of death due to other reasons
such as surgical, kidney failure, hepatitis, etc, and not due to rejection of the new heart is
labeled as cause 2.

As an initial step of the analysis, Kaplan- Meier plot is drawn for the data and displayed
in Figure 1. The plateau in the given survival curve confirms the presence of immunes in
the data. Hence the selected data is suitable for the analysis of cure rate models.
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Figure 1: Kaplan-Meier survival curve of heart transplant data
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In the present work, we are interested to study the effect of the covariate mismatch
score on the survival of patients who have undergone heart transplantation in competing
risks setting. The maximum likelihood estimators of regression coefficients are found out
using (12) under the given model assumptions. The statistical significance of the regression
coefficients is tested by the likelihood ratio test procedure. The estimates of regression
coefficients with corresponding standard errors are reported in Table 2. The result shows
that the higher mismatch score has a significant effect on rejection-related mortality among
patients after heart transplant (p = 0.013) but may not affect the survival of patients (p =
0.137). The role of mismatch score is negligible on rejection related mortality of patients
who died of competing causes.

Figure 2 displays plots of the estimated cumulative incidence rates for mismatch cate-
gories. From the Figure, it is obvious that the difference between cause specific failure rates
is more in high score (> 1) category of mismatch score compared to low score (< 1) category.
This is due to the variations in the influence of mismatch score on mortality of patients due
to two causes of failure.
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Figure 2: Cumulative incidence curve of mismatch score categories high score
(left) and low score (right) .

The estimated cured proportion among low score category (17.99%) is greater than that
of high score category (12.41%). It bring out the influence of the selected covariate mismatch
score on the survival of study subjects. The estimates and 95% Confidence interval of the
probability of cure due to rejection and due to other causes obtained from the model are
0.47 (0.34, 0.61) and 0.65 (0.50, 0.81) respectively. The estimated values of cured proportion
reveals the presence of cured individuals in the data and confirm the importance of the
proposed model. The goodness of fit of latency part of the model is tested using Cox-Snell
residuals with the modifications suggested by Peng and Tailor (2017). We consider the
Cox-Snell residuals ri = − logSj(t|Y = 1, θ, Z) using (4). The residuals for each cause of
failure estimated with different weights as given in (11) for the censored and uncensored
observations. The Kolmogorov - Smirnov test is performed to assess the unit exponentiality
of the data and p values obtained as p = 0.25 for rejection and p = 0.12 for other cause of
failure. The values indicate that the model fits well for the given data to explain each cause
of failure.
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Table 2: Estimates of parameters and Standard Error (SE)

Rejection (j = 1) Other Causes (j = 2)
Estimates Est SE P value Est SE P value

b0j 0.861 2.53 × 10−3 - 0.784 2.59 × 10−3 -
b1j 0.585 5.14 × 10−3 0.013 0.251 5.46 × 10−3 0.654
β0j -4.135 3.93 × 10−3 - -3.950 3.87 × 10−3 -
β1j 0.730 2.11 × 10−3 0.137 0.555 2.48 × 10−3 0.002

6. Conclusion

In this paper, we proposed a regression model with Weibull distribution for the analysis
of competing risks data with long term survivors. Maximum likelihood inference via EM
algorithm was implemented to estimate the parameters of the model. The goodness of fit
of the latency model checked using modified Cox-Snell residuals. The model was illustrated
with a real lifetime data on Stanford Heart Transplant Program and distinguished the effect
of covariate on short and long term survival of patients after heart transplant in competing
risks scenario. This article aimed to evaluate the effect of covariates such as clinico-social
variables, different treatment regimens and other prognostic factors on survival of patients
suffering from diseases when there is a chance of cure in the presence of competing risks
and expected to be useful for investigators in the field of survival analysis. The regression
analysis of interval censored data with cured proportion is also challenging in the field of
survival analysis. The work in this direction is under progress and it will be communicated
in a future paper.
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Algorithm for maximum likelihood estimation of parameters of the model

1. Determine the parameter values bj, βj, and α for j = 1, 2; (Select the initial values of
the parameters and input these values in first stage).

2. For the ith subject, generate the covariate Xi from Uniform(0,1);

3. Find out the probability of incidence pj(b) for ∀ Xi and j = 1, 2 ;

4. Generate censoring variable Ki from Uniform(0,k), where k is set to control the pro-
portion of censored observations;

5. Generate a random variable ui from Uniform(0,1);

6. Take vi as the root of F (t) − ui = 0, where F (t) is the distribution function corre-
sponding to the model;

7. Find ti = min(vi, Ki, τ), τ=10 (assumed). If ti < Ki, set δi = 1, otherwise δi = 0;

8. Find out survival functions Sj(t) for j = 1, 2 and S(t);

9. Find out ψi = 1 −ϕa(1 − S(ti))a−1 for i = 1, 2, . . . , n.; (Dewan and Kulathinal (2007))

10. Generate gi from Uniform(0,1);

11. If gi < ψi, set cause = 1, otherwise cause = 2;

12. Now the data set for the ith subject is (yij, tij, δij, Xi), i = 1, 2, . . . , n , j = 1, 2;

13. Find out the expected value πj for δij = 0, j = 1, 2;

14. Assign yij =1, if δij = 1. Otherwise yij =πj according to cause j. (yij = wij);

15. Maximize the complete data log-likelihood function and estimate the parameters;

16. Repeat the procedure of Expectation-Maximization till the convergence criteria is met
to get improved estimate (say, λ − λ̂ < δ, a pre defined small quantity for parameter
λ)

17. Replicate the required number of data sets.
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Abstract
The technology revolution moves the world towards automation and most of the ac-

tivities are performed with minimum human intervention. The medical domain is not an
exception, few developments in the medical domain helps both the patient and physician to
some extent. As a part of this advancement, Visual Question Answering (VQA) in the med-
ical domain is evolved and which helps the physician and partially visually sighted people in
clinical decision making and patient education. One of the main disadvantages in achieving
this advancement is data limitation problem. In this paper, two methods for handling the
data limitation problem are explained and validated using appropriate pre-trained models
like VGGNet and ResNet. The methods namely label smoothing and mixup are used to
reduce the hard samples and augmentation of the medical data. From the performance
analysis, it has been inferred that the highest accuracy and BLEU score are obtained for
improved dataset as 0.297 and 0.313 for ResNet with a significant improvement of 7.9% and
5.9% respectively.

Key words: Medical VQA; Data augmentation; Label smoothing; Mixup; VGGNet; ResNet.

1. Introduction

The VQA in medical domain is an emerging field during last few years. But it has many
challenges like data limitation, computation time and requires expert radiologist knowledge.
Among the challenges, the data limitation issue is chosen based on the suggestions given
by few researchers. Saurrouti et al. (2021) stated that the new training samples generation
reduced the data insufficiency and avoided overfitting for VQA-RAD dataset. He et al.
(2020) observed that the pathology images are rarely available, and the involvement of well
trained pathologists in supporting dataset creation and validation are significantly minimal
in real time. Hence, they addressed this issue by extracting pathology images and question-
answer pairs from textbooks using semi-automated pipeline. Both the researchers stated the
dataset insufficiency problems and adapted different approaches to reduce the issue to some
extent. In this section, the existing methods to address the data limitation problem related
to medical VQA dataset and its techniques are discussed.

Corresponding Author: Sheerin Sitara Noor Mohamed
E-mail: sheerinsitaran@ssn.edu.in



280 SHEERIN SITARA NOOR MOHAMED AND KAVITHA SRINIVASAN [Vol. 20, No. 2

Nguyen et al. (2019) addressed the data limitation problem by combining the denoising
auto encoder and meta-learning for large scale unlabelled data, but the compatibility between
questions and the visual contents are neglected. Gong et al. (2021) proposed the multi-
task pre-trained framework, which learns the linguistic compatibility feature set and visual
content using classification and segmentation on the external dataset for data limitation
problem. Chen et al. (2020) suggested few techniques to overcome the data limitation
problem such as mixup, label smoothing and adaptive curriculum learning. According to
Zhang et al. (2020) mixup is a simple but effective augmentation technique based on data
centric efficient training. Szegedy et al. (2017) concluded that the label smoothing method
avoids the model bias on the data by stabilizing the training progress. Bengio et al. (2009)
stated that the noise in training set is unavoidable and it can be rectified by curriculum
learning, which automatically reduces the weights of the samples with higher loss value.

One of the researcher, Chen et al. (2020) stated that many solutions are available to
overcome data limitation problem but the easiest way is to collect more samples from the
available datasets (VQA MED competition) and updating as per the user interest. Image-
CLEF is one of the VQA-MED competition forums which has been conducting tasks related
to medical image captioning and medical Visual Question Answering since 2018 by providing
dataset as open-source. The dataset description of these tasks are given in Table 1 and the
importance of each task are as follows: (i). ImageCLEF VQA-MED 2018 task concentrates
on VQA dataset related to different organ, plane, modality and abnormality because very
few medical VQA dataset was available during that time. (ii). In the ImageCLEF VQA-
MED 2019 task, the number of samples for each category is increased to generate a better
model but the abnormality type VQA samples in the dataset degrades the overall perfor-
mance. (iii). ImageCLEF VQA-MED 2020 task concentrates on abnormality type queries
for different organ, plane and modality (iv). In the ImageCLEF VQA-MED 2021 task, the
number of classes and the equivalent abnormality type samples are increased. The dataset
obtained from ImageCLEF VQA MED 2020 and 2021 tasks are augmented and used in this
research work for VQA model generation.

As per the literature (Hasan et al., 2018, Abacha et al., 2019 and Abacha et al., 2020),
different techniques are used in medical VQA for visual and text feature extraction process.
The visual feature extractions techniques are Convolutional Neural Network (CNN) or pre-
trained models like VGGNet, ResNet or Inception – ResNet and, the text feature extraction
techniques are Long Short Term Memory (LSTM), Bidirectional Long Short Term Memory
(Bi-LSTM) or Bidirectional Encoder Representations from Transformers (BERT). Then the
extracted features are encoded using Stacked Attention Networks (SAN), Bilinear Attention
Network (BAN) or Multi-modal Factorized High-order pooling (MFH) for attention based
feature fusion for training the model. One of the researcher, Aisha et al. (2020) proposed
a VQA model for ImageCLEF VQA-MED 2020 dataset using VGG16, ResNet or DensNet
where the last layer is equivalent to the number of classes of the dataset.

As of now, the data limitation problem are addressed in a few ways: (i). Extracting
dataset from the textbook using semi-automated pipeline for pathology medical dataset
(ii). Combining the denoising autoencoder and meta-learning approach for unlabelled large
dataset (iii). By learning the visual content and linguistic compatibility in the feature set
for the VQA-RAD dataset. The limitations of existing methods includes: (i). The generated
dataset has limited set of queries (ii). The compatibility between the question and the visual
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content are neglected (iii). The cross model self-attention approach captures the long-range
dependency between the question and visual content but the resulted number of samples are
not increased. To overcome this specific issue, the number of samples are increased explicitly
by mixup and label smoothing methods in the proposed work. Also, the modified dataset
(improved) can be used directly in model creation, which in turn will reduce the overall
computation time. For validating the model, different pre-defined techniques are available
among which VGGNet and ResNet are significantly better than other techniques. Also, the
datasets of ImageCLEF VQA-MED 2020 and 2021 are more suitable to analyse abnormality
type questions as given in Table 1.

Table 1: ImageCLEF VQA – MED dataset description

ImageCLEF VQA-MED Dataset Training Set Validation Set Test Set Categories
Images QApairs Images QApairs Images QApairs

Hasan et al. (2018) 2278 5413 324 500 264 500 Organ, plane, modal-
ity and abnormality

Abacha et al. (2019) 3200 12792 500 2000 500 500 Organ, plane, modal-
ity and abnormality

Abacha et al. (2020) 4000 4000 500 500 500 500 Abnormality
Abacha et al. (2021) 4500 4500 500 500 500 500 Abnormality

Source: ImageCLEF VQA-MED 2018 to 2021 tasks

The remaining sections of this paper are organised as follows. In Section 2, the dataset
description and design of the proposed VQA model with dataset improvisation methods are
briefly explained. In Section 3, the experimental setup and the results obtained are analysed
with suitable quantitative metrics. Finally, summarized with conclusion and future work by
stating the importance of dataset improvisation in medical domain.

2. Proposed Methodology

In the proposed system, the dataset is improvised by removing the hard samples and
augmenting the data and, the pre-trained models are used to perform Visual Question An-
swering. For dataset improvisation, the methods label smoothing and mixup are used se-
quentially and vice-versa to improve the efficiency of the model. This can be further validated
by the pre-trained models (VGGNet and ResNet) with the number of nodes in the last layer
equivalent to the number of classes for the original and improved datasets. The overall
system design of the proposed system is shown in Figure 1.

Figure 1: System design
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2.1. Dataset description

The dataset used in this work is collected from ImageCLEF VQA-MED 2020 and 2021
for model generation and validation is mentioned in Table 2. The overall training set images
are 5000 samples of radiology images with equivalent question-answer pairs. Similarly the
validation set and test set comprises of 500 radiology images with its respective 500 question-
answer pairs.

Table 2: Dataset description

ImageCLEF VQA-MED Training Set Validation Set Test Set
Dataset (Year) Images QApairs Images QApairs Images QApairs

2020 500 500 - - - -
2021 4500 4500 500 500 500 500
Total 5000 5000 500 500 500 500

2.2. Label smoothing

The label smoothing methodology removes hard samples by adjusting the probability
of target label is referred from (Gong et al., 2021) as given in Equation (1),

pa = f(x) =
{

1 − ε, if a = b.
ε

M−1 , otherwise.
(1)

where ε is the small constant, M is the number of classes, and pa denotes the probability of
category a. This method is more suitable, when there are an elevated number of hard samples
in the dataset and which affects the accuracy considerably. The hard samples are removed
by grouping the representation of the samples from the same class into a tight cluster to
improve the generalization ability. In general, the role of label smoothing in medical VQA
dataset is to reduce the hard samples by adjusting the probability of target samples.

2.3. Mixup

The mixup methodology alleviates the data limitation problem by augmenting the
dataset. Given the two samples (xa and ya) and (xb and yb), the new image x̂ and ŷ are
created by linear interpolation by the equation is referred from (Gong et al., 2021) as given
in Equations (2) and (3),

x̂ = λxa + (1 − λ) xb (2)

ŷ = λya + (1 − λ) yb (3)

pa = f(x) =
{

Random(β(α, α)), if α > 0.

1, otherwise.
(4)
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β(α, α) = γ(α + α))
(γ(α) ∗ γ(α)) (5)

γ(α) = (α − 1)! (6)

where αϵ
[
0, 1

]
is the shape parameter, γ is the factorial function to capture the con-

tinuous change, βϵ
[
0, 1

]
is the target probability distribution value modifier and λϵ

[
0, 1

]
is a

random value used to create new samples during the training process are given in Equations
(6), (5) and (4), respectively.

The parameter α modifies the shape of the probability distribution and γ function is
used to compute the range of probability distribution values. The α parameter in the beta
distribution function controls the interpolation between feature-target pair using γ value.
The beta distribution is chosen for two reasons, such as (i) to compute the probability
distribution value from the range of alpha values (ii) the probability distribution function of
beta distribution is approximately normal if γ

(
α + α

)
is large. The role of mixup in medical

VQA tasks is to augment the dataset by generating the new images from the existing images
by linear interpolation.

2.4. VGGNet and ResNet

The medical VQA dataset improvised by label smoothing and mixup is given as input
to the pre-trained models. In the pre-trained models, the last layer (fully connected layer) is
frozen and the resultant model is used in the training process. The last layer is frozen because
it is trained for the ImageNet dataset but the output dimension needs to be equivalent to
the modified number of abnormality classes of the dataset to be validated. For this reason,
the fully connected layer is frozen to predict the abnormality class types. The architecture
of the pre-trained models, such as VGGNet and ResNet are referred from Simonyan et al.
(2015) and He et al. (2016) for the implementation of proposed system.

3. Experiments and Results

In this section, the implementation requirement and experimental setup are discussed
for the proposed system. Then the significance of label smoothing and mixup methods
are analysed from the results of the proposed model along with hyper parameters for two
datasets (original and improved).

The implementation platform (hardware) for the proposed system are: (i). Intel x64
Processor (ii). 16 GB RAM (iii). 1TB Memory (including 50 GB disk space) (iv). SSD drive
to support high speed Input/Output (v). Graphics Processing Unit. The software require-
ments includes: (i). Ubuntu 16.04 (ii). Python 3.6 (iii). Tensorflow library. The following
paragraphs explains the significance of proposed system developed with this environmental
setup.

In label smoothing, the number of hard samples are removed by adjusting the prob-
ability of target label using the parameters ϵ and M . The determination of appropriate
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class label based on target label probability is shown in Figure 2. In this, y-axis denotes
the probability of the particular class and hence it ranges from 0.0 to 1.0 and x-axis denotes
the comparison between target and predicted value and it achieves its peek value when both
values are comparatively equal and it varies for each samples.

Figure 2: Appropriate class label with respect to target label probability

The hyper parameters and its values of label smoothing method is shown in Table 3
whereas common parameters are given in Table 5. Among the hyper parameters, Multi-
StepLR is used to modify the learning rate based on Stochastic Gradient Descent, which is
updated whenever number of epochs reaches one of the two milestone (initially it starts with
0.1).

Table 3: Label smoothing - Hyper parameters for improved dataset

Hyper parameters # value(s)
Learning rate Starts with 0.1, update the value at 30th, 60th and 90th epoches

Epoch 120
Pooling 1X1 (Adaptive Average Pooling)

In Mixup, the new image is generated using two images with appropriate parameters
such as α, γ, β and λ. The choice of alpha value plays a significant role in linear interpolation
of new image because it acts as a basic element for all required computation. The variation
of beta value distribution with respect to α value is shown in Figure 3. The alpha value
can be represented as 0 < α ≤ 1. The value of α never be zero, because at this point beta
distribution is undefined and hence the scale is 0.1 to 1.0 with an interval of 0.1 in x-axis.
The resulted beta distribution ranges from 0.20 to 0.50 with an interval of 0.05 is the scale
of y-axis.

The hyper parameters specific to mixup method is given in Table 4 and, the hyper-
paramters and its value common to both mixup and label smoothing for improved dataset
is given in Table 5. In Table 3, the learning rate is decreased by 10% after 100th epoch then
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Figure 3: Range of beta value distribution with respect to α value

again 10% after 150th epoch because smaller learning rate allows the model to learn more
optimal set of weights but takes significantly longer time to train the model.

Table 4: Mixup - Hyper parameters for improved dataset

Hyper parameters # value(s)
Learning rate 0.1, 0.01 and 0.001

Epoch 200
WeightDecay 0.0001

Pooling 4X4 (Average Pooling)

As a result of these two methods, the dataset comprises of 5000 VQA-MED samples
with 324 classes is updated. The modifications in the number of samples and classes for
label smoothing followed by mixup and vice versa are given in Table 6. In mixup followed
by label smoothing method, the number of samples are augmented and then removed and
hence few of the least contributing samples with higher loss values are also augmented.

The importance of improved dataset generated from label smoothing and mixup are
validated using pre-trained models. The common hyperparameters used for VGGNet and
ResNet for validating the model is shown in Table 7.

The results are analysed using the quantitative metrics namely accuracy and BLEU
score for three cases such as, without dataset improvisation, with dataset improvisation
(Label smoothing followed by mixup, mixup followed by label smoothing) as mentioned in
Table 8.

From the overall results given in Tables 6 and 8 , some of the interesting inferences are:
(i) The label smoothing followed by Mixup gives comparatively better results even though
the number of samples are reduced (ii) Improvised dataset gives better results for both cases



286 SHEERIN SITARA NOOR MOHAMED AND KAVITHA SRINIVASAN [Vol. 20, No. 2

Table 5: Hyper parameters common to label smoothing and Mixup for improved
dataset

Hyper parameters # value
WeightDecay 0.0001
Momentum 0.9

Normalization 64 (Batch Normalization)
Kernel size 3

Stride 1
Padding 1

Batch size 64
Type of Optimizer Stochastic Gradient Descent

Type of Activation function Rectified Linear Unit

Table 6: Improved dataset description

Label Smoothing followed by Mixup Mixup followed by Label Smoothing

Execution
Sequence

Number of
Samples

Number
of Classes

Execution
Sequence

Number of
Samples

Number
of Classes

Label Smooth-
ing

4294 297 Mixup 5134 324

Mixup 4513 297 Label Smooth-
ing

4700 302

(VGGNet and ResNet) (iii) For improved dataset, the overall accuracy is increased by 3.8%
and 7.9% for VGGNet and ResNet respectively and (iv) For augmented dataset the accuracy
and BLEU score are increased by 7.9% and 5.9% respectively for ResNet. In addition, the
results of two metrics is graphically represented in Figure 4, for Datasets Vs ResNet only.

Table 7: VGGNet and ResNet - Hyper parameters

Hyper parameters # value
Batchsize 128

Epoch 100
Dropout 0.2

Learning rate 0.001
Type of Optimizer RMSPROP

In Figure 4, x-axis denotes the dataset and y-axis denotes the performance value
achieved for three datasets which ranges between 0.20 and 0.32 with an interval of 0.02.
The WoDI , LS MU and MU LS used in the graph represents Without Dataset Improvisa-
tion, Label Smoothing followed by Mixup and Mixup followed by Label Smoothing respec-
tively. From Figure 4, it is clear that Label smoothing followed by mixup data improvisation
achieved better accuracy and BLEU score using ResNet.
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Table 8: Performance analysis
Performance Metrics Label Smoothing followed by Mixup Mixup followed by Label Smoothing Without improvisation of dataset

VGGNet ResNet VGGNet ResNet VGGNet ResNet
Accuracy 0.234 0.297 0.230 0.284 0.196 0.218
BLEU Score 0.257 0.313 0.248 0.299 0.227 0.254

Figure 4: Dataset Vs performance analysis for ResNet

WoDI: Without Dataset Improvisation; LS MU: Label Smoothing followed by Mixup; MU LS:
Mixup followed by Label Smoothing

4. Conclusion and Future Work

In this research, to strengthen the dataset of medical VQA, two methods namely label
smoothing and mixup are chosen and its parameters are analysed and modified to improve
the dataset. In label smoothing method, the hard samples are removed by adjusting the
probability of target samples and mixup method augmented the new samples from the exist-
ing samples by linear interpolation. These methods improvises the efficiency of the dataset
and overcomes the data limitation problem in the medical domain to some extent. The
importance of dataset improvisation is validated using the pre-trained models (VGGNet and
ResNet) with appropriate hyperparameters. The accuracy and BLEU score is improved by
3.8% and 3.0% for VGGNet, and 7.9% and 5.9% for ResNet respectively using the improved
dataset. From the results, it has been inferred that the removal of hard samples and data
augmentation improved the performance of the model significantly.

The important future direction is the creation of larger and varied dataset by increasing
the number of samples in each category of medical domain with enhanced quality. Using this
dataset, an improved VQA system can be developed to answer all medical queries. The VQA
system development can be enhanced by selecting suitable hyper parameters to increase the
efficiency and reliability of the system.
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