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Analysis of River Water Quality Using Geo-Spatial and
Temporal Data: A Case study

K. Muralidharan, Shrey Pandya, Aiman Shaikh, Parth Patel and Jayshree
Vanzara
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Abstract
The conventional approach of water quality assessment via sampling followed by labo-

ratory measurement methods comprises the analysis of different properties such as chemical,
physical. The main idea behind detection of water quality parameters using imaging is based
on the presence of pollutants in water and absorption of the incoming solar radiation. In this
study, by considering data of the conventional water quality testing,an attempted is made
to identify the association between the laboratory results and the indices and bands values
obtained from spatial data, to determine their applicability in water quality estimation and
prediction. The study makes use of two types of data, visually, spatial and non-spatial data.
The spatial data used was Landsat-8 OLI from which the water index was calculated. While
under non-spatial data ancillary information and water parameters were considered. Based
on the analysis an approach was made to find the relation between Water Quality Index and
spatial parameters. Further, a model was established to estimate WQI from spatial data.

Key words: Water pollutants; Spatial estimation; Regression analysis; Water quality index;
Anthropogenic waste.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Water is an elixir of life. It is a precious natural resource and an important compo-
nent of human survival and to maintain life cycle on our blue plant. Out of the total water
reserves of the world, about 97% is salty water (marine) and only 3% is freshwater. Even
this small fraction of freshwater is not available to us as most of it is locked up in polar
ice caps and just 0.003% is readily available to us in the form of groundwater and surface
water Pawan and Pradeep (2015). Due to its unique properties it is an essential part of all
living organisms on the planet. Human beings depend on water for almost every develop-
ment activities like drinking, irrigation and transportation, washing and waste disposal for
industries and used as a coolant for thermal power plants. Water shapes the earth’s surface

Corresponding Author: K. Muralidharan
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and regulates our climate. With increasing human population and rapid development, the
world water withdrawal demands have increased many folds and a large proportion of the
water withdrawal is polluted due to atmospheric activities. Rivers are the most important
water resources. It has long been used for discharging wastes. Unfortunately, the rivers
are being polluted by indiscriminate disposal of sewage, industrial wastes and by human
activities Pawan and Pradeep (2015).

The conventional approach of water quality assessment via sampling followed by labo-
ratory measurement methods comprises the analysis of different properties such as chemical,
physical, biological and other indicators Ouma et al. (2018). However, water sampling and
the subsequent measurements of water quality parameters (WQP) are helpful in representing
point-based estimates of the quality of water conditions in terms of time and space both,
while, obtaining spatial-temporal variations of water quality indices for large water bodies
is very challenging Ritchie et al. (2015), ouma et al. (2018). Apart from the factors like te-
dious, work serious and exorbitant, some of the other significant limitations associated with
the conventional method for water quality assessment are inability to monitor, forecast and
manage the entire water body due to the water surface extent and its topographic character-
istics and the lack of spatial-temporal data. To overcome these limitations, there is a need
for technology which is fast, inexpensive, simple, automated and non-invasive in operational
and productive aquatic environmental monitoring. Measurements and observations taken
with such tools should provide essential information with respect to bio-geophysical water
quality aspects Garaba et al. (2015), which is economically efficient, along with adequate
spatial coverage, resolution and most important available on regular time intervals as well.

By utilizing remote detecting, the optically dynamic water constituents can be iden-
tified depending on their cooperation with light and the resulting change in the energy of
the occurrence radiation as reflected from the water body Ritchie et al. (2015). The main
idea behind detection of water quality parameters using imaginary data is based on pollu-
tants present in water and absorption of the incoming solar radiation and the water quality
can be correlated with the characteristics of the water segments, such as colour and trans-
parency Dor and Ben-Yosef (1996). This implies that optical information can give an elective
means to getting generally minimal expense and synchronous data on surface water quality
conditions Dor and Ben-Yosef (1996), Dekker et al. (1993). Regardless of the capacity of
remote detecting to be utilized for the appraisal of water quality with the ideal benefits of
being convenient and practical, the procedure may not be adequately exact and should be
benchmarked with the conventional testing techniques and field studies. That is, for better
understanding, incorporated utilization of remote detecting, in-situ estimations and PC wa-
ter quality displaying is probably going to bring about a more fiery information on the water
quality in each surface water framework Gholizadeh et al. (2016).

Sampling and field measurements, have been the standard techniques that are been
practiced since long in the determination of water quality with help of certain variables,
at the same time various tests and approaches have been carried out for the estimation of
different water parameters, in different case studies using novel methods and procedures.
Despite being the traditional approach for water quality testing, the laboratory methods
are unable to present the real-time spatial overview which is necessary for the monitoring
of water quality at certain regular interval and make decisions Brivio et al. (2001). In this
study, by considering data of the conventional water quality testing, an attempted is made
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to identify the association between the laboratory results and the indices and bands values
obtained from spatial data, to determine their applicability in water quality estimation and
prediction. For further analysis, a correlation of the distribution of the measured WQP using
laboratory measurements and the remote sensing models are spatially analysed. Retrieval
of water quality characteristics from remote sensing was made possible using Landsat sen-
sors, namely, operational land imager (OLI). This was used to establish relationship between
water quality parameters, such as power of hydrogen (pH), temperature, dissolved oxygen
(DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Nonethe-
less, dispect of many advantage that is possesd by Landsat the use of Landsat data has
the few limitations: (1) the repeat cycle of sensor is of 16 days and that imposes major
limitations on intra-seasonal monitoring more accurately, especially in areas characterized
by frequent cloud cover and (2) the water quality parameter characteristics must be related
to the inherent optical property (IOP) that can be measured by the satellite sensor Brezonik
et al. (2005).

Remote detecting based models have broader uses in vast sea waters. While, in-
vestigations on inland freshwater bodies by that of remote detecting estimations are bit
complex. Making it hard to foster functional freshwater remote detecting calculations. Be-
sides, it is unimaginable to expect to utilize existing algorithmic models for exact water
quality assessment. Not withstanding the calculations having been approved in explicit con-
textual investigations, the confined attribute of every space makes it important to rethink
and revalidate the current calculations for their potential applications in other WQP forecast
contextual analyses Ouma et al. (2018).

Remote sensing estimation of surface water quality is based on mapping the rela-
tionship between remote sensing multispectral signatures and measurements of ground truth
data (i.e., concentrations of SWQPs). Additionally, a remote sensing study of surface water
quality requires multispectral data for the surface features, as they would be measured at
ground level. Surface Water Quality Parameters (SWQPs) can be broadly classified into
two main classes: optical and non-optical SWQPs. Optical parameters are optically sen-
sitive parameters that can be sensed by remote sensing and hence can be approximated.
A significant number of studies have been conducted for assessing optical parameters KC
et al. (2019). A challenge is to approximate underlying relationship between both optical
and non-optical parameters. Optical SWQPs, such as turbidity and total suspended solid
(TSS) are most likely to affect the watercolour, the reflected signals and consequently can
be detected by satellite sensors. On the other hand, non-optical SWQPs, such as COD,
BOD, DO, total dissolved solid (TDS), pH and surface water temperature are less likely to
affect the reflected radiation (Din). Mapping the relationship between Satellite Data and
the Concentrations of SWQPs is achievable via regression techniques. Theoretically, the
relationship between satellite multi-spectral signatures and the concentrations of SWQPs is
too complex, especially in the presence of various pollutants at the same time. Moreover,
it is very challenging for regression techniques to model such a complex relationship. The
proposed solution aims at developing a novel artificial intelligence i.e., learning-based) mod-
elling method for mapping concentrations of both optical and non-optical SWQPs by using
remotely sensed multispectral data Ouma et al. (2018).

The organization of the paper is as follows: The details about the methodology and
study area are presented in Section 2. The data capture methods along with their specifica-
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tions are discussed in Section 3. Section 4 presents the detailed analysis and interpretations.
Some recommendations on the quality index are also studied in this section. The paper ends
with a conclusion in the last section.

2. Materials and methods

2.1. Methodology

In this study two different types of data, visually, spatial and non-spatial data were
used. The spatial data used was Landsat-8 OLI from which water index was calculated and
water body area was extracted from the raw data using shapefile. While under non-spatial
data ancillary information and water parameters were considered. Based on the analysis an
approach was made to find the relation between Water Quality Index and spatial parameters.
Further, a model was established to estimate WQI from spatial data.

Figure 1: Methodology of the study

2.2. Study area

This study was carried out with respect to the location Dhuvaran situated in the
Mahi basin. Dhuvaran (22.539188° N latitude and 72.412128° E longitude) is a remote
village that comes under Khambhat taluka of Anand district, located at the point where
Mahi river ends and the gulf of Khambhat starts. This village has a population size of 8043
of which 4168 are male and 3875 are female as per the population census 2011. The climate is
semiarid with a temperature range of 15°C in winter and 34°C in summer. Significant rainfall
occurs during the Southwest monsoon winds, from June to September and receive annual
rainfall ranging from 20 inches to 30 inches. The location is very close to a nuclear power
plant which is infamous for industrial pollution and anthropogenic waste accumulation. This
effect the quality and consumption of water for everyday usages. The site is also famous
for unusual climatic and temporal variations towards water scarcity and quality problems,
which attracts environmentalists and statisticians to carry out studies to help policymakers
to have interventions and strategies. The study area is shown in Figure 2.
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Figure 2: Study area map

3. Data presentation

3.1. Remote sensing data acquisition

Remote sensing data used for this context was based on the Landsat 8 optical land
imager (OLI) level-2 imaginary (path:148 and row:45), acquired for free through united
states geological survey (USGS) earth resources observation and science center (EROS) from
January 2015 to March 2021. For this study bi-monthly data was considered with no or
less cloud coverage. Overall, we had 51 spatiotemporal data scenes. The acquired data of
the study area was already geometrically corrected and further, radiometric correction of
multispectral imagery was done of acquired data by converting digital numbers (DNs) to
the spectral radiance. Landsat 8 OLI level-2 processed data consists of 10 bands ranging
from 435 nm-11190nm, which comprises of visible bands, NIR, SWIR and TRIS bands with
a resolution of 30 meters for visible, NIR and SWIR; and 100 meters for TRIS. Data for the
same can be acquired after every 15 days. Table 1 presents the specifications of these bands.

Table 1: L-8 OLI level-2 band description

Band Number Band Description Band Range (nm)
B1 Costal Aerosol 435 - 451
B2 Blue 452 -512
B3 Green 533 -590
B4 Red 636 -673
B5 Near Infrared (NIR) 851 -879
B6 Short Wave Infrared (SWIR-1) 1566 -1651
B7 SWIR-2 2107 -2294
B10 Thermal Infrared Sensor 10600 - 11190
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3.2. Ground data

A sampling of surface water was collected from January 2010 to December 2020 from
a predefined site. Parameters like pH and temperature were taken on the ground while,
parameters like TDS, BOD, DO samples were brought to the lab for physicochemical exper-
iments. Standard methods were carried out for capturing data related to these parameters
Singh and Jayakumar (2016), APHA (2005). They are further considered for calculating the
water quality index and were compared with the standards of WQI, as shown in Table 2.

Table 2: Water quality index scale

WQI Rating
0-25 Excellent
26-50 Good
51-75 Poor
76-100 Very poor

Above 100 Unsuitable

4. Analysis and findings

4.1. Modified normalized difference water index (MNDWI)

MNDWI was proposed by Xu et al. (2006) who noticed a limitation about NDWI of
not being able to suppress the signal reflected from the land and the build-up efficiently Yun
Du et al. (2016), Xu. et al. (2006). Based on the finding, the proposed formula of MNDWI
is shown as:

MNDWI = ρGreen − ρSWIR
ρGreen+ ρSWIR

(1)

where ρGreen is the top of atmosphere (TOA) reflectance of the green band and ρSWIR is
the TOA reflectance of the SWIR band. In Landsat-8 OLI band 3 is mapped as a green
band that has a spatial resolution of 30 m while band 6 is SWIR-1 and has the same spatial
resolution of 30 m. So, with respect to resolution for Landsat 8 OLI formula can be rewritten
as:

MNDWI30 m = ρ3 − ρ6
ρ3 + ρ6

(2)

The normalized values were obtained by subtracting and adding the same bands in
numerator and denominator and the values will range between -1 to +1.

4.2. Water parameters

The visualisation of ground and spatial data was done in the exploratory data analysis
to understand the trend and distribution of the data. As illustrated in Figure 3, a line
chart was created using the lower and higher limits set by the water pollution control board
(WPCB/PCB) for each parameter. From 2013 to 2017, there was a notable shift in all Water
parameters for the area, as shown in Figure 3. To capture the information’s regarding the
water quality, it was decided to have continuous monitoring and assessment of all variables
as described below.
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Dissolve oxygen (DO)

This parameter measures the amount of oxygen present in the water in dissolved
formed. which is an important factor for the survival of the biotic components present under
the water bodies. It depends on several factors like temperature, water agitation, type
and number of aquatic plants and light penetration amount of dissolved suspended solids
Sudarshan et al. (2018). The optimum range for good water quality ranges from 4-6 mg/l,
which ensures healthy aquatic life in a water body Sawyer et al. (1994), Leo and Dekkar
(2000), Burden et al. (2002), De (2003). Figure 3(a) indicates that the DO level dropped
dramatically between 2013 and 2014, eventually reaching its lowest point in 2015. As a
result, the survival rate of all biotic components presents in the waterbody in that area may
have reduced leading to unsuitable for everyone’s survival. The overall average of the DO
data is 6.5 which falls under the range of good water quality which reflects a good aquatic
life.

Biological oxygen demand (BOD)

BOD determines the strength in terms of oxygen required to stabilise the domestic
and industrial wastes Shah et al. (2016). From 2012 to 2016 the demand for oxygen was
high in the study area which resulted in a fall in the level of DO. On basis of which our
assumption is, wastes released in the water body was not treated as per the standards and
hence to stabilise more oxygen was required. The data on BOD showed a declining trend
after 2016 with a severe fall till 2018 and after that, the value remained below constantly as
observed in Figure 3(b).

pH

pH is one of the most common parameters affecting quality and hence is given due
consideration in this study. Data related to this variable is directly captured from the field
and no laboratory testing is performed on this. This parameter reflects the acidic or basic
property of water (Figure 3(c)). The value of pH below 6.5 causes discontinuation in the
making of vitamins in the human body. When pH becomes more than 8.5, the taste becomes
saltier and causes eye irritation and skin disorders Gupta et al. (2017). The average pH
value in our study is for the defined time frame was 7.9 which is close to 8 means salt
contamination is more.

Temperature

Temperature is the easiest and common parameter but has a significant role to play
for other parameters. Many parameters have a direct relationship to temperature. the
temperature data chart showed an increasing trend, crossing the upper specification may
limit during the 2017-2018 period (Figure 3(d)).

4.3. Measuring unit of variables

The source and nature of data considered in this study are different as a result the
measuring units are also varying. Water parameters like DO, BOD, TDS have measuring
unit milligram per liter, pH has an ordinal scale ranging from 0 to 14, temp. is measured
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in degree celsius and bands of geospatial data has unit nanometer (nm) while WQI and
MNDWI are unit free.

Figure 3(a): Control chart of DO Figure 3(b): Control chart of BOD

Figure 3(c): Control chart of pH Figure 3(d): Control chart of temp.

4.4. Water quality index (WQI)

Despite monitoring individual water parameters, it is a bit difficult to assure the
quality of water at a given point of time and location by looking at these parameters. Water
quality plays an important role in such cases while making decisions with respect to water
management and interventions for improving the quality. It defines the whole status of
the water body by a single number and informs the public about its state APHA (2005),
Sudarshan et al. (2018), Ashok et al. (2011). This single value gives information about
the quality state of water at a given point of time for any space Alobaidy et al. (2010).
In this study, weighted arithmetic mean WQI (WAWQI) is used to calculate the quality
index Horton (1965), Sudarshan et al. (2018). Four parameters namely pH, DO, BOD,
temperature were considered for calculating the WQI. Standards for drinking water was
recommended by BSI (Indian standard specification for drinking water, 2012). The WAWQI
is calculated as:

WAWQI =
∑i=n

i=0 WiQi∑i=n
i=0 Wi

(3)
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where unit weights ( Wi) were calculated for each parameter by following the formula as
given in Tiwari and Mishra (1985)

Wi = Kj ∈
(

1
sn

)
, (4)

where Kj = 1
1

S1
+ 1

S2
+...+ 1

Sn

.

Now Quality rating scale (Qi) was calculated using the formula for all parameters
except two variables DO and pH of pure water.

Qi = Q(act)−Q(ideal)
S(std)−Q(ideal)

×100 (5)

where, Wi = unit weight of each water quality parameter, K = Proportionality constant, Qi
= Quality rating scale for each parameter, Qact= Estimated concentration of ith parameter
in the analyzed water, Qideal = Value of the parameter in pure water, Sstd = Standard value
of ith parameter and n = No of water quality parameters.

For pH, value of Qi is 7.0 and for DO, it is 14.0. The water quality index finally
obtained is visualized in Figure 4. After calculating the weight of the parameter and quality
rating scale, values were substituted in the final formula of WAWQI and then the index value
were compared.

Figure 4: Control chart of Water Quality Index calculated using defined formula

However, looking at the WQI chart (Figure 4), it is seen that the variation was not
suitable for an initial period, but with the passage of time, further, fluctuated significantly.
This is attributed to an unknown lag effect and hence, the quality of water may not be
suitable for consumption and domestic usages. As per our understating some of the factors
that affect the quality can either be due to industrial disposal, human activities in the nearby
areas, or can be underwater disturbances in aquatic life. To predict WQI and water quality
parameters from non-conventional data, it’s crucial to see if there’s a relationship between
the two types of data. To do so, a correlation matrix and a heatmap were created, as shown
in Figure 5. It was discovered that DO and WQI had a very high correlation, whereas there
was a moderate correlation between spatial and non-spatial data source variables.
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Figure 5: Correlation matrix and heatmap chart

4.5. Multiple linear regression analysis

To understand the influence of reflectance data on the WQI and its parameters, a
multiple linear regression was carried out to understand the significance of each variable.
Regression analysis is the Statistical technique that is used for predicting dependent vari-
ables with the help of a single exploratory variable or multiple exploratory variables after
expressing the linear relationships between them. This relationship can be written as:

Y = β0 + β1X1 +β2X2 +...+ βpXp + ϵ (6)

where,

Y: Dependent variable,

β0: Intercept,

βp: Slope,

Xp: Exploratory variables; p:1,2,3,...,8,

ϵ: Residual term.
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Table 3: Regression models and R2 values of respective models

Dependent
variable

Equation R2

DO 13.504 + 0.0032*B1 - 0.0043*B2 + 0.0005*B3 +
0.0003*B4 -0.0001*B5 - 0.0005*B6 + 0.0012* B7
- 0.0002* B10

0.12

BOD 37.4192 + 0.0094*B1 - 0.0145*B2 + 0.0032*B3
+ 0.0006*B4 + 0.0001*B5 + 0.0061*B6 -
0.0076*B7 - 0.0003*B10

0.18

pH 8.0053 - 0.0017*B1 + 0.0025*B2 - 0.001*B3 +
0.0002*B4 - 0.0001*B5 + 0.0003*B6 - 0.0003*B7

0.11

Temp. - 49.7692 - 0.0072*B1 + 0.0127*B2 + 0.0031*B3
- 0.0072*B4 + 0.0008*B5 - 0.0125*B6 +
0.0138*B7 + 0.0013*B10

0.35

WQI 1033.5988 + 0.1408*B1 - 0.2361*B2 + 0.213*B3
+ 0.0105*B4 + 0.0014*B5 - 0.1124*B6 -
0.0985*B7 - 0.0054*B10 - 3318.431*MNDWI

0.21

*Note: The location considered for the study is geographically located at
a point where the dispersion of soil in water is observed more often due to low
and high tides. In geospatial data, the same is reflected and this makes it a bit
difficult to establish the accurate relationship between DN values and laboratory
data.

Many studies are conducted where linear models Frenanda et al. (2020) and nonlinear
KC et al. (2019) models are developed to predict WQI. In this study, we constructed various
linear models for WQI and its associated parameters. See Table 3 for details along with the
values of R2. It is evident from the Table, that the regression coefficients are positively and
inversely related in many cases. These coefficients helps us to understand the influence of
the unit percentage change of independent variables on the dependent variable. Since all the
abiotic factors are not included in the model, it is difficult to explain the amount of variation
present in each model. However, the value of R2 can explain the amount of variation to a
useful extent. As per the analysis, the temperature model yields a high R2 value as compared
to any other model. This can be due to less time difference between spatio-temporal and
ground data. The WQI model is also capable to explain around 21% of the total variation
present in the data.
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Figure 6(a): Chart of actual values and predicted values of DO

Figure 6(b): Chart of actual values and predicted values of BOD

Figure 6(c): Chart of actual values and predicted values of pH
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Figure 6(d): Chart of actual values and predicted values of temperature

To understand the prediction capability of each model, we present in Figures 6(a-d),
the comparison of actual and predicted values of each variable. It appears that the line charts
of projected values appeared to be in the same range as those of real values, however, the
model was unable to suit the actual line chart partially or completely due to some elements
not included in the model. Figure 6(a-d) shows how a model failed to anticipate a significant
spike or dip in the data at some time. It’s possible that this phenomenon is related to some
climatic changes and fluctuations. The model for BOD was able to follow the trend of real
values, but other climatic, physical and supporting variables were not included as factors,
thus the projected values did not go together with the actual values. On other hand, the
model was not able to predict random spike, which is evident from the decreasing trend as
seen in Figure 6(c) of pH. The same thing happened with the temperature chart as well.

Figure 7: Chart of actual values and predicted values of WQI

It is observed that about 21% of the variation was explained by the WIQ model as
per Table 3. However, on plotting the actual and predicted values it can be observed that
the model was able to capture the trend in a satisfactory way as shown in Figure 7.
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5. Discussion and limitations

The goal of this research is to model parameters using spatial data. In which it
was discovered that if we have a region where two separate water bodies are linked, such
as our research area, spatial data alone is insufficient to predict water quality properties.
Other environmental factors, as well as the lunar cycle, will play a key influence here. We
believe that more abiotic elements can be added to every model to make it more useful and
trustworthy.
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Abstract 
 

This study deals with an improved class of estimators for estimating the unknown 
finite population mean of the study variable using auxiliary information. It has been 
developed by using the power transformation in Singh and Yadav (2017) family of 
estimators. The expression for bias and mean squared error of the proposed estimator is 
derived under large sample approximation. The conditions have been derived for the 
suggested class of estimators under which it performs better than the estimators considered in 
this study. The theoretical results are supported by numerical illustration. Two phase 
sampling version of the proposed family of estimators is suggested and its properties are also 
studied. 
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1. Introduction and notations used 

 
In survey sampling, it is well recognized that the use of auxiliary information results in 

substantial gain in efficiency over the estimators which do not utilize such information. 
When the auxiliary variable is available, the ratio, product and regression methods of 
estimation are the classical examples, which uses auxiliary information and are better than 
usual mean estimator.  

 
Let there be a finite population  of N units and be the study and 

auxiliary variables assuming real non-negative values of the finite population  The 
population means of the study and auxiliary variables are denoted by 

; respectively,  and  sample means by  

 respectively. 
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Some common notations used in this paper are-  

The population variance of the study variable y:  

The population variance of the auxiliary variable x:  

The population covariance:  

The coefficient of variation of x: , 

The coefficient of variation of y:  

The population correlation coefficient of x and y:  

 

 To estimate the unknown population mean of the study variable  let n pairs of 
sample observations  are drawn using simple sampling without 
replacement (SRSWOR) from the population for the study and auxiliary variables 
respectively. In case no auxiliary information is available, the mean squared error of usual 
unbiased estimator for population mean under SRSWOR is given by  

          (1) 

where, , (sample fraction). 

It is assumed that the population mean of the auxiliary variable is known. The 
classical ratio estimator  suggested by Cochran (1940) is useful when the study 
variable and auxiliary variable are positively correlated but when study variable and auxiliary 
variable are negatively correlated, product estimator  given by Murthy (1964) is 
more appropriate. The expression for biases and mean squared errors for ratio and product 
estimators are respectively given by- 

                     (2) 
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Improved estimators for estimating unknown population mean of the study variable 
utilizing auxiliary are studied by various authors viz. Searls (1964), Upadhyaya et al. (1985), 
Upadhyaya and Singh (1999), Singh and Ruiz Espejo (2003), Upadhyaya et al. (2011), 
Yadav et al. (2012), Yadav et al. (2013) etc. and the references cited therein. 

Chami et al. (2012) proposed two-parameter ratio-product-ratio estimator for 

estimating unknown population mean of the study variable is given by 

      (6) 

 Following Chami et al. (2012), Singh and Yadav (2017) proposed a ratio-product-
ratio family of estimators given by 

      (7) 

In this paper, a generalized family of ratio-product-ratio type estimators for estimating 
the population mean of study variable  is proposed which generalizes the earlier works of 
Chami et al. (2012) and Singh and Yadav (2017). It is assumed throughout the paper that the 
population size N is very large so that the finite population correction term is ignored and 

 

2.  The proposed family of estimators 
 Motivated by Singh and Yadav (2017), we have proposed the following five-

parameter ratio-product-ratio type estimator for estimating the population mean  as follows 

                            (8) 

where  are constants to be determined such that MSE of the generalized class is 
minimum, and δ, γ are constants which take finite values for designing the different 
estimators and β can take any values of the known parameters like coefficient of variation, 
coefficient of skewness, coefficient of kurtosis and the correlation coefficient (see Singh and 
Kumar (2011) and Singh and Solanki (2012)).  Introducing power transformation in the 
product type part of the Singh and Yadav (2017) family of estimators  in the form of   
substantially improves the efficiency of the Singh and Yadav (2017) estimator. 

2.1.  First-degree approximation to the bias and mean squared error 

   To obtain the bias and mean squared error (MSE) up to first-degree approximation, 
we define the following relative error terms 
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We assume that the sample size is large enough such that contributions from

when  and  when  are negligible. Expressing the equation (8) in error 

terms , we get 

      (9) 

Expanding and as a series in powers of , 

and assuming ,  keeping series up to  and neglecting higher 

orders, the bias of to order O(n-1) is obtained as 

                 (10) 

The bias tends to zero when  tends to  and . The  of the 
suggested family of estimators to the first degree of approximation is given by 

                (11)
 

where,
 

 

Differentiating the   at equation (11) with respect to and equating 
them to zero, we get 

                      (12) 

Solving equation (12), we get the optimum values of  respectively as 
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                    (13) 

Putting the optimum values  and  in place of  and in equation (11), the 
minimum MSE of the suggested estimator is given by 

    
                        

(14) 

The equation (14) provides the minimum value of the MSE of the proposed family of 
estimator . 

3.    A four-parameter ratio-product-ratio estimator 

   Putting , the four parameters ratio-product-ratio estimator  
is given by 

                (15) 

where . The bias and MSE of the estimator upto the first degree of approximation 
are respectively given by 

              (16) 

                  (17) 

  is minimum when  

and is given by  

             (18) 

In equation (18), indicates the mean square error of the linear regression estimator

 So,   is equally efficient to the regression estimator.  
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4.    Efficiency comparison 

   From equations (1), (3), (5) and (18), we get 

                   (19) 

                 (20) 

                 (21) 

Hence, the  is more efficient than sample mean , ratio  and product  estimator. 

The minimum MSE of proposed family of estimators  is compared with that of four-

parameter sub-family of estimators  as 

              (22) 

 In case of  subfamily of the estimators i.e. , due to the restriction on 

and  , both the  and 1–  coefficients of ratio and product type part of 
family of estimators are interdependent to each other that leads to obtain the minimum mean 
square error of  under  restriction at the optimum value of  i.e. 

.  For the proposed family of estimators  there is no restriction on 

and  constants, therefore, the ratio and product type part of family of estimators are 
independent to each other, which leads to obtain the optimum values of   and  

separately i.e.  and . Since, the ratio and 

product part of the proposed family of estimators are optimized separately, the minimum 
mean square error of the proposed family of estimators  will be always lesser than its 
subfamily of estimators  From equation 22, it is inferred that proposed family of 
estimators is more efficient than its subfamily of estimators . Therefore, the suggested 
family of estimators  is more efficient in comparison to the sample mean, ratio, 
product, regression, and Chami et al. (2012) estimator. 

   Comparing MSE of the proposed subfamily of estimators and Singh and Yadav 

(2017) subfamily of estimators , we get  

            (23) 
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Therefore, we get the following conditions for efficiency for to be better performer than

, 

A.  
B.  
C.  
D.  

 

Some known members of the proposed family of estimators  as well as sub-family of 

estimators  and some new members of the proposed family of estimators along with 

their corresponding members of Singh and Yadav (2017) estimator are given in the Table 1, 
Table 2 and Table 3 (see appendix) respectively. 
 

5.     Empirical study 

 To illustrate the relative performance of the members of the proposed family of 
estimators with other estimators considered in this article, the three natural populations from 
literature are considered whose descriptions are given below: 

Population I [Source: Chami et. al. (2012)] 

y: Maximum daily values (in feet) of groundwater for the period of October 2009 to 
September 2010 collected at site number 02290829501 located in Florida. 

x: Maximum daily values (in feet) of groundwater for the period of October 2008 to 
September 2009 collected at site number 02290829501 located in Florida 

 

Population II [Source: Steel and Torrie (1960), pp. 282] 

y: Log of leaf burn in sack  

x: Chlorine percentage 

 

Population-III [Source: Murthy (1967), pp. 399] 

y: Area under wheat in 1964 

x: Area under wheat in 1963 

 

The percent relative efficiencies (PREs) of the suggested members of family of estimators
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 and are compared with the linear regression estimator  by using the 

following formula: 

 where and  

The percentage gain in PRE due to the effect of optimized  in proposed estimator (power 
transformation in Singh and Yadav (2017) estimator) is given by 
 

       

where A is Singh and Yadav (2017) estimator and B is our proposed estimator. The average 
percentage gain in PRE due to the effect of optimized  (proposed estimator) in the Singh 
and Yadav (2017) estimator over three populations considered for study is given by 

  

In Table 4 (see appendix), the PRE of proposed  is more to corresponding 

estimator except for four estimators w.r.t. population III where the efficiencies are 

equal. Therefore, it may be concluded that the  are either more or equally efficient to 

with respect to almost all the estimators when  and  which is indicated 
by average %  gain in PRE. Comparing Table 4 (see appendix), it is concluded that all the 

 estimators are more efficient than linear regression estimator. 
 
 To compare the performance of with , different combinations have been 

developed for ( combinations) and ( combinations) 

for taking values = 1, 1.5, 2, 2.5 for . In table 5 (see 

appendix), out of 80 combinations of  and 20 combinations of  the best 

performing estimator for same value of  of  and  with respect to population I 
has been retained and presented. 

 
 It is clear from the Table 5 (see appendix)  that at same value of  the % gain in 

efficiency ranges from 0 to 168.07% which concludes that at same value of , the  are 
either equally or more efficient to at and .  

 
 In Table 6 (see appendix), out of 80 combinations of  and 20 combinations of
the top performing estimator with respect to each population has been retained and 

presented.  

  From Table 6 (see appendix) , it is clear that the proposed family of estimators is 
more efficient than Singh and Yadav (2017) family of estimators when dealing with practical 
and real-world problems where the % gain in efficiency ranges from 20.26 to 564.64 with 
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respect to three populations. 
 
  From the empirical study, it is concluded that  should be preferred over  

Singh and Yadav (2017) family of estimators. Thus, we recommend the use of proposed 
family of estimators in practice. 
 

6.   The proposed family of estimators in double (two-phase) sampling 
 

 In some practical situations, the value of the population mean of the auxiliary variable 
is unavailable. In such situations, double sampling (two-phase sampling) is used to estimate 
the population mean , from a large sample of size  drawn from population. A second 
sample of size  is drawn from this preliminary large sample to observes the study 
variable . 

 
 Let , ,  and  . The usual ratio estimator, product 

estimator and regression estimators of population mean of study variable  in double 
sampling are respectively defined as 
                      (24) 

                                                                                                                           
(25) 

                                                                                        (26) 

where   is the sample regression coefficient. 

The double sampling version of suggested generalized family of estimators  is defined 
as 

                          (27) 

where δ, γ are real constants and β can take values of known parameters like coefficient of 
variation, coefficient of skewness, coefficient of kurtosis and the correlation coefficient along 
with real constants and are suitably chosen constants such that the mean squared 

error (MSE) of the developed estimator is minimal. To obtain the bias and mean squared 
error (MSE) up to first-degree approximation, we define the following relative error terms 
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We consider the following notations for getting the expression of bias and MSE of the 
proposed estimator 

 

 

 

 

 

 

 

 

 

 

We assume that the sample size  is large enough such that contributions from , 

when  and  when  are negligible. Expressing the equation (27) in 

error terms , we get 

               (28) 
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a series in powers of  and , it is assumed that  Keeping series up 
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where, 

 

 

 

 

 
Differentiating the with respect to and equating them to zero, we have

 

                     (31)
 

Solving equation (31), we get the optimum values of as 

                    (32) 

Putting the optimum values  and  in place of  and in equation (29) and (30), the 

optimum bias and the minimum mean square error of is obtained as 

                  (33) 

                           (34) 

The equation (34) provides the minimum value of the MSE of the proposed family of 
estimator . 

6.1.  Particular case in two-phase sampling 

   For  the suggested family reduces to the following family of estimators 
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The bias and MSE of the estimator to the first degree of approximation are derived as 

                    (36) 

       (37) 

For minima, we took gradient  of  and equating it to zero, we get

and  

When is used in , we get the usual unbiased estimator of and the MSE 

expression becomes 

        (38) 

and when  is used in , we get the asymptotically 

optimum estimator (AOE) and the MSE expression transforms into 

      (39) 

Also,  is minimum when  i.e. 

               (40) 

where  and . 

Here,  is the MSE of the double sampling version of linear regression estimator. 

Therefore, the estimator  is equally efficient to double sampling version of linear 
regression estimator. 

7.    Efficiency comparison 

  The suggested class of estimators is compared with ,  and   in terms of 
MSE’s.  

                    (41) 
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                 (43) 

From equations (34), (40), (41), (42) and (43) we get     

                 (44) 

                 (45) 

                 (46) 

            (47) 

The minimum MSE of   subfamily of estimators will always be larger than the 
proposed family of estimators as the coefficients of ratio and product type part of 
family of estimators in subfamily are interdependent in while they are independent in 

. 
 

From equations (44) to (47), it is clear that the proposed family of estimators is 

more efficient than its subfamily of estimators , double sampling version of sample 

mean estimator  ratio estimator  and product estimator . 

8.    Empirical study    

   To illustrate the relative performance of the members of the proposed family of 
estimators with other estimators considered in this article, the two natural populations from 
literature are considered whose descriptions are given below: 

Population I [Source: Koyunchu and Kadilar (2009)] 

y: Number of teachers teaching in both primary and secondary schools. 
x: Number of students studying in both primary and secondary schools. 

 

Population II [Source: Cochran (1977, p.172)] 

y: Production of peaches (I bushels). 
x: Peach trees in an orchard. 
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The percent relative efficiencies (PREs) of the suggested family of estimators  are 
compared with the double sampling version linear regression estimator  by using the 
following formulas: 
 

             (48) 

It is observed from the Table 7 (see appendix) that all the members of proposed family of 
estimators are performing better in comparison to double sampling linear regression 
estimator, therefore, the members are also efficient to double sampling version ratio and 
product estimator. 

9.     Conclusion 
 

   We have dealt with the problem of estimating the population mean of study 
variable using the auxiliary information in the form of different parameters of the variable
.The proposed family of estimators are very wide and many new estimators can be derived 
from the suggested class of estimators. It includes all the estimators recently proposed by 
Singh and Yadav (2017) along with the two parameters ratio-product-ratio estimator 
proposed by Chami et al. (2012).  

   To judge the performance of the proposed family of estimators with other estimators, 
an empirical study has been carried out. From the Table 4 (see appendix), it is observed that 
the suggested family of estimators is efficient to sample mean estimator , linear regression 
estimator and Singh and Yadav (2017) estimators. At same value of  proposed family 
of estimators should be preferred over Singh and Yadav (2017) estimators (Table 5 (see 
appendix)) . For identifying the most efficient estimator, the proposed family of estimators 
should be preferred over Singh and Yadav (2017) family of estimators (Table 6 (see 
appendix)). All the members of double sampling version of the proposed family of estimators 
are efficient to double sampling version of ratio, product, and linear regression estimator. 
Thus, we recommend the use of proposed family of estimators in practice. 
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Appendix 
 
 

Table 1: Some known members of the proposed family of estimators  
 

S.No. 
Value of constants 

Estimator S.No. 
Value of constants 

Estimator 
(𝛼!, 𝛼", 𝛽, 𝛿, 𝛾) (𝛼!, 𝛼", 𝛽, 𝛿, 𝛾) 

1  

Upadhyaya et al.(1985) 
estimator 

 2.  

Upadhyaya et al. (1985) 
estimator 

 

 
 
 
 
Table 2: Some known members of the sub-family of estimators 
 

S.No. 
Value of constants 

Estimator S.No. 

Value of 
constants 

Estimator 
(𝛼!, 𝛼", 𝛽, 𝛿, 𝛾) (𝛼!, 𝛼", 𝛽, 𝛿, 𝛾) 

1.  

Singh & Ruiz Espejo 
(2003) 

 

 

4.  

Pandey (1980) 

 

 

2.  

Chami et al. (2012) 

 

 

5.  

Swain (2014) 

 

 

3.  

Kadilar and Cingi (2006) 

 

 

6.  

Srivastava (1967) 

 

 

 

 
 
 
 
 
 
 
 
 

1 2

,
, ,T a b

d g
a

( )1 2 101a a, 	 , 	 , , 		
1 2

0,1
, ,1Ta a ( )1 2 011a a, 	 , 	 , , 		

1 2

1,0
, ,1Ta a

1 ,
,
,T
g
a b

d
a -

( )a a, 	1- , 	1, 	1, 	1 ,1
,1
1

,1Ta a- ( )a a d1 , 	1, 	1- , 	 , 	 ,1
,1 ,1T a
d
a -

( )a a b, 	1- , 	 , 	1, 	1 ,1
,1
1

,Ta a b- ( )*1, 	0, 	1, 1/2, 		 ,
1,0,1
1/2T *

( )*1, 	0, 	1 	2,,
1,0.
,
1

2T * ( )d *11, 	0, 	 , , 		
1,0,
,
1T d *



2023] ESTIMATION OF MEAN USING AUXILIARY INFORMATION  

 
 
 
 

33 

Table 3: Some members of the proposed family of estimators along with their 
corresponding members of Singh and Yadav (2017) estimator 
 

 

Members of estimator  

 

Corresponding members of Singh 
and Yadav (2017) Estimator 

at =1 

Sl. 
No. 

Value of 
constants 

Estimator Value of constants Estimator 
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1.     

2.     

3.     

4.   
  

5.     

6.   
 

 

7.     

8.   
 

 

9.     
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Table 4: PREs of several members of proposed family of estimators and Singh and 
Yadav (2017) estimator due to  

 

Estimator 

Real values 
   

  PRE 
(A) 

PRE 
(B) 

Population I 
1 1 0 100.88  470.61  
2 0 0 100.98  1545.40  

3 1 2 122.64  435.12  

4  0.5 100.50  138.31  

5  1 108.47  466.59  

6  2 187.59  478.72  

7  0 101.60  388.53  

8  1 101.60  388.53  

9  2 101.24  869.98  

10  2 102.25  1254.19  

Population II 

1 1 0 102.23  207.24  

2 0 0 109.61  207.24  

3 1 2 151.75  1461.06  

4  0.5 105.20  113.62  

5  1 107.24  108.42  

6  2 112.53  132.25  

7  0 103.52  121.42  

8  1 103.52  121.42  

9  2 105.14  105.15  

10  2 109.88  117.19  

Population III 

1 1 0 3725.78  3725.78  

2 0 0 100.02  902.26  
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3 1 2 560.56  560.56  

4  0.5 139.24  496.05  

5  1 116.27  567.12  

6  2 100.47  116.15  

7  0 191.26  672.73  

8  1 191.26  672.73  

9  2 100.09  353.49  

10  2 100.03  100.03  

 
Note: (1) “A” indicates Singh and Yadav (2017) estimator; (2) “B” indicates proposed 
estimator. 
 
Table 5: Top performing estimators of and  at constant  when  

and  for Population-I 
 

S.no.  
  % gain 

in PRE 
 PRE (A)   PRE (B) 

1. 1 2.5 145.85 2.5 2.0 390.98 168.07 

2. 1.1504 2.5 455.30 1.5 2.5 547.56 20.26 

3. 0.9125 2.5 119.60 2.5 2.5 193.41 61.72 

4. 0.7681 2.5 104.15 2.5 2.5 109.65 5.28 

5. 0.6092 2.5 100.21 2.5 1 100.21 0.00 

 
Table 6: Top performing estimators of and  when  and  
for three populations 
 

Pop. 
  % gain 

in PRE 

   PRE (A)    PRE (B) 

i.   2.5 455.30  1.5 2.5 547.56 20.26 

ii.  1 2.5 189.85 1 2.5 2 710.58 274.29 

iii.  1 1 560.57 1 0 1 3725.78 564.64 
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Table 7: PREs of  family of estimators when and  
 

E
st

im
at

or
 

Real 
values 

Population I  Population II   

  PRE of 
 w.r.t. 

 

 PRE of
 

w.r.t. 
 

1 1  141465.86 
 

1212.20 

2 0  1977.39 
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Abstract
One of the primary goals of time series (TS) modeling is to forecast future observa-

tions. Although point forecasts are the most common type of prediction, interval forecasts
are more informative and are typically obtained as prediction intervals (PIs). For non-linear
TS data, the ARCH model is one of the widely used models. The Sieve Bootstrap method is
a popular method for constructing PIs in TS models. The TS data are not always free from
outliers, whose presence may result in an increase in the length of PIs obtained also with
poor coverage. In this study, two new robust Sieve Bootstrap approaches based on weighted
least squares estimation have been proposed to deal with the presence of outliers for devel-
oping PIs for both returns and volatilities in the ARCH model setup. The performances
of the proposed methods viz., Robust Unconditional Sieve Bootstrap (RUSB) and Robust
Sieve Bootstrap (RSB) for constructing PIs using both simulated as well as real data sets
have been found to be better when compared with their existing counterparts.

Key words: Coverage probability; Innovative outlier; Length of prediction interval; Return;
Volatility; Weighted least squares.

1. Introduction

A time series (TS) is an ordered sequence of data points observed over time, typically
at equally spaced time intervals. The analysis of TS is essential not only in agriculture but
also in other diverse fields such as economics, finance pattern recognition, tourism etc. In all
these areas, TS methodologies are used not only to model TS data, but also to forecast future
values of such processes. TS predictions can be observed either as point or interval estimates.
Point estimation is concerned with predicting a single value from a set of observations,
whereas interval estimation provides prediction intervals (PIs), with some probability, within
which forecasted future values will lie. There are many reasons for preferring PIs over
point estimates. PIs help to assess the future uncertainty in a broad manner for better
risk management decisions, plan different strategies for the range of possible outcomes, and
explore scenarios based on different assumptions more carefully and so on. A good account
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on PIs in TS can be found in many books, to cite a few, Politis et al. (1999), Chatfield
(2000) and Lahiri (2003).

In the context of agricultural commodity price or any financial TS data, generally
linear TS models with homoscedastic error variance are popularly used until it need to deal
with volatile data. Volatility being the sudden unexpected rise or fall in TS, measuring it
plays an important role in assigning risk and uncertainty. While modeling TS, a series is
said to be volatile when a few error terms are larger than the others and are responsible for
the unique behavior of the series, resulting in heteroscedasticity. To deal with volatilities
and non-linear dynamics, the Auto-Regressive Conditional Heteroscedastic (ARCH) model
proposed by Engle (1982) where the idea is to model volatilities as a linear function of
previous returns, is popularly employed. By adding a moving average part, the ARCH model
was generalized by Bollerslev (1986) in the form of the Generalized ARCH (GARCH) model
for the parsimonious representation of ARCH. In the GARCH model, the conditional variance
is also a linear function of its own lags. In this context, the GARCH model became the most
popularly used for modeling volatility and obtaining dynamic PIs for returns and volatilities.
Many recent studies are found on the non-linear TS processes in modeling volatilities (to
cite a few, see, Bhardwaj et al., 2014; Lama et al., 2015; Bentes, 1015; Dyhrberg, 2016).

Existing literature mainly focused on point forecasts of volatilities and little atten-
tion has been given to constructing the PIs (Baillie and Bollerslev, 1992; Andersen and
Bollerslev, 1998; Andersen et al., 2001; Poon, 2005). However, the construction of PIs in
TS models with finite parameters, requires knowledge of the distribution of the observed
data, which is typically unknown in practice. Several studies have shown that when the un-
derlying distributional assumptions are violated the resulting PIs can be adversely affected
yielding poor results (Thombs and Schucany, 1990). The construction of PIs in TS models
with finite parameters and with known innovative processes has been widely discussed in
the literature and it has been found that these PIs are extremely sensitive to the presence
of outliers (Tsay, 1988, 2010). Moreover, over time, several distribution-free methods, using
resampling techniques using Bootstrap method, have been proposed as an alternative for the
construction of PIs. One of the popular and effective Bootstrap procedures is residual-based
resampling i.e. resampling the residuals from the fitted model on the TS (Bühlmann, 2002;
Politis, 2003; Härdle et al., 2003). Miguel and Olave (1999) first proposed a Bootstrap pro-
cedure for a non-linear ARCH model for the construction of PIs for return and volatilities by
directly adding resampled residuals from the ARCH model to the respective point forecasts.
This work was improved by Reeves (2005) by adding an additional step of re-estimating
the ARCH parameters for each Bootstrap realization of the returns, which considered the
variability of the estimated parameters of the ARCH model. Further, Pascual et al. (2006)
extended these procedures for the GARCH model in different ways and obtained the PIs
for both returns and volatilities which were found to be well-calibrated i.e., the number of
observed data falling within PIs coincided with the declared coverage. However, these pro-
cedures involve the estimation of ARCH/GARCH parameters by maximum likelihood (ML)
estimation and are computationally expensive. Hence as an improvement over these, Chen
et al. (2011) proposed a computationally efficient and distribution-free resampling technique
for developing PIs for both returns and volatilities in ARCH and GARCH processes. Their
method was based on the Sieve Bootstrap procedure used in the linear model AR/ARMA
representation of the ARCH/GARCH process. In particular, the squared returns from the
ARCH/GARCH model is a linear process that follows an AR/ARMA process (Tsay, 2010;
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Box et al., 2015). Bose and Mukherjee (2009) proposed a weighted linear estimator (WLE)
to estimate the ARCH parameters, and a corresponding Bootstrap weighted linear estimator
(BWLE). An alternative WLE method in the context of multivariate ARCH models was pro-
posed by Iqbal (2011) and improved results were reported. Later, Iqbal and Chand (2013)
constructed efficient PIs for returns and volatility for ARCH models using a particular ver-
sion of residual Bootstrap. Further Pan and Politis (2016) proposed a Bootstrap algorithm
for developing PIs for ARCH models based on BWLE. However, these above-mentioned ap-
proaches including the Sieve Bootstrap procedure are affected by the presence of innovative
outliers, resulting in an undesirable increase in the length of the PIs. In recent times, Ulloa et
al. (2014) and Allende et al. (2015) have proposed a residual-based resampling technique for
developing robust PIs for returns and volatilities for GARCH models based on the winsorized
residuals. Trućıos et al. (2017) constructed Bootstrap densities for returns and volatilities
using a robust parameter estimator based on variance-targeting implemented together with
an adequate modification of the volatility filter in analyzing the effect of additive outliers.
Beyaztas and Shang (2020) proposed a robust Bootstrap technique for PI construction in
AR models based on weighted likelihood estimates and weighted residuals. The presence
of outliers can have an impact on TS analysis, leading to incorrect model identification
and parameter estimation and TS forecasts obtained from such models could be erroneous.
Hence, there is always a need to develop improved and computationally efficient Bootstrap
methods in computing PIs for TS aimed at providing better forecasts. In this study, the
focus is on developing models robust against the presence of outliers to get improved PIs.
This approach of robust modeling has been applied using the Sieve Bootstrap procedure
for developing PIs for both return and volatilities in the ARCH model setup. In addition,
instead of applying least square estimation (see, Chen et al., 2011), a weighted least squares
(WLS) estimation has been applied. The details of the new WLS method and the proposed
Bootstrap procedure have been described in subsequent sections.

Towards this end, two new Bootstrap approaches for constructing PIs have been
proposed in this study. The remainder of the article is organized as follows. The next
section discusses the two proposed methods by first describing about the ARCH models and
the weighted least squares procedure employed. Thereafter Section 3 deals with the results
of the simulation study conducted followed by Section 4 which contains a case study on a
real data set. The paper is signed off with concluding remarks in Section 5.

2. Methodology

2.1. ARCH models

A non-linear TS model can be expressed as yt = f (εt, εt−1, . . . ) where f (·) is the non-
linear function of past and present random shocks. In such a setup, consider a TS {yt}n

t=1
following ARCH(p) process, p ≥ 1 has the following representation:

yt = σtεt (1)

σ2
t = α0 +

p∑
i=1

αiy
2
t−i (2)

where {εt}n
t=1 is a sequence of independently and identically distributed (i.i.d.) random

variables with zero mean and unit variance and E (ε4
t ) < ∞; the volatility process {σt}n

t=1 is
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a stochastic process assumed to be independent of {εt}n
t=1; α0, αi’s are unknown parameters

satisfying α0, αi ≥ 0, for i = 1, 2, . . . , p. The process is assumed to be weakly stationary
(Tsay, 2010) i.e. ∑p

i=1 αi < 1 is satisfied. Further, it is assumed that the strict stationarity
conditions of {yt}n

t=1 given in Bougerol and Picard (1992a, 1992b) hold.

Despite the non-linear nature of variance in ARCH models, they can be represented
by means of the linear AR model (Tsay, 2010; Box et al., 2015). In particular, the squared
returns of an ARCH model is a linear process that can be written as an AR representation.
From (1) and (2),

y2
t = σ2

t ε2
t (3)

α0 +
p∑

i=1
αiy

2
t−i = σ2

t (4)

Subtracting equation (4) from equation (3),

y2
t −

(
α0 +

p∑
i=1

αiy
2
t−i

)
= σ2

t ε2
t − σ2

t (5)

Let, νt = σ2
t ε2

t − σ2
t = y2

t − σ2
t , and by substituting σ2

t = y2
t − νt in (4) yielding,

y2
t − νt = α0 +

p∑
i=1

αiy
2
t−i

y2
t = α0 +

p∑
i=1

αiy
2
t−i + νt (6)

where {y2
t }n

t=1is an AR(p) process and νt = y2
t − σ2

t is white noise but not i.i.d., in gen-
eral. Under strict stationarity assumptions of {yt}n

t=1, innovations {νt}n
t=1 are identically

distributed.
Let p = 1, then, {yt}n

t=1 follows ARCH(1):

yt = σtεt (7)

σ2
t = α0 + α1y

2
t−1 (8)

Then from equation (6), ARCH(1) can be expressed in AR(1) form:

y2
t = α0 + α1y

2
t−1 + νt (9)

Similarly, suppose {yt}n
t=1 follows an ARCH(2), then it can be rewritten in AR(2) form as:

y2
t = α0 + α1y

2
t−1 + α2y

2
t−2 + νt (10)

2.2. Weighted least squares (WLS) estimation

In this study, following Chen et al. (2011), the AR parameterization of the ARCH
model presented in equation (6) has been considered and estimated using WLS estimation
for constructing the PIs. Let, xt = y2

t and for an ARCH model equation (6) can be written
as,

xt = α0 +
p∑

i=1
αixt−i + νt (11)
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The Least Squares (LS) estimators of an AR(p) model are obtained by fitting a linear
regression of xt onto xt−1, xt−2, . . . , xt−m. In matrix notation, let z and X as follows:

z =


xp+1

...
xn

 and X =


1 xp xp−1 · · · x1
... ... ... . . . ...
1 xn−1 xn−2 · · · xn−p


The LS estimate of parameters Φ̂ = (α̂0, α̂1, . . . , α̂p)

′
is obtained as

Φ̂ =
(
X

′
X
)−1

X
′
z (12)

with X
′
X is non-singular.

It is a known fact that when the TS data are contaminated with outliers, the LS
estimates of model parameters are affected i.e. they produce biased estimates and the
errors computed corresponding to outliers will be large. Thus the Bootstrap PIs based on
LS estimates may not provide reliable results in the presence of outliers. Therefore it is
proposed to construct robust Bootstrap PIs for the ARCH process based on WLS estimates
of parameters, on similar lines to the weighted procedure employed in the case of likelihood
estimation by Markatou et al. (1998) and Beyaztas and Shang (2020); also in partial least
squares estimation by Beyaztas and Shang (2021) to improve the robustness of the estimates.

Now, from equation (11), let νt (Φ) = νt (Φ|xt) = xt − α0 − ∑p
i=1 αixt−i for t =

p + 1, p + 2, . . . , n be the model residuals, where the values of νt for t ≤ p are taken as zero.
Let f ∗ (·) be the non-parametric kernel density estimator and m∗ (·) be the smoothed model
density, respectively, defined as follows:

f ∗
(
νt (Φ) , F̂ν (Φ)

)
=
ˆ

k (νt (Φ) , r, d) dF̂ν (r,Φ) ∀ t = 1, 2, . . . , n

m∗
(
νt (Φ) , σ2

)
=
ˆ

k (νt (Φ) , r, d) dM
(
r, σ2

)
where F̂ν (Φ) is the empirical cumulative distribution function based on νt (Φ) and M (σ2)
is actual assumed model distribution function with variance σ2, such as general normal
distribution with zero mean and variance σ2. Function k (νt (Φ) , r, d) is the kernel density
with bandwidth d. The weight function, say w (·), is defined according to the minimum
discrepancy measure, as a measure of agreement between the parametric model of the error
and the actual residuals. Following Beyaztas and Shang (2020, 2021), the Pearson residual
δt is then defined as:

δt = δ
(
νt (Φ) ; M

(
σ2
)

, F̂ν (Φ)
)

=
f ∗
(
νt (Φ) , F̂ν (Φ)

)
− m∗ (νt (Φ) , σ2)

m∗ (νt (Φ) , σ2) ∀ t = 1, 2, . . . , n

(13)
and weight function w (δt) is then defined as:

w (δt) = w
(
νt (Φ) ; M

(
σ2
)

, F̂ν (Φ)
)

= min
{

1,
[A (δt) + 1]+

δt + 1

}
(14)
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where [·]+ indicates the positive part and A (·) denotes the residual adjustment function
(RAF) of Lindsay (1994) (here in this study, Hellinger RAF A (δ) = 2

[
(δ + 1)1/2 − 1

]
have

been used). Then the WLS estimate for Φ is obtained as:

Φ̂w =
(
X

′
W X

)−1
X

′
W z (15)

where W = diag (w (δt)) and Φ̂w =
(
α̂w

0 , α̂w
1 , . . . , α̂w

p

)’
. From equations (13) and (14), it can

be seen that when the model assumptions are holding good and with no outliers present in
the data, δt converges to zero and w (δt) converges to 1. Similarly, in the presence of outliers,
δt will be larger and corresponding w (δt) will be smaller than 1 i.e. the outlier observations
will get less weight.

2.3. Robust bootstrap procedures

Sieve Bootstrap was first proposed by Buhlmann (1997) as a variation in Bootstrap
process where sieves of linear autoregressive processes are used to approximate the underlying
process to estimate the distribution of a statistical quantity of the process. The idea of Sieve
Bootstrap is that it involves the sampling of the residuals of a fitted autoregressive or AR(pn)
models of order pn, where pn → ∞ as n → ∞, and then new Bootstrap realizations are
generated from the resampled residuals. In this study, two new Bootstrap methods robust
against outliers have been proposed for constructing PIs for an ARCH model. The first one
i.e. robust unconditional Sieve Bootstrap (RUSB) is an improvement of the unconditional
Sieve Bootstrap (USB) method for the ARCH process proposed by Chen et al. (2011) and the
second one i.e. robust Sieve Bootstrap (RSB) is a modification of the SB method described
by Tresch (2015). In both the existing methods, the estimation of parameters was done by
the ordinary least squares method. This estimation yields poor results in the presence of
outliers. To handle such outliers, here the estimations of parameters have been done by the
WLS procedure.

Let {yt}n
t=1 follows the realization of an ARCH(p) process and it has the model

representation given in equation (1), equation (2) and its AR representation in equation (6).
Further letting xt = y2

t for t = 1, 2, . . . n, it can be easily presented by equation (11).

2.3.1. Robust unconditional sieve bootstrap (RUSB) method

The steps involved in this proposed algorithm are as follows:

1. Considering the model representation of equation (11), estimate the ARMA coefficients
Φ̂w =

(
α̂w

0 , α̂w
1 , . . . , α̂w

p

)’
using the WLS method as in equation (15).

2. Estimate the residuals {ν̂t}n
t=p+1 as

ν̃t = xt − α̂w
0 −

p∑
i=1

α̂w
i xt−i (16)

where ν̃t = 0, for t = 1, 2, . . . , p.
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3. Center the estimated residuals ν̂t = ν̃t − (n − p)−1∑n
t=p+1 ν̃t and then calculate the

empirical distribution of the centered residuals as

F̂ν̂t
(x) = (n − p)−1

n∑
t=p+1

I(−∞,x](ν̂t) (17)

4. Resample with replacement, Bootstrap innovations {ν∗
t } from F̂ν̂t

(x).

5. Generate the Bootstrap sample of squared return x∗
t , where x∗

t = y2∗
t , by the recursion

x∗
t = α̂w

0 +
p∑

i=1
α̂w

i x∗
t−i + ν∗

t (18)

where x∗
t = α̂w

0 /{1 −∑p
i=1 α̂w

i } and ν∗
t = 0 for t ≤ p. Generate (n + 200) values of x∗

t

and then drop the first 200 “burn-in” observations to reduce the effect of the starting
values as asymptotically negligible. (Kreiss and Franke, 1992).

6. Now given {x∗
t }

n
t=1 from Step 5, fit the model given by equation (11) then estimate

the coefficients by the WLS method, and let the resultant estimated coefficients be
Φ̂w∗ =

(
α̂w∗

0 , α̂w∗
1 , . . . , α̂w∗

p

)’
.

7. Then Bootstrap sample of volatility {σ2∗
t }n

t=1 is obtained as

σ2∗
t = α̂w∗

0 +
p∑

i=1
α̂w∗

i x∗
t−i for t = p + 1, p + 2, . . . , n. (19)

where σ2∗
t = α̂w

0 /{1 −∑p
i=1 α̂w

i } for t = 1, . . . , p.

8. Again sample with replacement, Bootstrap innovations
{
ν∗

n+h

}s

h=1
, s > 0, from F̂ν̂t

(x)
to obtain future Bootstrap observations.

9. Compute the h-step ahead, h = 1, 2, . . . , s, future Bootstrap observations for squared
returns x∗

n+h and volatility σ2∗
n+h by the recursions

x∗
n+h = α̂w∗

0 +
p∑

i=1
α̂w∗

i x∗
n+h−i + ν∗

n+h (20)

σ2∗
n+h = α̂w∗

0 +
p∑

i=1
α̂w∗

i x∗
n+h−i (21)

where x∗
n+h = xn+h for h ≤ 0.

10. Repeat Steps 4 to 9 B times to generate B Bootstrap replicates.

11. Obtain the empirical Bootstrap distribution function F̂ ∗
x∗

n+h
of x∗

n+h, where x∗
n+h = y2∗

n+h,
to approximate the unknown distribution of xn+k given the observed sample and F̂ ∗

σ2∗
n+h
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of σ2∗
n+h to approximate the unknown distribution σ2

n+h.
The (1 − α) 100% PIs for future returns yn+h is given by[

Q∗
n+h (α/2) , Q∗

n+h(1 − α/2)
]

(22)

where Q∗
n+h (α/2) = −

√
H∗

n+h (1 − α) and Q∗
n+h (1 − α/2) =

√
H∗

n+h (1 − α) where
H∗

n+h (1 − α) is the (1 − α) quantile of F̂ ∗
x∗

n+h
.

Similarly, the (1 − α) 100% PIs for σ2
n+h is given by[

0, K∗
n+h(1 − α)

]
(23)

where K∗
n+h(1 − α) is the (1 − α) quantile of F̂ ∗

σ2∗
n+h

.

2.3.2. Robust sieve bootstrap (RSB) method

It is possible to write that an AR process of {xt}n
t=1, as in equation (11), in the form

of an infinite AR representation:
∞∑

j=0
φj (xt−j − µx) = νt , φ0 = 1, for t ∈ Z (24)

with coefficients satisfying the condition ∑∞
j=0 φ2

j < ∞. Let the parameter µx be estimated
by its empirical mean x = 1

n

∑n
t=1 xt, as has been done by Alonso et al. (2002, 2003, 2004).

The steps involved in the proposed algorithm are as follows:

1. For the given realization of squared return series, {xt}n
t=1, select the maximum order

pmax = p (n) of the AR approximation and using AICC criteria, obtain the optimum
order. The optimum order has been considered as p̂ = pAICC +1 for the order of the AR
model to be fitted to the observed data. In the Monte Carlo simulation, pmax = p (n)
was taken as (n/10), as recommended by Bhansali (1983) where n is the sample size.

2. Estimate the coefficients of AR(p̂) process using the WLS method described in equation
(15). Let the estimates be φ̂w

1 , φ̂w
2 , . . . , φ̂w

p̂ in place of the Yule-Walker method used for
coefficient estimation within Tresch (2015).

3. Compute the (n − p̂) residuals as

ν̃t =
p̂∑

j=0
φ̂w

j (xt−j − x); φ̂w
0 = 1, t ∈ (p̂ + 1, p̂ + 2, . . . , n) (25)

where x is the mean of {xt}n
t=1.

4. Center the residuals as ν̂t = ν̃t − ν̃t, where ν̃t = (n − p̂)−1∑n
t=p̂+1 ν̃t. Then

compute the empirical distribution function of the centered residuals F̂ν̂ (x) =
(n − p̂)−1∑n

t=p̂+1 I(−∞,x] (ν̂t).
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5. Resample with replacement, Bootstrap innovations ν∗
t from this distribution F̂ν̂ (x) for

t = −199, −198, . . . , 0, 1, . . . , n.

6. Generate the Bootstrap series x∗
t , t = −199, −198, . . . , 0, 1, . . . , n by the recursion as:
p̂∑

j=0
φ̂w

j

(
x∗

t−j − x
)

= ν∗
t (26)

where the first p̂ values are taken as x∗
t = x. Then drop the first 200 “burn-in”

observations to reduce the effect of the starting values as asymptotically negligible.

7. Fit an AR (p̂) model to the pseudo-data {x∗
1, x∗

2, . . . , x∗
n}, re-estimate the coefficients

using the WLS method and let the estimated coefficients be φ̂w∗
1 , φ̂w∗

2 , . . . , φ̂w∗
p̂ .

8. Using the new coefficients φ̂w∗
1 , φ̂w∗

2 , . . . , φ̂w∗
p̂ , compute the h-step ahead future Boot-

strap observations by the recursion as:

x∗
n+h − x = −

p̂∑
j=1

φ̂w∗
j

(
x∗

n+h−j − x
)

+ ν∗∗
n+h (27)

where x∗
t = xt when t ≤ n with ν∗∗

n+h for h = 1, 2, . . . , s, resampled from F̂ν̂ (x).
Also, instead of employing fixed x, here the mean of the Bootstrap series x∗ has been
employed as an estimate of the mean µx at individual Bootstrap prediction, following
Mukhopadhyay and Samaranayake (2010), since it includes sampling variability. So
to account for the sampling variability due to the estimate of the mean µx of the TS,
add (x∗ − x) to predict future observations x∗

n+h. Thus the future Bootstrap squared
return is then x̂∗

n+h = x∗
n+h + x∗ − x for h = 1, 2, . . . , s.

9. Using the future values x∗
n+h and the relationship for AR and ARCH/GARCH process,

the future volatility can be calculated by the following recursion:

σ2∗
n+h = x∗ −

p̂∑
j=1

φ̂w∗
j

(
x∗

n+h−j − x
)

(28)

where x∗
n+h−j = xn+hfor h ≤ 0.

10. Repeat steps 4 to 9 B times to generate B Bootstrap replicates. Then obtain the
empirical Bootstrap distribution function F̂ ∗

x∗
n+h

of x∗
n+h, where x∗

n+h = y2∗
n+h, to ap-

proximate the unknown distribution of xn+k given the observed sample and F̂ ∗
σ2∗

n+h
of

σ2∗
n+h to approximate the unknown distribution σ2

n+h.

11. The (1 − α) 100% PIs for future return yn+h is given by:[
Q∗

n+h (α/2) , Q∗
n+h(1 − α/2)

]
(29)

where Q∗
n+h (α/2) = −

√
H∗

n+h (1 − α) and Q∗
n+h (1 − α/2) =

√
H∗

n+h (1 − α) where
H∗

n+h (1 − α) is the (1 − α) quantile of F̂ ∗
x∗

n+h
.

Similarly, the (1 − α) 100% PIs for σ2
n+h is given by:[

0, K∗
n+h(1 − α)

]
(30)
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where K∗
n+h(1 − α) is the (1 − α) quantile of F̂ ∗

σ2∗
n+h

.

In the SB method by Tresch (2015), the future volatilities have been calculated by
the recursion of σ2∗

n+h = x∗
n+h −∑p̂

j=1 φ̂∗
jx

∗
n+h−j for h = 1, 2, . . . , s. This has been changed in

RSB and given in (28). It is also noted that the use of x∗ in the second proposed method
has been done which incorporates the advantage of the Bootstrap sampling variability on
future volatilities.

A schematic diagram of the method in Section 2.3.1. is given in the Figure 1 below.

Figure 1: A Schematic diagram of the algorithm in 2.3.1.

3. Simulation results

To compare the finite sample performance of the proposed Bootstrap methods with
the existing Bootstrap methods, a Monte-Carlo simulation study has been carried out on
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an ARCH(2) model for varying sample sizes and with data having no contamination and
also with contamination (read innovative outliers). Data were generated using the following
ARCH(2) model for heteroscedastic errors:

yt = σtεt (31)

σ2
t = 0.1 + 0.2y2

t−1 + 0.15y2
t−2 (32)

generated separately considering two different distributions for the innovation process {εt}t∈Z
given as (i) N (0, 1) and (ii) (1 − ζ) N (0, 1) + ζN (0, 10). Here the level of contamination
has been taken as ζ = 0.05. The sample sizes considered were 300 and 1000. For each
combination of error distribution and sample size, to start with, the simulated datasets,
yt and σ2

t , from ARCH(2) process were generated and then R = 1000 future values, yn+h

and σ2
n+h, for each future lead h = 1, 2, . . . , 20 were generated from the underlying model

using the true values of the parameter coefficients for each simulation. Furthermore, for
each Bootstrap procedure (both existing and proposed), B = 1000 Bootstrap pseudo-series
were generated to obtain Bootstrap PIs for nominal coverages of 95%. These procedures
were repeated N = 1000 times to calculate the average values of the performance metrics
described subsequently.

The empirical or theoretical length of the PIs of yt+h for ith simulation run, i =
1, 2, . . . N , was calculated as LT,y (i) =

[
y

(R)
n+h (1 − α/2) − y

(R)
n+h(α/2)

]
, the difference between

(1 − α/2) 100th and (α/2) 100th percentile point of the empirical distribution of the R future
returns. Then mean theoretical length of return is LT,y = N−1∑N

i=1 LT,y(i). Similarly
the mean theoretical length of the PIs of σ2

n+h is calculated as: LT,σ2 = N−1∑N
i=1 LT,σ2(i),

where LT,σ2 (i) =
[
σ

2,(R)
n+h (1 − α/2) − σ

2,(R)
n+h (α/2)

]
, the difference between (1 − α/2) 100th and

(α/2) 100th percentile point of the empirical distribution of the R future volatilities.

The coverage probability (CP) of returns yt+h for ith simulation run is then calculated
as the Cy (i) = R−1∑R

r=1 I[
Q∗(α/2)≤y

(r)
n+h

(i)≤Q∗(1−α/2)
], where Q∗ (α/2) is the (α/2)th quantile of

the estimated Bootstrap distribution and y
(r)
n+h(i) is r th future return value, r = 1, 2, . . . , R,

generated at ith simulation, i = 1, 2, . . . N . Similarly, the CP of volatility σ2
n+h for ith

simulation σ
2,(r)
n+h (i) is then calculated as the Cσ2 (i) = R−1∑R

r=1 I[
0≤σ

2,(r)
n+h

(i)≤K∗
n+h

(1−α)
], where

K∗ (α) is the αth quantile of the estimated Bootstrap distribution and σ
2,(r)
n+h (i) is r th future

volatility value, r = 1, 2, . . . , R, generated at ith simulation.

The Bootstrap length of returns yt+h and volatility σ2
n+h for ith simulation run is

calculated as LB,y (i) = [Q∗ (1 − α/2) − Q∗ (α/2)] and LB,σ2 (i) = K∗ (1 − α), respectively.
Finally, the following performance evaluation measures were calculated:

• Mean Return Coverage (CV Rret): Cy = N−1∑N
i=1 Cy (i)

• Mean Volatility Coverage (CV Rvol): Cσ2 = N−1∑N
i=1 Cσ2 (i)

• Standard Error of CV Rret: se
(
Cy

)
=
{

[N(N − 1)]−1∑N
i=1

[
Cy (i) − Cy

]2}1/2
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• Standard Error of CV Rvol: se
(
Cσ2

)
=
{

[N(N − 1)]−1∑N
i=1

[
Cσ2 (i) − Cσ2

]2}1/2

• Mean length of Return (LEN ret): LB,y = N−1∑N
i=1 LB,y (i)

• Mean length of Volatility (LEN vol): LB,σ2 = N−1∑N
i=1 LB,σ2 (i)

• Standard Error of LEN ret: se
(
LB,y

)
=
{

[N(N − 1)]−1∑N
i=1

[
LB,y(i) − LB,y

]2}1/2

• Standard Error of LEN vol: se
(
LB,σ2

)
=
{

[N(N − 1)]−1∑N
i=1

[
LB,σ2(i) − LB,σ2

]2}1/2

CQret =
∣∣∣1 −

(
LB,y/LT,y

)∣∣∣+ |1 − (CV Rret/CV RT,y)|
CQvol =

∣∣∣1 −
(
LB,σ2/LT,σ2

)∣∣∣+ |1 − (CV Rvol/CV RT,vol)|

where CV RT,(.) is the (1 − α) % nominal coverage. Here, CQ is an index of coverage quality.
Therefore the simulation results have been summarized in different tables that contain the
mean coverage (CVR), mean length of the intervals (LEN), standard error of mean coverage
(SE), and standard error of mean length of the intervals (SE) for different combinations.
The performances of the proposed methods were compared to the existing unconditional
Sieve Bootstrap (USB) proposed by Chen et al. (2011) method and Sieve Bootstrap (SB)
by Tresch (2015) for constructing PIs. The proposed approaches are given in Sections 2.3.1
and 2.3.2 respectively.

It is noted that, for the case of h = 1, equations (21) and (28) both will have their
Bootstrap volatilities as constant and hence the computation of PIs of their one-step-ahead
forecast volatilities are not appropriate and hence not given in the following tables.

In Tables 1 through 4, results of the comparisons of PIs for h= 1, 5, 10, 15 and 20
steps ahead of the described methods have been presented for comparison purposes.

Tables 1 and 2 provide the results pertaining to the ARCH(2) model without con-
taminated innovations. From Tables 1 and 2, it can be seen that all methods have almost
similar results in terms of coverage and length of intervals. It can also be seen that the
proposed method RSB is performing almost at par with SB when coverage probabilities are
compared while lengths of PIs of RUSB are always found to be less than the existing method
i.e. USB. The same conclusion can be drawn when we compare the proposed method RUSB
with the existing method USB. When the lengths of PIs of two proposed methods RSB and
RUSB are compared, by and large, RUSB is always better than RSB both for returns and
volatilities.

From Tables 3 and 4, a striking feature of the proposed method RUSB which can be
seen is that the length of PIs across all forecast horizons for both returns and volatilities
have been found to be less as compared to those of the existing methods SB and USB and
also of the proposed method RSB when the data is contaminated. The feature of obtaining
the order of model by Sieve approximation rather than assumed to be fixed beforehand has
yielded better coverage in the case of the proposed method RSB and the existing method
SB (in which such a feature is there) as compared to the other two methods viz. proposed
method RUSB and existing method USB. It can also be seen from Tables 3 and 4 that
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the proposed methods were able to tackle the inflation of variances and at the same time
maintains the length of PIs.

Another inference that can be drawn when the coverage of volatility are considered
is that the proposed methods performed well in case of contaminated data. It can also be
seen that the length of PIs for the proposed method RSB is always less than those of the
existing methods USB and SB. Even though the lengths of PIs of the proposed method RSB
are larger than the RUSB, it can be seen that the coverages obtained from RSB are always
better than RUSB for both returns and volatilities in the case of contaminated data. When
both coverages and lengths of PIs are considered together, as per the combined measure
CQret and CQvol, the RUSB has been found far better than others.

4. Case Study

In this section, the performance of the proposed methods RSB and RUSB in com-
parison with the existing methods USB and SB have been presented with real-time series
data. Monthly onion price (Rs/quintal) data at Delhi market has been used for validating
the methods. It pertains to the period January 2003 to February 2022, with a total of 230
observations. Data were collected from the secondary source available at National Horti-
cultural Research and Development Foundation, New Delhi, India (NHRDF, 2003-2022).
The methods were applied to the return of monthly Onion price at Delhi market data. The
returns are more frequently used than the price time series, because returns do not depend
on units, making the comparison easier. The return series is obtained as follows:

yt = Pt − Pt−1

Pt−1
(33)

where Pt is the monthly onion price at time t. The price series is shown in Figure 2 and
the return series yt is shown in Figure 3. ADF test has been employed on the return series
yt which revealed that it is stationary. From Figure 3 and Figure 4, the data reveals the
presence of outliers. Table 5 presents the summary statistics of the return data series. As
the estimated kurtosis is higher than 3, indicates that the return series is leptokurtic.

Now Lagrange-Multiplier (LM) test confirmed the presence of the ARCH effect on
this return series. It was found that ARCH(1) is a suitable model for return series yt.
The data set has been partitioned into an in-sample estimation set from January 2003 to
December 2020 and an out-sample set from January 2021 to February 2022 for validation.
That is out of 230 sample observations 14 observations have been set aside for predictions
purpose. From equation (9), by fitting AR(1) model on y2

t using LS estimation, the resulting
estimated model is

y2
t = 0.0670 + 0.1026y2

t−1 (34)
i.e. α̂0 = 0.0670 and α̂1 = 0.1026. It can also be seen that α̂2

1 ≤ 1/3, and hence indicates
strictly stationarity (and hence weakly stationarity also) of return series (Tsay, 2010; Box et
al., 2015).

Figures 5 and 6 pertain to the PIs for the returns and volatilities from thevarious
methods. In case of PIs of returns, lower and upper boundaries of the PIs were obtained,
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Table 1: Simulated results of ARCH(2) model for sample size 300 and standard
normal innovation and no contamination

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.501 - 95% - -
USB 0.9481 (0.0014) 1.514 (0.0065) 0.0098 - - -
SB 0.9461 (0.0012) 1.511 (0.0051) 0.0098 - - -

RSB 0.9462 (0.0012) 1.512 (0.0049) 0.0101 - - -
RUSB 0.9480 (0.0014) 1.514 (0.0065) 0.0096 - - -

5 - 95% 1.535 - 95% 0.274 -
USB 0.9465 (0.0009) 1.542 (0.0063) 0.0082 0.9162 (0.0127) 0.273 (0.0040) 0.0418
SB 0.9468 (0.0006) 1.543 (0.0046) 0.0086 0.9021 (0.0142) 0.273 (0.0032) 0.0563

RSB 0.9467 (0.0006) 1.541 (0.0043) 0.0073 0.9083 (0.0098) 0.272 (0.0027) 0.0519
RUSB 0.9462 (0.0009) 1.539 (0.0061) 0.0069 0.9153 (0.0127) 0.270 (0.0036) 0.0529

10 - 95% 1.539 - 95% 0.273 -
USB 0.9465 (0.0008) 1.542 (0.0063) 0.0057 0.9156 (0.0127) 0.273 (0.0040) 0.0373
SB 0.9462 (0.0006) 1.542 (0.0047) 0.0058 0.9015 (0.0142) 0.275 (0.0034) 0.0576

RSB 0.9463 (0.0006) 1.540 (0.0044) 0.0046 0.9078 (0.0098) 0.274 (0.0028) 0.0463
RUSB 0.9463 (0.0008) 1.540 (0.0061) 0.0044 0.9145 (0.0127) 0.270 (0.0036) 0.0498

15 - 95% 1.535 - 95% 0.274 -
USB 0.9458 (0.0008) 1.541 (0.0062) 0.0082 0.9157 (0.0127) 0.274 (0.0041) 0.0368
SB 0.9468 (0.0006) 1.540 (0.0045) 0.0065 0.9023 (0.0142) 0.275 (0.0033) 0.0520

RSB 0.9468 (0.0006) 1.538 (0.0042) 0.0053 0.9082 (0.0098) 0.273 (0.0021) 0.0473
RUSB 0.9456 (0.0008) 1.539 (0.0059) 0.0068 0.9147 (0.0127) 0.270 (0.0036) 0.0521

20 - 95% 1.535 - 95% 0.2740 -
USB 0.9471 (0.0009) 1.543 (0.0062) 0.0089 0.9163 (0.0127) 0.274 (0.0040) 0.0358
SB 0.9472 (0.0006) 1.546 (0.0047) 0.0106 0.9021 (0.0142) 0.275 (0.0035) 0.0537

RSB 0.9472 (0.0006) 1.544 (0.0044) 0.0093 0.9080 (0.0098) 0.273 (0.0027) 0.0475
RUSB 0.9468 (0.0009) 1.541 (0.0059) 0.0075 0.9153 (0.0127) 0.270 (0.0035) 0.0497

but since the volatility is non-negative, only the upper boundary has been obtained and
the lower boundary has been assumed to be zero. It can be found that the PIs for returns
developed by all methods contained all the future returns. At some points, it is clearly
visible that the proposed methods have smaller lengths as compared to existing methods.
As volatilities are not directly observable, once the parameters were estimated, volatilities
have been estimated using the following equation (Ullao et al., 2014):

σ2
t = α̂0 + α̂1y

2
t−1 (35)

where yt−1 corresponds to the observed past return series. It can be clearly seen that the
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Table 2: Simulated results of ARCH(2) model for sample size 1000 and standard
normal innovation and no contamination

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.513 - 95% - -
USB 0.9479 (0.0015) 1.522 (0.0053) 0.0080 - - -
SB 0.9471 (0.0011) 1.519 (0.0038) 0.0068 - - -

RSB 0.9473 (0.0011) 1.519 (0.0038) 0.0070 - - -
RUSB 0.9478 (0.0015) 1.522 (0.0052) 0.0081 - - -

5 - 95% 1.538 - 95% 0.275 -
USB 0.9475 ()0.0006 1.539 (0.0038) 0.0031 0.9381 (0.0144) 0.275 (0.0023) 0.0125
SB 0.9482 (0.0004) 1.540 (0.0027) 0.0031 0.9374 (0.0136) 0.274 (0.0017) 0.0144

RSB 0.9481 (0.0004) 1.539 (0.0027) 0.0025 0.9371 (0.0086) 0.272 (0.0015) 0.0216
RUSB 0.9472 (0.0006) 1.537 (0.0037) 0.0038 0.9369 (0.0144) 0.271 (0.0021) 0.0251

10 - 95% 1.537 - 95% 0.274 -
USB 0.9471 (0.0006) 1.537 (0.0039) 0.0031 0.9385 (0.0144) 0.275 (0.0023) 0.0183
SB 0.9483 (0.0004) 1.539 (0.0027) 0.0030 0.9375 (0.0136) 0.275 (0.0017) 0.0183

RSB 0.9482 (0.0004) 1.538 (0.0026) 0.0024 0.9373 (0.0086) 0.273 (0.0015) 0.0170
RUSB 0.9469 (0.0006) 1.535 (0.0038) 0.0046 0.9374 (0.0144) 0.272 (0.0020) 0.0184

15 - 95% 1.537 - 95% 0.274 -
USB 0.9483 (0.0006) 1.538 (0.0038) 0.0024 0.9387 (0.0144) 0.275 (0.0023) 0.0166
SB 0.9482 (0.0004) 1.540 (0.0026) 0.0040 0.9374 (0.0136) 0.274 (0.0016) 0.0155

RSB 0.9480 (0.0004) 1.538 (0.0026) 0.0031 0.9370 (0.0086) 0.272 (0.0015) 0.0195
RUSB 0.9481 (0.0006) 1.536 (0.0037) 0.0027 0.9374 (0.0144) 0.272 (0.0020) 0.0202

20 - 95% 1.539 - 95% 0.274 -
USB 0.9473 (0.0006) 1.535 (0.0039) 0.0054 0.9384 (0.0144) 0.275 (0.0022) 0.0162
SB 0.9475 (0.0004) 1.536 (0.0026) 0.0049 0.9369 (0.0136) 0.274 (0.0016) 0.0167

RSB 0.9474 (0.0004) 1.535 (0.0025) 0.0054 0.9367 (0.0086) 0.272 (0.0015) 0.0191
RUSB 0.9471 (0.0006) 1.534 (0.0038) 0.0068 0.9372 (0.0144) 0.272 (0.0020) 0.0190

proposed method RSB and SB are almost close to each other and cover all future volatilities.
RUSB has a very small length for PIs.

5. Conclusion

In this study, two new robust Sieve Bootstrap approaches based on weighted least
squares estimation have been proposed to deal with the presence of outliers for developing PIs
for both returns and volatilities in the ARCH model setup. The performances of the proposed
methods viz., Robust Unconditional Sieve Bootstrap (RUSB) and Robust Sieve Bootstrap
(RSB) for constructing PIs using both simulated as well as real data sets have been found
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Figure 2: Monthly Onion price at Delhi market data from January 2003 to
February 2022, with a total of 230 observations

Figure 3: Time plot of returns of monthly onion price data of Delhi market
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Figure 4: Box plot of return series of monthly onion price of Delhi market

Figure 5: Prediction intervals for returns of monthly onion price of Delhi market
for forecast horizons h = 1, 2, · · · , 14
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Table 3: Simulated results of ARCH(2) model for sample size 300 with 5%
contaminated normal innovation

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.820 - 95% - -
USB 0.9607 (0.0017) 2.151 (0.0198) 0.1935 - - -
SB 0.9480 (0.0015) 1.906 (0.0102) 0.0493 - - -

RSB 0.9491 (0.0016) 1.941 (0.0135) 0.0675 - - -
RUSB 0.9423 (0.0022) 1.839 (0.0126) 0.0186 - - -

5 - 95% 1.955 - 95% 0.433 -
USB 0.9626 (0.0009) 2.446 (0.0346) 0.2646 0.9749 (0.0030) 1.138 (0.0641) 1.6523
SB 0.9518 (0.0007) 2.117 (0.0151) 0.0846 0.9441 (0.0069) 0.581 (0.0134) 0.3459

RSB 0.9500 (0.0007) 2.072 (0.0162) 0.0597 0.9465 (0.0056) 0.576 (0.0291) 0.3335
RUSB 0.9440 (0.0009) 1.949 (0.0132) 0.0096 0.9363 (0.0078) 0.436 (0.0084) 0.0200

10 - 95% 1.960 - 95% 0.429 -
USB 0.9636 (0.0009) 2.490 (0.0380) 0.2849 0.9741 (0.0030) 1.216 (0.0788) 1.8600
SB 0.9514 (0.0007) 2.126 (0.0163) 0.0864 0.9433 (0.0069) 0.601 (0.0162) 0.4077

RSB 0.9496 (0.0006) 2.081 (0.0188) 0.0622 0.9455 (0.0056) 0.601 (0.0399) 0.4066
RUSB 0.9447 (0.0009) 1.970 (0.0150) 0.0106 0.9348 (0.0078) 0.443 (0.0094) 0.0479

15 - 95% 1.965 - 95% 0.432 -
USB 0.9626 (0.0009) 2.484 (0.0392) 0.2776 0.9746 (0.0030) 1.234 (0.0861) 1.8824
SB 0.9512 (0.0007) 2.126 (0.0159) 0.0832 0.9430 (0.0069) 0.605 (0.0164) 0.4078

RSB 0.9491 (0.0007) 2.083 (0.0210) 0.0614 0.9451 (0.0056) 0.605 (0.0496) 0.4045
RUSB 0.9438 (0.0009) 1.953 (0.0140) 0.0125 0.9354 (0.0078) 0.440 (0.0089) 0.0341

20 - 95% 1.966 - 95% 0.432 -
USB 0.9628 (0.0009) 2.488 (0.0395) 0.2793 0.9738 (0.0030) 1.241 (0.0885) 1.9020
SB 0.9511 (0.0007) 2.132 (0.0164) 0.0859 0.9431 (0.0069) 0.609 (0.0179) 0.4193

RSB 0.9491 (0.0007) 2.090 (0.0216) 0.0643 0.9450 (0.0056) 0.638 (0.0579) 0.4838
RUSB 0.9444 (0.0009) 1.957 (0.0141) 0.0104 0.9349 (0.0078) 0.438 (0.0087) 0.0307

to be better when compared with their existing counterparts. The results revealed that the
proposed method RSB is performing almost at par with SB when coverage probabilities are
compared while lengths of PIs of RUSB are always found to be less than the existing method
i.e. USB. When the lengths of PIs of two proposed methods RSB and RUSB are compared,
by and large, RUSB is always better than RSB both for returns and volatilities. For the
proposed method RUSB, the length of PIs across all forecast horizons for both returns and
volatilities have been found to be less as compared to those of the existing methods SB and
USB and also of the proposed method RSB when the data is contaminated. The proposed
methods were able to tackle the inflation of variances and at the same time maintain the
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Table 4: Simulated results of ARCH(2) model for sample size 1000 with 5%
contaminated normal innovation

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.768 - 95% - -
USB 0.9644 (0.0016) 2.155 (0.0164) 0.2072 - - -
SB 0.9535 (0.0011) 1.875 (0.0078) 0.0644 - - -

RSB 0.9517 (0.0012) 1.836 (0.0068) 0.0403 - - -
RUSB 0.9444 (0.0022) 1.806 (0.0096) 0.0278 - - -

5 - 95% 1.948 - 95% 0.422 -
USB 0.9675 (0.0007) 2.491 (0.0294) 0.2922 0.9806 (0.0035) 1.141 (0.0592) 1.7386
SB 0.9557 (0.0005) 2.114 (0.0095) 0.0914 0.9620 (0.0045) 0.594 (0.0083) 0.4220

RSB 0.9511 (0.0005) 2.013 (0.0071) 0.0344 0.9504 (0.0035) 0.474 (0.0057) 0.1242
RUSB 0.9454 (0.0007) 1.928 (0.0091) 0.0154 0.9350 (0.0073) 0.397 (0.0055) 0.0732

10 - 95% 1.959 - 95% 0.428 -
USB 0.9678 (0.0006) 2.519 (0.0333) 0.3103 0.9807 (0.0035) 1.220 (0.0717) 1.8841
SB 0.9555 (0.0005) 2.134 (0.0107) 0.0950 0.9610 (0.0045) 0.616 (0.0101) 0.4520

RSB 0.9506 (0.0004) 2.020 (0.0074) 0.0317 0.9488 (0.0035) 0.476 (0.0058) 0.1128
RUSB 0.9451 (0.0007) 1.921 (0.0088) 0.0249 0.9332 (0.0074) 0.396 (0.0058) 0.0913

15 - 95% 1.959 - 95% 0.431 -
USB 0.9673 (0.0006) 2.528 (0.0342) 0.3037 0.9807 (0.0035) 1.242 (0.0764) 1.9108
SB 0.9552 (0.0005) 2.131 (0.0109) 0.0929 0.9606 (0.0045) 0.626 (0.0111) 0.4626

RSB 0.9503 (0.0005) 2.015 (0.0075) 0.0285 0.9484 (0.0035) 0.478 (0.0059) 0.1090
RUSB 0.9443 (0.0007) 1.924 (0.0089) 0.0240 0.9340 (0.0073) 0.399 (0.0060) 0.0922

20 - 95% 1.955 - 95% 0.433 -
USB 0.9676 (0.0007) 2.528 (0.0348) 0.3120 0.9801 (0.0035) 1.245 (0.0780) 1.9076
SB 0.9555 (0.0005) 2.131 (0.0108) 0.0958 0.9603 (0.0045) 0.626 (0.0116) 0.4562

RSB 0.9506 (0.0004) 2.014 (0.0071) 0.0309 0.9481 (0.0035) 0.476 (0.0060) 0.1016
RUSB 0.9452 (0.0007) 1.931 (0.0095) 0.0171 0.9333 (0.0074) 0.399 (0.0064) 0.0961

Table 5: Summary statistics of return series yt

Mean Median SD Skewness Kurtosis Maximum Minimum
0.0437 0.0158 0.2730 0.8846 5.0058 1.2840 -0.6090

length of PIs. Using the real data set on the monthly onion price of Delhi market, it has been
shown that the PIs for returns developed by all methods contained all the future returns and
that the proposed methods have smaller lengths as compared to existing methods. Hence
the proposed methods can be used as a viable alternative for computing PIs for non-linear
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TS models.

Figure 6: Prediction intervals for volatilities of monthly onion price of Delhi
market for forecast horizons h = 1, 2, · · · , 14
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Abstract
In ROC literature, there are good number of Bi-distributional ROC curves which

are developed to address the practical need and are based on normal and non-normal data.
The most widely used ROC form is the Bi-Normal. However, the practical situations in
diagnostic medicine and other life testing frameworks, data may not be attributed to make
use of the Bi-Normal ROC curve. We have considered such situations using SAPS III dataset,
where the data underpins Generalised Half-Normal distribution and not that of any existing
bi-distributional ROC forms. The ROC and AUC expressions are derived and these are
supported with SAPS III dataset and simulation. The present work is demonstrated by
considering minimum (better case), moderate (moderate case) and maximum (worst case)
overlapping scenarios at various sample sizes.

Key words: ROC curve; AUC; Non-normal data; Confidence intervals; Generalized Half-
Normal distribution.
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1. Introduction

In classical statistics and machine learning, the problem of classifying an individ-
ual/ object/ image/ voice/ signal has grabbed the attention of researchers from diagnostic
medicine, experimental psychology, finance and many more. The statistical tool that sup-
ports in explaining the performance of a classifier is the receiver operating characteristic
(ROC) curve. Even though the tool originated in early 1950s to analyze the radar signals,
researchers from the medical domain started using it in the early 1970s. The theoretical
contributions started during mid 1970s wherein the mathematical frame work was proposed
by by assuming the data of two populations follow a particular distribution, say ‘normal’;
hence the name ‘binormal ROC model’ Egan (1975). However, basing on the practical need
and situations, the theoretical development happened under non-normal data structures.
Over the years, many researchers have attempted in proposing the bi-distributional ROC
models by considering gamma (Hussain (2012)), logistic (Dorfman and Alf (1969)), half-
normal (Vishnu and Kiruthika (2015)), exponential, and Weibull (Vishnu et al. (2012)) etc.
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A comprehensive coverage of such bi-distributional ROC models was made by Balaswamy
and Vishnu (2016). In understanding the non-normal data, we are well aware that the shape
and scale parameters play a crucial role in explaining the tail pattern and asymmetry.

Table 1: One sample KS test for some skewed distributions

Distribution Status Parameters Estimates KS test value p-value

Normal
Alive µ0 25.53 0.9999 <2.2e-16

σ0 17.48

Dead µ1 33.82 0.9565 <4.44e-16
σ1 17.42

Exponential Alive λ0 0.04 0.1639 0.0575
Dead λ1 0.03 0.2543 0.0059

GHN
Alive α0 1.18 0.1141 0.3563

σ0 32.66

Dead α1 1.21 0.1341 0.3936
σ1 42.04

Let us consider a real data namely the Simplified Acute Physiology Score (SAPS)
III, which helps in estimating the probability of mortality for ICU patients/subjects. SAPS
III score and a status variable (Alive(0); Dead(1)) are the two characteristics recorded for
each patient. Figure 1 depicts the density patterns of ‘alive’ and ‘dead’ patients indicat-
ing the deviation from symmetry. Further, goodness of fit criterion using the one-sample

Figure 1: Histogram of SAPS III data
Kolmogorov-Smirnov (KS) test is performed to provide an evidence that the SAPS III data
do not follow normality. Along with the normal distribution, exponential and generalised
half-normal distribution (GHN) were also considered as competitor distributions. The re-
sults of the same are reported in Table 1, clearly indicating that the data is a good fit for
GHN distribution. So, the existing bi-normal and bi-exponential ROC models do not sup-
port in defining a classifier that helps in classifier or allocating a subject into ‘alive’ or ‘dead’
classes of SAPS III data. Hence, the practical situation needs a classifier rule to be defined.
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This motivated us to come out with a newer version of ROC model wherein the data of two
populations follow GHN distribution.

GHN is a special case of the three-parameter generalized gamma distribution. Even
though the GHN distribution is a two-parameter distribution, the hazard rate function can
form variety of shapes such as monotonically increasing, monotonically decreasing, and bath-
tub shapes. Cooray and Ananda (2008) studied some properties of this family and examples
are cited to compare with other commonly used failure time distributions such as Weibull,
gamma, lognormal, and Birnbaum-Saunders. Moreover, there is difficulty in developing
inference procedures with the generalized gamma distribution, particularly, the maximum
likelihood estimation in which the iteration method such as Newton-Raphson fails. Even
with samples of size 200 or 300, the algorithms do not converge (Hager and Bain (1970)).
Some authors such as Parr and Webster (1965) and Stacy and Mihram (1965) faced prob-
lems with the maximum likelihood estimation. In addition, for interval estimation procedures
also they faced difficulties. This prompted us to work on GHN with two parameters such as
shape and scale and illustrated the features of parameters involved in it with the help of a
real data called SAPS III. Simulation studies are also carried out to support the proposed
methodology.

The probability density function and cumulative distribution function of GHN distri-
bution are,

f(x) =
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x ≥ 0, θ, α > 0 (2)

where Φ(.) is the cumulative distribution function of standard normal deviate, α and σ
are shape and scale parameters respectively. The expression given in (2) resembles the
cumulative distribution function of the half-normal distribution, hence Cooray and Ananda
(2008) named this distribution as GHN distribution. The density curves of GHN for different
values of shape and scale parameters are shown in Figure 2. For fixed scale parameter, the
GHN distribution will be positively skewed if α ∈ (0, 2.17); symmetric if α = 0 and negatively
skewed if α > 2.17.

2. The Bi-generalised Half-Normal ROC curve

Let us assume that the scores or data points, say S={X,Y} in both populations 1 and
2 follow GHN distribution. Using the probabilistic definitions, the false positive rate (FPR)
and true positive rate (TPR) of ROC curve at threshold ‘t’ are given as
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Figure 2: Density curves of GHN distribution

then from equation (3), the threshold can be expressed as,

t = σ0

Φ−1
[
1 − FPR

2

] 1
α0

 (5)

The ROC expression given in equation (6) is the Bi-Generalised Half-Normal (Bi-GHN)
ROC curve, where Φ−1(.) is the inverse cumulative distribution function of standard normal
deviate. Using equation (5) in equation (4), the ROC model is obtained and is given in
equation (6).

ROC(t) = 2

1 − Φ

σH

(
Φ−1

[
1 − F P R

2

] 1
αH

)
σD


αD
 (6)

where σ0 and σ1 are the scale parameters and α0 and α1 are the shape parameters of the
‘0’ and ‘1’ populations respectively. In next section, the expressions for the area under the
curve (AUC) and Youden’s index are given.

3. AUC of Bi-GHN ROC curve

The AUC can be interpreted as the average TPRs at all possible TNRs (TNR is the
True Negative Rate, which is obtained from 1-FPR). Since ROC curve is only a graphical
representation of a classifier it will be always better if we can summarize our findings by
a single measure. Such a numerical summary measure of ROC curve is termed as AUC.
AUC of an ROC curve explains the accuracy of a diagnostic test. The ability of the test
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to discriminate between ‘1’ and ‘0’ groups can be explained by AUC measure. Higher the
AUC value, better will be the discriminating power of the test. The value of AUC always
lies between 0 and 1. The total area under the ROC curve is always unity because both
TPR and TNR values lie between 0 and 1. The line connecting (0,0) and (1,1) in the ROC
unit square plot is the diagonal line where the AUC will be equal to 0.5. A test for which
AUC < 0.5 need not be considered at all. It means that the test has only 50 percentage or
less chance of discriminating the subjects into ‘1’ and ‘0’ categories. Tests with AUC ≥ 0.5
will alone be considered for further classification. AUC of Bi-GHN ROC curve is,

AUC =
� 1

0
ROC(t) dt

AUC =
� 1

0
2

1 − Φ

σ0

(
Φ−1

[
1 − F P R

2

] 1
α0

)
σ1
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α1
 dt (7)

If we consider σ1 =σ0=1, then it will reduce to one parameter Bi-GHN ROC curve
and its AUC will take the following form.

Then the AUC of the one-parameter Bi-GHN can be obtained as

AUC =
� 1

0
2
1 −

(
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2

) 1
α0

α1

dt

AUC =
2(1−k)

[
2k(k − 1) + 1

]
k + 1 ; where k = α1

α0
(8)

In this paper we consider two parameter Bi-GHN distribution. Since, equation (7)
does not have a closed form, we need to solve it using numerical integration. Variance of AUC
can be obtained using bootstrap method which is described in following section. Another
important summary measure of the ROC curve is Youden’s index (J). The maximum value
of ‘J’ is the value corresponding to the optimal threshold (cut-off) for the marker in the
diagnostic test. The theoretical expression for Youden’s index is

J = max{TPR + TNR − 1}

4. Parameter estimation under maximum likelihood method and their
confidence intervals

Using the results of maximum likelihood estimates presented in the work of Cooray
and Ananda (2008), the expressions for ‘0’ and ‘1’ populations are given in equations (9)
and (10) respectively.

n0
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+

n0∑
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log(xi) − n0

(
n0∑
i=1

x2α̂0
i log(xi)

)(
n0∑
i=1

x2α̂0
i

)−1

(9)
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n1
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j log(yj)
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j
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since α̂0 and α̂1 are fixed point solutions of the above non-linear equations, it can be obtained
by using a simple iterative scheme as follows: h(α(j)) = α(j+1) where λ(j) is the jth iterate of
α̂. The iteration procedure should be stopped when αj less than αj+1 is sufficiently small.
Once we obtain α̂0 and α̂1, we can obtain σ̂0 and σ̂1 from below expressions.

σ̂0 =
(

1
n0

n0∑
i=1

x2α̂0
i

) 1
2α̂0 (11)

σ̂1 =
 1

n1

n1∑
j=1

y2α̂1
j

 1
2α̂1

(12)

The (1 − δ) confidence interval for σ̂0 and σ̂1 can be written as

σ̂0 ± Z δ
2

√√√√(π
2 ) − 2 + (2 − log(2) − γ)2

n0(π2 − 4)

and

σ̂1 ± Z( δ
2 )

√√√√(π
2 ) − 2 + (2 − log(2) − γ)2

n1(π2 − 4)

where γ is the Euler’s constant (=0.5772156649).

The (1 − δ) confidence interval for α̂0 and α̂1 can be written as

α̂0 ± Z( δ
2 )

2α̂0√
n0(π2 − 4)

α̂1 ± Z( δ
2 )

2α̂1√
n1(π2 − 4)

5. Numerical illustrations

To illustrate the proposed methodology, SAPS III dataset is used. Out of the 111
subjects, 66 (59.46%) belong to alive population and the remaining are of dead population.
Table 2 report the parameter estimates along with their confidence limits for both alive and
dead populations. Using the expression given in equation (7) the AUC value turns out to
be 0.5793. Since the AUC expression do not have the closed form, the V (ÂUC) is obtained
using bootstrap method. Upon performing 100 bootstraps, the ÂUCBoot= 0.5629 and its
variance is 0.0014. The bootstrap expressions for AUC and its variance are given below.

ÂUCB = 1
B

B∑
b=1

AUCb (13)
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Table 2: The parameters estimates and confidence limits of Bi-GHN ROC curve

n0 n1
θ̂0 θ̂1 λ̂0 λ̂1

(L0,U0) (L1,U1) (L0,U0) (L1,U1)

66 45
1.2070 1.2071 32.2297 39.8010

(0.9666,1.4474) (0.9158,1.4982) (32.1977,32.2617) (39.7623,39.8397)

Table 3: Bootstrap estimates of measures of Bi-GHN ROC curve

ÂUCBoot V (ÂUCBoot) F̂PRBoot T̂PRBoot ĉ Ĵ

0.5629 0.0014 0.2736 0.4857 36 0.1226

Table 4: Parameter combinations

Scenario α0 α1 σ0 σ1

Better 0.75 2.20 0.99 2.11
Moderate 0.53 0.91 0.92 2.61

Worst 1.21 1.52 2.28 2.52

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bootstrap ROC Curve

FPR

T
P

R

Figure 3: Bootstrap ROC curves for SAPS III dataset
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V (ÂUCB) = 1
B − 1

B∑
b=1

(AUCb − ÂUCB)2 (14)

Using the Youden’s index, the optimal theshold is determined, that is, t= 36. At this
cutoff, the FPR and TPR are observed to be 0.2736 and 0.4857 respectively. The obtained
threshold is able to correctly classify 57 subjects out of 100 subjects. It is also noticed that
this threshold generates 27% of false positives and truely detects the subject status upto
48% only. Figure 3 depicts the ROC curves generated at each bootstrap.

5.1. Simulation Studies

Further, to give a generalized view on the working methodology of the proposed
Bi-GHN ROC curve, sizeable simulations are carried out with various parameter combina-
tions at different sample sizes n= {25, 50, 100, 150, 200, 500}. Three different parameter
combinations are considered to illustrate the better, moderate and worst case scenarios.

The parameter estimates and their confidence intervals of populations ‘0’ and ‘1’
for the combinations (Table 4) at different sample sizes are reported in Tables 5, 7 and 9
respectively. Accordingly, the estimated values of the measures of the proposed ROC curve
are reported in Tables 6, 8 and 10 respectively.

Table 5: Parameter estimates at equal sample sizes (Better case)

n0 n1 α̂0 α̂1 σ̂0 σ̂1

(L0, U0) (L1, U1) (L0, U0) (L1, U1)
25 25 0.7503 2.1000 0.9823 2.1026

(0.5086,0.9274) (1.4215,2.7817) (0.7363,1.3569) (2.0499,2.5524)
50 50 0.7499 2.1008 0.9926 2.1078

(0.6553,0.8586) (1.5638,2.5805) (0.8894,1.2258) (2.0616,2.2741)
100 100 0.7501 2.1016 0.9931 2.1102

(0.6609,0.8234) (1.6195,2.4398) (0.9093,1.1403) (2.0897,2.2362)
150 150 0.7482 2.1017 0.9936 2.1062

(0.6642,0.8387) (1.7602,2.3742) (0.9247,1.0979) (2.0924,2.2114)
200 200 0.7499 2.1018 0.9963 2.1115

(0.6745,0.8049) (1.8604,2.3484) (0.9325,1.0089) (2.0943,2.1940)
500 500 0.7524 2.1021 0.9991 2.1129

(0.6996,0.7816) (1.9496,2.3011) (0.9269,1.0018) (2.0995,2.1689)

With respect to better case, the following observations can be seen. For n= 100, the
optimal cutoff is 1.1563, which is determined at the maximum value of Youden’s index Ĵ=
0.5639. The classification of an individual can be in the following way: An individual is
classified into Population ‘1’, if S > 1.1563 and Population ‘0’, if S ≤ 1.1563. The optimal
cutoff is able to detect around 82.92% of true positive cases with 29.63% of false positives.
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Table 6: Accuracy cum intrinsic measures of Bi-GHN ROC (Better case)

n0 n1 ÂUC F̂PR T̂PR ĉ Ĵ V (ÂUC)

25 25 0.9160 0.3282 0.8233 0.9789 0.5111 0.0029

50 50 0.9187 0.3062 0.8265 1.0048 0.5173 0.0132

100 100 0.9218 0.2963 0.8292 1.1563 0.5639 0.0147

150 150 0.9253 0.2923 0.8238 1.0353 0.5315 0.0142

200 200 0.9268 0.2871 0.8226 1.0675 0.5355 0.0068

500 500 0.9283 0.2745 0.8337 0.9992 0.5391 0.0018

The ÂUC is observed to be 0.9218 which means that, the cutoff will be able to classify the
individuals with 92.18% of accuracy. The ROC curves for this situation are shown in Figure
4 with a maximum coverage of area in the unit square plot. Interpretation can be given for
the remaining sample sizes in similar manner.

Figure 4: Better case

Now, let us consider the results of moderate case that are reported in Tables 7 and 8.
For better understanding, let us consider a sample size from the results reported in Table 8.
At n = 150, Ĵ= 0.3526 and the optimal cutoff (ĉ) is 0.8886. At this ĉ, we can observe 71.44%
of true positives and 38.64% of false positives. The ÂUC= 0.7583, which can be interpreted
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Table 7: Parameter estimates at equal sample sizes (Moderate case)

n0 n1 α̂0 α̂1 σ̂0 σ̂1

(L0, U0) (L1, U1) (L0, U0) (L1, U1)
25 25 0.5314 0.9100 1.2429 2.4724

(0.3618,0.7080) (0.6155,1.2044) (1.1210,1.3487) (2.3095,2.8732)
50 50 0.5348 0.9112 1.2497 2.4775

(0.4086,0.6720) (0.6986,1.1408) (1.1807,1.3414) (2.3338,2.8453)
100 100 0.5365 0.9127 1.2538 2.4798

(0.4099,0.6522) (0.7198,1.1361) (1.2357,1.3301) (2.3546,2.7881)
150 150 0.5397 0.9162 1.2606 2.4805

(0.4286,0.6492) (0.7122,1.1289) (1.2312,1.3283 ) (2.3645,2.6754)
200 200 0.5329 0.9113 1.2644 2.4844

(0.4319,0.6434) (0.7035,1.1152) (1.2376,1.3242) (2.3938,2.6072)
500 500 0.5222 0.9275 1.2667 2.4881

( 0.4691,0.6218) (0.6829,1.1008) (1.2456,1.3091) (2.4123,2.5697)

Table 8: Accuracy cum intrinsic measures of Bi-GHN ROC (Moderate case)

n0 n1 ÂUC F̂PR T̂PR ĉ Ĵ V (ÂUC)

25 25 0.7508 0.4057 0.7068 0.8338 0.3041 0.0166

50 50 0.7536 0.4044 0.7086 0.8563 0.3519 0.0189

100 100 0.7547 0.3927 0.7104 0.8598 0.3539 0.0251

150 150 0.7583 0.3864 0.7144 0.8886 0.3526 0.0310

200 200 0.7599 0.3514 0.7187 0.8837 0.3571 0.0035

500 500 0.7615 0.3554 0.7198 0.8503 0.3609 0.0012
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as, ĉ has the ability to classify the individuals with 75.83% of accuracy. The ROC curves
for the moderate case are depicted in Figure 5. Next, we consider the results pertaining to

Figure 5: Moderate case

worst classification scenario presented in Tables 9 and 10. The ÂUC is around 54%. So, this
lower ÂUC will have a maximum overlapping area between the populations ‘0’ and ‘1’.

For n = 100, the ÂUC= 0.5466, where the ROC curve is quite closer to the chance
diagonal line indicating random classification. The ĉ = 1.3878 is able to detect 66.53% of
true positives and 58.57% of false positives. The ROC curves for this case are presented in
Figure 6. Since the curves obtained here are closer to the chance diagonal, the classifier fails
to classify the subjects into one of the populations with better accuracy.

6. Summary

In this paper, Bi-GHN ROC curve is proposed and accordingly the expressions for
AUC, FPR and TPR are derived. Since AUC does not have closed form expression, its
variance is obtained using bootstrap. The proposed work is supported with SAPS III dataset
and simulations. Better, moderate and worst case scenarios are considered at different sample
sizes. For the SAPS III dataset, the optimal threshold is observed to be 36 and ÂUC=
0.5793. The obtained threshold is able to classify the subjects in alive and dead population
with 57.93% of accuracy only.
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Table 9: Parameter estimates at equal sample sizes (Worst case)

n0 n1 α̂0 α̂1 σ̂0 σ̂1
(L0, U0) (L1, U1) (L0, U0) (L1, U1)

25 25 1.2085 1.5200 2.3239 2.6336
(0.8174,1.5996) (1.1281,2.0119) (2.1519,2.5725) (2.4423,2.7656)

50 50 1.2100 1.5183 2.3120 2.6323
(0.9331,1.4868) (1.1609,1.8657) (2.1703,2.5484) (2.4542,2.7614)

100 100 1.2143 1.5169 2.2970 2.5177
(1.0142,1.4014) (1.2072,1.7967) (2.1754,2.5086) (2.4631,2.7547)

150 150 1.2214 1.5210 2.3106 2.6287
(1.0331,1.3857) (1.2740,1.6959) (2.1987,2.4906) ( 2.4782,2.7512)

200 200 1.2150 1.5200 2.3056 2.6269
(1.1198,1.3241) (1.3461,1.6345) (2.2172,2.4239) ( 2.5006,2.7154)

500 500 1.2321 1.5288 2.2917 2.6261
(1.1501,1.3098) (1.4378,1.6190) (2.2562,2.3778) (2.5311,2.6921)

Table 10: Accuracy cum intrinsic measures of Bi-GHN ROC (Worst case)

n0 n1 ÂUC F̂PR T̂PR ĉ Ĵ V (ÂUC)

25 25 0.5319 0.5341 0.6431 1.6358 0.1090 0.0103

50 50 0.5354 0.6101 0.6543 1.3252 0.0908 0.0052

100 100 0.5466 0.5857 0.6653 1.3878 0.0996 0.0050

150 150 0.5490 0.5774 0.6786 1.4026 0.1011 0.0030

200 200 0.5584 0.5540 0.6822 1.5101 0.1082 0.0012

500 500 0.5665 0.5390 0.6909 1.4756 0.1152 0.0003
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Figure 6: Worst case
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Abstract 

 

In this paper we have considered the problem of estimating the population mean using 

auxiliary information in presence of non-response. This situation is examined under two 

cases; Case I: when non-response occurs both on study variable and auxiliary variable and 

population mean of the auxiliary variable is known; Case II: when non-response occurs only 

on study variable, complete information on auxiliary variable and population mean of 

auxiliary variable is known. Mathematical properties of proposed estimators such as bias, 

mean square error and minimum mean square error are separately obtained for both the cases 

of all the proposed estimators up to the first order of approximation. The proposed estimators 

have been compared theoretically with the Hansen and Hurwitz (1946) estimator and some 

other existing estimators. The conditions for which proposed estimators are most efficient are 

obtained. Moreover, numerical illustrations shows that the proposed estimators perform better 

than existing estimators in terms of mean square error. 

 

Key words: Non-response; Stratified random sampling; Auxiliary information; Mean square 

error; Bias; Efficiency.  

 

1. Introduction  

 

In sample surveys, survey statisticians are expected to gather information on each unit 

of the selected sample in order to provide a precise estimate of the population mean. In many 

circumstances, information on part of the sample units cannot be collected in the first attempt 

due to natural interference. The failure of some of the sample units causes the errors to be 

classified as non-response. Hansen and Hurwitz (1946) introduced a method of sub-sampling 

to deal with the non-respondents and employed it in a more expensive way using the second 

trial. They considered two attempts (i) mail questionnaire, and (ii) personal interview to 

obtain the information from the sample and tried to give the appropriate inference about the 

population parameter. Later, various authors such as Cochran (1977), Rao (1986), Khare and 

Srivastava (1997), Singh and Kumar (2008, 2009), Singh and Vishwakarma (2019), Kumar et 

al. (2022) discussed the problem of estimating the population mean of the study variable 

using information on an auxiliary variable in the presence of non-response following the 

Hansen and Hurwitz (1946) technique under the simple random sampling without 

replacement (SRSWOR) scheme. When the population units are homogeneous, the SRSWOR 

sampling strategy is usually utilized. However, in practice heterogeneous populations are also 

commonly encountered. In such cases, stratified random sampling is used. With this in mind, 
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Chaudhary et al. (2009) investigated non-response in stratified random sampling, assuming 

that non-response happens only on the study variable. Sanaullah et al. (2015), Saleem et al. 

(2018), Onyeka et al. (2019), Shabbir et al. (2019) and Wani et al. (2021) have studied the 

problem of non-response in stratified single and two-phase sampling where non-response 

occurs on both the study and auxiliary variable, as well as on the study variable only. In this 

article, we attempted to propose estimators for estimating the population mean of the study 

variable Y using information on the auxiliary variable X in the presence of non-response for 

two cases. Case I occurs when there is non-response on both the study variable Y and the 

auxiliary variable X, and the auxiliary variable's population mean (𝑋̅) is known, whereas Case 

II occurs when there is non-response on only the study variable Y, and information on the 

auxiliary variable X is obtained from all sample units, and the auxiliary variable's population 

mean (𝑋̅) is known. The mathematical properties of proposed estimators, such as bias, mean 

square error, and minimum mean square error, were examined using large sample 

approximation. The proposed estimators have been shown to outperform all other estimators 

tested in the literature. Numerical illustrations have also been done in support of current 

investigation. 

 

2.   Sampling strategy 

 

Consider a finite heterogeneous population of N units organised into L homogenous 

subgroups termed as strata, with the hth stratum containing Nh units, where h = 1, 2, 3, ..., L 

and N consists of two mutually exclusive groups, viz.  response and non-response group. The 

responding and non-responding units in the hth stratum, respectively, are N1h and N2h. We 

select a sample of size nh from Nh units in the stratum by using SRSWOR and assume that n1h 

units respond and n2h units do not respond. We select a sub-sample of size rh = (n2h / kh ; kh 

>1) from n2h non responding units in the hth stratum. Following is the Hansen and Hurwitz 

(1946) estimator, 𝑦̅𝑠𝑡
∗ = ∑ 𝑊ℎ𝑦̅ℎ

∗𝐿
ℎ=1  and 𝑥̅𝑠𝑡

∗ = ∑ 𝑊ℎ𝑥̅ℎ
∗𝐿

ℎ=1  be the stratified sample means of y 

and  x  respectively in the hth stratum under non-response, where 𝑦̅ℎ
∗ =

𝑛1ℎ𝑦̅𝑛1ℎ+𝑛2ℎ𝑦̅𝑟2ℎ

𝑛ℎ
 , 𝑥̅ℎ

∗ =

𝑛1ℎ𝑥̅𝑛1ℎ+𝑛2ℎ𝑥̅𝑟2ℎ

𝑛ℎ
 , and (𝑦̅𝑛1ℎ, 𝑥̅𝑛1ℎ) and (𝑦̅𝑟2ℎ, 𝑥̅𝑟2ℎ) are the sample means based on n1h units 

and r2h units, respectively.  

 

The MSE of 𝑦̅𝑠𝑡
∗  and 𝑥̅𝑠𝑡

∗  are respectively given by 

 

𝑀𝑆𝐸(𝑦̅𝑠𝑡
∗ ) = ∑ 𝑊ℎ

2

𝐿

ℎ=1

{(
1

𝑛ℎ
−

1

𝑁ℎ
) 𝑆ℎ𝑦

2 +
(𝑘ℎ − 1)

𝑛ℎ
𝑊2ℎ𝑆ℎ𝑦(2)

2 }                          (1) 

𝑀𝑆𝐸(𝑥̅𝑠𝑡
∗ ) = ∑ 𝑊ℎ

2

𝐿

ℎ=1

{(
1

𝑛ℎ
−

1

𝑁ℎ
) 𝑆ℎ𝑥

2 +
(𝑘ℎ − 1)

𝑛ℎ
𝑊2ℎ𝑆ℎ𝑥(2)

2 } 

 

where 𝑆ℎ𝑦
2  and 𝑆ℎ𝑦(2)

2  are the population mean squares of entire group and non-response 

group respectively in the hth stratum for the study variable. 

 

3.  Useful notations 

 

  Following are some notations used for the theoretical development of present 

investigation: 
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 𝑌̅ℎ = 
1

𝑁ℎ
∑ 𝑦ℎ𝑖

𝑁ℎ
𝑖=1                             : Population mean of study variable for hth stratum. 

 𝑋̅ℎ= 
1

𝑁ℎ
∑ 𝑥ℎ𝑖

𝑁ℎ
𝑖=1                               : Population mean of auxiliary variable for hth stratum. 

𝑌̅ =  ∑ 𝑊ℎ𝑌̅ℎ
𝐿
ℎ=1                : Population mean of the study variable. 

𝑋̅ =  ∑ 𝑊ℎ𝑋̅ℎ
𝐿
ℎ=1                : Population mean of the auxiliary variable. 

 𝑆ℎ𝑦
2 = 

1

𝑁ℎ−1
∑ (𝑦ℎ𝑖 − 𝑌̅ℎ)2𝑁ℎ

𝑖=1           : Population variance of study variable for hth stratum. 

𝑆ℎ𝑥
2 = 

1

𝑁ℎ−1
∑ (𝑥ℎ𝑖 − 𝑋̅ℎ)2𝑁ℎ

𝑖=1           : Population variance of auxiliary variable for hth stratum. 

𝑆ℎ𝑦(1)
2 = 

1

𝑁1ℎ−1
∑ (𝑦ℎ𝑖 − 𝑌̅1ℎ)

2 
𝑁1ℎ
𝑖=1  : Population variance of response group of the study      

variable for hth stratum 

𝑆ℎ𝑥(1)
2 = 

1

𝑁1ℎ−1
∑ (𝑥ℎ𝑖 − 𝑋̅1ℎ)2𝑁1ℎ

𝑖=1  : Population variance of response group of the auxiliary 

variable for hth stratum 

 𝑆ℎ𝑦(2)
2 = 

1

𝑁2ℎ−1
∑ (𝑦ℎ𝑖 − 𝑌̅2ℎ)2 

𝑁2ℎ
𝑖=1 :  Population variance of non-response group of the study 

variable for hth stratum 

𝑆ℎ𝑥(2)
2 = 

1

𝑁2ℎ−1
∑ (𝑦ℎ𝑖 − 𝑋̅2ℎ)2𝑁2ℎ

𝑖=1  : Population variance of non-response group of the 

auxiliary variable for hth stratum 

𝜌ℎ𝑥𝑦 =
𝑆ℎ𝑥𝑦

𝑆ℎ𝑦𝑆ℎ𝑥 
                       : Correlation coefficient between the auxiliary and study 

variables in hth stratum. 

𝜌ℎ𝑥𝑦(2) =
𝑆ℎ𝑥𝑦(2)

𝑆ℎ𝑦(2)𝑆ℎ𝑥(2) 
               : Correlation coefficient between the auxiliary and study 

variables of non-response group in hth stratum. 

𝑓ℎ =
𝑛ℎ

𝑁ℎ
                                            : The sampling fraction of hth stratum  

And also ∑ 𝑁ℎ
𝐿
ℎ=1 = 𝑁 ; 𝜃ℎ =

1

𝑛ℎ
−

1

𝑁ℎ
 

To derive the expressions for the bias, mean square error and minimum mean square 

error of existing and proposed estimators, we consider the following relative error terms 

along with their expectations.   

3.1.  For separate estimators 

Relative error terms along with their expectations for separate estimators   

𝜉0ℎ
∗ = 

𝑦̅ℎ
∗−𝑌̅ℎ

𝑌̅ℎ
,                                       𝜉1ℎ

∗ = 
𝑥̅ℎ

∗−𝑋̅ℎ

𝑋̅ℎ
,                   𝜉1ℎ = 

𝑥̅ℎ−𝑋̅ℎ

𝑋̅ℎ
, 
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such that  𝐸(𝜉0ℎ
∗ ) = 𝐸(𝜉1ℎ

∗ ) = 𝐸(𝜉1ℎ) = 0 and under SRSWOR, we have  

𝐸(𝜉0ℎ
∗2) =

1

𝑌̅ℎ
2 [𝜃ℎ𝑆ℎ𝑦

2 +
𝑊2ℎ(𝑘ℎ − 1)

𝑛ℎ
𝑆ℎ𝑦(2)

2 ] = 𝐴ℎ 

𝐸(𝜉1ℎ
∗2) =

1

𝑋̅ℎ
2 [𝜃ℎ𝑆ℎ𝑥

2 +
𝑊2ℎ(𝑘ℎ − 1)

𝑛ℎ
𝑆ℎ𝑥(2)

2 ] = 𝐵ℎ 

𝐸(𝜉0ℎ
∗ 𝜉1ℎ

∗ ) =
1

𝑌̅ℎ𝑋̅ℎ

[𝜃ℎ𝑆ℎ𝑥𝑦 +
𝑤2ℎ(𝑘ℎ − 1)

𝑛ℎ
𝑆ℎ𝑥𝑦(2)] = 𝐶ℎ 

𝐸(𝜉1ℎ
2 ) =

1

𝑋̅ℎ
2 𝜃ℎ𝑆ℎ𝑥

2 = 𝐷ℎ         ,         𝐸(𝜉0ℎ
∗ 𝜉1ℎ) =

1

𝑌̅ℎ𝑋̅ℎ

𝜃ℎ𝑆ℎ𝑥𝑦 = 𝐸ℎ 

3.2.  For combined estimators 

  Relative error terms along with their expectations for combined estimators  

𝜉0𝑠𝑡
∗ = 

𝑦̅𝑠𝑡
∗ −𝑌̅

𝑌̅
,                            𝜉1𝑠𝑡

∗ = 
𝑥̅𝑠𝑡

∗ −𝑋̅

𝑋̅
,                      𝜉1𝑠𝑡 = 

𝑥̅𝑠𝑡−𝑋̅

𝑋̅
, 

such that  𝐸(𝜉0𝑠𝑡
∗ ) = 𝐸(𝜉1𝑠𝑡

∗ ) = 𝐸(𝜉1𝑠𝑡) = 0, and under SRSWOR, we have 

𝐸(𝜉0𝑠𝑡
∗2 ) =

1

𝑌̅2
∑ 𝑊ℎ

2

𝐿

ℎ=1

[𝜃ℎ𝑆ℎ𝑦
2 + 

𝑊2ℎ(𝑘ℎ − 1)

𝑛ℎ
𝑆ℎ𝑦(2)

2 ] = 𝐴 

𝐸(𝜉1𝑠𝑡
∗2 ) =

1

𝑋̅2
∑ 𝑊ℎ

2

𝐿

ℎ=1

[𝜃ℎ𝑆ℎ𝑥
2 + 

𝑊2ℎ(𝑘ℎ − 1)

𝑛ℎ
𝑆ℎ𝑥(2)

2 ] = 𝐵 

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗ ) =
1

𝑌̅𝑋̅
∑ 𝑊ℎ

2

𝐿

ℎ=1

[𝜃ℎ𝑆ℎ𝑥𝑦 +
𝑤2ℎ(𝑘ℎ − 1)

𝑛ℎ
𝑆ℎ𝑥𝑦(2)] = 𝐶 

𝐸(𝜉1𝑠𝑡
2 ) =

1

𝑋̅2
∑ 𝑊ℎ

2

𝐿

ℎ=1

𝜃ℎ𝑆ℎ𝑥
2 = 𝐷      ,        𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡) =
1

𝑌̅𝑋̅
∑ 𝑊ℎ

2

𝐿

ℎ=1

𝜃ℎ𝑆ℎ𝑥𝑦 = 𝐸 

 

4.  Existing estimators in the literature 

  This section gives a brief introduction of some well-known estimators/ classes of 

estimators from the literature. 

  For the simple random sampling method, we can mention some important studies in 

literature when there is a complete information on the study and auxiliary variable for 

homogenous populations. For estimating the population mean, Cochran (1977) proposed the 

classical ratio type estimator as 
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𝑡𝑅 =
𝑦̅

𝑥̅
𝑋̅                                                                                      (2)  

 

where 𝑋̅  refers population mean of the auxiliary variable, 𝑦̅  and 𝑥̅  represents the sample 

means of the study and auxiliary variable respectively 

  

Bhul and Tuteja (1991) are the first to suggest an estimator using the exponential 

function to estimate the population mean and is given by 

 

𝑡𝐸𝑋 = 𝑦̅𝑒𝑥𝑝 (
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
)                                                                      (3) 

  

Motivated by Bahl and Tuteja (1991), Ozel Kadilar (2016) proposed an exponential 

type estimator as 

𝑡𝑂 = 𝑦̅ (
𝑥̅

𝑋̅
)
𝛿1

𝑒𝑥𝑝 (
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
)                                                                 (4) 

 

Motivated by Bahl and Tuteja (1991), Upadhyaya et al. (2011) proposed a ratio type 

exponential estimator and product type exponential estimator and is given as 

 

𝑡𝑈𝑃1 = 𝑦̅𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅

𝑋̅ + (𝛿2 − 1)𝑥̅
]                                                                 (5) 

𝑡𝑈𝑃2 = 𝑦̅𝑒𝑥𝑝 [
𝑥̅ − 𝑋̅

𝑋̅ + (𝛿3 − 1)𝑥̅
]                                                                 (6) 

 

Motivated by Bahl and Tuteja (1991), Vishwakarma et al. (2016) proposed 

exponential type estimator and is given as   

 

𝑡𝑉 = 𝛿4𝑦̅ + (1 − 𝛿4)𝑦̅𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
]                                                            (7) 

The mean square error of 𝑡𝑅 , 𝑡𝐸𝑋 , 𝑡𝑂𝐾    𝑡𝑈𝑃1 , 𝑡𝑈𝑃2 and 𝑡𝑣 are given as   

𝑀𝑆𝐸(𝑡𝑅) = 𝜃𝑌̅2(𝐶𝑦
2 + 𝐶𝑥

2 − 2𝐶𝑥𝑦)                                                           (8) 

𝑀𝑆𝐸(𝑡𝐸𝑋) = 𝜃𝑌̅2 (𝐶𝑦
2 +

𝐶𝑥
2

4
− 𝐶𝑥𝑦)                                                        (9) 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑂) = 𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑈𝑃1) = 𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑈𝑃2) = 𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑣) = 𝜃𝑌̅2𝐶𝑦
2(1 − 𝜌𝑥𝑦

2 )    (10) 

where 𝜃 =
1

𝑛
−

1

𝑁
 , 𝐶𝑦 =

𝑆𝑦

𝑌̅
 and 𝐶𝑥 =

𝑆𝑥

𝑋̅
 

 

Because of the various reasons, the required correct information cannot be obtained 

completely at all times which is named as a case of non-response. In order to solve this 

problem, a method is considered and a new technique of sub-sampling the non-respondents is 

introduced by Hansen and Hurwitz (1946). In various real-life situations, the population 

under study is heterogeneous, and in that case, we adopt stratified random sampling to obtain 

precise estimators for the population parameter(s) of the study variable. Considering this fact 

an attempt was made in this paper to develop some improved estimators in presence of non-
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response using stratified random sampling. So, the Hansen and Hurwitz (1946) estimator in 

stratified random sampling is given as 

 

𝑦̅𝑠𝑡
∗ = ∑ 𝑊ℎ𝑦̅ℎ

∗

𝐿

ℎ=1

                                                                         (11) 

 

The mean square error of 𝑦̅𝑠𝑡
∗  is given as  

𝑀𝑆𝐸(𝑦̅∗) =  ∑ 𝑊ℎ
2

𝐿

ℎ=1

𝐴ℎ = 𝑌̅2𝐴                                                        (12) 

 

The usual separate ratio estimator when non-response occurs both on study variable 

and auxiliary variable and the population mean of the auxiliary variable is known is given by  

𝑦̅𝑆𝑅
∗ = ∑ 𝑊ℎ

𝑦̅ℎ
∗

𝑥̅ℎ
∗

𝐿

ℎ=1

𝑋̅ℎ                                                                 (13) 

The mean square error of 𝑦̅𝑆𝑅
∗  is given as 

𝑀𝑆𝐸(𝑦̅𝑆𝑅
∗ ) =  ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2[𝐴ℎ + 𝐵ℎ − 2𝐶ℎ ]                                         (14) 

The separate ratio estimator when non-response occurs only on study variable, 

complete information on auxiliary variable and the population mean of the auxiliary variable 

is known is given by  

𝑦̅𝑆𝑅
′ = ∑ 𝑊ℎ

𝑦̅ℎ
∗

𝑥̅ℎ

𝐿

ℎ=1

𝑋̅ℎ                                                             (15) 

The mean square error of 𝑦̅𝑆𝑅
′  is given as  

𝑀𝑆𝐸(𝑦̅𝑆𝑅
′ ) =  ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2[𝐴ℎ + 𝐷ℎ − 2𝐸ℎ ]                                   (16) 

 The usual combined ratio estimator when non-response occurs both on study variable 

and auxiliary variable and the population mean of the auxiliary variable is known is given by  

𝑦̅𝐶𝑅
∗ = 

𝑦̅𝑠𝑡
∗

𝑥̅𝑠𝑡
∗ 𝑋̅                                                                            (17) 

The mean square error 𝑦̅𝐶𝑅
∗  is given as 

𝑀𝑆𝐸(𝑦̅𝐶𝑅
∗ ) =  𝑌̅2[𝐴 + 𝐵 − 2𝐶 ]                                                 (18) 
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The combined ratio estimator when non-response occurs only on study variable, 

complete information on auxiliary variable and the population mean of the auxiliary variable 

is known is given by  

𝑦̅𝐶𝑅
′ =  

𝑦̅𝑠𝑡
∗

𝑥̅𝑠𝑡
𝑋̅                                                                          (19) 

The mean square error of 𝑦̅𝐶𝑅
′  is given as  

𝑀𝑆𝐸(𝑦̅𝐶𝑅
′ ) = 𝑌̅2 [𝐴 + 𝐷 − 2𝐸 ]                                               (20) 

The following are the stratified modified estimators in presence of non-response 

developed by Onyeka et al. (2019) using known values of coefficient of correlation, kurtosis, 

and coefficient of variation when non- response occurs both on the study variable and 

auxiliary variable and the population mean of the auxiliary variable is known.  

𝑦̅𝑜𝑘
∗(𝑖)

= ∑ 𝑊ℎ𝑦̅ℎ
∗𝑒𝑥𝑝

𝐿

ℎ=1

[
𝛼ℎ(𝑋̅ℎ − 𝑥̅ℎ

∗)

𝛼ℎ(𝑋̅ℎ − 𝑥̅ℎ
∗) + 2𝛽ℎ

 ]                                     (21) 

The mean square error of 𝑦̅𝑜𝑘
∗(𝑖)

 is given as   

𝑀𝑆𝐸(𝑦̅𝑜𝑘
∗(𝑖)

) =  ∑ 𝑊ℎ
2

𝐿

ℎ=1

𝑌̅ℎ
2 [𝐴ℎ +

1

4
𝜑ℎ𝑖

2 𝐵ℎ − 𝜑ℎ𝑖𝐶ℎ ]                              (22) 

When non-response occurs only on the study variable, complete information on the 

auxiliary variable and the population mean of the auxiliary variable is known the Onyeka et 

al. (2019) estimators are  

𝑦̅𝑜𝑘
′(𝑖)

= ∑ 𝑊ℎ𝑦̅ℎ
∗𝑒𝑥𝑝

𝐿

ℎ=1

[
𝛼ℎ(𝑋̅ℎ − 𝑥̅ℎ)

𝛼ℎ(𝑋̅ℎ − 𝑥̅ℎ) + 2𝛽ℎ

 ]                                     (23) 

The mean square error of 𝑦̅𝑜𝑘
′(𝑖)

 is given as 

𝑀𝑆𝐸(𝑦̅𝑜𝑘
′(𝑖)

) =  ∑ 𝑊ℎ
2

𝐿

ℎ=1

𝑌̅ℎ
2 [𝐴ℎ +

1

4
𝜑ℎ𝑖

2 𝐷ℎ − 𝜑ℎ𝑖𝐸ℎ ]                              (24) 

where 

𝜑ℎ𝑖 =
𝛼ℎ𝑋̅ℎ

𝛼ℎ𝑋̅ℎ + 𝛽ℎ

   

𝜑ℎ1 = 1,       𝜑ℎ2 =
𝑋̅ℎ

𝑋̅ℎ + 𝐶(𝑥)ℎ

,     𝜑ℎ3 =
𝑋̅ℎ

𝑋̅ℎ + 𝛽2(𝑥)ℎ

,      𝜑ℎ4 =
𝐶(𝑥)ℎ𝑋̅ℎ

𝐶(𝑥)ℎ𝑋̅ℎ + 𝜌𝑦𝑥ℎ

        

𝜑ℎ5 =
𝛽2(𝑥)ℎ𝑋̅ℎ

𝛽2(𝑥)ℎ𝑋̅ℎ + 𝐶(𝑥)ℎ

,                 𝜑ℎ6 =
𝑋̅ℎ

𝑋̅ℎ + 𝜌𝑦𝑥ℎ

 ,        𝜑ℎ7 =
𝜌𝑦𝑥ℎ𝑋̅ℎ

𝜌𝑦𝑥ℎ𝑋̅ℎ + 𝛽2(𝑥)ℎ

,   𝜑ℎ8 = 0  
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5.  Proposed estimators 

In this section we propose exponential estimators for estimating the population mean 

in presence of non-response under stratified random sampling motivated from Upadhyaya et 

al. (2011), Vishwakarma et al. (2016) and Ozel Kadilar (2016). The situation of non-response 

is examined under two cases; Case I: when non-response occurs both on study variable and 

auxiliary variable and population mean of the auxiliary variable is known; Case II: when non-

response occurs only on study variable, complete information on auxiliary variable and 

population mean of auxiliary variable is known. 

Proposed Estimator 1: Based on Upadhyaya et al. (2011), we propose a ratio type 

exponential estimator for estimating the population mean in stratified random sampling in 

presence of non-response for case I and case II.  

Case I: When non-response occurs both on the study variable and auxiliary variable and 

population mean of the auxiliary variable is known. The proposed estimator 𝑡1
∗ is given as 

𝑡1
∗ = 𝑦̅𝑠𝑡

∗ 𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅𝑠𝑡

∗

𝑋̅ + (𝑎 − 1)𝑥̅𝑠𝑡
∗ ]                                                      (25) 

Now, we express the equation (25) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡

∗  up to first order of 

approximation and is given as 

𝑡1
∗ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝑋̅ − 𝑋̅(1 + 𝜉1𝑠𝑡

∗ )

𝑋̅ + (𝑎 − 1)𝑋̅(1 + 𝜉1𝑠𝑡
∗ )

] 

𝑡1
∗ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
−𝜉1𝑠𝑡

∗

𝑎
{1 +

(𝑎 − 1)

𝑎

−1

𝜉1𝑠𝑡
∗ }] 

𝑡1
∗ − 𝑌̅ = 𝑌̅ [𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

∗

𝑎
+

𝜉1𝑠𝑡
∗2

𝑎2
(𝑎 −

1

2
) −

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗

𝑎
]                             (26) 

Taking expectation in equation (26), the bias of 𝑡1
∗ to first order of approximation is given as  

𝐸(𝑡1
∗ − 𝑌̅) = 𝑌̅ [𝐸(𝜉0𝑠𝑡

∗ ) −
𝐸(𝜉1𝑠𝑡

∗ )

𝑎
+

𝐸(𝜉1𝑠𝑡
∗2 )

𝑎2
(𝑎 −

1

2
) −

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗ )

𝑎
] 

𝐸(𝑡1
∗ − 𝑌̅) = 𝑌̅ [

𝐸(𝜉1𝑠𝑡
∗2 )

𝑎2
(𝑎 −

1

2
) −

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗ )

𝑎
] 

𝐵𝑖𝑎𝑠(𝑡1
∗) =

𝑌̅

𝑎
[
(2𝑎 − 1)

2𝑎
𝐵 − 𝐶]                                              (27) 

Squaring up to first order of approximation and then taking expectation in equation (26), The 

MSE of 𝑡1
∗ is given as 

𝐸(𝑡1
∗ − 𝑌̅)2 = 𝑌̅2𝐸 [𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

∗

𝑎
+

𝜉1𝑠𝑡
∗2

𝑎2
(𝑎 −

1

2
) −

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗

𝑎
]

2
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𝐸(𝑡1
∗ − 𝑌̅)2 = 𝑌̅ [𝐸(𝜉0𝑠𝑡

∗2 ) +
𝐸(𝜉1𝑠𝑡

∗2 )

𝑎2
− 2

1

𝑎
𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )] 

𝑀𝑆𝐸(𝑡1
∗) = 𝑌̅2 [𝐴 +

1

𝑎2
𝐵 − 2

1

𝑎
𝐶]                                          (28) 

For obtaining the optimal values of 𝑎 , differentiating equation (28) w.r.t 𝑎 and equating to 

zero we have 
𝜕𝑀𝑆𝐸(𝑡1

∗)

𝜕 𝑎
= 0 

𝑎𝑜𝑝𝑡 =
𝐵

𝐶
 

Substituting the optimal value of 𝑎 in equation (28), we have MSE as 

𝑀𝑆𝐸(𝑡1
∗) = 𝑌̅2 [𝐴 +

1

(
𝐵
𝐶)

2 𝐵 − 2
1

(
𝐵
𝐶)

𝐶]                                          (29) 

Simplifying equation (29), we have the minimum mean square error of the proposed 

estimator 𝑡1
∗  

𝑀𝑆𝐸(𝑡1
∗)𝑚𝑖𝑛 = 𝑌̅2 [𝐴 −

𝐶2

𝐵
]                                                (30) 

Case II: When non-response occurs only on study variable, complete information on 

auxiliary variable and population mean of the auxiliary variable is known. The proposed 

estimator 𝑡1
′  is given as 

𝑡1
′ = 𝑦̅𝑠𝑡

∗ 𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅𝑠𝑡

𝑋̅ + (𝑎′ − 1)𝑥̅𝑠𝑡

]                                                  (31) 

Now, we express the equation (31) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡  up to first order of 

approximation and is given as  

𝑡1
′ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝑋̅ − 𝑋̅(1 + 𝜉1𝑠𝑡)

𝑋̅ + (𝑎′ − 1)𝑋̅(1 + 𝜉1𝑠𝑡)
] 

𝑡1
′ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝜉1𝑠𝑡

𝑎′
{1 +

(𝑎′ − 1)

𝑎′

−1

𝜉1𝑠𝑡}] 

𝑡1
′ − 𝑌̅ = 𝑌̅ [𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

𝑎′
+

𝜉1𝑠𝑡
2

𝑎′2
(𝑎′ −

1

2
) −

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

𝑎′
]                             (32) 

Taking expectation in equation (32), the bias of 𝑡1
′  to first order of approximation to get bias 

and is given as 

𝐸(𝑡1
′ − 𝑌̅) = 𝑌̅ [𝐸(𝜉0𝑠𝑡

∗ ) −
𝐸(𝜉1𝑠𝑡)

𝑎′
+

𝐸(𝜉1𝑠𝑡
2 )

𝑎′2
(𝑎′ −

1

2
) −

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡)

𝑎′
] 
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𝐸(𝑡1
′ − 𝑌̅) = 𝑌̅ [

𝐸(𝜉1𝑠𝑡
2 )

𝑎′2
(𝑎′ −

1

2
) −

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡)

𝑎′
] 

𝐵𝑖𝑎𝑠(𝑡1
′) =

𝑌̅

𝑎′
[
(2𝑎′ − 1)

2𝑎′
𝐷 − 𝐸]                                         (33) 

Squaring up to first order of approximation and then taking expectation in equation (32), The 

MSE of 𝑡1
′  is given as 

𝐸(𝑡1
′ − 𝑌̅)2 = 𝑌̅2𝐸 [𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

𝑎′
+

𝜉1𝑠𝑡
2

𝑎′2
(𝑎′ −

1

2
) −

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

𝑎′
]

2

 

𝐸(𝑡1
′ − 𝑌̅)2 = 𝑌̅ [𝐸(𝜉0𝑠𝑡

∗2 ) +
𝐸(𝜉1𝑠𝑡

2 )

𝑎′2
− 2

1

𝑎′
𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)] 

𝑀𝑆𝐸(𝑡1
′) = 𝑌̅2 [𝐴 +

1

𝑎′2
𝐷 − 2

1

𝑎′
𝐸]                                         ( 34) 

For obtaining the optimal values of 𝑎′ , differentiating equation (34) w.r.t 𝑎′ and equating to 

zero we have  
𝜕𝑀𝑆𝐸(𝑡1

′)

𝜕𝑎′ 
= 0 

𝑎𝑜𝑝𝑡
′ =

𝐷

𝐸
 

Substituting the optimal value of 𝑎′ in equation (34), we have MSE as 

𝑀𝑆𝐸(𝑡1
′) = 𝑌̅2 [𝐴 +

1

(
𝐷
𝐸)

2 𝐷 − 2
1

(
𝐷
𝐸)

𝐸]                                  (35) 

Simplifying equation (35), we have the minimum mean square error of the proposed 

estimator 𝑡1
′   

𝑀𝑆𝐸(𝑡1
′)𝑚𝑖𝑛 = 𝑌̅2 [𝐴 −

𝐸2

𝐷
]                                            (36) 

         

Proposed Estimator 2: Based on Upadhyaya et al. (2011), we propose a product type 

exponential estimator for estimating the population mean in stratified random sampling in 

presence of non–response for case I and case II.  

Case 1: When non-response occurs both on the study variable and auxiliary variable and 

population mean of the auxiliary variable is known. The proposed estimator 𝑡2
∗ is given as 

𝑡2
∗ = 𝑦̅𝑠𝑡

∗ 𝑒𝑥𝑝 [
𝑥̅𝑠𝑡

∗ − 𝑋̅

𝑋̅ + (𝑏 − 1)𝑥̅𝑠𝑡
∗ ]                                                         (37) 

Now, we express the equation (37) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡

∗  up to first order of 

approximation and is given as  
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𝑡2
∗ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝑋̅(1 + 𝜉1𝑠𝑡

∗ ) − 𝑋̅

𝑋̅ + (𝑏 − 1)𝑋̅(1 + 𝜉1𝑠𝑡
∗ )

] 

𝑡2
∗ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝜉1𝑠𝑡

∗

𝑏
{1 +

(𝑏 − 1)

𝑏

−1

𝜉1𝑠𝑡
∗ }] 

𝑡2
∗ − 𝑌̅ = 𝑌̅ [𝜉0𝑠𝑡

∗ +
𝜉1𝑠𝑡

∗

𝑏
−

𝜉1𝑠𝑡
∗2

𝑏2
(𝑏 −

3

2
) +

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗

𝑏
]                             (38) 

Taking expectation in equation (38), the bias of 𝑡2
∗ to first order of approximation is given as  

𝐸(𝑡2
∗ − 𝑌̅) = 𝑌̅ [𝐸(𝜉0𝑠𝑡

∗ ) +
𝐸(𝜉1𝑠𝑡

∗ )

𝑏
−

𝐸(𝜉1𝑠𝑡
∗2 )

𝑏2
(𝑏 −

3

2
) +

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗ )

𝑏
] 

𝐸(𝑡2
∗ − 𝑌̅) = 𝑌̅ [

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗ )

𝑏
−

𝐸(𝜉1𝑠𝑡
∗2 )

𝑏2
(𝑏 −

3

2
)] 

𝐵𝑖𝑎𝑠(𝑡2
∗) =

𝑌̅

𝑏
[𝐶 −

(2𝑏 − 3)

2𝑏
𝐵]                                                  (39) 

Squaring up to first order of approximation and then taking expectation in equation (38), The 

MSE of 𝑡2
∗ is given as 

𝐸(𝑡2
∗ − 𝑌̅)2 = 𝑌̅2𝐸 [𝜉0𝑠𝑡

∗ +
𝜉1𝑠𝑡

∗

𝑏
−

𝜉1𝑠𝑡
∗2

𝑏2
(𝑏 −

3

2
) +

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗

𝑏
]

2

 

𝐸(𝑡2
∗ − 𝑌̅)2 = 𝑌̅2 [𝐸(𝜉0𝑠𝑡

∗2 ) +
𝐸(𝜉1𝑠𝑡

∗2 )

𝑏2
+ 2

1

𝑏
𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )] 

𝑀𝑆𝐸(𝑡2
∗) = 𝑌̅2 [𝐴 +

1

𝑏2
𝐵 + 2

1

𝑏
𝐶]                                           (40) 

For obtaining the optimal values of 𝑏 , differentiating equation (40) w.r.t 𝑏 and equating to 

zero we have 

𝜕𝑀𝑆𝐸(𝑡2
∗)

𝜕 𝑏
= 0 

𝑏𝑜𝑝𝑡 = −
𝐵

𝐶
 

Substituting the optimal value of 𝑏 in equation (40), we have MSE as 

𝑀𝑆𝐸(𝑡2
∗) = 𝑌̅2 [𝐴 +

1

(−
𝐵
𝐶)

2 𝐵 + 2
1

(−
𝐵
𝐶)

𝐶]                              (41) 

Simplifying equation (41), we have the minimum mean square error of the proposed 

estimator 𝑡2
∗  
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𝑀𝑆𝐸(𝑡2
∗)𝑚𝑖𝑛 = 𝑌̅2 [𝐴 −

𝐶2

𝐵
]                                                       (42) 

 

Case II: When non-response occurs only on study variable, complete information on 

auxiliary variable and population mean of the auxiliary variable is known. The proposed 

estimator 𝑡2
′  is given as 

𝑡2
′ = 𝑦̅𝑠𝑡

∗ 𝑒𝑥𝑝 [
𝑥̅𝑠𝑡 − 𝑋̅

𝑋̅ + (𝑏′ − 1)𝑥̅𝑠𝑡

]                                                   (43) 

Now, we express the equation (43) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡  up to first order of 

approximation and is given as 

𝑡2
′ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝑋̅(1 + 𝜉1𝑠𝑡) − 𝑋̅

𝑋̅ + (𝑏′ − 1)𝑋̅(1 + 𝜉1𝑠𝑡)
] 

𝑡2
′ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ ) [
𝜉1𝑠𝑡

𝑏′
{1 +

(𝑏 − 1)

𝑏′

−1

𝜉1𝑠𝑡}] 

𝑡2
′ − 𝑌̅ = 𝑌̅ [𝜉0𝑠𝑡

∗ +
𝜉1𝑠𝑡

𝑏′
−

𝜉1𝑠𝑡
2

𝑏′2
(𝑏′ −

3

2
) +

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

𝑏′
]                             (44) 

Taking expectation in equation (44), the bias of 𝑡2
′  to first order of approximation is given as 

𝐸(𝑡2
′ − 𝑌̅) = 𝑌̅ [𝐸(𝜉0𝑠𝑡

∗ ) +
𝐸(𝜉1𝑠𝑡)

𝑏′
−

𝐸(𝜉1𝑠𝑡
2 )

𝑏′2
(𝑏′ −

3

2
) +

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡)

𝑏′
] 

𝐸(𝑡2
′ − 𝑌̅) = 𝑌̅ [

𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡)

𝑏′
−

𝐸(𝜉1𝑠𝑡
2 )

𝑏′2
(𝑏′ −

3

2
)] 

𝐵𝑖𝑎𝑠(𝑡2
′ ) =

𝑌̅

𝑏′
[𝐸 −

(2𝑏′ − 3)

2𝑏′
𝐷]                                                (45) 

Squaring and then taking expectation in equation (44), The MSE of 𝑡2
′  is given as  

𝐸(𝑡2
′ − 𝑌̅)2 = 𝑌̅2𝐸 [𝜉0𝑠𝑡

∗ +
𝜉1𝑠𝑡

𝑏′
−

𝜉1𝑠𝑡
2

𝑏′2
(𝑏′ −

3

2
) +

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

𝑏′
]

2

 

𝐸(𝑡2
′ − 𝑌̅)2 = 𝑌̅2 [𝐸(𝜉0𝑠𝑡

∗2 ) +
𝐸(𝜉1𝑠𝑡

2 )

𝑏′2
+ 2

1

𝑏′
𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)] 

𝑀𝑆𝐸(𝑡2
′ ) = 𝑌̅2 [𝐴 +

1

𝑏′2
𝐷 + 2

1

𝑏′
𝐸]                                           (46) 

For obtaining the optimal values of 𝑏′ , differentiating equation (46) w.r.t 𝑏′ and equating to 

zero we have 



2023] ESTIMATION OF POPUATION MEAN UNDER NONRESPONSE  

 
 

85 

𝜕𝑀𝑆𝐸(𝑡2
′ )

𝜕 𝑏′
= 0 

𝑏𝑜𝑝𝑡
′ = −

𝐷

𝐸
 

Substituting the optimal value of 𝑏′ in equation (46), we have MSE as  

𝑀𝑆𝐸(𝑡2
′ ) = 𝑌̅2 [𝐴 +

1

(−
𝐷
𝐸)

2 𝐷 + 2
1

(−
𝐷
𝐸)

𝐸]                                       (47) 

Simplifying equation (47), we have the minimum mean square error of the proposed 

estimator 𝑡2
′   

𝑀𝑆𝐸(𝑡2
′ )𝑚𝑖𝑛 = 𝑌̅2 [𝐴 −

𝐸2

𝐷
]                                                 (48) 

        

Proposed Estimator 3: Based on Vishwakarma et al. (2016), we propose a stratified 

exponential estimator in presence of non-response for case I and case II.  

Case 1: When non-response occurs both on the study variable and auxiliary variable and 

population mean of the auxiliary variable is known. The proposed estimator 𝑡3
∗ is given as 

𝑡3
∗ = 𝑐𝑦̅𝑠𝑡

∗ + (1 − 𝑐)𝑦̅𝑠𝑡
∗ 𝑒𝑥𝑝 [

𝑋̅ − 𝑥̅𝑠𝑡
∗

𝑋̅ + 𝑥̅𝑠𝑡
∗ ]                                     (49) 

Now, we express the equation (49) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡

∗  up to first order of 

approximation and is given as  

𝑡3
∗ = 𝑌̅(𝑐 + 𝑐𝜉0𝑠𝑡

∗ ) + 𝑌̅(1 + 𝜉0𝑠𝑡
∗ − 𝑐 − 𝑐𝜉0𝑠𝑡

∗ )𝑒𝑥𝑝 [
−𝜉1𝑠𝑡

∗

2
(1 +

𝜉1𝑠𝑡
∗

2
)
−1

] 

𝑡3
∗ = 𝑌̅ (1 + 𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

∗

2
+

𝑐𝜉1𝑠𝑡
∗

2
+

3𝜉1𝑠𝑡
∗2

8
−

3𝑐𝜉1𝑠𝑡
∗2

8
−

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗

2
+

𝑐𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗

2
) 

𝑡3
∗ − 𝑌̅ = 𝑌̅ (𝜉0𝑠𝑡

∗ + (
𝑐

2
−

1

2
) 𝜉1𝑠𝑡

∗ + (
3

8
−

3𝑐

8
) 𝜉1𝑠𝑡

∗2 + (
𝑐

2
−

1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )                (50) 

Taking expectation in equation (50), the bias of 𝑡3
∗ to first order of approximation is given as 

𝐸(𝑡3
∗ − 𝑌̅) = 𝑌̅ (𝐸(𝜉0𝑠𝑡

∗ ) + (
𝑐

2
−

1

2
)𝐸(𝜉1𝑠𝑡

∗ ) + (
3

8
−

3𝑐

8
)𝐸(𝜉1𝑠𝑡

∗2 ) + (
𝑐

2
−

1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )) 

𝐸(𝑡3
∗ − 𝑌̅) = 𝑌̅ ((

3

8
−

3𝑐

8
)𝐸(𝜉1𝑠𝑡

∗2 ) + (
𝑐

2
−

1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )) 

𝐵𝑖𝑎𝑠(𝑡3
∗) = 𝑌̅ [(

3

8
−

3𝑐

8
)𝐵 + (

𝑐

2
−

1

2
)𝐶]                                       (51) 
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Squaring up to first order of approximation and then taking expectation in equation (50), The 

MSE of 𝑡3
∗ is given as 

𝐸(𝑡3
∗ − 𝑌̅)2 = 𝑌̅2𝐸 (𝜉0𝑠𝑡

∗ + (
𝑐

2
−

1

2
) 𝜉1𝑠𝑡

∗ + (
3

8
−

3𝑐

8
) 𝜉1𝑠𝑡

∗2 + (
𝑐

2
−

1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )

2

 

𝐸(𝑡3
∗ − 𝑌̅)2 = 𝑌̅2 (𝐸(𝜉0𝑠𝑡

∗ ) + (
𝑐

2
−

1

2
)
2

𝐸(𝜉1𝑠𝑡
∗2 ) + (𝑐 − 1)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ ))

2

 

𝑀𝑆𝐸(𝑡3
∗) = 𝑌̅2 [𝐴 + (

𝑐2

4
−

𝑐

2
+

1

4
)𝐵 + (𝑐 − 1)𝐶]                                   (52) 

For obtaining the optimal values of 𝑐, differentiating equation (52) w.r.t c and equating to 

zero we have  

𝜕𝑀𝑆𝐸(𝑡3
∗)

𝜕 𝑐
= 0 

𝑐𝑜𝑝𝑡 =
𝐵 − 2𝐶

𝐵
 

Substituting the optimal value of 𝑐 in equation (52), we have MSE as   

 

𝑀𝑆𝐸(𝑡3
∗) = 𝑌̅2 [𝐴 + (

(
𝐵 − 2𝐶

𝐵 )
2

4
−

(
𝐵 − 2𝐶

𝐵 )

2
+

1

4
)𝐵 + ((

𝐵 − 2𝐶

𝐵
) − 1)𝐶]     (53) 

Simplifying equation (53), we have the minimum mean square error of the proposed 

estimator 𝑡3
∗  

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡3
∗) = 𝑌̅2 [𝐴 −

𝐶2

𝐵
]                                                     (54) 

Case II: When non-response occurs only on study variable, complete information on 

auxiliary variable and population mean of the auxiliary variable is known. The proposed 

estimator 𝑡3
′  is given as 

𝑡3
′ = 𝑐′𝑦̅𝑠𝑡

∗ + (1 − 𝑐′)𝑦̅𝑠𝑡
∗ [

𝑋̅ − 𝑥̅𝑠𝑡

𝑋̅ + 𝑥̅𝑠𝑡

]                                             (55) 

Now, we express the equation (55) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡  up to first order of 

approximation and is given as   

𝑡3
′ = 𝑌̅(𝑐′ + 𝑐′𝜉0𝑠𝑡

∗ ) + 𝑌̅(1 + 𝜉0𝑠𝑡
∗ − 𝑐′ − 𝑐′𝜉0𝑠𝑡

∗ )𝑒𝑥𝑝 [
−𝜉1𝑠𝑡

2
(1 +

𝜉1𝑠𝑡

2
)
−1

] 

𝑡3
′ = 𝑌̅ (1 + 𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

2
+

𝑐′𝜉1𝑠𝑡

2
+

3𝜉1𝑠𝑡
2

8
−

3𝑐′𝜉1𝑠𝑡
2

8
−

𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

2
+

𝑐′𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

2
) 
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𝑡3
′ − 𝑌̅ = 𝑌̅ (𝜉0𝑠𝑡

∗ + (
𝑐′

2
−

1

2
) 𝜉1𝑠𝑡 + (

3

8
−

3𝑐′

8
) 𝜉1𝑠𝑡

2 + (
𝑐′

2
−

1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)               (56) 

Taking expectation in equation (56), the bias of 𝑡3
′  to first order of approximation is given as    

𝐸(𝑡3
′ − 𝑌̅) = 𝑌̅ (𝐸(𝜉0𝑠𝑡

∗ ) + (
𝑐′

2
−

1

2
)𝐸(𝜉1𝑠𝑡) + (

3

8
−

3𝑐′

8
)𝐸(𝜉1𝑠𝑡

2 ) + (
𝑐′

2
−

1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)) 

𝐸(𝑡3
′ − 𝑌̅) = 𝑌̅ ((

3

8
−

3𝑐′

8
)𝐸(𝜉1𝑠𝑡

2 ) + (
𝑐′

2
−

1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)) 

𝐵𝑖𝑎𝑠(𝑡3
′ ) = 𝑌̅ [(

3

8
−

3𝑐′

8
)𝐷 + (

𝑐′

2
−

1

2
)𝐸]                                       (57) 

Squaring up to first order of approximation and then taking expectation in equation (56), The 

MSE of 𝑡3
′  is given as  

𝐸(𝑡3
′ − 𝑌̅)2 = 𝑌̅2𝐸 (𝜉0𝑠𝑡

∗ + (
𝑐

2
−

1

2
) 𝜉1𝑠𝑡 + (

3

8
−

3𝑐

8
) 𝜉1𝑠𝑡

2 + (
𝑐

2
−

1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)
2

 

𝐸(𝑡3
′ − 𝑌̅)2 = 𝑌̅2 (𝐸(𝜉0𝑠𝑡

∗ ) + (
𝑐

2
−

1

2
)
2

𝐸(𝜉1𝑠𝑡
2 ) + (𝑐 − 1)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡))

2

 

𝑀𝑆𝐸(𝑡3
′ ) = 𝑌̅2 [𝐴 + (

𝑐′2

4
−

𝑐′

2
+

1

4
)𝐷 + (𝑐′ − 1)𝐸]                            (58) 

For obtaining the optimal values of 𝑐′ , differentiating equation (58) w.r.t 𝑐′ and equating to 

zero we have   

𝜕𝑀𝑆𝐸(𝑡3
′ )

𝜕 𝑐′
= 0 

𝑐𝑜𝑝𝑡
′ =

𝐷 − 2𝐸

𝐷
 

Substituting the optimal value of 𝑐′ in equation (58), we have MSE as   

 

𝑀𝑆𝐸(𝑡3
′ ) = 𝑌̅2 [𝐴 + (

(
𝐷 − 2𝐸

𝐷 )
2

4
−

(
𝐷 − 2𝐸

𝐷 )

2
+

1

4
)𝐷 + ((

𝐷 − 2𝐸

𝐷
) − 1) 𝐸]         (59) 

Simplifying equation (59), we have the minimum mean square error of the proposed 

estimator 𝑡3
′   

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡3
′ ) = 𝑌̅2 [𝐴 −

𝐸2

𝐷
]                                                   (60) 
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Proposed Estimator 4: Based on Ozel Kadilar (2016), we propose a stratified exponential 

estimator in presence of non-response for case I and case II. 

Case 1: When non-response occurs both on the study variable and auxiliary variable and 

population mean of the auxiliary variable is known. The proposed estimator 𝑡4
∗ is given as 

𝑡4
∗ = 𝑦̅𝑠𝑡

∗ (
𝑥̅𝑠𝑡

∗

𝑋̅
)
𝑑

𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅𝑠𝑡

∗

𝑋̅ + 𝑥̅𝑠𝑡
∗ ]                                                    (61) 

Now, we express the equation (61) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡

∗  up to first order of 

approximation and is given as   

𝑡4
∗ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ )(1 + 𝜉1𝑠𝑡
∗ )𝑑𝑒𝑥𝑝 [

𝑋̅ − 𝑋̅(1 + 𝜉1𝑠𝑡
∗ )

𝑋̅ + 𝑋̅(1 + 𝜉1𝑠𝑡
∗ )

] 

𝑡4
∗ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ )(1 + 𝜉1𝑠𝑡
∗ )𝑑𝑒𝑥𝑝 [

−𝜉1𝑠𝑡
∗

2
(1 +

𝜉1𝑠𝑡
∗

2
)

−1

] 

𝑡4
∗ − 𝑌̅ = 𝑌̅ [(

𝑑2

2
− 𝑑 +

3

8
) 𝜉1𝑠𝑡

2∗ + (𝑑 −
1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ + 𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

∗

2
+ 𝑑𝜉1𝑠𝑡

∗ ]           (62) 

Taking expectation in equation (62), the bias of 𝑡4
∗ to first order of approximation to get bias 

and is given as 

𝐸(𝑡4
∗ − 𝑌̅) = 𝑌̅

[
 
 
 
 (

𝑑2

2
− 𝑑 +

3

8
)𝐸(𝜉1𝑠𝑡

2∗ ) + (𝑑 −
1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )

+𝐸(𝜉0𝑠𝑡
∗ ) −

𝐸(𝜉1𝑠𝑡
∗ )

2
+ 𝑑𝐸(𝜉1𝑠𝑡

∗ ) ]
 
 
 
 

 

𝐸(𝑡4
∗ − 𝑌̅) = 𝑌̅ [(

𝑑2

2
− 𝑑 +

3

8
)𝐸(𝜉1𝑠𝑡

2∗ ) + (𝑑 −
1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ )] 

𝐵𝑖𝑎𝑠(𝑡4
∗) = 𝑌̅ [(

𝑑2

2
− 𝑑 +

3

8
)𝐵 + (𝑑 −

1

2
)𝐶]                                   (63) 

Squaring up to first order of approximation and then taking expectation in equation (62), The 

MSE of 𝑡4
∗ is given as  

𝐸(𝑡4
∗ − 𝑌̅)2 = 𝑌̅2𝐸 [(

𝑑2

2
− 𝑑 +

3

8
) 𝜉1𝑠𝑡

2∗ + (𝑑 −
1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡
∗ + 𝜉0𝑠𝑡

∗ −
𝜉1𝑠𝑡

∗

2
+ 𝑑𝜉1𝑠𝑡

∗ ]

2

 

𝐸(𝑡4
∗ − 𝑌̅)2 = 𝑌̅2 [(𝜉0𝑠𝑡

∗2 ) + (𝑑2 − 𝑑 +
1

4
)𝐸(𝜉1𝑠𝑡

2∗ ) + (2𝑑 − 1)𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡

∗ )] 

𝑀𝑆𝐸(𝑡4
∗) = 𝑌̅2 [𝐴 + (𝑑2 − 𝑑 +

1

4
)𝐵 + (2𝑑 − 1)𝐶]                                 (64) 

For obtaining the optimal values of 𝑑, differentiating equation (64) w.r.t d and equating to 

zero we have  
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𝜕𝑀𝑆𝐸(𝑡4
∗)

𝜕 𝑑
= 0 

𝑑𝑜𝑝𝑡 =
𝐵 − 2𝐶

2𝐵
 

Substituting the optimal value of 𝑑 in equation (64), we have MSE as    

𝑀𝑆𝐸(𝑡4
∗) = 𝑌̅2 [𝐴 + ((

𝐵 − 2𝐶

2𝐵
)
2

− (
𝐵 − 2𝐶

2𝐵
) +

1

4
)𝐵 + (2 (

𝐵 − 2𝐶

2𝐵
) − 1) 𝐶]     (65) 

Simplifying equation (65), we get the minimum mean square error of the proposed estimator 

𝑡4
∗  

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡4
∗) = 𝑌̅2 [𝐴 −

𝐶2

𝐵
]                                                           (66) 

Case II: When non-response occurs only on study variable, complete information on 

auxiliary variable and population mean of the auxiliary variable is known. The proposed 

estimator 𝑡4
′  is given as 

𝑡4
′ = 𝑦̅𝑠𝑡

∗ (
𝑥̅𝑠𝑡

𝑋̅
)
𝑑′

[
𝑋̅ − 𝑥̅𝑠𝑡

𝑋̅ + 𝑥̅𝑠𝑡

]                                                              (67) 

Now, we express the equation (67) in terms of  𝜉0𝑠𝑡
∗   and  𝜉1𝑠𝑡  up to first order of 

approximation and is given as    

𝑡4
′ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ )(1 + 𝜉1𝑠𝑡)
𝑑′

𝑒𝑥𝑝 [
𝑋̅ − 𝑋̅(1 + 𝜉1𝑠𝑡)

𝑋̅ + 𝑋̅(1 + 𝜉1𝑠𝑡)
] 

𝑡4
′ = 𝑌̅(1 + 𝜉0𝑠𝑡

∗ )(1 + 𝜉1𝑠𝑡)
𝑑′

𝑒𝑥𝑝 [
−𝜉1𝑠𝑡

2
(1 +

𝜉1𝑠𝑡

2
)
−1

] 

𝑡4
′ − 𝑌̅ = 𝑌̅ [(

𝑑′2

2
− 𝑑′ +

3

8
) 𝜉1𝑠𝑡

2 + (𝑑′ −
1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡 + 𝜉0𝑠𝑡
∗ −

𝜉1𝑠𝑡
∗

2
+ 𝑑′𝜉1𝑠𝑡]       (68) 

Taking expectation in equation (68), the bias of 𝑡4
′  to first order of approximation to get bias 

and is given as 

𝐸(𝑡4
′ − 𝑌̅) = 𝑌̅

[
 
 
 
 (

𝑑′2

2
− 𝑑′ +

3

8
)𝐸(𝜉1𝑠𝑡

2 ) + (𝑑′ −
1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)

+𝐸(𝜉0𝑠𝑡
∗ ) −

𝐸(𝜉1𝑠𝑡)

2
+ 𝑑′𝐸(𝜉1𝑠𝑡) ]

 
 
 
 

 

𝐸(𝑡4
′ − 𝑌̅) = 𝑌̅ [(

𝑑′2

2
− 𝑑′ +

3

8
)𝐸(𝜉1𝑠𝑡

2 ) + (𝑑′ −
1

2
)𝐸(𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡)] 

𝐵𝑖𝑎𝑠(𝑡4
′ ) = 𝑌̅ [(

𝑑′2

2
− 𝑑′ +

3

8
)𝐷 + (𝑑′ −

1

2
)𝐸]                               (69) 



 ZAKIR HUSSAIN WANI AND S.E.H. RIZVI [Vol. 21, No. 2 90 

Squaring up to first order of approximation and then taking expectation in equation (68), The 

MSE of 𝑡4
′  is given as 

𝐸(𝑡4
′ − 𝑌̅)2 = 𝑌̅2𝐸 [(

𝑑′2

2
− 𝑑′ +

3

8
) 𝜉1𝑠𝑡

2 + (𝑑′ −
1

2
) 𝜉0𝑠𝑡

∗ 𝜉1𝑠𝑡 + 𝜉0𝑠𝑡
∗ −

𝜉1𝑠𝑡

2
+ 𝑑′𝜉1𝑠𝑡]

2

 

𝐸(𝑡4
′ − 𝑌̅)2 = 𝑌̅2 [(𝜉0𝑠𝑡

∗2 ) + (𝑑′2 − 𝑑′ +
1

4
)𝐸(𝜉1𝑠𝑡

2 ) + (2𝑑′ − 1)𝐸(𝜉0𝑠𝑡
∗ 𝜉1𝑠𝑡)] 

𝑀𝑆𝐸(𝑡4
′ ) = 𝑌̅2 [𝐴 + (𝑑′2 − 𝑑′ +

1

4
)𝐷 − (2𝑑′ − 1)𝐸]                                 (70) 

For obtaining the optimal values of 𝑑′ , differentiating equation (70) w.r.t 𝑑′ and equating to 

zero we have 

𝜕𝑀𝑆𝐸(𝑡14
′ )

𝜕 𝑑′
= 0 

𝑑′
𝑜𝑝𝑡 =

𝐷 − 2𝐸

2𝐷
 

Substituting the optimal value of 𝑑′ in equation (70), we have MSE as   

𝑀𝑆𝐸(𝑡4
′ ) = 𝑌̅2 [𝐴 + ((

𝐷 − 2𝐸

2𝐷
)

2

− (
𝐷 − 2𝐸

2𝐷
) +

1

4
)𝐷 − (2 (

𝐷 − 2𝐸

2𝐷
) − 1) 𝐸]        (71) 

Simplifying equation (71), we have the minimum mean square error of the proposed 

estimator 𝑡4
′    

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡4
′ ) = 𝑌̅2 [𝐴 −

𝐸2

𝐷
]                                                             (72) 

Interesting Note: We have proposed four estimators for case I and four estimators for case II 

having same MSE respectively and are given as 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑖
∗) = 𝑌̅2 [𝐴 −

𝐶2

𝐵
] ; 𝑖 = 1 − 4                                         (73) 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑖
′) = 𝑌̅2 [𝐴 −

𝐸2

𝐷
] ; 𝑖 = 1 − 4                                         (74) 

6.  Efficiency comparison 

Now we will investigate the efficiencies of 𝑡𝑖
∗, 𝑖 = 1 − 4 and 𝑡𝑖

′, 𝑖 = 1 − 4 given in 

equation (73) and (74) with various estimators from the literature. 

6.1.   Efficiency comparison for case I 

Using equations (12), (14), (18), (22) and (73) we find the efficiency conditions of 

𝑡𝑖
∗, 𝑖 = 1 − 4 as follows 

1. 𝑡𝑖
∗, i = 1 − 4 Perform better than 𝑦̅∗ if:   
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𝑀𝑆𝐸(𝑡𝑖
∗) <  𝑀𝑆𝐸(𝑦̅∗) 

𝑌̅2 [𝐴 −
𝐶2

𝐵
] < 𝑌̅2𝐴 

−
𝐶2

𝐵
< 0 

which is obviously true because 𝐶 > 0 and 𝐵 > 0 

2. 𝑡𝑖
∗, i = 1 − 4 Perform better than 𝑦̅𝑆𝑅

∗  if:    

𝑀𝑆𝐸(𝑡𝑖
∗) <  𝑀𝑆𝐸(𝑦̅𝑆𝑅

∗ ) 

𝑌̅2 [𝐴 −
𝐶2

𝐵
] < ∑ 𝑊ℎ

2

𝐿

ℎ=1

[𝐴ℎ + 𝑅ℎ
2𝐵ℎ − 2𝑅ℎ𝐶ℎ ] 

𝑌̅2 [𝐴 −
𝐶2

𝐵
] − ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2[𝐴ℎ + 𝐵ℎ − 2𝐶ℎ ] < 0 

3. 𝑡𝑖
∗, i = 1 − 4 Perform better than 𝑦̅𝐶𝑅

∗  if:     

𝑀𝑆𝐸(𝑡𝑖
∗) <  𝑀𝑆𝐸(𝑦̅𝐶𝑅

∗ ) 

𝑌̅2 [𝐴 −
𝐶2

𝐵
] < 𝑌̅2[𝐴 + 𝐵 − 2𝐶 ] 

[2𝐶 −
𝐶2

𝐵
− 𝐵] < 0 

4. 𝑡𝑖
∗, i = 1 − 4 Perform better than 𝑦̅𝑜𝑘

∗(𝑖)
 if:    

𝑀𝑆𝐸(𝑡𝑖
∗) <  𝑀𝑆𝐸(𝑦̅𝑜𝑘

∗(𝑖)
) 

𝑌̅2 [𝐴 −
𝐶2

𝐵
] < ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2 [𝐴ℎ +

1

4
𝜑ℎ𝑖

2 𝐵ℎ − 𝜑ℎ𝑖𝐶ℎ ] 

𝑌̅2 [𝐴 −
𝐶2

𝐵
] − ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2 [𝐴ℎ +

1

4
𝜑ℎ𝑖

2 𝐵ℎ − 𝜑ℎ𝑖𝐶ℎ ] < 0 

 

6.2.  Efficiency comparison for case II 

Using equations (12), (16), (20), (24) and (74) we find the efficiency conditions of 

𝑡𝑖
′, 𝑖 = 1 − 4 as follows. 
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1. 𝑡𝑖
′, 𝑖 = 1 − 4 Perform better than 𝑦̅∗ if:    

𝑀𝑆𝐸(𝑡𝑖
′) <  𝑀𝑆𝐸(𝑦̅∗) 

𝑌̅2 [𝐴 −
𝐸2

𝐷
] < 𝑌̅2𝐴 

−
𝐸2

𝐷
< 0 

which is obviously true because 𝐸 > 0 and 𝐷 > 0 

2. 𝑡𝑖
′, 𝑖 = 1 − 4 Perform better than 𝑦̅𝑆𝑅

′   if:     

𝑀𝑆𝐸(𝑡𝑖
′) <  𝑀𝑆𝐸(𝑦̅𝑆𝑅

′ ) 

𝑌̅2 [𝐴 −
𝐸2

𝐷
] < ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2[𝐴ℎ + 𝐷ℎ − 2𝐸ℎ ] 

𝑌̅2 [𝐴 −
𝐸2

𝐷
] − ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2[𝐴ℎ + 𝐷ℎ − 2𝐸ℎ  ] < 0 

3. 𝑡𝑖
′, 𝑖 = 1 − 4 Perform better than 𝑦̅𝐶𝑅

′  if:     

𝑀𝑆𝐸(𝑡𝑖
′) <  𝑀𝑆𝐸(𝑦̅𝐶𝑅

′ ) 

𝑌̅2 [𝐴 −
𝐸2

𝐷
] < 𝑌̅2 ∑ 𝑊ℎ

2

𝐿

ℎ=1

[𝐴 + 𝐷 − 2𝐸 ] 

[2𝐸 −
𝐸2

𝐷
− 𝐷] < 0 

4. 𝑡𝑖
′, 𝑖 = 1 − 4 Perform better than 𝑦̅𝑜𝑘

′(𝑖)
 if:      

𝑀𝑆𝐸(𝑡𝑖
′) <  𝑀𝑆𝐸(𝑦̅𝑜𝑘

′(𝑖)
) 

𝑌̅2 [𝐴 −
𝐸2

𝐷
] < ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2 [𝐴ℎ +

1

4
𝜑ℎ𝑖

2 𝐷ℎ − 𝜑ℎ𝑖𝐸ℎ ] 

𝑌̅2 [𝐴 −
𝐸2

𝐷
] − ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑌̅ℎ
2 [𝐴ℎ +

1

4
𝜑ℎ𝑖

2 𝐷ℎ − 𝜑ℎ𝑖𝐸ℎ ] < 0 

7.  Empirical study 

  To illustrate the performance of the proposed estimators 𝑡𝑖
∗, 𝑖 = 1 − 4  and 𝑡𝑖

′, 𝑖 = 1 −
4 over other existing estimators using the real data set given as 
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Data Set Source: Koyuncu and Kadilar (2009) 

 We consider number of teachers as study variable (Y) and number of classes in 

primary and secondary schools as auxiliary variable (X), for 923 districts at six 6 regions (1) 

Marmara; (2) Agean; (3) Mediterranean; (4) Central Anatolia; (5) Black Sea; and (6) East and 

Southeast Anatolia in Turkey in 2007. 

Table 1: The descriptive statistics 

 

h 1 2 3 4 5 6 

𝑁ℎ 127 117 103 170 205 201 

𝑛ℎ 31 21 29 38 22 39 

𝑆ℎ𝑦 883.84 644.92 1033.40 810.58 403.65 771.72 

𝑆ℎ𝑥 555.58 365.46 612.95 458.03 260.85 397.05 

𝑌̅ℎ 703.74 413 573.17 424.66 267.03 393.84 

𝑋̅ℎ 498.28 318.33 431.36 311.32 227.2 313.71 

𝜌ℎ𝑥𝑦 0.979 0.976 0.984 0.983 0.964 0.983 

𝐖𝟐𝒉 = 𝟏𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑆ℎ𝑦(2) 510.57 386.77 1872.88 1603.3 264.19 497.84 

𝑆ℎ𝑥(2) 303.92 278.51 960.71 821.29 190.85 287.99 

𝜌ℎ𝑥𝑦(2) 0.9931 0.9871 0.9972 0.9942 0.985 0.9647 

𝐖𝟐𝒉 = 𝟐𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑆ℎ𝑦(2) 396.77 406.15 1654.40 1333.35 335.83 903.91 

𝑆ℎ𝑥(2) 244.56 274.42 965.42 680.28 214.49 469.86 

𝜌ℎ𝑥𝑦(2) 0.9898 0.9798 0.9846 0.9940 0.9818 0.9874 

𝐖𝟐𝒉 = 𝟑𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑆ℎ𝑦(2) 500.26 356.95 1383.70 1193.47 289.41 825.24 

𝑆ℎ𝑥(2) 284.44 247.63 811.21 631.28 188.30 437.90 

𝜌ℎ𝑥𝑦(2) 0.9739 0.9793 0.9839 0.9904 0.9799 0.9829 

 

 

Table 2: The percent relative efficiency of the existing and proposed estimators with 

respect to Hansen and Hurwitz estimator for Case 1 

 

𝐖𝟐𝒉 = 𝟏𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

Estimators K=2 K=2.5 K=3 K=3.5 K=4  

𝑦̅∗ 100 100 100 100 100 

𝑦̅𝑆𝑅
∗  1021.72 1022.33 1019.68 1023.33 1023.73 

𝑦̅𝐶𝑅
∗  1031.44 1023.39 1013.42 1010.73 1005.66 

𝑦̅𝑜𝑘
∗(1)

 245.18 244.57 243.28 243.58 243.19 

𝑦̅𝑜𝑘
∗(2)

 244.13 243.52 242.24 242.54 242.14 

𝑦̅𝑜𝑘
∗(3)

 237.43 236.89 235.70 236.04 235.69 

𝑦̅𝑜𝑘
∗(4)

 244.56 243.95 242.68 242.98 242.59 

𝑦̅𝑜𝑘
∗(5)

 245.05 244.44 243.15 243.46 243.06 

𝑦̅𝑜𝑘
∗(6)

 244.39 243.78 242.50 242.80 242.41 
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𝑦̅𝑜𝑘
∗(7)

 237.27 236.74 235.55 235.89 235.55 

𝑦̅𝑜𝑘
∗(8)

 1021.71 1022.35 1019.68 1023.33 1023.72 

𝑡𝑖
∗;  

𝑖 = 1 −  4 2564.04 2644.96 2717.59 2803.98 2884.16 

𝐖𝟐𝒉 = 𝟐𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑦̅∗ 100.00 100.00 100.00 100.00 100.00 

𝑦̅𝑆𝑅
∗  1021.71 1037.16 1040.68 1043.60 1046.05 

𝑦̅𝐶𝑅
∗  1034.36 1043.18 1041.25 1039.66 1038.42 

𝑦̅𝑜𝑘
∗(1)

 243.05 245.32 222.94 244.78 244.58 

𝑦̅𝑜𝑘
∗(2)

 242.00 244.26 244.43 243.72 243.52 

𝑦̅𝑜𝑘
∗(3)

 235.28 237.51 237.24 237.02 236.84 

𝑦̅𝑜𝑘
∗(4)

 242.43 244.71 244.42 244.18 243.98 

𝑦̅𝑜𝑘
∗(5)

 242.92 245.29 244.90 244.66 244.46 

𝑦̅𝑜𝑘
∗(6)

 242.26 244.53 244.23 243.99 243.79 

𝑦̅𝑜𝑘
∗(7)

 235.13 237.35 237.09 236.87 236.69 

𝑦̅𝑜𝑘
∗(8)

 1021.71 1037.16 1040.68 1043.60 1046.05 

𝑡𝑖
∗; 

𝑖 = 1 − 4 2618.32 2748.12 2839.69 2922.43 2997.38 

𝐖𝟐𝒉 = 𝟑𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑦̅∗ 100.00 100.00 100.00 100.00 100.00 

𝑦̅𝑆𝑅
∗  1027.85 1030.21 1032.04 1033.48 1034.66 

𝑦̅𝐶𝑅
∗  1043.22 1040.35 1038.15 1036.42 1035.02 

𝑦̅𝑜𝑘
∗(1)

 245.42 245.01 244.70 244.45 244.25 

𝑦̅𝑜𝑘
∗(2)

 244.36 243.95 243.63 243.35 243.18 

𝑦̅𝑜𝑘
∗(3)

 237.49 237.09 236.78 236.54 236.34 

𝑦̅𝑜𝑘
∗(4)

 244.80 244.39 244.08 243.84 243.64 

𝑦̅𝑜𝑘
∗(5)

 245.29 244.88 244.57 244.32 244.12 

𝑦̅𝑜𝑘
∗(6)

 244.62 244.21 243.90 243.66 243.46 

𝑦̅𝑜𝑘
∗(7)

 237.33 236.93 236.63 236.39 236.19 

𝑦̅𝑜𝑘
∗(8)

 1027.85 1030.21 1032.04 1033.48 1034.66 

𝑡𝑖
∗;  

𝑖 = 1 − 4 2595.87 2664.30 2722.05 2771.39 2814.02 

 

 

Table 3: The percent relative efficiency of the existing and proposed estimators with 

respect to Hansen and Hurwitz estimator for Case II  

 

𝐖𝟐𝒉 = 𝟏𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

Estimators K=2 K=2.5 K=3 K=3.5 K=4  

𝑦̅∗ 100.00 100.00 100.00 100.00 100.00 

𝑦̅𝑆𝑅
′  407.23 330.47 283.52 253.68 231.73 

𝑦̅𝐶𝑅
′  411.50 333.06 285.29 255.00 232.77 

𝑦̅𝑜𝑘
′(1)

 199.01 185.15 174.15 166.53 159.97 
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𝑦̅𝑜𝑘
′(2)

 198.44 184.69 173.77 166.20 159.69 

𝑦̅𝑜𝑘
′(3)

 194.63 181.63 171.25 164.05 157.82 

𝑦̅𝑜𝑘
′(4)

 198.66 184.87 173.92 166.33 159.80 

𝑦̅𝑜𝑘
′(5)

 198.94 185.09 174.11 166.48 159.93 

𝑦̅𝑜𝑘
′(6)

 198.57 184.80 173.86 166.28 159.75 

𝑦̅𝑜𝑘
′(7)

 194.54 181.56 171.19 163.99 157.77 

𝑦̅𝑜𝑘
′(8)

 407.23 330.47 283.52 253.68 231.73 

𝑡𝑖
′; 

𝑖 = 1 − 4  504.55 386.38 320.64 280.77 252.63 

𝐖𝟐𝒉 = 𝟐𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑦̅∗ 100.00 100.00 100.00 100.00 100.00 

𝑦̅𝑆𝑅
′  314.60 255.12 221.46 199.80 184.70 

𝑦̅𝐶𝑅
′  316.89 256.47 222.37 200.48 185.23 

𝑦̅𝑜𝑘
′(1)

 181.76 166.94 156.66 149.12 143.35 

𝑦̅𝑜𝑘
′(2)

 181.33 166.61 156.40 148.91 143.17 

𝑦̅𝑜𝑘
′(3)

 178.45 164.43 154.67 147.47 141.95 

𝑦̅𝑜𝑘
′(4)

 181.50 166.74 156.50 148.99 143.24 

𝑦̅𝑜𝑘
′(5)

 181.71 166.90 156.63 149.09 143.33 

𝑦̅𝑜𝑘
′(6)

 181.43 166.68 156.46 148.96 143.21 

𝑦̅𝑜𝑘
′(7)

 178.38 164.38 154.63 147.44 141.92 

𝑦̅𝑜𝑘
′(8)

 314.60 255.12 221.46 199.80 184.70 

𝑡𝑖
′; 

𝑖 = 1 − 4 363.59 282.6541 239.75 213.16 195.08 

𝐖𝟐𝒉 = 𝟑𝟎% 𝐍𝐨𝐧 − 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 

𝑦̅∗ 100.00 100.00 100.00 100.00 100.00 

𝑦̅𝑆𝑅
′  269.24 220.20 193.19 176.09 164.30 

𝑦̅𝐶𝑅
′  270.79 221.09 193.80 176.55 164.66 

𝑦̅𝑜𝑘
′(1)

 170.80 156.24 146.65 139.85 134.78 

𝑦̅𝑜𝑘
′(2)

 170.45 155.99 146.45 139.69 134.65 

𝑦̅𝑜𝑘
′(3)

 168.09 154.27 145.11 138.60 133.73 

𝑦̅𝑜𝑘
′(4)

 170.58 156.09 146.53 139.75 134.70 

𝑦̅𝑜𝑘
′(5)

 170.75 156.21 146.62 139.83 134.77 

𝑦̅𝑜𝑘
′(6)

 170.53 156.04 146.50 139.73 134.68 

𝑦̅𝑜𝑘
′(7)

 168.04 154.23 145.08 138.57 133.70 

𝑦̅𝑜𝑘
′(8)

 269.24 220.20 193.19 176.09 164.30 

𝑡𝑖
′; 

𝑖 = 1 − 4 301.25 238.17 205.20 184.93 171.21 

 

Table 2 presents the empirical comparison based on percent relative efficiencies 

(PREs) of the proposed class of combined exponential type of estimators  𝑡1
∗ , 𝑡2

∗ , 𝑡3
∗ and 𝑡4

∗  

and it clearly shows that the proposed estimators are more efficient than the Hansen and 
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Hurwitz estimator as well as from the other existing estimators taken in literature when non-

response occurs both on the study variable and on the auxiliary variable and the population 

mean of the auxiliary variable is known. The proposed estimators 𝑡1
∗  , 𝑡2

∗  , 𝑡3
∗  and 𝑡4

∗  are 

equally efficient. The PREs of the proposed estimators 𝑡𝑖
∗, 𝑖 = 1 − 4  at 10% non-response 

rate and at 𝐾ℎ = 2 is (2564.04). Similarly, the PREs of the proposed estimators 𝑡𝑖
∗, 𝑖 = 1 − 4  

at 20% non-response rate and at 𝐾ℎ = 2 is (2618.32) and also, the PREs of the proposed 

estimators 𝑡𝑖
∗, 𝑖 = 1 − 4  at 30% non-response rate and at 𝐾ℎ = 2 is (2595.87). Further an 

increasing trend has been observed in PREs with increase in the value of Kh at 10%, 20% and 

30% non-response rates.     

Table 3 presents the empirical comparison based on percent relative efficiencies PREs 

of the proposed class of combined exponential type of estimators  𝑡1
′  , 𝑡2

′  , 𝑡3
′  and 𝑡4

′  clearly 

shows that the proposed estimators are more efficient than the Hansen and Hurwitz estimator 

as well as from the other existing estimators taken in literature when non-response occurs 

only on the study variable, complete information on the auxiliary variable and the population 

mean of the auxiliary variable is known. The proposed estimators 𝑡1
′  , 𝑡2

′  , 𝑡3
′  and 𝑡4

′  are 

equally efficient. The PREs of the proposed estimators 𝑡𝑖
′, 𝑖 = 1 − 4 at 10% non-response rate 

and at 𝐾ℎ = 2 is (504.55). Similarly, the PREs of the proposed estimators 𝑡𝑖
′, 𝑖 = 1 − 4 at 

20% non-response rate and at 𝐾ℎ = 2  is (363.59) and also, the PREs of the proposed 

estimators 𝑡𝑖
′, 𝑖 = 1 − 4  at 30% non-response rate and at 𝐾ℎ = 2  is (301.25). Further a 

decreasing trend has been observed in PREs with increase in the value of 𝐾ℎ at 10%, 20% 

and 30% non-response rates. 

8.  Conclusion 

  In this paper, we have discussed the problem of estimating the population mean using 

auxiliary information in stratified random sampling under non-response. The situation of non-

response is examined under two cases; Case I: when non-response occurs both on study 

variable and auxiliary variable and population mean of the auxiliary variable is known; Case 

II: when non-response occurs only on study variable, complete information on auxiliary 

variable and population mean of auxiliary variable is known. Four exponential estimators  𝑡1
∗ , 

𝑡2
∗ , 𝑡3

∗ and 𝑡4
∗ have been proposed in the Case I of non-response when non-response occurs 

both on study variable and auxiliary variable and population mean of the auxiliary variable is 

known. Similarly, four exponential estimators 𝑡1
′  , 𝑡2

′  , 𝑡3
′  and 𝑡4

′  have been proposed in Case 

II, when non-response occurs only on study variable, complete information on auxiliary 

variable and population mean of auxiliary variable is known. Expression of bias and mean 

square error of the proposed estimators 𝑡𝑖
∗, 𝑖 = 1 − 4   and 𝑡𝑖

′, 𝑖 = 1 − 4  are obtained 

separately for all the proposed estimators. Optimum conditions of the proposed estimators are 

obtained at which the mean squared error of the proposed estimators 𝑡𝑖
∗, 𝑖 = 1 − 4  and 𝑡𝑖

′, 𝑖 =
1 − 4 are minimized. The proposed estimators compared with Hansen and Hurwitz (1946) 

estimator and some other existing estimators theoretically. We have also carried out empirical 

study to validate the performance of the proposed estimators 𝑡𝑖
∗, 𝑖 = 1 − 4  and 𝑡𝑖

′, 𝑖 = 1 − 4 

over the existing estimators. Thus, the proposed study is recommended for its use in practice. 
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Abstract

COVID-19 (Coronavirus) has caused widespread disruption and hindered economic
growth worldwide. Since the entire world has been hit by two dangerous waves of this epi-
demic, it has become increasingly vital for us to analyze COVID-19 casualties in order to
forecast our future days. As a result, in this work, an attempt has been made to do a time
series analysis and fit linear regression on the cumulative death of the two most populated
countries, China and India. The research utilizes a simple yet powerful and objective ap-
proach, called autoregressive integrated moving average (ARIMA) to forecast the number
of cumulative deaths. We have also fitted linear regression on the data to predict future
values. The forecasted values have also been compared with the original cumulative death
values. In conclusion, ARIMA model forecasted better results in comparison with regression
model. As a result, ARIMA(0,2,1) and ARIMA(1,2,0) turns out to be the best model for
China and India respectively. So, in the future, the government and health personnel can
use these models to take desirable action to control the death count.

Key words: ARIMA model; Linear regression; Epidemic forecast; Cumulative deaths.

AMS Subject Classifications: 62J05, 62M10

1. Introduction

Coronavirus disease 2019 (COVID-19) is a serious, long-lasting contagious disease
caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that first
arose in December 2019 in China. The pandemic has infected 511,749,262 people in 195
nations around the World, with 6,228,622 cases of death as of 28th April 2020. COVID-19’s
first case was found on 12th December 2019 which is now spreading exponentially and caus-
ing a large number of casualties. COVID-19 has been identified as the third largest cause
of death in the World. More than half of the world’s population lives in one of the 10 most
populous countries in the world. China is the most populous country on earth with a pop-
ulation of around 1,397,715,000. The United States has the highest number of COVID-19
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deaths (1,019,774), followed by India (523,693). Even though China is among the world’s
most populous countries, the number of fatalities by COVID-19 in China is lower. How a
country faces such tough situations as COVID-19 gives an idea about the development of
the country in terms of the medical sector, so it is important to study different countries
and compare them.

To compare the most populated country in terms of COVID-19 deaths, we have used
ARIMA model and simple linear regression. The regression and SEIR model were fitted on
COVID-19 cases previously in (Panday et al., 2020) and the SEIR model predicted closer
results. Katoch and Sindhu (2021) also proposed a time series model based on genetic
programming for the analysis of confirmed death and cases across the three most pretentious
states of India - Maharashtra, Andhra Pradesh, Tamil Nadu, and Karnataka as well as for
the whole India. Ding et al. (2020) studied the epidemic data from February 24 to March 30,
2020, and concluded that an inflection point was expected in early April in Italy. Bayyurt
and Bayyurt (2020) compared the lag between COVID-19 cases and deaths with the help of
the ARIMA model. Gambhir et al.(2020) applied regression on COVID-19 to study future
patterns. An attempt was made by Hengjian and Tao (2020) to fit Non-linear regression
on COVID-19 data. Batista (2020) studied the second phase of the coronavirus COVID-19
epidemic by the logistic model. It is vital to model and predict the deaths to deal with their
consequences. Forecasting future COVID-19 deaths using statistical models is critical for
breaking the transmission cycle in highly populated nations like China and India.

2. Mathematical background

We have used secondary data from World Health Organization (WHO) COVID-19
dashboard from 1st April 2021 to 30th June 2021 considering the number of cumulative
deaths per day. The data includes confirmed cases and deaths along with their cumulative
counts of all the countries. Excel was used in building the database of time series.

2.1. ARIMA model

ARIMA model in equations:

Yt = α + β1Yt−1 + β2Yt−2 + · · · + βnYt−nϵt + ϕ1ϵt−1 + ϕ2ϵt−2 + · · · + ϕqϵt−q (1)

ARIMA, short for ‘Auto-Regressive Integrated Moving Average’ explains the time series
based on its previous values (Box et al., 2015). In ARIMA (p,d,q) the ‘p’ denotes the order
of the ‘Auto Regressive’ (AR) term which refers to the number of lags of Y, which is used
as predictors. The ‘Moving Average’ (MA) term’s order is ‘q’ showing the number of lagged
forecast errors that can be included in the ARIMA model. The value of ‘d’ is the smallest
number of differencing required to get the series stationary. There are different ARIMA
models that we can fit, to select the best one we can choose the criteria like AIC (Akaike
Information Criteria), and log-likelihood. To check the accuracy of the model, we have
calculated the change percentage of both ARIMA and linear regression and compared them.
We have also plotted the Auto Correlation Function (ACF) and Partial Auto Correlation
Function (PACF) of residuals in order to check the normality.
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2.1.1. Analysis of data - I

An attempt has been made in this study to analyze the data collected with the COVID-
19 cumulative deaths in China and India. In this case, the methodology described below
was applied, and conclusions were drawn from the study. The study was of about 91 days
covering second wave data starting from 1st April 2021 to 30th June 2021. During the second
wave, India faced more death losses when compared to China. The data is plotted in time
series shown in Figure 1 and 2, demonstrating stochastic trends.

Figure 1: China cumulative death plot

Figure 2: India cumulative death plot

Figure 1 and 2 depict that the COVID-19 peak started to reach India in April whereas
for China it was after two months in June. With the use of software R, we plotted the
Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) to test
the stationarity of China and India’s time series graphically, as shown in Figure 3 to 6.

Figure 3: ACF China Figure 4: PACF China
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Figure 5: ACF India Figure 6: PACF India

Figure 3 and 5 depict the ACF of China and India respectively, since most of the bars
in the ACF plot are above the upper limit so it has been concluded that data depends on
the past value and thus it is not stationary. In the PACF plot, (Figure 4 and 6) one bar is
not within the limit which also suggests the non-stationarity of data.

To check statistically whether data is already stationary or not, we have also applied
Augmented Dickey-Fuller Test (ADF) and the results are demonstrated below in Table 1:

Table 1: Augmented Dickey- Fuller test results

Country Hypothesis Test statistic p-value
China H0 : The data is not stationary -1.9889 0.5808

H1 : The data is stationary
India H0 : The data is not stationary -1.9825 0.5834

H1 : The data is stationary

Table 2: ARIMA models

Country Model ARIMA order AIC
China 1.1 ARIMA (2,2,2) 530.772

1.2 ARIMA (0,2,0) 538.1234
1.3 ARIMA (1,2,0) 528.0987
1.4 ARIMA (0,2,1) 525.1874
1.5 ARIMA (1,2,1) 526.9417
1.6 ARIMA (0,2,2) 526.9914
1.7 ARIMA (1,2,2) 528.8983

India 2.1 ARIMA (1,2,0) 1374.284
2.2 ARIMA (2,2,1) 1377.411
2.3 ARIMA (1,2,1) 1375.423
2.4 ARIMA (0,2,1) 1375.489
2.5 ARIMA (2,2,0) 1375.602
2.6 ARIMA (0,2,0) 1394.637
2.7 ARIMA (2,2,2) 1379.341
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By checking the p-values we can conclude whether the data is stationary or not. The
null hypothesis can be rejected if the p-value is less than 0.05; else, the null hypothesis will
stand. In both China and India p-value is greater than 0.05 so we can’t reject the null
hypothesis and conclude that the time series of both countries is not stationary. Now we
have to make them stationary for that we can take differences or log them. Here we are
using R Studio which suggests various models and we can select the best ARIMA Model
according to AIC (Akaike Information Criteria).

The model that has the minimum AIC (mentioned in bold) will be the best fit for our
data. For India ARIMA model (1,2,0) and the China ARIMA model (0,2,1) satisfies this
criterion as shown in Table 2. So we have selected these models and use them to forecast
future cumulative death counts. In both China and India, the value of d = 2 means that
the data is differenced two times to make it stationary. To ensure that the ARIMA model’s
residuals are normal, we have plotted the ACF and PACF of the Model’s residuals, shown
from Figure 7 to 10. The bars were coming within the limit which concludes that residuals
follow Normal distribution.

Figure 7: ACF of India residuals Figure 8: PACF of India residuals

Figure 9: ACF of China residuals Figure 10: PACF of China residuals

2.2. Regression model

Simple linear regression is a method for predicting a response Y by using only one pre-
dictor variable X. The regression model estimates independent variables by using continuous
dependent variables provided in the list. The model can be written as :

Y = α + β X + ϵ (2)
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where X is the independent variable that is used to estimate the value of Y by following the
above relation. In our study cumulative deaths is the dependent variable whose values are
being estimated by taking days as X variable or independent variable. In the above equation,
α and β are the intercept term and slope parameter respectively, which are also known as
regression coefficients. The unobservable error component ϵ indicates the gap between the
true and observed values of Y and accounts for the failure of data to lie on a straight line. For
statistical inferences we assume ϵ to be an independent and identically distributed random
variable with mean zero and constant variance σ2. We have used R Studio to fit the simple
regression model for both China and India.

2.2.1. Analysis of data - II

COVID-19 is spreading exponentially in the world and many people are losing their
close ones. The number of deaths due to COVID-19 was increasing in counts as the days were
passing especially during the second wave of COVID-19. This study includes the COVID-19
second wave data set from WHO. The collected data was analyzed in R Studio. In India the
number of deaths has been increasing day by day while in China the loss of deaths due to
COVID-19 has been almost constant, this fact matches our calculated result.

3. Results and conclusion

In ARIMA time series analysis ARIMA (0,2,1) and ARIMA(1,2,0) turn out to be the
best model for China and India respectively. The predicted values for the models are shown
in Figure 11 and 12. Referring to Table 3 and 4, it has been concluded that ARIMA is
the better model for forecasting future cumulative death as the change percentage for the
ARIMA model is only 0.01 to 0.2% and 0.01 to 0.3 % for China and India respectively but
on the other hand we can see a higher percentage difference for regression model of about
3.4 to 3.7 % for China and 4.0 to 9.9% for India. It is also observed that the second wave of
COVID-19 has turned out to be less severe for China as compared to India. The government
and associated departments can use ARIMA model to forecast COVID-19 deaths rather than
regression model. The comprehensive study designed on the cumulative deaths of COVID-
19 can help to see the severity of the situation by predicting the mortality rate. This will
help the policymakers to take preventive measures and actions such as fulfilling the oxygen
and vaccination demand, arranging beds and medical experts for controlling the COVID-19
situation. This research will also help policymakers to keep a track of how different decisions
such as quarantine, lockdown, vaccination etc. are helpful in reducing the death count. This
can be done by monitoring the difference between predicted deaths and actual deaths taking
place after the implementation of policies.

Figure 11: China forecast plot Figure 12: India forecast plot
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Table 3: Forecasted and actual value comparison of China

Date ARIMA ARIMA ARIMA Regression Regression
actual forecasted percentage forecasted percentage
data data change data change

01-07-2021 5495 5497.672 0.048626024 5305.5117 -3.448376706
02-07-2021 5508 5505.344 -0.04822077 5312.3607 -3.551911765
03-07-2021 5523 5513.016 -0.18077132 5319.2097 -3.689847909
04-07-2021 5533 5520.688 -0.222519429 5326.0587 -3.740128321
05-07-2021 5535 5528.36 -0.119963866 5332.9077 -3.651170732
06-07-2021 5537 5536.032 -0.017482391 5339.7567 -3.562277407
07-07-2021 5554 5543.704 -0.185379906 5346.6057 -3.73414296
08-07-2021 5563 5551.376 -0.208952004 5353.4547 -3.766767931
09-07-2021 5566 5559.048 -0.124901186 5360.3037 -3.695585699
10-07-2021 5578 5566.72 -0.202223019 5367.1527 -3.77998028
11-07-2021 5584 5574.392 -0.172063037 5374.0017 -3.760714542
12-07-2021 5588 5582.064 -0.106227631 5380.8507 -3.707038296
13-07-2021 5589 5589.736 0.013168724 5387.6997 -3.601723027
14-07-2021 5595 5597.407 0.043020554 5394.5487 -3.582686327
15-07-2021 5601 5605.079 0.072826281 5401.3977 -3.563690412

Table 4: Forecasted and actual value comparison of India

Date ARIMA ARIMA ARIMA Regression Regression
actual forecasted percentage forecasted percentage
data data change data change

01-07-2021 399459 399313.2 -0.036499365 413929.61 4.01359566
03-07-2021 401050 401001.3 -0.012143124 420171.85 4.550959328
04-07-2021 402005 401845.6 -0.039651248 423292.97 5.029133841
05-07-2021 402728 402692 -0.008939036 426414.09 5.554715605
06-07-2021 403281 403537.4 0.063578497 429535.21 6.112236992
07-07-2021 404211 404383.3 0.042626252 432656.33 6.574578488
08-07-2021 405028 405229 0.049626199 435777.45 7.056227898
09-07-2021 405939 406074.7 0.033428668 438898.57 7.509609794
10-07-2021 407145 406920.4 -0.055164622 442019.69 7.889849884
11-07-2021 408040 407766.2 -0.067101265 445140.81 8.334623375
12-07-2021 408764 408611.9 -0.037209735 448261.93 8.811350542
13-07-2021 410784 409457.6 -0.322894757 451383.05 8.994367423
14-07-2021 411408 410303.4 -0.268492591 454504.17 9.482018614
15-07-2021 411989 411149.1 -0.203864666 457625.29 9.972414331
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Abstract
Frame is quite often incomplete and imperfect by the time actual survey starts. Im-

perfection of frame also arises due to some of the rare units being out-of–scope, out-dated and
missing from the sampling frame which may be of considerable measure in size and weight
and may lead to deviation between sampled and target population. The estimators from
such imperfect frame will not give unbiased results. Unbiased estimator is being devised for
target population total and variance in the present study with appropriate sampling design
considering the finite population. It is considered that, in the case of finite population, the
phenomenon of some of the rare units missing, out of scope or out-dated units follow some
probability distribution function (p.d.f) and unbiased estimate of population parameter is
devised and developed.

Key words: Imperfect frame; Target population; Inverse sampling.

1. Introduction

In some situations, there are some rare units in the sampled population which are
out-dated from the target population at the time of actual survey. The rare units of the
old frame for which sampled population correspond, may be out-dated, may be out-of-scope
or may be missing from the frame at the time of actual survey for which the information
and observations are desired. Such rare units missing from the target population will lead
to the imperfection of the frame. Thus there is deviation between sampled population and
target population due to imperfection in the frame arising due to some rare sampling units
being out-dated from the frame required for the study of statistical results of the desired
target population. Therefore, in such cases some rare units of the sampled population do
not belong to the target population because frame prepared at some time may contain some
rare units which may not exist in the target population at the time of actual survey and
enumeration. This happens because during passage of time, the frame prepared at some
time will be out-dated by the time the actual enumeration starts.

For example in a frame of list of Agriculture labourers in a district, some rare number
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of labourers may migrate to other districts in search of work at the time, the survey actually
starts. Therefore, frame of Agricultural labourers become imperfect at the time of enquiry.

The list of irrigated land holdings in a Tehesil prepared at some time corresponding
to the sampled population, may contain some rare number of fields which may not in-fact
be irrigated discovered at the time of actual enquiry of crop survey due to failure of some
canals or tube wells. In a list of cultivated area under some crop designed for the purpose
of survey from source at hand, may contain some cultivated area under some other crop so
that some of the rare number of cultivated area may not belong to the crop-area desired for
the study. The frame becomes imperfect due to some rare sampling units not belonging to
the target population which are unknown at the time of sample selection but is discovered
because investigator visits particular cultivated land selected in the sample.

There are also some rare phenomena in the nature when some rare units change
rapidly in their geographic ordering and location. For example, in case of shifting cultivation
adopted in North-East of India, some of the rare area listed under forest land may be found
to be under shifting cultivation due to unprecedental customs and traditions of tribes in
that region because of dependence of tribes on nature and nurture. They are discovered only
at the time of investigation. Similarly, frame of fields under Jhooming cultivation obtained
from some source may contain some rare field which may be discovered as no more belonging
under same pattern of agriculture at the time of actual enumeration as is evident in number
of Anthropological studies.

The frame, available for some nomadic tribal families will become rapidly imperfect
because of some rare number of nomadic tribal families migrating from one place to other,
thus making their demographic studies difficult and complex at the time of actual survey.
In a frame of mango trees for estimation of total amount of mango fruits, some rare number
of trees may not be found bearing fruits discovered at the time of enquiry, In a list of fields
for tomato, potato, wheat, gram, Arahar etc, some rare field may contain damaged crops
due to adverse weather conditions and estimation of total production of these crops would
be difficult on the basis of available old frame as frame become imperfect for desired target
population under study. For estimating total amount of Tendu leaves in a forest, list of
Tendu tree may contain rare trees which may not bear leaves during passage of time making
the frame imperfect. For estimating total amount of water in a district, the list of water
tanks available from some official sources, may not correspond to the target population as
some rare tanks may be dry and barren by the time of survey.

Thus more often, frame may very soon become out–dated as some rare units of the
frame may go quantitative and qualitative change in the sampled population.

Estimates on the basis of sample selected from such imperfect frame would not give
unbiased results. These rare out-dated units from the frame will also contribute to the bias of
target population results. The correct, complete, and up-to-date frame is rather impossible
in practice because some rare units of the sampled population rapidly cease to exist or are
observed as non- existent in the target population at the time of actual survey.

Seal (1962) discussed the use of out-dated frames in large scale surveys and considered
the changes in the population as a continuous stochastic process. Hartley (1962) proposed
the use of two or more frames to overcome the problem of incomplete frames. Hansen et
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al. (1963) discussed various procedures for the use of incomplete frame and proposed the
predecessor-successor method to obtain information on missing units in the frame. Szamsitat
and Schaffer (1963) discussed about consequences of imperfect frame in sampling. Singh
(1983) gave a mathematical formulation of predecessor-successor method for estimating total
number of units missing from the frame. Singh (1989) proposed suitable method of estimation
when sampling is done from imperfect frame and a geographic ordering of units can be
established. Singh et al. (1997) discussed imperfection in the frame of finite population and
proposed estimators for domain of study considering probability distribution of the out-dated
units in the incomplete frame. Singh et al. (2001) discussed the imperfection of frame arising
due to omission of some of the units from the frame and also frame containing some units
which no more belongs to target population and proposed appropriate estimation procedure
for the population, its variance when sampling is done from two frames.

Agarwal and Gupta (2008) developed a method of estimation of population total,
mean and variance from incomplete frame in case of SRSWOR and SRSWR.

Singh (2020) discussed the frame error as error due to imperfection of the frame in
detail because of deviation of the target population from sample population. Singh (2020)
discussed that frames are often imperfect in any sample survey which arises due to some of
the rare sampling units being out-dated at the time of actual survey. He further devised
unbiased estimator for the imperfection of frame arising due to rare out-of-scope units con-
sidering population size to be large. Suitable estimators for the proportion of out-dated
units from the population and target population total for a character with their variance
was developed considering probability distribution function (p.d.f.) of rare out- dated units
in large population.

Agarwal and Singh (2021) considered every finite of population as a constituent part
of some super population in which complete frame is quite often not available under con-
sideration. They providers estimators under more realistic situation as compared to finite
population concepts.

Singh (2021) discussed that the existence of the frame is pre-requisite for any sample
survey or census of a large population. Frames are quite often imperfect due to dynamic
nature of sampling units. Frames become incomplete by the time actual survey and enumer-
ation starts which affect the statistical results desired for the target population. He reported
and considered imperfection in the frame of large population arising due to the qualitative
change of units from one class to other. He considered incomplete frame assuming the na-
ture of units following dynamic change from class one to other which follows a probability
distribution function. Suitable estimator for proportion of units belonging to a particular
domain and unbiased estimate of target population for a class was proposed along with its
estimate of variance. The estimates are evolved so as to eliminate error caused due to the
deviation of sampled population from target population.

Singh (2022) gave appraisal of problem of incomplete frame in different situations.
The cause and type of imperfection of frame was discussed covering various aspects and
review of work done by different scholars was explained along with measures and suggestions
to deal with imperfection of frame.

More troublesome are those cases when missing or out-dated units although rare in
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number are exceedingly large in their measure of size and such rare units were discovered
because units were selected. For example, in list of business establishments, some large
establishments although rare in number, may no longer be active at the time of enumeration.

These large sized rare units missing from the frame would lead to the imperfection of
the frame and would contribute much to the bias of sampling results for target population
parameters.

Therefore, this study deals with imperfect frame arising due to missing or out- dated
rare units from the target population of finite size. The objective in the present study is to
design a sampling procedure to devise an estimator which is unbiased for target population
parameters in such cases of imperfection in the frame.

2. Method of estimation

Consider a finite sampled population of size N as listed in the available frame for
selecting the sample at some time. However, during passage of time, population structure
has undergone some change in the sense that some rare units of the available original frame
i.e. of sampled population, have ceased to exist in the target population. Let N1 denotes
the number of units in the frame of size N , actually belonging to the target population. N2
denotes number of rare sampling units which have gone out of the target population. So that,
N = (N1 + N2). The N2 units, though rare in the number may attribute for high measure
of their size. Assume that the rare units which have ceased to exist in the target population
are not identifiable and hence these rare units although being out-of scope and out-dated
units, cannot be deleted from the frame. Therefore, actual frame of target population will
be of size N1 which is unknown at the time of actual survey. N2 units are rare in number
but these are also not identifiable which are attributing for their high measure of sizes with
considerable importance and significant for population parameters in their observations of
characteristics under study.

Situation of incomplete frame arises when units under go qualitative change and
becomes out-dated units for the desired targeted population, during passage of time. The
units respond but their measures/ values are out-dated for target population. In case of
non-response, frame is complete but some of the units do not respond.

The information and observations attributed to the N2 rare units of the sampled
population are, although, of significant importance but will not correspond the characteristics
of the target population. This phenomenon occurs when there are changes in the target
population when population is subject to continuous change and if there is rather long
interval between the dates to which sampled population relates and date or time for which
the information is to be collected.

One procedure to select the sample may be to select a random number from 1 to N
keeping old numbering as such. The unit corresponding to this number is selected, provided
it is not of N2 rare units which have become non-existent in the target population. If non-
existent rare unit is selected, draw is rejected and the procedure is repeated. This gives
equal chance of selection to N − N2 = N1 units of the target population.

However, this procedure assumes that the information is available about the rare out-
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dated units from the old frame at the time of sample selection. But, most often, we do not
know about the out-dated units from the old frame at the time of sample selection unless
the actual enumeration starts. It is only when enumerator visits a particular rare out-dated
unit that he finds that the units no more exist in the target population.

Therefore, we propose an alternative method of sample selection and sampling plan
for estimation procedure.

3. Notations

Let p denotes the proportion of rare sampling units from the available original frame
of sampled population which are out-dated, out-of-scope or missing units from the target
population leading to the imperfection of the frame. Hence, p = N2/N . Evidently Np units
will be rare units which are missing from the target population. We have N = N1 + Np and
N1 = Nq, q = 1 − p. Hence, Nq units actually belong to the target population.

Let Y denotes the character under study and Yi denote the value of Y for ith unit of
the sampled population

U = (U1, U2, U3, ..., UN).

Let Ȳ1 = 1
N1

∑N1
i=1 Yi : population mean of the target population

S2
1 = 1

N1

N1∑
i=1

(Yi − ȲN1)2

p = N2/N : proportion of rare sampling units in the sampled population which are non-
existent in the target population.
q = N1/N : proportion of sampling units in the available frame of sampled population
actually belonging to the target population.

The population total for the target population can be easily written as

YN1 = N1Ȳ1.

In order to estimate target population total for Y , we have to estimate N1 and Ȳ1.

4. Proposed sampling procedure: Inverse simple random sampling without
replacement (I.S.R.S.W.O.R.)

Since, the number of out-dated units is rare in number; the proportion p is very
small. In such situation, method of Inverse-sampling can be used with advantage. In this
method, the sampled size n is not fixed in advance. Instead sampling is continued until
a predetermined number of rare units out-dated from the frame have been drawn. Let p
denotes the proportion of rare units missing from the frame. Evidently Np units will be
missing or out-dated units in the frame of sampled population and N − Np = N1 units will
exist in the target population so that N1 = Nq, q = 1 − p. For estimating the population
p, the sampling units are drawn one by one with equal probability of selection and without
replacement. This procedure is called I.S.R.S.W.O.R. sampling is discontinued as soon as
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the number of units in the sample possessing the rare units missing from the frame is some
predetermined number.

In some situations, the statistical investigation may demand a sample to include a
required representation from the category of rare missing units. It may be required of a
sample to include a specified number of rare units which are out-dated. In such situation
direct sampling procedure based on fixed sample size may not be appropriate. Rather,
inverse sampling procedure discussed by Haldane (1945), Finney (1949), Chapman (1952)
and Chikkagudar (1969) among others are expected to be more appropriate. Suppose, the
statistical enquiry requires that the sample should include n2 units from the rare missing
units from the frame.

We continue selecting units, one by one, with equal probability and without replace-
ment from the sampled population U = {U1, U2, ..., UN} until there are exactly n2 units
(given) discovered at the enumeration stage represented from the missing units. The total
number of units, n in the sample is obviously a random variable. Method of continuing
sample, called I.S.R.S.W.O.R has one important advantage. This case of I.S.R.S.W.O.R can
be used with advantage when proportion p ≤ 10% (Haldane, 1945). In such situation p is
small but not well known in advance. The value of n is large if p is small. Thus sample of
size n will contain n2 units which do not exist in the target population and n − n2 = n1
(say) units belong in the target population after enumerator visits each unit of the sample of
size n. As such, there can be no observations obtained for such n2 (given) non-existent units
in the frame. The observations for n − n2 units can be obtained for which observations are
available. The n2 units are non-existent or even if they exist, the enumerator can identify
them as not belonging to the target population and hence cannot be observed.

Therefore, corresponding probability distribution P (n) for random variable n is given
by

p(n) = p


In a sample of (n − 1) units drawn

from N, n2 − 1 units will be
discovered to be missing or out-dated

units in the target population

 .p


the unit drawn at the
nth draw will be rare

missing or out-dated unit
from the target population


=

(
N2

n2−1

)(
N1

n−n2

)
(

N
n−1

) .
N2 − (n2 − 1)
N − (n − 1)

where n = n2, n2 + 1, ..., (n2 + N–N2)
or

p(n) =

(
Np

n2−1

)
.
(

Nq
n−n2

)
(

N
n−1

) .
Np − (n2 − 1)
N − (n − 1)

where n = n2, n2 + 1, ..., n2 + Nq. Here, we also have ∑
p(n) = 1, where n ≥ n2.

5. Estimation of proportion and its variance

It can be shown that an unbiased estimate of p can be given by

Est p = n2 − 1
n − 1 = p̂, say. (1)
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Thus,

E
(

n2 − 1
n − 1

)
=

∑ (
n2 − 1
n − 1

)
×

(
Np

n2−1

)
.
(

Nq
n−n2

)
N

(
N−1
n−1

) .
Np − n2 + 1
N − n + 1

=
∑ (n2 − 1)

(n − 1)
(n − 1)
(n2 − 1)Np

(
Np−1
n2−2

)
.
(

Nq
n−n2

)
N

(
N−1
n−2

) Np − n2 + 1
N − n + 1

= p
∑

n≥n2

(
Np−1
n2−2

)
.
(

Nq
n−n2

)
(

N−1
n−2

) Np − n2 + 1
N − n + 1

= p

We shall now determine the estimate of V (p̂). We know that

V (p̂) = E(p̂2) − (E(p̂))2 = E(p̂2) − p2. (2)

Therefore, an biased estimate of V (p̂) is given by

Est V (p̂) = p̂2 − Est p2

Now to determine Est p2 we have

E
(n2 − 1)(n2 − 2)
(n − 1)(n − 2) = Np(Np − 1)

N(N − 1)
∑
n≥n

(
Np−2
n2−3

)(
Nq

n−n2

)
(

N−2
n−3

) Np − n2 + 1
N − n + 1 = N

N − 1p2 − 1
N − 1p

Therefore, Est N
N−1p2 − 1

N−1Est p = (n2−1)(n2−2)
(n−1)(n−2) or,

Est p2 = N − 1
N

(n2 − 1)(n2 − 2)
(n − 1)(n − 2) + 1

N
p̂. (3)

Therefore, from (2) and (3), we have

Est V (p̂) = p̂2 − N − 1
N

(n2 − 1)(n2 − 2)
(n − 1)(n − 2) − 1

N
p̂

= p̂
{

p̂ −
(

N − 1
N

) (
n2 − 2
n − 2

)
− 1

N

} (4)

or,
V̂ (p̂) = (n2 − 1)2

(n − 1)2 − (N − 1)(n2 − 1)(n2 − 1)
N(n − 1)(n − 2) − (n2 − 1)

N(n − 2) (5)

Similarly V (p̂) can be obtained as

V (p̂) = (n2 − 1)p + np(1 − p)
N − 1 (6)



114 NEELAM KUMAR SINGH [Vol. 21, No. 2

Therefore, we have an unbiased estimate of ŶN1 (target population total), as given by
Est ŶN1 = Est (NqȲ1) = Est (Nq)Est(Ȳ1) = ŶN1 say.
Thus,

ŶN1 = (Nq̂)( ˆ̄Y1) = Nq̂ȳ1

= N(1 − p̂)ȳ1

= N
(

n − n2

n − 1

)
ȳ1

(7)

ŶN1 is an unbiased estimate of YN1 , because
E(ŶN1) = E(Nq̂ȳ1) = NqȲ1 = Target population total.

6. Variance of ŶN1

The variance of estimate of the target population total is given by

V (ŶN1) = V (Nq̂ȳ1)
= N2V {(1 − p̂)ȳ1}
= N2[V (ȳ1) + E{V (p̂ȳ1)|p̂} + V (E(p̂ȳ1|p̂))]
= N2[V (ȳ1) + E{p̂2V (ȳ1)} + V (Ȳ1p̂)]
= N2[V (ȳ1) + V (ȳ1)E(p̂2) + Ȳ 2

1 V (p̂)]

(8)

as E(ȳ1) = Ȳ1 and also E(p̂2) = V (p̂) + p2. Here ȳ1 = 1
n1

∑n1
i=1 yi which is sample mean

for y based on n1 observations and n1 = n − n2 for which observation are available in the
sample belonging to the target population. Again number of units belonging to the target
population are Nq = N1 whose variance is given by S2

1 . Sample mean square error for units
in the target population can be given by

s2
1 = 1

n1 − 1

n1∑
i=1

(yi − ȳ1)2.

Also, Ȳ1 = Mean of the target population so that

Ȳ1 = 1
N1

N1∑
i=1

Yi.

We can also have
V (ȳ1) = N1 − n1

N1n1
S2

1 .

Thus, again we have from (8)

V (ŶN1) = N2[V (ȳ1) + V (ȳ1){V (p̂) + p̂2} + Ȳ 2
1 V (p̂)]

= N2[V (ȳ1){1 + p̂2 + V (p̂)} + Ȳ 2
1 V (p̂)].

(9)
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Putting values of V (ȳ1) and V (p̂) we can also have

V (ŶN1) = N2
[

N1 − n1

N1n1
S2

1

{
1 + p2 + (n2 − 1)p + Np(1 − p)

N − 1

}]

+ N2Ȳ 2
1

{
(n2 − 1)p + Np(1 − p)

N − 1

}
.

(10)

If N
N−1

∼= 1 then we have after simplification

V (ŶN1) = N(N1 − n1)
N1n1

S2
1{N − 1 + p(N + n2p − 1)} + NpȲ 2

1 {N(1 − p) + n2 − 1} (11)

and as N1 = Nq = N(1 − p), we can also have

V (ŶN1) = N(1 − p) − n1

(1 − p)n1
S2

1{N − 1 + p(N + n2 − p − 1)} + NpȲ 2
1 {N(1 − p) + n2 − 1}. (12)

Thus V (ŶN1) is function of N, p, n1, S2
1 , n2, and Ȳ 2

1 . Second term in the V (ŶN1) is independent
of n but first term is not independent of n because n1 = n − n2. For fixed n2, n1 increases as
n (random variable) increases. Therefore, for a given n2, V (ŶN1) i.e. variance of the estimate
of target population total decreases as sample size n increases. However, V (ŶN1) increases
as n decreases. But n ≥ n2 so that

n = n2, n2 + 1, n2 + 2, ..., n2 + N(1 − p).

For n2 = n, i.e., when n1 = 0, it is not possible to determine V (ŶN1).

However, if n = n2 + 1 then n1 = 1 and V (ŶN1) is maximum and is given by

V (ŶN1) = N(1 − p) − 1
((1 − p) S2

1{N − 1 + p(N + n − p − 2)} + NpȲ 2
1 {N(1 − p) + n2 − 2}.

If n is the maximum value which is given as n = n2 + N(1 − p) then n2 = n − N(1 − P ) and
n1 = N(1 − p). In this case variance of V (ŶN1) is given by

V (ŶN1) = N(n − 1)pȲ 2
1 .

Again V (ŶN1) also depends on the nature of p. The behavior of the frame depends on the
proportion p. It can be seen that, in case of perfect frame p = 0. Therefore, when there is
no imperfection in the frame V (ŶN1) = (N−n1)

n1
S2

1(N − 1), which is approximately equal to
the V (ŶN1). In case of perfect frame, when there are no rare missing units in the sampled
population. We have

V (ŶN1) = V (ŶN) = (N − n1)
n1

(N − 1)S2

as S2
1 = S2 and n1 = n. The approximation occurs as we have assumed N

(N−1)
∼= 1 in (11)

earlier. However, if p = 1 i.e. when there is total imperfection in the frame then V (ŶN1)
cannot be determined.

We know that 0 ≤ p ≤ 1. It can be seen that V (ŶN1) is maximum as p → 0.
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7. Estimation of V (ŶN1)

We have from (9)

V (ŶN1) = N2[V (ȳ1)(1 + p2) + V (p̄){V (ȳ1) + Ȳ 2
1 }].

Estimate of V (ŶN1) can be obtained by estimating each of the right hand side terms. There-
fore,

Est V (ŶN1) = N2[Est V (ȳ1)(1 + p2) + Est V (p̄)Est {V (ȳ1) + Ȳ 2
1 }].

As we know that
V (ȳ2

1) = E(ȳ2
1) − Ȳ 2

1

therefore,
E(ȳ2

1) = V (ȳ2
1) + Ȳ 2

1

and
Est V (ȳ2

1) + Est (Ȳ 2
1 ) = ȳ2

1.

Similarly,
Est (1 + p2) = 1 + Est p2.

But we know that
V (p̂2) = E(p̂2) − p2

and
p2 = E(p̂2) − V (p̂).

Hence,
Est p2 = p̂2 − V̂ (p̂). (13)

Putting these values in (9) we can obtain

V̂ (ŶN1) = N2
[
Est V (ȳ1){1 + p̂2 − V̂ (p̂)} + Est V (p̂)(Ȳ 2

1 )
]

= N2
[
N1 − n1

N1n1
s2

1{1 + p̂2 − V̂ (p̂)} + V̂ (p̂)Ȳ 2
1

]
.

(14)

Since n1 is also selected with S.R.S.W.O.R. in I.S.R.S.W.O.R. with n2 fixed and n random so
that n1 = n − n2 and we have s2

1 = 1
(n1−1)

∑n1
i=1(yi − ȳ2

1) Putting value of V̂ (p̂) from equation
(5) in (14), we have

V̂ (ŶN1) = N2
[
N1 − n1

N1n1
s2

1

{
1 + N − 1

N
p̂

(
n2 − 2
n − 2

)
+ 1

N
p̂

}]
+ȳ2

1

{
p̂2 − N − 1

N
p̂

(
n2 − 2
n − 2

)
− 1

N
p̂

}
(15)

or

V̂ (ŶN1) = N
{

N1 − n1

N1n1
s2

1

} {
N + (N − 1)p̂n2 − 2

n − 2 + p̂
}

+Nȳ2
1

{
Np̂2 − (N − 1)p̂n2 − 2

n − 2 − p̂
}

.

(16)
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8. Estimation of 1
N1

As N1 is unknown, it has to be substituted with its estimate, therefore, we can have

N1 − n1

N1n1
=

( 1
n1

− 1
N1

)
.

Thus,
Est

(
N1 − n1

N1n1

)
= Est

( 1
n1

− 1
N1

)
= 1

n1
− Est

1
N1

.

Now, Est 1
N1

= Est(N−1
1 ), let Est N1 = N̂1 (say). But we know that

N̂1 = Est (Nq)

or
N̂1 = Nq = N(1 − p̂).

Assume N̂1 = N1 + ϵ where E(ϵ) = 0. We may write (N̂1)−1 = {1+ ϵ
N1

}−1 ∼= (N1)−1{1− ϵ
N1

},
neglecting the power of higher than one. Thus,

E
( 1

N1

)
∼= E

( 1
N

)
− E(ϵ)

N2
1

.

Therefore,
Est

1
N1

∼=
1

N̂1

1
Nq̂

as N̂1 = Nq̂.

Hence,
Est

N1 − n1

N1n1
∼=

Nq̂ − n1

Nq̂n1
= N(1 − p̂) − n1

N(1 − p̂)n1
.

Putting these values in (16) we obtain

V̂ (ŶN1) = N

{
N(1 − p̂) − n1

N(1 − p̂)n1
s2

1

} {
N + (N − 1)p̂

(
n2 − 2
n − 2

)
+ p̂

}
+ Nȳ2

1{Np̂2 − (N − 1)p̂
(

n2 − 2
n − 2

)
− p̂}

= N

{
N(1 − p̂) − n1

N(1 − p̂)n1
s2

1

} {
N + (N − 1)p̂

(
n2 − 2
n − 2

)
+ p̂

}
+ Np̂ȳ2

1{Np̂ − (N − 1)
(

n2 − 2
n − 2

)
− 1}

(17)

or,

V̂ (ŶN1) = N − n + 1
n1

s2
1

{
N + (N − 1)(n2 − 1)(n2 − 2)

(n − 1)(n − 2) − n2 − 1
n − 1

}

+ Nȳ2
1

(
n2 − 1
n − 1

) {
N

(
n2 − 1
n − 1

)
− (N − 1)(n2 − 2)

n − 2 − 1
} . (18)

As
(1 − p̂) = n − n2

n − 1 = n1

n − 1
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for n = n1 + n2 Therefore, estimate of the V (ŶN1) is function of n, n1, n2, N, s2
1, and ȳ2

1.
These values can be obtained with the help of the samples. Estimate of variance of the
estimate of the target population total can be obtained in case of imperfect frame arising
due to rare missing units. Estimate of V (ŶN1) increases as N and n1 increases but decreases
as n increases. If we have p̂ = 1 so that n = n2 and n1 = 0 then s2

1, in such case, can not be
estimated because 1/n1 tends to infinity in the first term of the above equation. This case
may arise when there is total imperfection in the frame.

In case of n1 = 1, we have n2 = n+1. In such case s2
1 = 0. Because, s2

1 can not be determined
for one observation. Therefore

V (ŶN1) = Nȳ2
1

{
Np̂2 − (N − 1)p̂

(
n2 − 2
n − 2

)
− p̂

}
.

As first term vanishes and ȳ2
1 = y2

1. However, if p̂ = 0 which may be the case of no
imperfection in the frame, then V̂ (ŶN1) is obtained as

V̂ (ŶN1) = N − n1

n1
s2

1N = N(N − n1)
n1

s2
1.

Since, when p̂ = 0, n1 = n and s2
1 = s2 therefore

V (ŶN1) = N(N − n)
n

s2

which is obtained in case of perfect frame with S.R.S.W.O.R., this case arises when there is
no rare unit in the sample which is non-existent in the target population.

Example: In Chhattisgarh State, the Chhattisgarh Renewable Energy Development Agency
(CREDA) had installed 23953 biogas plants by year 2010. During passage of time, it was
indicated that there are some plants which become in non-working conditions, annually. The
sampler desires to estimate total working plants and total biogas production in the state.
Since, number of non-working plants was not known in advance, therefore, the sampling
frame is incomplete. The inverse sampling methodology was used to estimate working and
non-working plants and total biogas production along with total biogas loss was estimated.
with the help of imperfect frame. The non-working plants to be selected were fixed as
18, which were not identified in advance. To get 18 non-working plants, 117 plants were
observed. The average production of working biogas plants was found to be 2.8 m3. Here,

n2 = 18, n1 = 99, n = 117, N = 23953

thus,
p̂ = 0.146, q̂ = 0.854, ȳ1 = 2.8m3.

Therefore, estimated total number of working biogas plants, Nq̂ = 20442 and non-
working plants as Np̂ = 3497. From equation (7), we get total production of biogas in the
state as 57276.4 m3 and the total loss of biogas due to non-performance of plants is found
to be 9791.6 m3.
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9. Conclusion

While planning sample survey or census, the existence of sample frame comprising a
list of the all the sampling units is pre-requisite. But unfortunately, this situation is hardly
achieved in practice and frames are quite often imperfect and incomplete. This may also
arise when some of the rare units are missing out- dated or may be out of scope at the
time, sampler desire to use. The appropriate and suitable method of estimation is proposed
when sampling is done from imperfect frame as elucidated in the formulae explained and
illustrated above in section 5 - 8.
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Abstract
Volatility forecasting is a critical task in the financial markets. It exhibits persistence,

which is implicit in option prices. In this study, estimation of Realised Volatility (RV)
through high frequency data on the basis of realised variance measures by Heterogeneous
Auto-Regressive (HAR) modeling termed as HAR-RV is discussed. This volatility cascade
leads to a simple AR-type model in the realised volatility with the feature of considering
different volatility components realised over different time horizons successfully capturing the
main characteristics of finance data. The HAR model can be extended by adding different
decompositions of volatility components into the benchmark model. Thus HAR-RV and its
extensions namely, HAR with the simple jump measure (HAR-J), HAR augmented with
Quarticity component (HAR-Q), Bi-power variation (BPV) to separate the continuous and
jump component named as HAR with continuous and jump component (HAR-CJ), HAR
with Quarticity and Jump component (HAR-QJ), Without Jump component (CHAR) and
along with Quarticity component (CHAR-Q) models were studied. HAR models have been
widely used to forecast crude oil futures volatility, agricultural commodities, stock returns
etc. An attempt has been done on real dataset relating to Standard and Poor’s 500 (S&P
500) stock market high frequency data and its volatility was estimated by using HAR models
and its extensions and were compared on different horizons with their volatility studied. The
results revealed that CHAR-Q models perform well in the estimation period compared to all
other models.

Key words: Bi-power variation; Continuous component; Jump component; High frequency
data; Quarticity; Standard and Poor’s 500.

1. Introduction

Volatility modeling and forecasting are integral to finance, and are used in a variety
of financial applications such as risk management and hedging, because volatility plays an
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important role in asset pricing, portfolio construction, risk management, and trading strat-
egy creation. Researchers and practitioners continuously strive for improving the forecast
accuracy of asset return volatility. Engle (1982), Bollerslev (1986), Nelson (1991) and others
have done extensive and in-depth research on the measurement and modeling of the volatil-
ity of asset price, and they believe that the volatility of financial markets has a particular
time-varying nature. Later, they introduced the Auto-Regressive Conditional Heteroscedas-
ticity (ARCH) or Generalized ARCH (GARCH) model to capture the aggregation effect on
market volatility and achieved better results. Taylor (1994) worked on Stochastic Volatility
(SV) model, which is more elastic than the ARCH type for representing the time-varying
character of market volatility. The classic GARCH model, SV model, and other research
outcomes based on low frequency financial data on asset price fluctuations have been im-
mensely recognised by domestic and international research institutions. Almost all GARCH
models are associated with daily, close-to-close returns, or with even lower-frequency data
requirements. Though these models perform well in predicting volatility, they fail to capture
the intraday activity patterns. Once high-frequency data available, researchers recognized
that these data are even more informative regarding volatility, and the concept of realised
volatility emerged (Barndorff-Nielsen and Shephard, 2002). However, daily squared returns
are a noisy proxy for true volatility (Molnar, 2012). Realised volatility quickly found its way
into the volatility modeling and forecasting literature (Andersen et al., 2003) and became
popular, not only in volatility models but also in price forecasting (Degiannakis and Filis,
2017).

With the availability and broad application of high-frequency financial data, the Re-
alised Volatility (RV) and the realised double power variation based on high-frequency data
measurement contain more market information than the low-frequency model volatility. An
attempt has been made by combining their research to model high-frequency volatility from
different perspectives. Based on the theory of heterogeneous markets, Corsi (2009) presented
an article that discussed the HAR-RV model. The first order autoregressive volatility process
is implemented, which represents the market’s heterogeneous trading behaviour. Also, con-
structed a new HAR model (HAR-RV-CJ) based on the original one, decomposing realised
volatility into continuous sample path variance and jump variance to study the impact of
volatility. Specifically, the current applications of the HAR models follow the (1, 5, 22) time
horizon structure originally proposed for developed markets, using daily (1 day), weekly (5
days), and monthly (22 days) periods to represent the short-term, medium-term, and long-
term investors trading frequencies, respectively. However, investors cultural backgrounds and
investment habits, as well as the alternative investment choices, differ largely across markets,
which will probably result in different heterogeneous structures across markets. Furthermore,
investors trading frequencies may be affected by financial and economic policies as well as
market conditions, which will probably lead to a market’s heterogeneous structure varying
over time.

It is well known that stock market prices fluctuate the most during and in the early
moments of bubbles and crashes due to uncertainty in the markets. Volatility forecasting,
therefore, plays a crucial role in determining the distress of an asset or a market and the
research in this area has grown over time. Even till date, forecasting volatility still “remains
very much an art rather than a science” quoted two decades earlier by Figelwski (2004).

Traditionally, the multivariate volatility models include the multivariate GARCH and
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the multivariate SV models. Despite the numerous modifications to multivariate volatility
models, such models consider covariance as a latent variable and suffer from intraday infor-
mation loss due to the use of low frequency data. However, this resulted in a considerable
loss of information on inter-day trading data and also caused bias in estimating and forecast-
ing the conditional volatility. Hence, with the availability of reliable high-frequency intraday
asset prices, researchers were motivated to conduct further research aiming to primarily
produce short-run volatility forecasts better. In this study, the existing HAR-type models
and its extensions have been studied empirically to infer about their predictive power for
forecasting realised volatilities by taking the case of S&P 500 futures. These findings add to
the concepts of financial risk management and volatility forecasting. When faced with high
equity market uncertainty, the findings will assist market participants to choose appropriate
strategies to limit risk and maximize returns.

The structure of paper is as follows. Section 2 deals with genesis of HAR modelling.
Some preliminaries and methodology are given in Section 3. A case study on real data of
S&P 500 market is given in Section 4 followed by concluding remarks in Section 5.

2. Genesis of HAR modeling

Volatility is arguably referred to as a quantitative measure of risk where the higher
the volatility, higher the risk of a specific asset and therefore it’s forecast becomes crucial
in areas such as portfolio management and asset allocation. Most available studies apply
models based on low-frequency transaction data, such as GARCH, SV, and ARMA to forecast
the volatility of crude oil futures (Chang et al., 2010). Although these models perform
well in predicting volatility in crude oil futures markets, they fail to capture the intraday
activity patterns, the macroeconomic announcements and the volatility persistence that are
separately quantified and have been shown to account for a substantial fraction of return
variability, both at the intraday and daily level.

Giot and Laurent (2003) have employed GARCH-type models to create estimates for
cocoa, coffee, and sugar futures price volatility. Tian et al. (2017) and Yang et al. (2017)
on the other hand, used high-frequency data and enhanced Corsi’s (2009) HAR model to
create short-run volatility projections (up to 20 days ahead) motivated by the ‘Heterogeneous
Market Hypothesis’ and the measure of RV.

The HAR-RV model uses high-frequency transaction data to successfully capture the
main characteristics of financial data. Hence, many scholars extend the HAR-RV model by
adding different decompositions of volatility components into the benchmark model (Ander-
sen et al., 2007; Patton and Sheppard, 2015; Gong and Lin, 2018). HAR-type models have
been widely used to forecast crude oil futures volatility, and have been proven to be better
than the traditional models which are based on low-frequency transaction data (Haugom
et al., 2014 and Andersen et al., 2007) further proposed the use of BPV to separate the
realised volatilities into continuous and jump components termed as HAR-CJ model. Corsi
and Reno (2012) extended HAR model by adding the jump component and termed it as
HAR-J model and also introduced without jump component (CHAR) and Quarticity com-
ponent (CHAR-Q). Bollerslev et al. (2016) introduced the HAR-Q models using realised
Quarticity (RQ) as an estimator of Integrated Quarticity (IQ) to capture temporal variation
in the measurement error.
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Degiannakis et al. (2022) used variants of the HAR model, and forecasted the re-
alised volatility of agricultural commodities. They obtained data from Chicago Mercantile
Exchange (CME)/ Intercontinental Exchange (ICE) with tick-by-tick data on five widely
traded agricultural commodities (corn, rough rice, soybean, sugar, and wheat) during the
period January 01, 2010 to June 30, 2017. The data was divided as In-sample estimation pe-
riod and Out-sample forecasting period. Their results revealed that HAR model performed
well when the variations in volatility measurements were decomposed into their continuous
path and jump components.

Although the HAR-type models discussed above offer good predictive capacity for
volatility forecasting, higher the prediction accuracy, better for risk management, financial
asset pricing and portfolio optimization. Hence, it will be of interest to fit various HAR
models on a given dataset (here, S&P 500 prices) and ascertain about which model better
represent the underlying pattern and also their forecasting performance.

3. Preliminaries and methodology

3.1. Terminologies

The terminologies relating to volatility are described briefly. Implied volatility rep-
resents the current market price for volatility, or the fair value of volatility based on the
market’s expectation for movement over a defined period of time. Realised volatility is noth-
ing but the assessment of variation in returns for an investment product when its historical
returns within a defined time period are analysed. Analysts make use of high-frequency
intraday data to determine measures of volatility at hourly/ daily/ weekly/ monthly fre-
quency. Hence, volatility traders obviously care not only about what is expected but also
what actually transpired. Note that in econometrics, sum of squared returns is called as
realised volatility (Barndorff-Nielsen and Sheppard, 2004). Stochastic volatility models are
similar to GARCH models but introduce a stochastic innovation term to the equation that
describes the evolution of the conditional variance σ2

t . To ensure positiveness of the condi-
tional variances, stochastic volatility models are defined in terms of lnσ2

t instead of σ2
t . If the

autocorrelation function ρk of stationary ARMA(p, q) process decreases rapidly as k→∞,
processes then it is often referred to as short memory processes. Stationary processes with
much more slowly decreasing autocorrelation function are known as long memory processes.
High-frequency data are mostly used in financial analysis and in high frequency trading
which basically contain intraday observations that can be used to understand market behav-
ior, dynamics, and micro-structures. Tick-by-tick market data, in which each single ’event’
(transaction, quote, price movement, etc.) is characterised by a ”tick” was first used to
create high frequency data collections. The quantity of daily data acquired in 30 years can
be equalled by high frequency observations over one day of a liquid market.

3.2. Tests used for realised variance measures

The Ljung-Box statistic is computed under the null hypothesis that there is no auto-
correlation in the residuals in order to see whether the best-fitted model residuals are white
noise or not. Normality of residuals can be tested by employing Shapiro-Wilk’s (W ) test.
Jarque-Bera test is a goodness-of-fit test to test whether sample data have the skewness and
kurtosis matching a normal distribution. Augmented Dickey-Fuller (ADF) test is used for
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testing the presence of a unit root in a time series by under the assumption that the time
series is non-stationary.

3.3. Realised volatility (RV)

RV is a model free measurement of financial market volatility and was proposed by
Andersen et al. (2001, 2003) and Barndorff-Nielsen and Shephard (2002) by defining a
continuous time diffusion process. Andersen et al. (2003) showed that, under suitable con-
ditions, including the absence of serial correlation in the intraday returns, RV is a consistent
estimator of Integrated Volatility (IVt). Hence

RVt =
m∑

i=1
r2

t,i
P→
� t

t−1
σ2

sds

at day t = 1, 2, ..., M for i = 2, 3, ..., m with the number of intraday observations as m
and the total number of observation days as M . Following Andersen and Bollerslev (1998),
discretizing the data by equidistant sampling, might introduce intraday price jumps which
translate into higher realised variances. In order to obtain a more robust measure of the
realised volatility, Barndorff-Nielsen and Sheppard (2004) introduced the concept of the
BPV for separating the realised variance into a continuous part and a discontinuous (jump)
part. Using the approach of Huang (2004), the jump component is identified. Hence RV
provides an ex-post measure of the true total variation including the discontinuous jump
part.

3.4. HAR models

With the widespread availability of high-frequency intraday data, the recent literature
has focused on employing RV to build forecasting models for time-varying return volatility.
Among these forecasting models, the HAR model proposed by Corsi (2009) has gained
popularity due to its simplicity and consistent forecasting performance in applications. The
formulation of the HAR model is based on a straightforward extension of the heterogeneous
ARCH (HARCH) class of models dealt by Muller et al. (1997). Under this approach, the
conditional variance of the discretely sampled returns is parameterized as a linear function of
lagged squared returns over the same horizon together with the squared returns over longer
and/or shorter horizons.

The original HAR model specifies RV as a linear function of daily, weekly and monthly
realised variance components, and can be expressed as

RVt = βo + β1RV d
t−1 + β2RV w

t−1 + β3RV m
t−1 + εt

where βj (j = 0, 1, 2, 3) are unknown parameters that need to be estimated, RVt is the
realised variance of day t, and RV d

t−1 = RVt−1, RV w
t−1 = 1

5
∑5

i=1 RVt−i, RV m
t−1 = 1

22
∑22

i=1 RVt−i

denote the daily, weekly and monthly lagged realised variance, respectively. This specification
of RV parsimoniously captures the high persistence observed in most realised variance series.
The various types of HAR models are discussed subsequently.
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3.4.1. Standard HAR model

RV
(h)

t+h = β
(t)
0 + β

(t)
1 RVt + β

(t)
2 RV

(5)
t + β

(t)
3 RV

(22)
t + ε

(h)
t+h

where RVt denotes the previous day’s volatility RV
(5)

t denotes the averaged volatility during
the previous week, and RV

(22)
t denotes the averaged volatility over the previous month, h

denotes the forecasting horizon.

3.4.2. HAR-J model

Augmenting the above standard HAR with the simple jump measure forms HAR-J
model.

RV
(h)

t+h = β
(t)
0 + β

(t)
1 RVt + β

(t)
2 RV

(5)
t + β

(t)
3 RV

(22)
t + ε

(h)
t+h + β

(t)
4 RJt + ε

(h)
t+h

where RJt is the daily discontinuous jump variation.

3.4.3. HAR-Q model

It is obtained by using Realised Quarticity (RQ) as an estimator of Integrated Quar-
ticity (IQ) to capture temporal variation in the measurement error by Bollerslev et al.
(2016).

RV
(h)

t+h = β0 + β
(t)
1 RVt + Q(1)RQ

1/2
t + β

(t)
2 RV

(5)
t + β

(t)
3 RV

(22)
t + ε

(h)
t+h

where RQ
1/2
t is the daily lagged realised quarticity and it is useful as most of the attenuation

bias in the forecasts (due to RVt being less persistent than unobserved IVt) is due to the
estimation error in RVt−1 . In other words, RQt as an estimator of IQt to capture temporal
variation in the measurement error with RQ

1/2
t as the de-meaned values of RQ

1/2
t for easy

interpretation.

3.4.4. HAR-CJ model

Andersen et al. (2007) further proposed the use of BPV to separate the realised
volatilities into continuous and jump components, which model is resulted as HAR-CJ and
defined as

RV
(h)

t+h = β
(t)
0 + β

(t)
1 Ct + β

(t)
2 C

(5)
t + β

(t)
3 C

(22)
t + J (1)RJt + J (5)RJ

(5)
t + J (22)RJ

(22)
t + ε

(h)
t+h

where Ct and RJt are continuous and discontinuous jump components respectively.

3.4.5. HAR-QJ model

It is obtained by using standard HAR along with previous day’s Quarticity and jump
component respectively.

RV
(h)

t+h = β0 + β
(t)
1 RVt + Q(1)RQ

1/2
t + J (1)RJt + β

(t)
2 RV

(5)
t + β

(t)
3 RV

(22)
t + ε

(h)
t+h

where RQ as an estimator of IQ to capture temporal variation in the measurement error.
Using RQ

1/2
t as the de-meaned values of RQ

1/2
t and RJt is the daily discontinuous jump

variation.
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3.4.6. CHAR model

RV
(h)

t+h = β
(t)
0 + β

(t)
1 Ct + β

(t)
2 C

(5)
t + β

(t)
3 C

(22)
t + ε

(h)
t+h

where, Ct, C
(5)
t and C

(22)
t are respectively, the daily continuous path variation, the daily

average over the past five days and daily average over the past 22 days at time t. Without
jump component, it is better at capturing volatility persistence and long memory than RV
in HAR model.

3.4.7. CHAR-Q model

RV
(h)

t+h = β
(t)
0 + β

(t)
1 Ct + β

(t)
2 C

(5)
t + β

(t)
3 C

(22)
t + β

(t)
4 (TPQ)1/2 + ε

(h)
t+h

where, TPQ1/2 is Tri-power quarticity, which is consistent for the integrated quarticity in
the presence of jumps.

3.5. Forecasting and evaluation

To quantitatively evaluate the forecasting of each model, three popular accuracy mea-
sures, namely the Mean Squared Prediction Error (MSPE), the Mean Absolute Prediction
Error (MAPE), and Quasi Likelihood (QLIKE) by Patton (2011) have been used (and mul-
tiplied by 100 to express in percentages):

MSPE =

√√√√N−1
N∑

t=1

(
RVt − R̂V t

)2

MAPE = N−1
N∑

t=1

∣∣∣RVt − R̂V t

∣∣∣
RVt

QLIKE = N−1
N∑

t=1

log R̂V t +

∣∣∣R̂V t

∣∣∣
RVt


where RV t and R̂V t are the actual and the forecasted RV respectively at the different
forecasting horizons, and N is the number of real out-of-sample forecasts.

4. Case study

The Standard and Poor’s 500 (S&P 500) is usually referred as leading indicator of the
stock market in the United States. The S&P 500 index is made up of 500 large-cap stocks
that represent the most important industries in the US economy. Furthermore, because of
their high liquidity, they can easily be bought or sold in the market without influencing the
asset price. Forecasting of asset return volatility S&P 500 index futures prices from Tick
Data Inc (http://public.econ.duke.edu/ ap172/code.html), during April 8, 1997 to August
30, 2013 (4096 trading days) has been considered in this case study. These data points



128 G. AVINASH ET AL. [Vol. 21, No. 2

Table 1: Descriptive statistics for S&P 500 market realised volatility measures,
relative jump component and bi-power variation

Descriptive Statistics RV RJ BPV
Mean 1.17 0.09 1.11

Minimum 0.04 0.00 0.03
Maximum 60.56 10.25 50.31

Standard Deviation 2.31 0.36 2.21
Skewness 10.02 17.6 9.36
Kurtosis 166.92 398.99 134.74
Tests used for checking assumptions for required analysis

Ljung-Box test Q (1) 1735.60** 24.68** 1852.90**
Ljung-Box test Q (5) 7117.20** 135.04** 7747.80**
Ljung-Box test Q (10) 11989.00** 531.26** 12821.00**
Ljung-Box test Q (22) 20042.00** 884.56** 21112.00**

Shapiro-Wilk’s (W) test 0.35** 0.19** 0.36**
J-B test 4654549.00** 26974481.00** 3021571.00**

ADF test -6.86** -8.87** -7.09**
PP test -2042.90** -4966.50** -1864.00**

Note: Asterisks (** and *) indicate statistical significance at 1% and 5% respectively.

Figure 1: Realised volatility (RV), bi-power variation (BPV) and realised jump
(RJ) components in S&P 500 stock

available as tick-by-tick data prices, which were 23,400 data points for each trading day
resulted in 9,58,46,400 data points. In order to avoid microstructure noise, aggregating the
data to 5 min prices led to 3,19,488 data points. For in-sample analysis, April 8, 1997 to
January 06, 2012 (3686 trading days) period was considered which is 90 per cent of 4096
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trading days for estimation period, whereas, the remaining period till August 30, 2013 were
used as real out-of-sample forecasts based on rolling window approach. The use of rolling
window approach works best to capture changes in the market conditions as suggested by
Degiannakis and Filis (2017), Degiannakis et al. (2018), and Engle et al. (1990). The same
data which has been used in this study has been used as a default data in the R package for
fitting HAR models, but, in this study, the data has been aggregated to 5 min prices and
also more variants of HAR models have been tried for comparison purposes.

4.1. Empirical results

Table 1 provides an overview of descriptive statistics and test statistics of the Ljung–test
for one, five, ten and 22 lags (trading days). The descriptive statistics like skewness and kur-
tosis indicate the data considered were very much erratic. All the data series had positive
skewness and were highly leptokurtic in nature. W and J-B tests for normality showed that
all the series deviate from normality. Phillip-Perron (PP) test employed to test a unit root
in a time series indicated presence of stationarity in the RV, RJ and BPV time series.

Table 2: In-sample HAR results for S&P 500 with RV

HAR h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
0.12**
(3.23)

0.18**
(7.64)

0.24**
(10.46)

0.37**
(15.53)

0.59**
(22.89)

0.72**
(27.90)

β
(1)
1

0.22**
(3.24)

0.18**
(13.11)

0.13**
(10.05)

0.10**
(7.49)

0.08*
(5.59)

0.06**
(4.24)

β
(5)
2

0.49**
(3.33)

0.39**
(16.55)

0.37*
(16.51)

0.33*
(14.22)

0.30**
(12.31)

0.21**
(8.68)

β
(22)
3

0.18**
(3.04)

0.26**
(12.50)

0.28**
(14.03)

0.26**
(12.55)

0.14**
(6.44)

0.15**
(7.15)

AdjR2 0.51 0.63 0.62 0.54 0.38 0.30
AIC 3852.83 1444.90 1134.06 1301.31 1809.72 1676.70
BIC 3883.86 1475.92 1165.07 1332.30 1809.74 1676.70

RMSE 1.69 1.22 1.17 1.19 1.28 1.26
Q-LIKE 0.15 0.12 0.13 0.17 0.22 0.25

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

The measures for realised volatilities for S&P 500 stock index have shown significant
autocorrelations at 1, 5, 10, 22 lags, tested with Ljung-Box chi-square test. This motivated
further for the application of autoregressive models such as HAR and its extensions. Aston-
ishingly, even the jump components (Jt) showed autoregressive behavior of jumps indicating
that because of the impact of major economic events, there were structural breaks in the
volatility of returns of financial assets, which feature may help in improving the predictive
ability of the HAR-type models. As the continuous component refers to the realised volatility
that remained after discarding jumps, the Ljung Box test statistics, ADF, W , J-B test and
PP test were naturally much higher and had similar patterns like realised volatility compo-
nents. Figure 1 depicts the Realised Volatilities RV, BPV and RJ components in S&P 500
stock price index considered. It can be seen from Figure 1 that RV plot subsumes BPV along
with other components whereas BPV consists of both continuous and jump components. In
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Figure 1, the third plot relating to jump component arises due to the intra-day variations in
the data which occur on a daily basis whose magnitudes and ranges are much smaller than
the other two components as can be seen in the plot.

Huge spike of realised volatility in 2009 can be observed in Figure 1 through Figure 8.
This is so because S&P 500 market price bottomed out during 2008-2009 owing to financial
crisis that resulted in great U.S market recession. S&P 500 lost approximately 50% of its
value due to market crash and took two years to recover from it. As a result, squared
returns increased irrespective of direction of their original values leading to sudden increase
in realised volatility.

4.2. In-sample parameter estimation results

In-sample analysis results are presented in Tables 2 through 8 for RV of S&P 500
market with Figures 2 through 8 depicting these results. In Tables 2 through 8, the estimation
results and model performance accuracy measures have been reported for the seven models
considered viz., HAR, HAR-J, HAR-Q, HAR-CJ, HAR-QJ, CHAR and CHAR-Q at six
prediction horizons (h = 1, 5, 10, 22, 44 and 66 days). The analysis was done using R
software. For fitting the models, Ordinary Least Squares (OLS) estimation was employed.
It can be seen that most of the parameters were significant at the 1% level, suggesting strong
persistence in the realised volatility. The Adjusted R2 (higher values), AIC, BIC, RMSE and
Q-LIKE (comparatively smaller) measures at 5 days and 10 days ahead prediction horizons
revealed that the fitted models performed well for these days as compared to 1, 22, 44, 66 days
prediction horizons. In HAR and HARJ models, all the parameters were significant at all
horizons. Most of the parameters of the HAR-Q, HAR-CJ, HAR-QJ models were significant
at short and medium horizons, but for long memory horizons some of the components like
Quarticity (especially for HAR-QJ) and jump components showed non-significance. CHAR
model showed significant contribution by all continuous components.

When all the seven HAR and its extension models fitted were compared based on
their prediction performances, CHAR-Q type of HAR model came out to be the best model
at horizons h = 5 and h = 10 and hence can be considered superior with regard to model
fit. This shows that the continuous component along with the Quarticity component work
better as compared to all other models for S&P 500 stock market price index data.

In-sample analysis results showed that as the h-day-ahead horizon increases, the HAR
and its extension models fail to estimate well compared to the short and medium memory
realised volatility.

4.3. Out-of-sample forecasting results

The out-of-sample predictive performance of seven models were compared by using
a rolling window prediction method for forecasting the volatility of S&P 500 stock price
returns over the multi-period horizons (1, 5, 10, 22, 44 and 66 days). For this, firstly, the
whole sample was divided into two sub-samples called “estimation sample” and “prediction
sample”. Estimation sample is the estimation window containing the 3686 days at any given
time starting from the first day (with rolling window method, the period shifts by one day
every time, but the sample size will remain 3686), the prediction sample contained days from



2023] HAR MODELING BASED RV FORECASTING 131

Table 3: In-sample HAR-J results for S&P 500 with RV

HAR-J h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
0.13**
(3.86)

0.19*
(7.92)

0.25*
(10.66)

0.38**
(15.63)

0.59**
(22.95)

0.72**
(27.95)

β
(1)
1

0.35**
(15.71)

0.27**
(16.44)

0.19**
(12.32)

0.13**
(8.40)

0.10**
(6.10)

0.08**
(4.74)

β
(5)
2

0.43**
(13.14)

0.35**
(15.04)

0.35**
(15.31)

0.31**
(13.47)

0.29**
(11.76)

0.20**
(8.24)

β
(22)
3

-0.18**
(6.27)

0.26**
(12.65)

0.28**
(14.11)

0.26**
(12.57)

0.14**
(6.44)

0.15**
(7.15)

J (1) -1.00**
(3.39)

-0.64**
(4.98)

-0.45**
(4.86)

-0.25**
(1.90)

-0.18**
(1.55)

-0.15**
(1.55)

AdjR2 0.53 0.64 0.63 0.55 0.39 0.30
AIC 3733.44 1351.50 1086.37 1288.54 1731.86 1674.01
BIC 3770.66 1388.71 1123.58 1325.72 1769.03 1711.12

RMSE 1.66 1.20 1.16 1.19 1.27 1.26
Q-LIKE 0.16 0.12 0.13 0.17 0.22 0.25

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

Figure 2: Plots for the fitted HAR model at different horizons

the 3687th day till the end of data period. In this way, on estimation samples, models were
fitted to compute the predicted values for each of the subsequent 1-day, 5-days, 10-days,
22-days, 44-days and 66-days periods for the given samples.

It is noted here that the estimation sample was moved forward every time by one
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Table 4: In-sample HAR-Q results for S&P 500 with RV

HAR-Q h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
-0.01
(0.25)

0.02
(0.82)

0.18*
(1.77)

0.32**
(2.86)

0.55**
(3.71)

0.68**
(3.00)

β
(1)
1

0.59**
(21.55)

0.18**
(13.73)

0.30**
(5.35)

0.24**
(2.55)

0.19**
(2.03)

0.16**
(1.95)

β
(5)
2

0.35**
(11.00)

0.68**
(22.30)

0.31*
(1.84)

0.27*
(1.88)

0.26**
(2.08)

0.17**
(2.02)

β
(22)
3

0.09**
(3.35)

0.15**
(7.21)

0.24
(1.12)

0.22
(1.16)

0.11
(0.78)

0.13
(1.13)

Q(1) -0.36**
(18.28)

-0.56**
(14.41)

-0.16**
(5.04)

-0.14**
(2.12)

-0.11**
(1.70)

-0.10*
(1.68)

AdjR2 0.56 0.65 0.64 0.56 0.40 0.30
AIC 3519.61 1224.52 991.53 1201.99 1638.03 1635.26
BIC 3556.85 1261.76 1028.75 1239.19 1720.20 1672.38

RMSE 1.61 1.18 1.14 1.18 1.26 1.25
Q-LIKE 0.14 0.11 0.11 0.14 0.20 0.24

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

Figure 3: Plots for the fitted HAR-J model at different horizons

day. The estimation sample still contained 3686 observations, the last estimation sample
with same number of observations but with the last observation in it belonging to the 4095th

day. The predicted values of the 1, 5, 10, 22, 44 and 66 days were obtained from the fitted
models on each of these 410 estimation samples. The forecasting accuracies of each model
were measured using MSPE, MAPE and Q-LIKE functions to evaluate the deviation between
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Table 5: In-sample HAR-CJ results for S&P 500 with RV

HAR-CJ h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
0.07

(1.30)
0.17**
(2.15)

0.27**
(2.44)

0.39**
(2.41)

0.57**
(2.49)

0.66**
(2.10)

C
(1)
1

0.33**
(3.58)

0.22**
(4.20)

0.18**
(3.02)

0.13**
(1.95)

0.10
(1.49)

0.08
(1.29)

C
(5)
2

0.58**
(2.19)

0.56**
(3.26)

0.43**
(2.49)

0.35**
(2.26)

0.31**
(2.15)

0.22*
(1.92)

C
(22)
3

0.05
(0.32)

0.06
(0.35)

0.14
(0.61)

0.19
(0.77)

0.13
(0.66)

0.21*
(1.83)

J
(1)
1

-0.56*
(1.67)

-0.14
(0.45)

-0.20
(0.94)

-0.12
(0.77)

-0.09
(0.67)

-0.05
(0.61)

J
(5)
2

-1.11
(0.90)

-1.83
(1.57)

-0.59
(0.85)

-0.04
(0.06)

0.06
(0.10)

0.09
(0.16)

J
(22)
3

1.66
(1.07)

2.64
(1.19)

2.18
(0.96)

1.21
(0.62)

0.24
(0.20)

-0.67
(0.53)

AdjR2 0.54 0.66 0.63 0.55 0.39 0.30
AIC 3692.10 1288.01 1055.27 1283.86 1731.00 1667.71
BIC 3714.75 1277.65 1104.90 1333.47 1780.56 1717.22

RMSE 1.65 1.18 1.15 1.19 1.27 1.26
Q-LIKE 0.15 0.10 0.11 0.16 0.21 0.24

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

Figure 4: Plots for the fitted HAR-Q model at different horizons
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Table 6: In-sample HAR-QJ results for S&P 500 with RV

HAR-QJ h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
0.00

(0.17)
0.12*
(1.72)

0.19*
(1.95)

0.32**
(2.88)

0.54**
(3.88)

0.68**
(3.15)

β
(1)
1

0.60**
(21.83)

0.40**
(5.26)

0.30**
(5.17)

0.24**
(2.63)

0.19**
(2.16)

0.15**
(1.92)

β
(5)
2

0.35**
(10.80)

0.31**
(2.94)

0.31*
(1.87)

0.28*
(1.88)

0.26**
(2.09)

0.17**
(1.13)

β
(22)
3

0.10**
(3.62)

0.22*
(1.79)

0.25
(1.15)

0.22
(1.11)

0.11
(0.77)

0.13
(1.13)

Q(1) -0.33 **
(14.83)

-0.25
(0.89)

-0.13
(0.82)

0.05
(0.25)

0.06
(0.33)

0.06
(0.41)

J (1) -0.33**
(3.39)

-0.19**
(4.98)

-0.15**
(4.86)

-0.15*
(1.90)

-0.12
(1.55)

-0.10
(1.55)

AdjR2 0.56 0.66 0.64 0.56 0.40 0.30
AIC 3508.58 1214.08 989.88 1203.43 1684.29 1636.49
BIC 3552.03 1257.52 1033.31 1246.84 1727.66 1679.81

RMSE 1.61 1.18 1.14 1.18 1.26 1.25
Q-LIKE 0.13 1.1 0.12 0.15 0.21 0.23

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

Figure 5: Plots for the fitted HAR-CJ model at different horizons

the predicted values and the true values of realised volatilities.

Table 9 and Figure 9 report the values of forecasting performance measures of all the
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Table 7: In-sample CHAR results for S&P 500 with RV

CHAR h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
0.14**
(4.36)

0.21**
(8.85)

0.27**
(11.71)

0.40**
(16.61)

0.61**
(23.76)

0.73**
(28.69)

β
(1)
1

0.26**
(12.62)

0.20**
(13.91)

0.16**
(11.05)

0.12**
(8.03)

0.09**
(5.94)

0.07**
(4.49)

β
(5)
2

0.49**
(14.54)

0.42**
(17.15)

0.37**
(15.92)

0.32**
(13.43)

0.30**
(11.66)

0.21**
(8.18)

β
(22)
3

0.17**
(5.75)

0.24**
(11.58)

0.28**
(13.78)

0.27**
(12.68)

0.15**
(6.56)

0.16**
(7.32)

AdjR2 0.53 0.65 0.63 0.54 0.39 0.29
AIC 3757.68 1315.29 1099.14 1309.77 1746.68 1682.51
BIC 3788.71 1346.29 1130.16 1340.77 1777.63 1713.43

RMSE 1.67 1.2 1.16 1.2 1.27 1.26
Q-LIKE 0.15 0.12 0.14 0.17 0.22 0.24

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

Table 8: In-sample CHAR-Q results for S&P 500 with RV

CHAR-Q h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

β0
0.03

(0.90)
0.14**
(0.03)

0.22**
(2.40)

0.35**
(3.36)

0.57**
(3.63)

0.70**
(3.82)

β
(1)
1

0.55**
(20.24)

0.37 **
(4.89)

0.28**
(4.69)

0.22**
(2.23)

0.17*
(1.77)

0.14**
(1.23)

β
(5)
2

0.40**
(12.16)

0.36**
(3.28)

0.33*
(1.91)

0.29*
(1.86)

0.27**
(1.99)

0.18**
(1.72)

β
(22)
3

0.10
(3.60)

0.21
(1.53)

0.25
(1.16)

0.24
(1.21)

0.13
(0.82)

0.14
(1.16)

β
(1)
4

-0.35**
(15.72)

-0.20**
(4.43)

-0.16**
(4.06)

-0.13*
(1.72)

-0.10
(1.37)

-0.09
(1.40)

AdjR2 0.56 0.66 0.64 0.55 0.39 0.30
AIC 3510.40 1159.47 997.35 1244.92 1712.05 1653.44
BIC 3547.64 1196.68 1034.55 1282.12 1749.22 1690.57

RMSE 1.61 1.17 1.14 1.18 1.26 1.26
Q-LIKE 0.13 0.10 0.12 0.17 0.22 0.23

Note: Parenthesis in the above table indicates test statistic value. Asterisks (** and *)
indicate statistical significance at 1% and 5% respectively.

models for forecasting realised volatilities at 1, 5, 10, 22, 44 and 66 days. These results showed
that extensions of HAR-type models using BPV, jump and quarticity components tend to
have the good prediction accuracies. Moreover, it can be seen that the forecasting accuracy
decreases with increase in prediction horizon, which indicates that HAR-type models are
more accurate in predicting realised volatilities in the short and medium runs. For forecasting
horizon h = 1, 5, 10 and 66-days, as per the Q-LIKE function, CHAR-Q performed better
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Figure 6: Plots for the fitted HAR-QJ model at different horizons

Figure 7: Plots for the fitted CHAR model at different horizons

than all other HAR model types while only for h = 22 and 44 horizons HARQJ-model
performed well. When MSPE is considered for h = 1, 5, CHAR-Q performed well whereas
at h = 22 and 66 days, CHAR performed better and for h = 10, HAR-QJ model performed
better. At h = 44, HARQ model performed well for forecasting realised volatility. Overall,
while considering all these measures, CHARQ, HAR-QJ, CHAR and HAR-Q performed well
as compared to all other HAR and its extensions.
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Table 9: Forecasting evaluation for S&P market with RV

Accuracy measures h HAR HAR-J HAR-Q HAR-QJ HARCJ CHAR CHAR-Q

MSPE

1 5.17 5.10 4.99 4.89 4.42 4.4 4.29
5 3.92 3.84 3.15 2.89 5.64 5.62 2.21
10 4.96 4.82 3.88 3.79 5.60 6.31 5.47
22 9.44 9.36 8.12 7.26 6.88 6.85 7.27
44 18.96 18.82 15.4 16.24 17.04 16.83 18.63
66 27.09 27.07 24.06 24.62 25.23 17.23 20.63

MAPE

1 17.96 17.52 15.38 15.37 14.98 14.99 14.77
5 22.55 22.1 19.58 18.84 17.27 17.25 17.11
10 26.39 25.94 23.86 23.59 17.38 18.43 18.37
22 34.85 34.72 32.96 31.63 19.75 19.67 20.28
44 47.83 47.67 43.85 44.79 30.33 19.92 42.38
66 57.49 57.42 53.66 54.53 42.13 20.61 44.29

Q-LIKE

1 14.87 14.55 13.98 13.19 14.73 14.88 12.00
5 11.49 11.15 8.50 8.47 21.17 21.07 8.21
10 12.65 12.37 9.90 9.74 21.52 25.21 9.79
22 16.95 16.81 14.51 13.209 26.23 26.19 13.80
44 23.32 23.21 19.35 20.29 28.79 28.15 27.69
66 26.19 26.12 22.4 23.35 35.38 29.35 23.15

Figure 8: Plots for the fitted CHARQ model at different horizons

5. Concluding remarks

HAR models were studied along with their extensions for dynamic modeling of re-
alised variance behaviour and its advantages over intraday were brought out which is widely
used in high frequency data structure in order to capture the noise present in the intraday.
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Figure 9: Plots for the forecasted CHARQ model at different horizons

An attempt has been done on a real dataset relating to Standard and Poor’s 500 (S&P 500)
stock market high frequency data and its volatility was estimated by using HAR models and
its extensions and were compared on different horizons with their volatility were studied.
The In-sample estimation results revealed that CHAR-Q models performed well in the es-
timation period compared to all other models. The out-sample forecasting results revealed
that extensions of HAR-type models using BPV, jump and quarticity components tend to
have the good prediction accuracies, more so for short run periods. In short, by way of an
example, volatility on monetary policy announcement today will be more sensitive to the
market mood on the pre-announcement day than on other days.
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Abstract
In this article, three new association schemes and construction of partially balanced

incomplete block (PBIB) designs based on these association schemes in three and four as-
sociate classes using polyhedra have been proposed. Construction methods use polyhedra
such as icosahedron, octahedron and pentagonal prism. PBIB designs based on icosahedral
and octahedral association schemes are resolvable block designs whereas designs based on
pentagonal prism association scheme are 2-replicate PBIB designs. A simple analysis of
these designs is outlined including generalized forms of canonical efficiency factors (CEFs)
and average variances (V̄ ). A catalogue of PBIB designs for k (size of each block) ≤ 20 is
given along with computed efficiencies.

Key words: Icosahedral association scheme; Octahedral association scheme; Pentagonal
prism association scheme; Resolvable partially balanced incomplete block design.

1. Introduction

PBIB designs based on 2-associate classes have been extensively studied in the litera-
ture and for a comprehensive catalogue of these designs; one may refer to Clatworthy (1973);
Dey (1977); Sinha (1991); Ghosh and Divecha (1995); and Saurabh and Sinha (2022). A lot
of literature is available on PBIB designs based on 3- or higher class association schemes.
PBIB designs based on rectangular (3-class) association scheme (known as rectangular de-
signs) are an important class of block designs with factorial structure for experiments with
two factors [see e.g., Vartak (1955), Sharma and Das (1985), Suen (1989), Srivastava et al.
(2000), Parsad et al. (2007a, 2007b) and references cited therein]. The nested group divisible
designs, a class of PBIB(3) designs, useful for 3-factor experiments was introduced by Roy
(1953) were subsequently studied by Raghavarao (1960); Bhagwandas et al. (1992); Duan
and Kageyama (1993); Miao et al. (1996); and Mitra et al. (2002). More generalized asso-
ciation scheme called extended group divisible association scheme and designs based on this
scheme are known as extended group divisible (EGD) designs was introduced by Hinkelmann
(1964). Many useful applications of these designs and their catalogue are given in Parsad et
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al. (2007a, 2007b). Rao (1956) developed circular lattices which were essentially PBIB(3)
designs for v = 2n2 treatments, where n ≥ 2 and these were further generalized by Varghese
and Sharma (2004) to accommodate 2sn2 treatments; n, s ≥ 2. Also, Varghese et al. (2004)
gave some PBIB(3) designs and their applications to partial diallel crosses. Sharma et al.
(2010) introduced 3-associate-class tetrahedral and cubical association schemes and meth-
ods of constructions of PBIB(3) designs based on these schemes using polyhedra such as
tetrahedron and cube (hexahedron). On the similar lines, Vinayaka and Vinaykumar (2021)
extended the work on graph based 2- and 3-associate class schemes of Garg and Farooq
(2014) to 3- and 4-class graphical association schemes and constructions of related PBIB
designs.

Some work on investigations of 4-associate class PBIB designs was carried out by
several authors such as Nair (1951), Tharthare (1963, 1965), Garg et al. (2011), and others.
Further, investigations on 2-replicate PBIB designs are limited to only Varghese and Sharma
(2004); Sharma et al. (2010); and Kipkemoi et al. (2013, 2015).

For some parameters neither a BIB design nor a PBIB design with 2-associate classes
is available. The best alternative design for such situations is higher associate PBIB design,
if such design exists. Hence, in this investigation, we extend the work on 3- and 4-associate
class PBIB designs further by proposing three new association schemes called icosahedral
association scheme with 4-associate classes; octahedral association scheme with 3-associate
classes and pentagonal prism association scheme with 3-associate classes and methods of
constructing related PBIB designs based on these schemes. First two schemes produces 3-
and 4-class PBIB designs belongs to the resolvable block designs which are also used in
information theory i.e., constructing A2-codes and low density parity-check (LDPC) codes
[see e.g., Pei (2006); and Xu et al. (2015, 2020) ] and in sequential experimentation over space
and time [see e.g., Patterson and Silvery (1980); John and Williams (1995); and Morgan and
Reck (2007)]. The third scheme give rise to the two-replicate PBIB design which is beneficial
in the situation of limited resources and also for developing mating plans in the area of plant
breeding experiments like Narain (1993), Kaushik (1999), and others. We can also find
applications of PBIB design in cryptology; see for example, Adhikari et al. (2007).

However, several authors such as Harshbarger (1949); Bose and Nair (1962); David
(1967); Patterson and Williams (1976); Williams et al. (1976, 1977); Jarrett and Hall (1978);
Varghese and Sharma (2004); Sharma et al. (2010); etc., fostered detailed information on
problems of construction and analysis of resolvable incomplete block designs.

Flowchart of the article as follows: In Section 2, three new association schemes viz.,
icosahedral association scheme, octahedral association scheme and pentagonal prism asso-
ciation scheme are defined along with numerical illustrations. Section 3 deals with the
constructions of PBIB designs using icosahedron, octahedron, and pentagonal prism along
with examples. An outline of analysis of these designs is established in Section 4. Section 5
reveals a brief discussion. A catalogue of efficient PBIB designs has been obtained for k ≤ 20
and is presented in the Appendix.

2. Definition of association schemes and numerical illustrations

It is well known that any polyhedron is a three-dimensional shape with V number of
vertices, E number of edges and F number of faces. Polyhedra satisfy the Euler characteristic
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χ which relates the V,F and E as χ = V + F − E, for details, one may refer to Richeson
(2019). Further, convex polyhedra where every face is the same kind of regular polygon
with n number of edges may be found among three families viz., formerly triangles: these
polyhedra are called deltahedra. There are only eight strictly-convex deltahedra out of
which three are regular polyhedra (such as tetrahedron, octahedron and icosahedron are
indeed platonic solids), and five are Johnson solids. Secondly, squares: the hexahedron is
the only convex example and thirdly, pentagons: the regular dodecahedron is the only convex
example. These are useful for constructions of PBIB designs; a reference can be made to
Sharma et al. (2010).

Now we define three association schemes using icosahedron, octahedron and pentag-
onal prism in the sequel.

2.1. Icosahedral association scheme

Let the number of symbols (treatments) be v = 12m (m ≥ 2). Arrange these symbols
on the twelve vertices of an icosahedron such that each vertex contains exactly m distinct
symbols and intersected by five distinct edges. We define the four associates of a particular
treatment ϕ as follows:

(i) Treatments except ϕ appearing in the same vertex with ϕ are the first associates;

(ii) Treatments appearing in different vertices that directly meet a vertex of ϕ through
single edge are the second associates;

(iii) Treatments appearing in the end vertex that is exactly opposite to the vertex of ϕ are
the third associates;

(iv) The remaining treatments are the fourth associates.

The parameters of first kind and second kind (association matrices) of the association scheme
are delineated in continuation. i.e., v(= 12m), n1 = m− 1, n2 = 5m, n3 = m, n4 = 5m, and

P1 =


m− 2 0 0 0

0 5m 0 0
0 0 m 0
0 0 0 5m

 , P2 =


0 m− 1 0 0

m− 1 2m 0 2m
0 0 0 m
0 2m m 2m



P3 =


0 0 m− 1 0
0 0 0 5m

m− 1 0 0 0
0 5m 0 0

 , P4 =


0 0 0 m− 1
0 2m m 2m
0 m 0 0

m− 1 2m 0 2m

 .

Here, ni is the number of ith (i =1, 2, 3, 4) associates of a given treatment. Given any two
treatments that are mutually ith associates, the number of treatments common to the jth
associates of the first and kth associates of the second is pi

jk (i, j, k =1, 2, 3, 4) reflected in
Pi matrices.

Moreover, this association scheme may also be defined alternatively as follows: Arrange
v = 12m (m ≥ 2) treatments in 12 columns and m rows then the treatment δ, say, is the
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first associate of specific treatment ϕ, say, if δ belongs to the same column of ϕ; the second
associate, if δ occur either in second or third or fourth or fifth or sixth column; the third
associate, if δ occur in seventh column; and the fourth associate, otherwise.

Illustration 1: Let v = 24(= 12 × 2) treatments arranged on the twelve vertices of an
icosahedron such that each vertex comprises exactly two distinct treatments are shown in
Figure 1 or arrange these v = 24(= 12 × 2) treatments in 12 columns and 2 rows as given
below.

1 3 5 7 9 11 13 15 17 19 21 23
2 4 6 8 10 12 14 16 18 20 22 24

Figure 1: Arrangement of 24 treatments on the vertices of an icosahedron

The parameters of this association scheme are v = 24, n1 = 1, n2 = 10, n3 = 2, n4 = 10,
and association matrices as:

P1 =


0 0 0 0
0 10 0 0
0 0 2 0
0 0 0 10

 , P2 =


0 1 0 0
1 4 0 4
0 0 0 2
0 4 2 4

 , P3 =


0 0 1 0
0 0 0 10
1 0 0 0
0 10 0 0

 , P4 =


0 0 0 1
0 4 2 4
0 2 0 0
1 4 0 4

 .

2.2. Octahedral association scheme

Let the number of treatments be v = 6m (m ≥ 2). Arrange these v = 6m treatments
on the six vertices of an octahedron such that each vertex filled with m number of distinct
treatments. Now we define the three associates of a specific treatment θ as follows:

(i) Treatments other than θ present in the same vertex of θ are the first associates;
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(ii) Treatments present in different vertices that intersect the vertex of θ through their
respective edges are the second associates;

(iii) The remaining treatments are the third associates.

The parameters of first kind of this association scheme are v(= 6m), n1 = m− 1, n2 = 4m,
n3 = m. Further, association matrices (parameters of second kind) are as follows:

P1 =

m− 2 0 0
0 4m 0
0 0 m

 , P2 =

 0 m− 1 0
m− 1 2m m

0 m 0

 , P3 =

 0 0 m− 1
0 4m 0

m− 1 0 0

 .

The alternative definition for the above association scheme is as follows: Arrange v = 6m
(m ≥ 2) treatments in six columns and m rows then the treatment δ, say, is the first associate
of specific treatment θ, say, if δ belongs to the same column of θ; the second associate, if δ
appears in any column except fourth column; and the third associate, otherwise.

Figure 2: Arrangement of 12 treatments on the vertices of an octahedron
Illustration 2: Let v = 12(= 6×2) treatments arranged on the six vertices of an octahedron
such that each vertex contains 2 distinct treatments are shown in Figure 2 or arrange these
v = 12(= 6 × 2) treatments in six columns and two rows as given below.

1 3 5 7 9 11
2 4 6 8 10 12

The parameters of this association scheme are v = 12, n1 = 1, n2 = 8, n3 = 2, and

P1 =

0 0 0
0 8 0
0 0 2

 , P2 =

0 1 0
1 4 2
0 2 0

 , P3 =

0 0 1
0 8 0
1 0 0

 .
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2.3. Pentagonal prism association scheme

A pentagonal prism is also polyhedron and a type of three-dimensional solid objects
which comprises the two identical five sided pentagonal bases (ends) and remaining five faces
are rectangles or parallelograms. Interestingly, two identical five sided pentagons contact
each other with five edges respectively. Let v = 10m (m ≥ 1) be the number of treatments.
Arrange these treatments on the ten vertices of a pentagonal prism such that each vertex
contains exactly m distinct treatments. Now we define the three associates of a specific
treatment ψ as follows:

(i) Treatments other than ψ present in the two vertices of the same edge Ey ∀ y = 1, 2,
3, 4, 5 are the first associates;

(ii) Treatments present in the different vertices of any two rectangles that contain common
edge Ey except treatments lie on both terminals of Ey are the second associates;

(iii) The remaining treatments are the third associates.

Figure 3: Arrangement of 20 treatments on the vertices of pentagonal prism
Here, the edges within identical five sided pentagons (both upper and lower) are of not
interested, hence these are not named in Figure 3. The parameters of the association scheme
are: v(= 10m), n1 = 2m− 1, n2 = 4m, n3 = 4m, and

P1 =

2(m− 1) 0 0
0 4m 0
0 0 4m

 , P2 =

 0 2m− 1 0
2m− 1 0 2m

0 2m 2m

 , P3 =

 0 0 2m− 1
0 2m 2m

2m− 1 2m 0


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Alternatively, the above association scheme may be defined as follows: arrange v = 10m
(m ≥ 1) treatments in 10 columns and m rows then the treatment δ, say, is the first
associate of particular treatment ψ, say, if δ belongs to either same column of ψ or sixth
column; the second associate, if δ appears either in second or fifth or seventh column; and
the third associate, otherwise.

Illustration 3: Let v = 20(= 10×2) treatments arranged on the ten vertices of a pentagonal
prism such that each vertex contains m = 2 distinct treatments as shown in Figure 3 or
arrange these treatments in 10 columns and 2 rows as given below.

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20

The parameters of this association scheme are: v = 20, n1 = 3, n2 = 8, n3 = 8, and

P1 =

2 0 0
0 8 0
0 0 8

 , P2 =

0 3 0
3 0 4
0 4 4

 , P3 =

0 0 3
0 4 4
3 4 0

 .

3. Construction methods of PBIB designs

In this section, we give two construction methods of resolvable PBIB designs and
a construction method of 2-replicate PBIB design based on aforesaid association schemes
i.e., icosahedral association scheme, octahedral association scheme, and pentagonal prism
association scheme, respectively.

3.1. Method of constructing icosahedral PBIB(4) design

An arrangement v = 12m (m ≥ 2) treatments on the vertices of an icosahedron such
that each vertex contains m number of distinct treatments is given in Figure 1. Evidently,
each vertex is intersected by five edges. Let v = 12m treatments are defined on the icosahe-
dral association scheme. In order to form a block, combine the treatments of a chosen vertex
and five distinct vertices which intersect this chosen vertex. Applying this process to all
twelve vertices of an icosahedron yields a PBIB(4) design based on icosahedral association
scheme with parameters v = 12m, b = 12, r = 6, k = 6m, λ1 = 6, λ2 = 4, λ3 = 0, λ4 = 2.

Example 1: Let v = 24(= 12 × 2) treatments are defined on the icosahedral association
scheme. One can get an idea about arrangement of treatments on vertices of icosahedron
with the help of Figure 1. Now, by following the procedure of Method 3.1, one gets a PBIB(4)
design based on the icosahedral association scheme with parameters are as v = 24, b = 12,
r = 6, k = 12, λ1 = 6, λ2 = 4, λ3 = 0, λ4 = 2. This design is a resolvable class of incomplete
block designs wherein twelve blocks can be grouped into six sets of two blocks each, that is,
{(B1, B2); (B3, B4); (B5, B6); (B7, B8); (B9, B10); (B11, B12)} such that every treatment
appears in each set exactly once. The block structure of the design is given below.

Remark 1: For m = 1, this scheme also reduced to 3-associate class rectangular association
scheme. The PBIB(3) design so obtained is symmetric rectangular design with parameters
v = 12 = b, r = 6 = k, λ1 = 4, λ2 = 0, λ3 = 2. This design seems to be new and not
reported in the Varghese et al. (2004) and Parsad et al. (2007b).
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Replication No. Block No. Block Contents
I B1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

B2 (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)
II B3 (1, 2, 3, 4, 5, 6, 9, 10, 19, 20, 23, 24)

B4 (7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22)
III B5 (1, 2, 3, 4, 5, 6, 7, 8, 21, 22, 23, 24)

B6 (9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
IV B7 (1, 2, 5, 6, 7, 8, 11, 12, 15, 16, 21, 22)

B8 (3, 4, 9, 10, 13, 14, 17, 18, 19, 20, 23, 24)
V B9 (1, 2, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18)

B10 (3, 4, 5, 6, 13, 14, 19, 20, 21, 22, 23, 24)
VI B11 (1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20)

B12 (5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24)

3.2. Method of constructing octahedral PBIB(3) design

An octahedron has eight triangular faces and twelve edges, each face enclosed by the
three vertices. Let v = 6m (m ≥ 2). Arrangement of these v treatments on the six vertices of
an octahedron such that each vertex contains m number of distinct treatments as indicated
in the association scheme. Now form the contents of a block by taking treatments that lie
on three vertices of specific triangular face. Likewise, obtain the other seven blocks using
remaining triangular faces of octahedron. The eight blocks thus obtained, each corresponding
to one triangular face. This process results in a PBIB(3) design based on the octahedral
association scheme with parameters v = 6m, b = 8, r = 4, k = 3m, λ1 = 4, λ2 = 2, λ3 = 0.

Example 2: Let v = 12(= 6 × 2) treatments are defined on the octahedral association
scheme. Figure 2 gives an idea about arrangement of treatments on vertices of octahedron.
Now applying the procedure of Method 3.2, we can get a PBIB(3) design based on the
octahedral association scheme with parameters as v = 12, b = 8, r = 4, k = 6, λ1 = 4,
λ2 = 2, λ3 = 0. This design is resolvable as its eight blocks can be grouped into four sets of
two blocks each, that is, {(B1, B2); (B3, B4); (B5, B6); (B7, B8)} such that every treatment
appears in each set exactly once. The block layout of the design is displayed below.

Replication No. Block No. Block Contents
I B1 (1, 2, 3, 4, 5, 6)

B2 (7, 8, 9, 10, 11, 12)
II B3 (1, 2, 3, 4, 11, 12)

B4 (5, 6, 7, 8, 9, 10)
III B5 (1, 2, 5, 6, 9, 10)

B6 (3, 4, 7, 8, 11, 12)
IV B7 (1, 2, 9, 10, 11, 12)

B8 (3, 4, 5, 6, 7, 8)

Remark 2: For m = 1, this scheme also reduced to two-class group divisible (GD) associ-
ation scheme. The design so obtained is a semi-regular group divisible (SRGD) design with
parameters as v = 6, b = 8, r = 4, k = 3, λ1 = 0, λ2 = 2, n1 = 1, n2 = 4 which is SR19 in
the Clatworthy (1973).
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3.3. Method of constructing pentagonal prism PBIB(3) design

Arrange v = 10m (m ≥ 1) treatments on the vertices of pentagonal prism such that
each vertex contains m number of distinct treatments. Let v = 10m treatments are defined
on the pentagonal prism association scheme. Evidently, one can form five distinct rectangular
shapes through diagonals using upper and lower pentagons given in Figure 3, so these are
named as diagonal rectangles. Form five blocks of the design each one corresponding to a
diagonal rectangular shape by combining the treatments situated on four vertices of that
diagonal rectangle as the block contents. This process yields a PBIB(3) design based on
pentagonal prism association scheme with parameters as v = 10m, b = 5, r = 2, k = 4m,
λ1 = 2, λ2 = 0, λ3 = 1.

Example 3: Let v = 20(= 10 × 2) treatments are defined on the pentagonal prism associ-
ation scheme. For the arrangement of the treatments given in Figure 3, Now, by following
the procedure of Method 3.3, one can get a PBIB(3) design based on pentagonal prism
association scheme with block contents are given below:

Block No. Block Contents
B1 (1, 2, 5, 6, 11, 12, 15, 16)
B2 (1, 2, 7, 8, 11, 12, 17, 18)
B3 (3, 4, 7, 8, 13, 14, 17, 18)
B4 (3, 4, 9, 10, 13, 14, 19, 20)
B5 (5, 6, 9, 10, 15, 16, 19, 20)

The design so obtained is a pentagonal prism design with parameters as v = 20, b = 5, r = 2,
k = 8, λ1 = 2, λ2 = 0, λ3 = 1.

4. Analysis

The above designs viz., icosahedral, octahedral, and pentagonal prism designs can be
analyzed as general PBIB designs. For completeness, simple steps for method of analysis are
as follows: we know that the liner additive fixed effect model i.e.,

y = µ1 + Z′
1α + Z′

2β + ε

where, y = vector of n observations, µ = general mean, α = (α1, α2, . . . , αv) = vector of
treatment effects, β = (β1, β2, . . . , βb) = vector of block effects, 1 = vector of unities with
order (n × 1), Z′

1 = treatments vs observations incidence matrix with order (v × n), Z′
2 =

blocks vs observations incidence matrix with order (b × n) and ε ∼ N (0, σ2In) = vector of
errors with order (n× 1).

The general expressions of the information (C) matrices, Eigen values (ηl, ∀ l = 1,
2, 3, 4) and corresponding multiplicities (ωl, ∀ l = 1, 2, 3, 4) of these information matrices
for aforementioned designs (i.e., icosahedral, octahedral, and pentagonal prism designs) are
displayed in the Table 1. Here, Cid, Cod, and Cpd are the information matrices of icosahedral,
octahedral, and pentagonal prism designs, respectively and also their corresponding incidence
matrices denoted as N1, N2, and N3. Further, concurrence matrices and associates using
these incidence matrices are also mentioned in the Table 2.
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Table 1: Eigen values and corresponding multiplicities of C-matrices of designs

Particulars C-matrix Eigen values Multiplicities

Icosahedral design Cid = 6I12m − (6m)−1N1N′
1

η1
η2
η3
η4

6
5.745
4.255

0

ω1
ω2
ω3
ω4

12m− 7
3
3
1

Octahedral design Cod = 4I6m − (3m)−1N2N′
2

η1
η2
η3

4
2.667

0

ω1
ω2
ω3

2(3m− 2)
3
1

Pentagonal prism design Cpd = 2I10m − (4m)−1N3N′
3

η1
η2
η3
η4

2
1.809
0.691

0

ω1
ω2
ω3
ω4

5(2m− 1)
2
2
1

It is well known that the canonical efficiency factors (CEFs) is 1/r times of harmonic
mean of non-zero and positive Eigen values of the information matrix for a given block
design. i.e.,

CEFs = 1
r

 (ω1 + ω2 + . . .+ ωl)(
ω1
η1

+ ω2
η2

+ . . .+ ωl

ηl

)


Table 2: Concurrence matrices and associates using incidence matrices of designs

Particulars N1N′
1 = ((nii′)) N2N′

2 = ((nii′)) N3N′
3 = ((nii′))

if i = i′(= 1, 2, . . . , v) = r(= 6) = r(= 4) = r(= 2)
if i and i′ are the 1st associates = λ1(= 6) = λ1(= 4) = λ1(= 2)
if i and i′ are the 2nd associates = λ2(= 4) = λ2(= 2) = λ2(= 0)
if i and i′ are the 3rd associates = λ3(= 0) = λ3(= 0) = λ3(= 1)
if i and i′ are the 4th associates = λ4(= 2) − −

Suppose for icosahedral design, there are four Eigen values (ηl) and their corresponding
multiplicities (ωl) as in Table 1, then its canonical efficiency factors are derived as follows:

CEFs = 1
6

 (12m− 7 + 3 + 3)(
12m−7

6 + 3
5.745 + 3

4.255

)
 =

[
(12m− 1)

(12m+ 0.364)

]
= 11(12m− 1)

4(33m+ 1)

Similarly, expressions of canonical efficiency factors (CEFs) and average variances (V̄ ) of
these designs are generalized in Table 3.

Table 3: Canonical efficiency factors (CEFs) and average variances (V̄ )

Particulars CEFs V̄
Icosahedral design 11(12m− 1)/4(33m+ 1) 4(33m+ 1)/33(12m− 1)
Octahedral design 2(6m− 1)/(12m+ 1) (12m+ 1)/4(6m− 1)

Pentagonal prism design (10m− 1)/(10m+ 3) (10m+ 3)/(10m− 1)
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For more details and a comprehensive bibliography on canonical efficiency factors (CEFs),
one may refer to Dey (2008). At last, a list of these designs using aforementioned three
methods of construction is given along with computed efficiencies as Table 4, Table 5, and
Table 6 respectively in the Appendix.

5. Discussion

The designs obtained from the icosahedral and octahedral association schemes fall
into the resolvable class of incomplete block designs with minimal replications (i.e., r ≤ 6).
The benefit of resolvable design is that its replications can be applied over different locations
or over distinct time periods. Further, pentagonal prism association scheme provide 2-
replicate PBIB designs which are beneficial when the experimenters facing the situation of
constraint of resources. Additionally, efficiencies of these designs are quite high. Hence, these
designs can be used to test a large number of cultivars in agricultural trials. The association
schemes of these designs also find application in obtaining efficient partial diallel cross plans
in plant/animal breeding experiments.
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Appendix

Table 4: PBIB(4) designs based on Icosahedral association scheme with k ≤ 20
using Method 3.1

SI. No. m v b r k λ1 λ2 λ3 λ4 E1 E2 E3 E4 E
1 2 24 12 6 12 6 4 2 0 1 0.9649 0.8979 0.9282 0.9440
2 3 36 12 6 18 6 4 2 0 1 0.9763 0.9295 0.9510 0.9625

Table 5: PBIB(3) designs based on Octahedral association scheme with k ≤ 20
using Method 3.2

SI. No. m v b r k λ1 λ2 λ3 E1 E2 E3 E
1 2 12 8 4 6 4 2 0 1 0.8889 0.8000 0.8800
2 3 18 8 4 9 4 2 0 1 0.9230 0.8571 0.9189
3 4 24 8 4 12 4 2 0 1 0.9411 0.8889 0.9388
4 5 30 8 4 15 4 2 0 1 0.9524 0.9090 0.9508
5 6 36 8 4 18 4 2 0 1 0.9600 0.9231 0.9589

Table 6: PBIB(3) designs based on Pentagonal prism association scheme with
k ≤ 20 using Method 3.3

SI. No. m v b r k λ1 λ2 λ3 E1 E2 E3 E
1 1 10 5 2 4 2 0 1 1 0.5882 0.7692 0.6923
2 2 20 5 2 8 2 0 1 1 0.7407 0.8695 0.8261
3 3 30 5 2 12 2 0 1 1 0.8108 0.9090 0.8788
4 4 40 5 2 16 2 0 1 1 0.8511 0.9302 0.9070
5 5 50 5 2 20 2 0 1 1 0.8772 0.9433 0.9245
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Abstract
This paper introduces a new lifetime distribution called the Bimodal Extension of Suja

(BES) distribution using the Quadratic Rank Transmutation Map. The proposed distribu-
tion has Suja distribution as a special case. Some statistical and reliability properties of
the new distribution were derived and the method of maximum likelihood was employed for
estimating the model parameters. The usefulness and flexibility of the BES distribution were
illustrated with two real lifetime data sets. Results based on the log-likelihood and goodness
of fit statistics values showed that the BES provides a better fir to the data than the other
competing (lifetime) distributions considered in this study. Also, the consistency of the pa-
rameters of the new distribution was demonstrated through a simulation study. The BES
distribution is therefore recommended foe effective modelling of the unimodal or bimodal
continuous lifetime data with a non decreasing or bathtub shaped hazard rate function . . .

Key words: Bimodal data; Hazard rate function; Maximum likelihood method; Quadratic
rank transformation map; Suja distribution; BES distribution.
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1. Introduction

One of the activities of statisticians is to make informed decisions about a population
on the basis of a sample drawn from that population. Obviously, several phenomena upon
which decisions are taken often occur by chance and the best way to account for uncertainties
surrounding them is to adopt probabilistic models. Probability models serve as mathematical
structures for describing physical phenomena. A necessary step in the use of probabilistic
models for modelling real-life problems is to ensure that the observed sample data follow
certain probability distribution(s). Standard probability distributions commonly used for
modelling several real-life problems include exponential, Weibull, gamma, two-parameter
Odoma (Enogwe et al., 2020) and so on. Unfortunately, so many datasets do not come
from the existing probability distributions and this has engendered a demand for alternative
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distributions, especially for the extension of the existing distributions which can be moore
appropriate for fitting real-life data.

Recently, Shanker (2017) introduced and studied a new distribution, called the Suja distri-
bution with probability density function (PDF) and cumulative distribution function (CDF)
given, respectively, by

g(x; η) = η5

η4 + 24(1 + x4)e−ηx; x > 0, η > 0 (1)

and

G(x; η) = 1 −

1 + ηx(η3x3 + 4n2x2 + 12ηx + 24)
η4 + 24

e−ηx; x > 0, η > 0 (2)

An application of the Suja distribution to lifetime analysis of engineering data was presented
by Shanker (2017) which showed that the Suja distribution outperforms the Akash (Shanker,
2015a), Shanker (Shanker, 2015b), Amarendra (Shanker, 2016a), Aradhana (Shanker, 2016b),
Devya (Shanker, 2016c), Sujatha (Shanker, 2016d), Lindley (Ghitany, et al., 2008) and ex-
ponential distributions in modelling lifetime data.

In spite of the utility of the Suja distribution, it cannot be used for statistical modelling
of datasets with varieties of tails due its dependency on only one parameter. This limitation
of Suja distribution can be overcome by obtaining some of its generalization so as to provide
greater flexibility in modelling observed data. The work of Al-Omari and Alsmairan (2019)
introduced a length-biased Suja distributionn. Also, a power lenght-biased Suja distribtion
was developed by Al-Omari et al. (2019). Further, Alsmairan and Al-Omari (2020) used the
weighted method to extend the Suja distribution, which was applied to ball bearing data to
show that the weighted Suja distribution is better than the Suja distribution. It is evident
that these extensions of Suja distribution cannot be used to model data with bimodal shape.
To obtain an extension of Suja distribution that can model bimodal data, the quadratic rank
transformatio map (QRTM) proposed by Shaw and Buckey (2007) is utilized.

According to Shaw and Buckley (2007), the QRTM provides distributions that are more
flexible than baseline distributions in modelling real-life datasets with complex structure.
The cumulative distribution function (CDF) and probability density function (PDF) of the
quadratic transmuted family of distributions may be written as

F (x) = (1 + λ)G(x) − λG2(x) (3)

and
f(x) = g(x)((1 + λ) − 2λG(x)) (4)

respectively, where |λ| ≤ 1, G(x) is the baseline CDF of X and g(x) = dG(x)/dx, the base-
line PDF of X. Observe from (3) and (4) that if λ = 0, the quadratic transmuted family of
distributions reduces to the baseline distribution.

Apart from the work of Shaw and Buckley (2007), other researchers have explored some mem-
bers of the quadratic transmuted family of distributions. The members of the family of distri-
butions include transmuted extreme value distribution (Aryal and Tsokos, 2009), transmuted
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Weibull distribution (Aryal and Tsokos, 2011) transmuted log-logistic distribution (Aryal,
2013), transmuted Lindley distribution (Merovci, 2013a) and transmuted Rayleigh distri-
bution by Merovci (2013b), transmuted Lomax distribution (Ashour and Eltehiwy, 2013),
transmuted Pareto distribution (Merovci and Puka, 2014), transmuted two-parameter Lind-
ley distribution due to Al-khazaleh et al. (2016), transmuted Dagum distribution (Shahzad
and Asghar, 2016), transmuted Janardan distribution by Al-Omari et al. (2016), transmuted
Burr XII distribution (Maurya et al., 2017), transmuted Mukherjee-Islam (Rather and Sub-
ramanian, 2018), transmuted ArcSine distribution (Bleed and Abdelali, 2018), transmuted
Ishita distribution (Gharaibeh and Al-Omari, 2019), transmuted Pranav distribution (Odom
et al., 2019), transmuted Garima distribution (Mohiuddin et al., 2020), transmuted Arad-
hana (Gharaibeh, 2020), among others.

The aim of this article is to propose a new distribution, called a BES distribution, which
is more flexible than the Suja distribution and some other competing lifetime distributions
for modelling complex lifetime datasets. Specifically, this study reveals that the QRTM
can be used to generalize a one-parameter continuous distribution to obtain a bimodal two-
parameter distribution that has a monotone or non-monotone hazard rate function, especially
the bathtub shape. As expected in the proposed distribution, the QRTM has been adopted
in previous researches to generate new distributions that are more flexible than the baseline
distributions. In Section 2, we define the expressions for the PDF and CDF of the BES
distribution. The statistical and reliability properties of the BES distribution are discussed in
Section 3. The quantile function and entropies of the BES distribution are given in Section 4.
Section 5 provides the distribution of order statistics. In Section 6, the parameters of the BES
distribution are estimated through the method of maximum likelihood estimation. Section
7 discusses the asymptotic confidence intervals of the parameters of the BES distribution.
A simulation study is conducted in Section 8. In Section 9, two real datasets, methods of
model selection, applications of the BES distribution to the data sets and the results are
presented. In Section 10, we give the concluding remarks.

2. Definition of BES distribution

Inserting (2) into (3), we get the CDF of the new distribution. Also, inserting (1) and
(2) into (4), we obtain the PDF of the new distribution. Consequently, a random variable
X is said to have the BES distribution if its CDF and PDF are defined as

FBES(x; η.λ) = (1 + λ)
1 −

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

eηx


− λ

1 −

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

eηx

2

(5)

and

fBES(x; η, λ) = η5

η4 + 24(1+x4)e−ηx

1−λ+2λ

1+ ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

eηx

 (6)

respectively, for x > 0, η > 0 and | λ |≤ 1. The BES distribution reduces to the Suja
distribution when λ = 0 . Figure 1 shows the plots of the PDF of the BES variable based
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on several sets of values of the parameters of the distribution. Figure 1 indicates that the
PDF of the BES distribution has unimodal shape if λ = 0.1, η = 0.6, λ = 0.3, η = 0.7. The
biomodal shape of the BES distribution is observed when λ = −0.9, η = 2.0, λ = 0.4, η = 1.6,
among others. Again, the shape of the BES is nondecreasing if λ = 0.9, η = 0.1.

Figure 1: Various shapes of the PDF of BES

The graphs depicted as Figure 2 show that the Cumulative Distribution of BES is nonde-
creasing.

Figure 2: Various shapes of CDF of BES
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3. Statistical and reliability properties of BES distribution

3.1. Statistical properties

The moment generating function of X ∼ BES(η, λ) is given by

MX(t) =
� ∞

0
etxfBES(x; η, λ)dx

= η5

η4 + 24

� ∞

0
etx(1 + x4)e−ηx

1 − λ + 2λ

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

e−ηx

dx

= η5

η4 + 24

� ∞

0

2λ(1 + x4)
1 + 24

η4 + 24

4∑
r=1

(ηx)r

r!

e−(2η−t)x + (1 − λ)(1 + x4)e−(η−t)x

dx

= 2λη5

η4 + 24

� ∞

0
e−(2η−t)x + 24

η4 + 24

4∑
r=1

ηr

r!

 � ∞

0
xre−(2η−t)x +

� ∞

0
xr+4e−(2η−t)x


+
� ∞

0
x4e−(2η−t)x

dx + (1 − λ)η5

η4 + 24

� ∞

0
e−(2η−t)x +

� ∞

0
x4e−(2η−t)x

dx

= 2λη5

η4 + 24

 1
(2η − t) + 24

η4 + 24

4∑
r=1

ηr

r!

 Γ(r + 1)
(2η − t)r+1 + Γ(r + 5)

(2η − t)r+5

+ 24
(2η − t)5


+ (1 − λ)η5

n4 + 24

 1
(η − t) + 24

(η − t)5

 (7)

The rth non-central moment of X ∼ BES(η, λ) is given by

µ′
r = E(Xr) =

� ∞

0
xrfBES(x; η, λ)dx

= η5

(η4 + 24)2

� ∞

0
xr(1 + x4)e−ηx

1 − λ + 2λ

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

e−ηx

dx

= η5

(η4 + 24)2

� ∞

0


(1 − λ)(η4 + 24)xre−ηx + (1 − λ)(η4 + 24)xr+4e−ηx

+ 2λ(η4 + 24)xre−2ηx + 2λ(η4 + 24)xr+4e−2ηx + 8λη3xr+3e−2ηx

+ 24λη2xr+2e−2ηx + 48ληxr+1e−2ηx + 2λη4xr+8e−2ηx + 8λη3xr+7e−2ηx

+ 24λη2xr+6e−2ηx + 48ληxr+5e−2ηx

 dx

= η5

(η4 + 24)2


(1 − λ)(η4 + 24)

(
Γ(r+1)
ηr+1

)
+ (1 − λ)(η4 + 24)

(
Γ(r+5)
ηr+5

)
+ 2λ(η4 + 24)

(
Γ(r+1)
(2η)r+1

)
+ 2λ(η4 + 24)

(
Γ(r+5)
(2η)r+5

)
+ 8λη3

(
Γ(r+4)
(2η)r+4

)
+ 24λη2

(
Γ(r+3)
(2η)r+3

)
+ 48λη

(
Γ(r+2)
(2η)r+2

)
2λη4 +

(
Γ(r+9)
(2η)r+9

)
+ 8λη3

(
Γ(r+8)
(2η)r+8

)
+ 24λη2

(
Γ(r+7)
(2η)r+7

)
+ 48λη

(
Γ(r+6)
(2η)r+6

)


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∴ µ′
r = η5

(η4 + 24)2


(1 − λ)(η4 + 24)

(
Γ(r+1)
ηr+1 + Γ(r+5)

ηr+5

)
+ λ(η4+24)Γ(r+1)

2rηr+1

+ λ(η4+24)Γ(r+5)
2r+4ηr+5 + λΓ(r+4)

2r+1ηr+1 + 3λΓ(r+3)
2rηr+1 + 12λΓ(r+2)

2rηr+1

+ λΓ(r+9)
2r+8ηr+4 + λΓ(r+8)

2r+5ηr+5 + 3λΓ(r+7)
2r+4ηr+5 + λΓ(r+6)

2r+2ηr+5

 (8)

Substituting r = 1, 2, 3, 4 in (8), yields the first four crude moments of the BES distribution
as

µ′
1 = (θ4 + 24)[(θ4 + 120) − λ(θ4 + 103)] + λ(4725θ + 3600) + 108θ2(θ4 + 24)2

4θ(θ4 + 24)2 (9)

µ′
2 = (θ4 + 24)(8θ4 − 6λθ4 − 2835λ + 2880) − 408θ4λ + 263655λ

4θ2(θ4 + 24)2 (10)

µ′
3 = 2(θ4 + 24)(54θ4 + 48λθ4 − 40005λ + 40320) − 2106θ4 + 2835θλ + 423360λ

1603(θ4 + 24) (11)

µ′
4 = 16(θ4 + 24)(48θ4 − 45λθ4 − 80325λ + 80640) + 12240θ4λ + 3742200Θλ + 4399920λ

32Θ4(θ4 + 24)2

(12)
The rth central moment of X ∼ BES(η, λ) can be obtained from the relation

µr =
r∑

j=0
(−1)j

(
r

j

)
µ′

j(µ)r−1 (13)

where µ′
j is deduced from (8) by replacing r with j and µ is defined in (9). The following

central moments are obtained by letting r = 2, 3, 4 in (13):

µ2 =
2∑

j=0
(−1)j

(
2
j

)
µ′

j(µ)2−1 (14)

µ3 =
3∑

j=0
(−1)j

(
3
j

)
µ′

j(µ)3−1 (15)

µ4 =
4∑

j=0
(−1)j

(
4
j

)
µj(µ)4−1 (16)

The coefficient of variation (γ0), skewness (γ1) and kurtosis (γ2) of the BES distribution
could be obtained by evaluating

γ0 = (µ2)
1
2

µ
(17)

γ1 = µ3

(µ2)
3
2

(18)

γ2 = µ4

(µ2)2 (19)
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3.2. Reliability properties

Suppose X ∼ BES(x; η, λ), then the reliability function may be written as

RBES(x; η, λ) = 1 − FBES(x; η, λ)

= (λ − 1)
η4 + 24(ηx(η3x3 + 4η2x2 + 12ηx + 24) + η4 + 24)e−ηx (20)

+ λ

(η4 + 24)2 (ηx(η3x3 + 4η2x2 + 12ηx + 24) + η4 + 24)2e−2ηx

Taking the ratio of (6) to (20), we obtain the hazard rate function for X ∼ BES(η, λ) as

hBES(x; η, λ) = fBES(x; η, λ)
RBES(x; η, λ)

hBES(x; η, λ) =

η5


(1 − λ)(η4 + 24)e−ηx + (1 − λ)(η4 + 24)x4e−ηx

+ 2λ(η4 + 24)e−2ηx + 2λ(η4 + 24)x4e−2ηx + 8λη3x3e−2ηx

+ 24λη2x2e−2ηx + 48ληxe−2ηx + 2λη4x8e−2ηx + 8λη3x7e−2ηx

+ 24λη2x6e−2ηx + 48ληx5e−2ηx


[
(λ − 1)(η4 + 24)(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx

+ λ(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)2e−2ηx

] (21)

The graphical representation of the hazard rate function of the BES distribution is presented
as Figure 3. In accordance with Figure 3, the distribution is quite flexible as its hazard rate
function is capable of possessing different shapes depending on the values of the associated
parameters. Specifically, the figure reveals that the hazard rate function can be nondecreasing
or bathtub shaped. It can also have an s-shaped curve or be a bimodal function.

The cumulative hazard function of X ∼ BES(η, λ) can be written as

ChBES(x; η, λ) = − ln (1 − FBES(x; η, λ)) = − ln(RBES(x; η, λ)) (22)
= − ln[(λ − 1)(η4 + 24) + λ(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx]
+ 2 ln(η4 + 24) − ln(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24) + ηx

The reverse hazard function of X ∼ BES(η, λ) is given by

RhBES(x; η, λ) = fBES(x; η, λ)
FBES(x; η, λ)

hBES(x; η, λ) =

η5


(1 − λ)(η4 + 24)e−ηx + (1 − λ)(η4 + 24)x4e−ηx

+ 2λ(η4 + 24)x4e−2ηx + 2λ(η4 + 24)x4e−2ηx + 8λη3x3e−2ηx

+ 24λη2x2e−2ηx + 48ληxe−2ηx + 2λη4x8e−2ηx + 8λη3x7e−2ηx

+ 24λη2x6e−2ηx + 48ληx5e−2ηx


[
(η4 + 24) − λ(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)2e−2ηx

− (1 − λ)(η4 + 24)(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx

](23)
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Figure 3: Various shapes of the hazard function of the BES distribution

The odds function of X ∼ BES(η, λ) is given by

OBES(x; η, λ) = FBES(x; η, λ)
1 − FBES(x; η, λ)

OBES(x; η, λ) =
[
(1 − λ)(η4 + 24)−1(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx

+ λ(η4 + 24)−2(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)2e−2ηx

]−1

− 1

(24)

4. Quantile function and entropy measures of BES distribution

4.1. Quantile function of BES distribution

The xth
ω quantile function of BES distribution satisfies the equation

FBES(x; η, λ) = ω, 0 < ω < 1 (25)
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Plugging (5) into (25), we have

(1 + λ)
[
1 −

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]2

− λ

[
1 −

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]2

= ω (26)

Let
z = 1 −

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx (27)

Then

(1 + λ)z − λz2 = ω

λz2 − (1 + λ)z + ω = 0 (28)

Applying the quadratic formula on (28), we obtain

z =
1 + λ ±

√
(1 + λ)2 − 4λω

2λ
(29)

Substituting (29) into (27), one obtains

1 + λ ±
√

(1 + λ)2 − 4λω

2λ
= 1 −

(
1 + ηxω(η3x3

ω + 4η2x2
ω + 12ηxω + 24)

η4 + 24

)
e−ηxω

Thus, the quantile is obtained by solving the equations:

1 + λ ±
√

(1 − λ)2 − 4λω

2λ
=
1 + 24

n4 + 24

4∑
r=1

(ηxω)r

r!

e−ηxω (30)

Therefore, the ωth quantile, denoted by xω, for BES distribution, is a positive solution of
(30), which can be found by numerical method.

4.2. Entropy measures of the BES distribution

The Renyi entropy may be defined for the BES as

ER = 1
1 − β

log
( � ∞

0
fβ

BES(x; η, λ)dx

)
, β ̸= 1, β > 0

= 1
1 − β

log



(
η5

η4+24

)β � ∞
0 (1 + x4)βe−βηx

×
(

(1 − λ) + 2λ

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)
eηx

)β

dx

 (31)
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Applying binomial expansion to the terms in (31) and simplifying, one gets

ER = 1
1 − β

log


(

η5

η4+24

)β ∑∞
i=0

∑β
j=0

∑j
k=0

∑k
l=0

∑l
m=0

∑m
n=0

(
β
i

)(
β
j

)(
j
k

)(
k
l

)(
l

m

)(
m
n

)
ηk+l+m+n

(24)k−l(12)l−m(4)m−n(1−λ)j(2λ)β−j

(η4+24)k

� ∞
0 xk+l+m+ne−η(β+j)xdx



= 1
1 − β

log


(

η5

η4+24

)β ∑∞
i=0

∑β
j=0

∑j
k=0

∑k
l=0

∑l
m=0

∑m
n=0

(
β
i

)(
β
j

)(
j
k

)(
k
l

)(
l

m

)(
m
n

)
(24)k−l(12)l−m(4)m−n(1−λ)j(2λ)β−jηk+l+m+n−1Γ(k+l+m++1)

(η4+24)k(β+j)k+l+m+n+1

 (32)

The Tsallis entropy for the BES distribution may be defined as

ES = 1
β − 1

(
1 −

� ∞

0
fβ

BES(x; η, λ)dx

)
, β ̸= 1, β > 0

= 1
β − 1

1 −


(

η5

η4+24

)β ∑∞
i=0

∑β
j=0

∑j
k=0

∑k
l=0

∑l
m=0

∑m
n=0

(
β
i

)(
β
j

)(
j
k

)(
k
l

)(
l

m

)(
m
n

)
(24)k−l(12)l−m(4)m−n(1−λ)j(2λ)β−jηk+l+m+n−1Γ(k+l+m++1)

(η4+24)k(β+j)k+l+m+n+1


 (33)

5. Distributions of order statistics of BES distribution

The PDF of the rth order statistic for X ∼ BES(η, λ) is given by

fX(r)(x) = n!
(r − 1)!(n − r)! [F (x)]r−1[1 − F (x)]n−rf(x)

=
r
(

n
r

)
η5(1 + x4)e−(n−r+1)x

η4 + 24

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)η−r

×
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]

×


1 − (1 − λ)

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)
e−ηx

− λ

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)2

e−2ηx


r−1

×
[
(1 − λ) + λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]n−r

(34)
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Putting r = 1 in (34), we get the PDF of the first order statistic X(1) as

fX(1)(x) = η5(1 + x4)ne−ηnx

η4 + 24

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)n−1

×
[
(1 − λ) + λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]n−1

(35)

×
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]

Putting n = r in (34), we get the PDF of the largest order statistic X(n) as

fX(n)(x) = η5(1 + x4)ne(−η−r+1)x

η4 + 24

(
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

))n−1

×


1 − (1 − λ)

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)
e−ηx

− λ

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)2

e−2ηx


n−1

(36)

6. Maximum likelihood estimates of parameters of BES distribution

Consider a random sample of a sample size, n, X1, X2, ..., Xn drawn from the BES
distribution. Obviously, the likelihood function of the random sample is

L(η, λ) =
n∏

i=1
fBES(xi; η, λ)

=
(

η5

η4 + 24

)n

e−n
∑n

i=1 xi

n∏
i=1

(1 + x4
i )
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηxi

]
(37)

The log-likelihood function is

ln L(η, λ) =
n∑

i=1
ln
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]
(38)

+
n∑

i=1
ln(1 + x4

i ) + n[5 ln(η) − ln(η4 + 24)] − η
n∑

i=1
xi

Taking the partial derivatives of (38) with respect to η and λ, and equating the results to
zero, yields

∂ ln L(η, λ)
∂η

=
n∑

i=1

2λ((η3x3
i + 4η2x2

i + 12ηxi + 24) + η(3η2x2
i + 8ηx2

i + 12xi))xie
−ηxi

2λ(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24) + η4 + 24)e−ηxi + (1 − λ)(η4 + 24)
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−
n∑

i=1

8λη4xi((η3x3
i + 4η2x2

i + 12ηxi + 24)e−ηxi

(η4 + 24)[2λ(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24)η4 + 24)e−ηxi + (1 − λ)(η4 + 24)] (39)

−
n∑

i=1

2λxi(4η4xi(η3x3
i + 4η2x2

i + 12ηxi + 24) + (η4 + 24))e−ηxi

2λ(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24) + η4 + 24)e−ηxi + (1 − λ)(η4 + 24)] + 2(η4 + 120)
η(η4 + 24)

−
n∑

i=1
xi = 0

∂ ln L(η, λ)
∂λ

=
n∑

i=1

2(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24) + η4 + 24)e−ηxi − (η4 + 24)
(1 − λ)(η4 + 24) + 2λ(ηx(η3x3

i + 4η2x2
i + 12ηxi + 24) + η4 + 24)e−ηxi

= 0

(40)
Due to the complex nature of (39) and (40), an iterative method such as Newton-Raphson
method is adopted for finding its solution.

7. Asymptotic confidence intervals of the parameters of BES distribution

Let Θ̂ = (η̂, λ̂)T be the MLE of Θ = (η, λ)T for the BES distribution. To construct the
confidence intervals, the Fisher information, denoted by I (Θ) is required. Consequently

I (Θ) =

Iη̂η̂ Iη̂λ̂

Iλ̂η̂ Iλ̂λ̂

 (41)

The elements of (41) are the second derivatives of (38) with respect to the parameters of the
BES distribution. Notice that the asymptotic distribution of

√
n(N2(1, I −1(Θ)), under cer-

tain regularity conditions. Consequently, the approximate 100(1 − ω)% two sided confidence
intervals for η and λ are given, respectively, by

η̂ ± Zω/2

√
I −1

ηη (Θ̂) and λ̂ ± Zω/2

√
I −1

λλ (Θ̂) (42)

where I −1
ηη (Θ̂) and I −1

λλ (Θ̂) are diagonal elements of the matrix I −1
n (Θ̂) and Zr/2 is the upper

(ω/2)th percentile of a standard normal distribution.

8. Monte-Carlo simulation study of the BES distribution

To investigate the effect of sample size on the maximum likelihood estimates of pa-
rameters of the BES distribution and assess the stability of the parameter estimates, it is
essential to conduct a Monte-Carlo simulation on the BES distribution.
The simulation procedure as outlined below was performed using R package:

Step 1: Simulate a random sample of size n from the BES distribution with parameters
λ = 0.8 and η = 1.4 using the inversion of the CDF method with Equation (30)

Step 2: Set intial values for the parameters of the BES distribution.

Step 3: Compute the MLE of the parameters of the BES distribution.
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Step 4: Repeat steps 1-3 N = 10, 000 times.

Step 5: Compute the mean, standard error, average bias and average mean square error
(MSE) of the 10,000 maximum likelihood estimates of each parameter λ and η. The mean
estimate of the maximum likelihood estimator τ̂ of the parameter τ = (λ, η) is given by

¯̂τ = 1
N

N∑
i=1

τ̂i (43)

The standard error of ¯̂τ is given by

SE¯̂τ =

√√√√ 1
N

N∑
i=1

(τ̂i − ¯̂τ)2 (44)

The Bias of ¯̂τ is given by
Bias(¯̂τ) = ¯̂τi − τ, i = 1, 2, ..., n (45)

The average bias of the MLE τ̂ of the parameter τ = (λ, η) is given by

Ave.Bias(τ̂) = 1
N

N∑
i=1

(τ̂i − τ) (46)

The average mean square error (MSE) of the MLE τ̂ of the parameter τ = (λ, η) is given by

Ave.MSE(τ̂) = 1
N

N∑
i=1

(τ̂i − τ)2 (47)

Step 6: Repeat Steps 1-5 with different sample sizes (n = 20, 30, 50, 100, 500, 1000).

Table 1: Simulation results of the estimates, bias and mean square error of the
BES distribution parameters for different sample sizes

As shown in Table 1, the parameter estimates tend toward the actual parameter values
as the sample size increases. Also, average bias and mean squared error tend to zero with
increasing sample size.
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9. Applications

In this section, we illustrate the flexibility of the BES distribution with two real
datasets. The first dataset comprises the failure times of mechanical components as re-
ported in Javed et al. (2018).

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911,
2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,
1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089,
2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278,
1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224,
3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663

The second dataset depicts the fatigue life of some aluminium coupons cut in specific manner
reported in Birnbaum and Saunders (1969). The dataset (after subtracting 65) is:

5, 25, 31, 32 ,34 ,35 ,38, 39, 39, 40, 42, 43, 43, 43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55,
55, 56, 56, 56, 58, 59, 59, 59, 59, 59, 63, 63, 64, 64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67,
68, 69, 69, 69, 69, 71, 71, 72, 73, 73, 73, 74, 74, 76, 76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81,
83, 83, 84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97, 98, 98, 99, 101, 103, 105, 109, 136, 147

Consequently, we fit the BES distribution (BESD) as well as the competing distributions,
such as gamma distribution (GD) and each of the following distributions (in each case g(x)
is the PDF while G(x) is the CDF of the concerned distribution) to each of the two data
sets listed above. The reason for choosing these distributions is because they all belong to
the same family of the proposed distribution; so we chose them for comparison to illustrate
the flexibility achieved as a result of the generalization. (1) Transmuted Lindley distribution
(TLD) (Merovci, 2013a)

g(x) = η2

η + 1(1 + x)e−ηx

1 − λ + 2λ

(
η + 1 + ηx

η + 1

)
e−ηx

 (48)

and

G(x) =
(

1 − η + 1 + ηx

η + 1 e−ηx

)(
1 + λ

(
η + 1 + ηx

η + 1

)
e−ηx

)
(49)

(2) Transmuted Exponential distribution (TED) (Owoloko, et al., 2015)

g(x) = 1
η

e−ηx(1 − λ + 2λe−nx) (50)

and
G(x) = (1 − e−ηx)(1 + λe−ηx), x > 0, η > 0, |λ| ≤ 1 (51)

(3) Transmuted Aradhana distribution (TAD) (Gharaibeh, 2020)

g(x) = η3

η2 + 2η + 2(1 + x)2e−ηx

(
1 − λ + 2λ

(
ηx(ηx + 2η + 2)

η2 + 2η + 2

)
e−ηx

)
(52)
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and

G(x) = (1+λ)
(

1−
(

1+ ηx(ηx + 2η + 2)
η2 + 2η + 2

)
e−ηx

)
−λ

(
1−

(
1+ ηx(ηx + 2η + 2)

η2 + 2η + 2

)
e−ηx

)2

(53)

(4) Transmuted Ishita distribution (TID) (Sharaibeh and Al-Omari, 2019)

g(x) = η3

η3 + 2(η + x2)e−ηx

(
1 − λ + 2λ

(
1 + ηx(ηx + 2)

η3 + 2

)
e−ηx

)
(54)

and

G(x) = (1 + λ)
(

1 −
(

1 + ηx(ηx + 2)
η2 + 2η + 2

)
e−ηx

)
− λ

(
1 −

(
1 + ηx(ηx + λ)

η3 + 2

)
e−ηx

)2

(55)

(5) Transmuted Pranav distribution (TPD) (Odom et al., 2019)

g(x) = η4

η4 + 6(η + x3)e−ηx

(
1 − λ + 2λ

(
1 + ηx(η2x2 + 3ηx + 6)

η4 + 6

)
e−ηx

)
(56)

and

G(x) = (1+λ)
(

1−
(

1+ ηx(η2x2 + 3ηx + 6)
η4 + 6

)
e−ηx

)
−λ

(
1−

(
1+ ηx(η2x2 + 3ηx + 6)

η4 + 6

)
e−ηx

)2

(57)
Comparison of the fitted models was basd on the following goodness-of-fit measures: the
Akaike Information Criterion (AIC) due to Akaike (1992), given by

AIC = −2l + 2k, (58)

the Bayesian Information Criterion (BIC) due to Schwarz (1978), given by

BIC = k ln(n) − 2l, (59)

and the generalized Carmer-von Mises W* statistics; due to Chen and BAlakrishnan (1995),
given by

CV M = 1
12n

+
∑[

2i − 1
2n

− F̂ (xi)
]

(60)

where k is the number of parameters in the BES distribution, l is the maximized value of
the log-likelihood function of the BES distribution,F̂ (xi) is the value of the CDF of the BES
distribution and n is the sample size. The smaller the criterion statistics the better the
model.

Maximum likelihood estimates of the parameters of the BES distribution and the other
seven distributions fitted to both data and the associated results are given in Table 2 and
Table 3 for the first and second data respectively.

A comparison of AIC and BIC values of the eight lifetime distributions in Tables 2 and
3 shows that the BES distribution gives a better fit for the lifetime datasets as it has smaller
AIC and BIC values than the others. The estimated parameters also satisfy the theoretical
range of the parameters as expected.
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Table 2: Maximum likelihood fit of the failure times of mechanical components
data

10. Conclusion

This paper introduces a new lifetime distribution, named the BES distribution. The
new distribution generalizes the Suja distribution. We have provided explicit mathematical
expressions for some of its basic statistical properties such as the probability density function,
cumulative distribution function, rth crude and central moments, variance, coefficient of
variation, skewness, kurtosis, and quantile function and some reliability characteristics like
the survival, hazard rate, cumulative hazard and reverse hazard functions. Rényi and Tsallis
entropies were discussed. Also, the distributions of rth, first and largest order statistics
were introduced. Estimation of the model parameters was approached through the method
of maximum likelihood estimates. A Monte-Carlo simulation was performed to verify the
stability of the maximum likelihood estimates of the model parameters. The flexibility and
applicability of the new lifetime distribution were illustrated with two real data sets and
the results obtained revealed that the BES distribution provides the best fit among all the
compared related distributions. We recommend the transmuted distribution for modelling
unimodal or bimodal continuous lifetime data with a nondecreasing or bathtub shaped hazard
rate function and hope that it would receive significant applications in the future.
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Table 3: Maximum likelihood fit of the fatigue life of some aluminium coupons
data
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Abstract 

The frigate tuna Auxis thazard (Lacepède, 1800) is one of the commercially important 

tuna species that contribute a major share to tuna fisheries of Tamil Nadu. Information on 

biological reference points and stock status is necessary for effective fishery management. 

Hence, a stock assessment study was carried out to understand the status of the stock. The 

present study was used the Catch and Effort Data Analysis (CEDA) software to investigate 

stock dynamics by running surplus production models with catch and effort data. 

Reconstructed time series catch and effort data from 1998 to 2018 were used for the study. 

Annual landings fluctuated between 555 and 2,523 metric tonnes (MT) with an average catch 

of 1,732 MT year-1. Based on the diagnostic graph, high R2 and low root mean square error 

(RMSE) value, the Fox log-normal model was selected as the best-fit model for further 

analysis of biological reference points (BRPs). The best-fitted Fox log-normal model 

estimated maximum sustainable yield (MSY), biomass yield MSY (BMSY) and fishing mortality 

yield MSY (FMSY) as 2,543 MT, 3,723 MT and 0.69 MT, respectively. FMSY and BMSY values 

were compared with current fishing mortality (F) and biomass (B). A lower F/FMSY value 

(0.41) and higher B/BMSY value (1.66) indicated that the frigate tuna stock of Tamil Nadu has 

not reached to  overfishing or overfished status. However, an overall reduction trend of catch 

per unit effort (CPUE) since 2012 indicates that stock is exploited very close to MSY. Results 

from the BRPs showed that the frigate tuna resource off Tamil Nadu were optimally 

exploited and  an increase in effort will lead to the collapse of the fishery in future. Hence, it 

is recommended to maintain the fishing effort to the present level for ensuring sustainable 

exploitation. 

Key words: Biological reference points; Catch and effort data analysis; Maximum sustainable 

yield; Stock exploitation; Tuna stock assessment. 

 

1. Introduction 

The sustainable development of marine fisheries is an important activity from a 

social, environmental and economic view. Total catch is an important metric for monitoring 

and assessing the status of a fishery (George and Gopalakrishnan, 2013). India's fisheries 

have long been accessible to the public, with limited control, leading to unsustainable 
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expansion and development (Devaraj and Vivekanandan, 1999; Satyanarayana et al., 2008; 

Bhathal, 2014; Ansell, 2020). Tamil Nadu is the southeastern maritime state of India, where 

marine and inland fish production has steadily increased (Tabitha and Gunalan, 2012). Tamil 

Nadu's marine fisheries have proliferated since 1950, due to the introduction of innovative 

fishing vessels, new fishing gear, fishing methods and infrastructural facilities. This rapid 

growth in exploitation resulted in an increased fish catch. 

In fisheries management, the concept of sustainable development is always the 

baseline. However, sustainable management of these renewable but exhausting natural fish 

stocks is challenging. Most of the world's fishing is biologically and economically 

unsustainable, much against the belief that fish stocks are inexhaustible (FAO, 1994). 

Because of the intensive fisheries and the dramatic collapse of fish stocks in India, alarming 

calls were made to reduce the size of the fishing fleet and fishing efforts. In this context, 

Tamil Nadu is not an exception. With the large influx of giant mechanized fishing crafts and 

gears over the years, Tamil Nadu has also seen notable progressions in fishing technology. 

More than 80% of the world's marine fish stocks are overexploited or almost fully 

exploited due to their high nutritional value, local market demand and export demand (Kituyi 

and Thomson, 2018). India's tuna fisheries are in the initial stages of exploitation due to the 

adoption of advanced fishing gear (Lecomte et al., 2017). Tuna landings contribute 2.93% of 

India's total marine fish landings (CMFRI, 2019). Tamil Nadu holds the second rank in total 

tuna production in the country, next to Kerala (CMFRI, 2018). Information on the stock 

assessment of coastal tuna is limited (Silas et al., 1985, James et al., 1987; Kasim and 

Mohan, 2009; Sivadas et al., 2020) and less information is available on the tuna fishery of 

Tamil Nadu (Joseph and Jayaprakash, 2003; Abdussamad et al., 2008; Kumar et al., 2019; 

Sivadas et al., 2019). Frigate tuna Auxis thazard (Lacepède, 1800) is one of the most 

important neritic tuna species in Indian waters. They live closer to the continental shelf and 

do not undertake transoceanic migrations (Lecomte et al., 2017). Auxis spp. contributed 11.9 

and 13.1 % of total tuna landings in India and Tamil Nadu, respectively (CMFRI, 2019). 

Ghosh et al. (2012), Mudumala et al. (2018) and Dan (2021) provided some information on 

biological reference points (BRPs) of frigate tuna fishery from Indian waters. However, there 

is no record of BRPs of frigate tuna stock off the Tamil Nadu coast. Hence, the present study 

made an attempt to investigate the sustainability status of frigate tuna fisheries off Tamil 

Nadu.  

In India, the Department of Animal Husbandry, Dairy and Fisheries (DADF) submits 

national fish catch statistics to international organizations such as the FAO. The DADF 

collects information from the state fisheries departments and central institutes, namely the 

Central Marine Fisheries Research Institute (CMFRI) and the Fishery Survey of India (FSI) 

(Malhotra and Sinha, 2007). CMFRI publishes group-wise landing data every year, but there 

is no record of species-wise landing data (CMFRI, 2019). The effort used for the Indian 

fishery is not available in any public domain. Hence present study attempted to reconstruct 

the catch and effort data of frigate tuna from 1998 to 2018. This reconstructed catch and 

effort data from 1998 to 2018 were utilized to understand the dynamics of tuna fishery and 

the stock status of frigate tuna fisheries off Tamil Nadu. 

2. Materials and methods 

  The catch and effort statistics of frigate tuna from 1998 to 2018 (21 years) were 

reconstructed using the handbook of Fisheries Statistics (CMFRI, 2006; 2010; 2011; 2012a; 

2012b; 2013; 2014; 2015; 2016; 2017; 2018; DADF, 2009; 2012; 2015; 2018) as well as 
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several other historical fisheries survey reports and State Government reports (GOT, 2004; 

2005; 2006; 2010; 2011; 2012; 2013; 2014; 2015; 2016; 2017; 2018; 2019; 2020) following 

Bhathal (2014). The fishing effort and annual total catch were estimated as million 

horsepower (HP) days and metric tonnes (MT), respectively. Statewise and species-wise fish 

landing data was not available for frigate tuna landings of Tamil Nadu during the study 

period. Catch data of the frigate tuna fishery of Tamil Nadu from 1998 to 2005 was taken 

from Bhathal (2014). Landing data of frigate tuna from 2006 to 2012 was reconstructed by 

converting groupwise neritic tuna landing data (DADF, 2012) to species-wise based on the 

composition of neritic tuna landings (MOA, 2001). Landing data from 2013 to 2018 was 

collected from CMFRI (2013; 2014; 2015; 2016; 2017; 2018). In Tamil Nadu waters, tunas 

were harvested with drift gillnets of mesh size of 120-140 mm and net pieces of 40-50 

(98.75%), long lines with a hook size of 4 to 8 (0.75%), trawl nets (0.42%) and handlines 

(0.08%) (Kumar et al., 2018; 2019). The first step in the rebuilding of the fishing effort was 

to collect data (number of boats, fishing days and gear category) from national and state 

Government documents, research articles, fisheries survey reports, grey literature and 

databases between 1998 and 2018 (GOT, 2006; 2010; 2011; 2012; 2013; 2014; 2015; 2016; 

2017; 2018; 2019; 2020; CMFRI, 2010; 2011; 2012; 2013; 2014; 2015; 2016; 2017; 2018; 

CMFRI, 2006; 2012a; Bhathal, 2014). 

Data were collected and formalized with the essential elements such as vessels with 

and without engines, including the total number of vessels, total power (HP units), fishing 

days and crew size (Abinaya and Sajeevan, 2022a). Fishing effort for vessels without engines 

(HP days) was estimated by integrating the number of vessels, crew size and fishing days. An 

average crew size of 8 was used to reconstruct the effort of a vessel without an engine (non-

mechanized and non-motorized) from 1998 to 2018 following Bhathal (2014). The fishing 

effort of mechanized and motorized vessels was calculated using the average engine power of 

vessels with an estimated number of fishing days by each gear sector at a given time. The 

number of fishing days was calculated assuming that six fishing days were carried out each 

week of the year. Downtime and spiritual holidays were subtracted from the total number (6 

multiplied by the number of weeks in a year) to calculate the actual fishing days. The average 

number of days spent for fishing with gillnets, liners and hand lines, and trawl nets were 216, 

75 and 228 days, respectively. To accommodate variations and differences in fishing power 

and efficiency, the nominal effort was corrected to a standard type (Bhathal, 2014).  

Different approaches have been used to estimate the biological characteristics (MSY, 

BMSY and FMSY) of species. The ordinary least squares method estimated surplus production 

functions, especially the Schaefer model, the Fox model, the Schnute model, and the Clark, 

Yoshimoto and Pooley (CY & P) model (Sin and Yew, 2016). The Schnute Model and the 

CY & P models have limited use in tropical areas as they were developed for long-lived 

species (Sparre and Venema, 1998; Lindawati et al., 2021). Hence, the biological parameters 

were evaluated in the present study using the Fox (1970), Schaefer (1954), and Pella-

Tomlinson (1969) models. 

Reconstructed time series of catch and effort data of frigate tuna fishery was analyzed 

using the fishery-specific computer program Catch and Effort Data Analysis version 3.1 

(CEDA) (MRAG, 2016). CEDA is built to carry out the stock assessment in data-deficient 

fisheries like the frigate tuna fisheries of Tamil Nadu. CEDA used analytical techniques to 

support and help stock assessments, resulting in a prediction of current population size, either 

in numbers or biomass and a better estimate of fishing mortality, by correlating catches with 

the size of the population (Hoggarrth et al., 2006). Surplus production models (SPMs)  used 
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in these assessment tools include three types of non-equilibrium models: Fox, Schaefer and 

Pella-Tomlinson models with three error assumptions (normal, log-normal and gamma). 

Schaefer (1954) developed the first surplus production model. Here, the logistic population 

growth model serves as a basis for the Schaefer model: 

                                                
𝑑𝐵

𝑑𝑡
= 𝑟𝐵(𝐵∞ − 𝐵)                                                        (1)                                                    

Biological reference points can be calculated from the model parameters  

                                               𝑀𝑆𝑌 =  𝐾 𝑟 
4⁄                                                              (2) 

                                                𝐵𝑀𝑆𝑌  =  𝐾 / 2                                                             (3) 

                                                𝐹𝑀𝑆𝑌  =  𝑟 / 2                                                              (4) 

                                              𝑞 =  𝐶𝑃𝑈𝐸𝑡 / 𝐵                                                            (5) 

                                      𝐾 =  𝑛 1/(𝑛 − 1) 𝑋 𝐵𝑀𝑆𝑌                                                    (6) 

                                                𝑟 =  𝑛 𝑋 𝐹𝑀𝑆𝑌                                                             (7) 

  Following that, Pella-Tomlinson (1969) recognized a generalized production 

equation: 

                                                            
𝑑𝐵

𝑑𝑡
= 𝑟𝐵(𝐵∞

𝑛−1 − 𝐵𝑛−1)                                            (8) 

And Fox (1970) proposed a Gompertz growth equation: 

                                                        
𝑑𝐵

𝑑𝑡
=  𝑟𝐵(𝐼𝑛𝐵∞ − 𝐼𝑛𝐵)                                                 (9) 

where B, fish stock biomass; t, time in the year; r, intrinsic rate of population increase; B∞ 

and K, carrying capacity; MSY, maximum sustainable yield; q, catchability coefficient; 

CPUE, catch per unit effort; BMSY, biomass corresponding to MSY; FMSY, exploitation rate 

corresponding to MSY; n, a parameter that controls the shape of the production curve. 

Output parameters of CEDA software were MSY, K, B, in MT, catchability coefficient 

(q) (a scaling term) and r (per capita change in the population per unit time). CEDA 

necessitates an initial proportion (IP) input (starting population size over the maximum 

catch). The fishery began with a virgin population when the initial proportion is set to zero or 

close to zero, and with an extensively exploited population when it is set to one or close to 

one. The present study set the initial biomass (B1) as B1=K to assure valid results. The 

carrying capacity (K) is the highest population size, density, or biomass that a given area can 

sustain (Hartvigsen, 2017). Linear regression analysis was carried out to find out the 

association between catch and effort and the goodness of fit of models (Hanchet et al., 

1993). Coefficient of determination(R2) of the goodness of fit model, results of the diagnostic 

graph and root mean square error (RMSE) (Abinaya and Sajeevan, 2022b) were considered 

for selecting the results of the Fox log-normal model for further investigation on MSY, BMSY, 

and FMSY.  
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3. Results 

The present study reconstructed catch and effort data of frigate tuna of Tamil Nadu 

from 1998 to 2018 and presented in Table 1. The average annual landings from 1998 to 2018 

was 1,732 MT year-1 (Standard deviation (SD) =565), with the production in 2001 yielding 

the lowest catch of 555 MT and the production in 2010 yielding the highest catch of 2,523 

MT. From 1998 to 2018, the catch of frigate tuna increased with wide fluctuations. The 

reconstructed effort data for frigate tuna was stable in the initial periods, then registered a 

decreasing trend since 2006.  

Table 1: Total catch, effort and catch per unit effort (CPUE) of frigate tuna fishery 

from the Tamil Nadu coast (1998-2018) 

Year 
Total catch (in metric 

tonnes) 

Effort (in million HP 

days) 
CPUE (in MT/Hp days) 

1998 1434 6.17 0.00023 

1999 903 6.33 0.00014 

2000 1008 6.33 0.00016 

2001 555 6.33 0.00009 

2002 1004 6.33 0.00016 

2003 1832 6.33 0.00029 

2004 1582 6.33 0.00025 

2005 1415 4.70 0.00030 

2006 1415 18.27 0.00008 

2007 1865 17.44 0. 00011 

2008 2022 16.54 0. 00012 

2009 2501 15.64 0. 00016 

2010 2523 16.90 0. 00015 

2011 2344 16.97 0.00014 

2012 2481 14.13 0.00018 

2013 1740 13.26 0.00013 

2014 1588 14.46 0.00011 

2015 1977 14.79 0.00013 

2016 1919 14.79 0.00013 

2017 1778 14.87 0.00012 

2018 2482 14.62 0.00017 

 

The CPUE of frigate tuna in Tamil Nadu from 1998 to 2018 is depicted in Table 1. As 

shown in Table 1, CPUE decreased from 1998 to 2001, then increased and peaked during 

2005. After that, the CPUE showed a decreasing trend with minimum annual fluctuation. 

CEDA mandates an initial proportion (IP) that yields trustworthy findings. Employing 

three-production models (Fox, Schaefer and Pella-Tomlinson model) with a three-error 

assumption model (normal, log-normal and gamma), a different range of Maximum 

sustainable yield (MSY) was anticipated by using various ranges of initial proportions (0.1 to 

0.9). Results are furnished in Table 2. The CEDA package produced different MSY results for 

frigate tuna fishery and was sensitive to input IP values ranging from 0.1 to 0.9 (Table 2). IP 

value measures the extent of stock exploitation before the investigation. The initial landing 
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(1,434 MT) surpassed the highest catch (2,523 MT) by a proportion of 50%, hence an IP 

value of 0.5 was used in the study. 

Table 2: Various MSY estimated (in metric tonnes) from CEDA software using an initial 

proportion of 0.1 to 0.9 for frigate tuna fishery from 1998 to 2018  

IP 

Fox Schaefer Pella-Tomlinson 

normal log-normal normal log-normal normal log-normal 

0.1 9975 5872 7261 5213 7261 5213 

0.2 7932 4877 5216 4251 5216 4251 

0.3 7598 3214 4982 3621 4982 3621 

0.4 6992 2987 4211 2651 4211 2651 

0.5 4008 2582 3635 2086 3635 2086 

0.6 3222 2028 2281 1982 2281 1982 

0.7 2865 1721 1892 1723 1892 1723 

0.8 2423 1466 1526 1532 1526 1532 

0.9 1876 1299 1199 1182 1199 1182 

The BRPs for three surplus productions with their error assumption models evaluated 

using CEDA software for frigate tuna fisheries in Tamil Nadu coastal waters using an IP of 0.5 

were furnished in Table 3. As shown in Table 3, the Schaefer and Pella-Tomlinson (normal) 

model projected a greater carrying capacity (K) (12,991 MT) than the Fox model. The Fox 

(log-normal) model, on the other hand, predicted a better catchability coefficient (q), as well as 

the Schaefer (normal) model, which revealed a higher intrinsic population growth rate (r) than 

the other surplus production models. Results of the computed MSY value varied from 2,086 

MT (Schaefer & Pella-Tomlinson log-normal) to 4,008 MT (Fox-normal). RMSE value ranged 

from 444 MT (Fox-normal) to 524 MT (Schaefer & Pella-Tomlinson- normal). The R2 values 

of the Fox model (normal and log-normal) results were 0.09 and 0.15, respectively. The R2 

values for the Schaefer and Pella-Tomlinson models with normal and log-normal error 

assumptions were 0.10 and 0.06, respectively, but the gamma assumption failed to minimize. 

The expected high R2 values of the surplus production models demonstrated a superior fit to 

the data. The result of the BMSY value varied between 3,723 MT (Fox log-normal) and 6,496 

MT (Schaefer & Pella-Tomlinson - normal). The result of the FMSY value varied between 0.45 

(Schaefer & Pella-Tomlinson log-normal) and 1.32 (Fox-normal).  
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Table 3: Biological reference points and intermediate parameters of frigate tuna 

fisheries in Tamil Nadu from 1998 to 2018 

Model K q r MSY RMSE R2 B BMSY FMSY 

Fox 

(normal) 
11843 1.42E-08 0.92 4008 523 0.09 8987 4357 1.32 

Fox (log-

normal) 
10121 2.18E-08 0.69 2582 444 0.15 6195 3723 0.69 

Schaefer 

(normal) 
12991 1.24E-08 1.12 3635 524 0.10 10426 6496 0.46 

Schaefer   

(log-

normal) 

10633 2.15E-08 0.78 2086 487 0.06 6082 5317 0.45 

Pella-

Tomlinson 

(normal) 

12991 1.24E-08 1.12 3635 524 0.10 10426 6496 0.46 

Pella-

Tomlinson 

( log-

normal) 

10633 2.15E-08 0.78 2086 487 0.06 6082 5317 0.45 

K, carrying capacity; q, catchability coefficient; r, intrinsic population growth rate; MSY, 

maximum sustainable yield; RMSE, root mean square error; R2, coefficient of determination; 

B, current biomass; BMSY, biomass giving MSY (expressed in metric tonnes); FMSY, fishing 

mortality giving MSY. 

Estimated high R2 and low RMSE values of Fox (log-normal) demonstrated an 

excellent fit to the data (Table 3) in addition to residual plot results. Selected best-fitting Fox 

log-normal model results are furnished in Table 4. As shown in Table 4, the current biomass 

(6,195 MT) was more than BMSY (3,723 MT) and fishing mortality (0.28) was less than FMSY 

(0.69 MT), and the ratio of B/BMSY and F/FMSY values were 1.66 and 0.17, respectively. 

Table 4: Biological reference points of frigate tuna fisheries in Tamil Nadu from 1998 to 

2018 estimated by fitting Fox log-normal model 

B F MSY BMSY FMSY B/BMSY F/FMSY 

6195 0.28 2582 3723 0.69 1.66 0. 40 

 

B, current biomass; F, fishing mortality; MSY, maximum sustainable yield; BMSY, biomass 

giving MSY (expressed in metric tonnes); FMSY, fishing mortality giving MSY; B/BMSY, a ratio 

of biomass to biomass giving MSY; F/FMSY, a ratio of fishing mortality to fishing mortality 

giving MSY. 

The equilibrium yield curve for frigate tuna in Tamil Nadu is represented in Figure 1. 

As illustrated in Figure 1, the estimated BMSY was 3,723 MT, with a maximum yield of 2,582 

MT.   
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Figure 1: The equilibrium yield curve of the frigate tuna fishery in Tamil Nadu from 

1998 to 2018 fitted by the Fox log-normal model 

The relationship between expected and observed CPUE from 1998 to 2018 is depicted 

in Figure 2. The expected catch remained stable with slight fluctuation, while observed 

catches decreased with fluctuation between 1998 and 2018 (Figure 2). The present study used 

two diagnostic graphs (expected and observed CPUE & estimated and observed catches) to 

show how much the model fits the data. These graphs help to determine the location of a data 

point on the observed and expected catch graphs on the residual plots. As a result, CEDA can 

highlight any particular data point as a red square on two diagnostic graphs simultaneously, 

allowing the user to determine if the point is an outlier or a candidate for exclusions. 

However, the present study did not exclude any data points from the dataset. 

The relationship between estimated and observed catches for all models with an IP 

value of 0.5 is depicted in Figure 3. Visual inspection demonstrated that the observed catches 

of normal and log-normal results of the Fox, Schaefer & Pella-Tomlinson models were 

relatively close to the estimated catch; however, they varied considerably. The estimated and 

observed catches of the Gamma error model demonstrated a minimization failure to the Fox, 

Schaefer, and Pella-Tomlinson models (Figure 3).  

 Linear regression analysis is conducted using catch and effort data from 1998 to 2018 

presented in Table 5 and Figure 4. As shown in Table 5, F statistics test the overall 

significance of the relationship. The relationship between catch and effort data of frigate tuna 

was statistically significant (p-value < 0.05). A multiple R-value of 0.7 between the two 

variables indicated that they had a significant and positive association. R2 and adjusted R2 

were used to determine explained and unexplained variance. According to the results, the 

regression explained 48% of the total variation in the catch. A histogram of regression 

analysis over standardized residual is plotted in Figure 4 and a normal P-P plot of regression 

standardized residuals is illustrated in Figure 5. The residuals of the regression line were 

normally distributed and confirmed that the regression line satisfies the normality 

assumption. 
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Figure 2: Time series of expected and observed catch per unit effort (CPUE)  of frigate 

tuna fishery in Tamil Nadu from 1998 to 2018 

4. Discussion 

The total landing of frigate tuna in Tamil Nadu in 1998 was 1,434 MT. After a decline 

of catch to 555 MT in 2001, landings reached their peak of 2,523 MT in 2010. In general, 

landings registered an increasing trend from 1998 to 2018 with wide fluctuations in some 

years (Table 1). Kasim and Vivekanandan (2011) observed a decreasing trend in frigate tuna 

production from 1998 to 2001 and an increasing trend from 2002 to 2010.  Increasing trend 

recorded by the present study concurrent with Kasim and Vivekanandan (2011).  Sivadas et 

al. (2019) reported a large-scale increase in fishing efforts after the occurrence of Tsunami. 

The size of the boat increased from 11-12 meters (m) to 20-23 m overall length, and the 

fishing net weighing one MT was replaced with more than six MT. The present study 

recorded a large-scale increase in effort during 2006 and a decrease in fishing effort during 

subsequent years due to the phasing out of old craft and gears. The sudden increase in fishing 

efforts resulted in increased landings and CPUE during 2007-2012.  

In general, the CPUE of frigate tuna fisheries showed a declining trend during 1998-

2018 (Table 1). The exploitation of the stock close to the MSY may be the reason for the 

reduction in CPUE since 2012. Abdussamad et al. (2012) reported that frigate tuna in Tamil 

Nadu waters was very intensively exploited, and production reached very close to the 

estimated potential. The results of the present study are concurrent with Abdussamad et al. 

(2012) and Sivadas et al. (2019). Kirkwood (2001) opined that when fishing and natural 
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mortality increases the population size decline gradually. Although there were random 

variation on expected and observed CPUE, a specific decreasing trend of CPUE was lacking 

in observed CPUE (Figure 2). Hence it can be assumed that changes in fishing and natural 

mortality of frigate tuna fisheries doesn’t reflected as a  decline in population size. 

 

Figure 3: Time series of expected and observed catch of frigate tuna fishery in Tamil 

Nadu from 1998 to 2018 

 

 

Figure 4: Histogram of regression analysis over standardized residual for frigate tuna 

fishery from 1998 to 2018 
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Figure 5: Normal P-P plot of regression standardized residual for frigate tuna fishery 

from 1998 to 2018 

Table 5: Regression output of catch and effort data analysis for frigate tuna fishery 

from 1998 to 2018 

Multiple R R2 Adjusted R2 Standard 

Error 

F-statistic p-value 

0.69447 0.48229 0.45504 35.9723 17.7  0.0004775 

 

Results of the MSY estimates indicated that MSY values are inversely proportional to 

IP values (Table 2). Earlier workers reported a similar relationship (Kalhoro et al., 2013; 

Mohsin et al., 2018, 2019, 2020, 2021; Talib et al., 2017; Abinaya and Sajeevan, 2022a). The 

estimated BRPs of the Fox, Schaefer and Pella Tomlinson models varied from each other 

(Table 3). Based on diagnostic plot results, high R2 and low RMSE value, the Fox log-normal 

model was considered the best-suited model and it made better fits and yielded results near 

the annual average landings. Hoggarth et al. (2006) and Noman et al. (2019) recommended 

that a high R2 value and strong trend diagnostic plot were considered as a criterion for 

selecting the best-fit model and Panhwar (2012) suggested that the best-fit model will give 

results that are close to the annual average landing.   

Target reference points (TRPs) and limit reference points (LRPs) are the two 

categories of reference points in general. TRPs are employed in fisheries management to set 

desirable fishing limits. MSY, FMSY, and BMSY are the three BRPs that have been widely 

employed in fishery resource management, with MSY receiving the most attention (Mohsin et 

al., 2020; Abinaya and Sajeevan, 2022b). Surplus production models are commonly 

employed in tropical fish stock assessment since they do not estimate cohorts and thus do not 

necessitate age determination. It can be calculated by using a stock assessment model that 

incorporates catch and effort statistics and predicts biomass. When the appropriate surplus 

production model is applied to all species collected by all types of fleets, an immediate MSY 

evaluation for the area is obtained. On the other hand, the challenge of harvesting the same 

stock by gear of varying effectiveness must be solved by regulating the fishing efforts of all 

gear active in the fishing (Kuriakose and Kizhakkudan, 2017). 
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The estimated MSY values are compared to the data values. The stock population 

thrives when the catch quantity is less than the calculated MSY value and is much more 

exploited. Once the stock achieves the MSY value, it is stable, and the harvest should be 

retained at the calculated MSY level rather than expanded or diminished. The stock 

population declines when the catch amount exceeds the actual MSY value. The estimated 

MSY of the frigate tuna fishery from Tamil Nadu was 2,543 MT, almost close to the recent 

catch of 2,482 MT during the 2018 period. BRPs (MSY, BMSY  and FMSY) estimated by Fox 

log-normal indicate that the frigate tuna fishery of Tamil Nadu does not come under the 

status of overfishing and overfished. Estimates of F value were less than FMSY and the F/FMSY 

ratio was on the lower side. This indicates no overfishing sign of frigate tuna in Tamil Nadu 

waters. Similarly, the B/BMSY value was higher than 0.5, indicating that the stock was not 

overfished. MSY estimates and landing data since 1998, confirm that the average annual 

landing never exceeded the MSY estimates. Moreover, MSY estimated by other models also 

stood above the annual average landing (1,732 MT year-1) during the study period. Similarly, 

the FMSY estimates of all models were higher than that of the F value estimated by the present 

study. 

Coastal tuna stocks in Indian waters were being exploited at near-optimal levels (Silas 

and Pillai, 1985; James et al., 1992, 1993; James and Pillai, 1993; Kasim and Abdussamad, 

2005; Pillai et al., 2005; Pillai and Ganga, 2008). Abdussamad et al. (2005) reported that the 

frigate tuna stock of Tamil Nadu was underexploited in 2005 and was intensely exploited in 

2010 (Abdussamad et al., 2012). Ghosh et al. (2012) and Mudumala et al. (2018) reported 

that frigate tuna stock occurring on the Northwest coast of India showed signs of 

overexploitation. Dan (2021) reported that Indian Ocean frigate tuna stock is very close to 

being fished at MSY levels and higher catches may not be sustained. The results of the present 

study overrule the status of overfishing and overfished stock of frigate tuna. However, the 

reduction trend of CPUE from 2012 against a nominal decrease in the fishing effort is an 

indication that frigate tuna stock in Tamil Nadu reached the level of optimal exploitation. 

Any increase in fishing effort and overcapitalization may exert fishing pressure on the stock 

and lead to overfishing. Therefore, it is suggested that the present level of fishing may be 

maintained without any replacement for phasing out craft for ensuring sustainable 

exploitation.  

5. Conclusion 

The total landing of frigate tuna showed an increasing catch trend from 1998 to 2018. 

The total effort of frigate tuna registered a large scale increase during 2005 as a post-Tsunami 

effect and showed a decreasing trend since 2006 due to the phasing out of old craft and gears. 

The biological reference points (MSY, BMSY and FMSY) of frigate tuna rule out designating the 

frigate tuna stock of Tamil Nadu status as overfishing and overfished. However, an overall 

reduction trend of CPUE since 2012 indicates that stock is exploited very close to MSY. 

Hence, any increase in fishing effort results in heavy fishing pressure on fish stock and may 

lead to overfishing.  
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1. Introduction

In statistical analysis, the survival function and hazard function are used to model
distribution of data representing lifetime or waiting time. The survival function or reliability
function is the probability of survival of an item without failing until time t. Alternatively,
we can describe the survival experience in term of hazard failure (instantaneous rate of
death) which is the chance of death (failure) as a function of age. The hazard function or
the instantaneous failure rate has many types which appeared in practice such as unimodal
shaped; bathtub shaped and others. The main aim of this paper is to introduce a new
distribution with two parameters. The hazard function of this distribution can be constant,
unimodal (upside-down bathtub) or increasing-decreasing-increasing depending on the values
of its two parameters. The shapes of the hazard function of the new distribution enables it
to be a good model to fit various data sets.

The mixture distribution (Everitt (2013)) is one of the means can be utilized to
construct these new distributions. The finite mixture is formed as follow:

f(x) =
c∑

i=1
pifi(x)

where ∑c
i=1 pi = 1 with c = 2 in our distribution. Many Papers dealing with two mixture

models such as, Lindley (1958) introduced a one parameter distribution, now known as the
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Lindley distribution. Ghitany et al. (2008) studied its properties in details. Shanker and
Mishra (2013) added one extra parameter to Lindley distribution and introduced the quasi
Lindley distribution. They studied some of its properties. Sen et al. (2016) proposed and
studied another finite mixture distribution which is called the xgamma distribution.Sen and
Chandra (2017) added one extra parameter to the xgamma distribution and introduced
the quasi xgamma distribution. Moreover, many Papers dealing with three mixture models
such as, Sarhan et al. (2014) introduced two lifetime distributions. They referred to these
two distributions as N(β) and TN(α, β) respectively and they discussed some properties of
these two distribution such as the behavior of their hazard functions. Mahmoud et al. (2017)
introduced two distributions based on mixing between different types of distributions.

2. The gLinear failure rate distribution

Now, we introduce a mixture density of two mixture components, one follows gamma
(2, β) and the other follows linear failure rate (β, β2) with mixing weights β

α+β
and α

α+β
. The

pdf of the new mixture distribution will be as follows:

f(x) = β

α + β
(β2x + α(1 + βx)e− β2

2 x2)e−βx, x > 0, β, α > 0. (1)

We refer to this distribution as glfr (α, β). For α = 1, we have the following new distribution
as a special case

f(x) = β

1 + β
(β2x + (1 + βx)e− β2

2 x2)e−βx, x > 0, β > 0, (2)

which is a mixture of gamma (2, β) and the other follows linear failure rate (β, β2) with
mixing weights β

1+β
and 1

1+β
and we refer to this distribution as glfr (β). Figure (1) shows

pdf of the glfr distribution for different parameter values. The corresponding cdf of (2.1)
takes the following form

F (x) = 1
α + β

(β + α − e−βx(β(1 + βx) + αe− β2
2 x2)), x > 0, β, α > 0. (3)

Then the survival function is given by

S(x) = 1
α + β

(e−βx(β(1 + βx) + αe− β2
2 x2)), x > 0, β, α > 0, (4)

and the hazard function is given by

h(x) = β(β2x + α(1 + βx)e− β2
2 x2)

(β(1 + βx) + αe− β2
2 x2)

, x > 0, β, α > 0, (5)

One can note that h(x) is bounded, i.e. αβ
α+β

< h(x) < β. The hazard function of glfr
distribution is plotted in Figure (2) for four different pairs of choices of α and β.
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Figure 1: The gLinear failure rate pdfs for some parameter values

The moments and shape measures

Let X follow gLinear failure rate distribution. After some algebra, the rth moment of
X is derived as

E(Xr) = Γ(r + 2)
βr−1(α + β) + 2α

√
e

βr(α + β)

ˆ ∞

1/
√

2
t(

√
2t − 1)re−t2

dt (6)

Therefore, the expectation variance of the two parameter glfr distribution in terms of the
error function (erf) and its complementary (erfc) are given by

E(X) =
4β + α

√
2eπ(erfc( 1√

2))
2β(α + β) ,

and

V ar(X) =
6β + 2α − α

√
2eπ(erfc( 1√

2))
β2(α + β) − (

4β + α
√

2eπ(erfc( 1√
2))

2β(α + β) )2,

where, erfc(z) = 1 − erf(z) and erf(z) = 2√
π

´ z

0 e−t2
dt.

Also, one can use eq.(6) and the relation between the moments and the central moments to
obtain skewness and kurtosis.

The mean residual life

One of special relevance in reliability and survival analysis is the analysis of the
lifetime of a device after it has attained age x. Thus, if X is the lifetime with survival
function given by (4), the corresponding residual lifetime after age x is the random variable
Xx = (X − x|X > x) and the mean residual life of X is defined as m(x) = E(X − x|X > x).
It is also called the expected additional lifetime given that a component has survived until
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time t is a function of t

m(x) = E(X − x|X > x)

= 1
S(x)

ˆ ∞

x

S(t)dt

=
´∞

x
e−βt(β(1 + βt) + αe− β2

2 t2)dt

e−βx(β(1 + βx) + αe− β2
2 x2)

=
β(2 + βx)e−βx +

√
eπ
2 erfc(1+βx√

2 )

β(e−βx(β(1 + βx) + αe− β2
2 x2))

,

where, erfc(z) = 1 − erf(z) and erf(z) = 2√
π

´ z

0 e−t2
dt.
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Figure 2: The hazard rate function of the gLinear failure rate for some parameter
values

3. Maximum likelihood estimation (MLE)

For different statistical models, MLE is widely utilized to estimate the model param-
eters. Assume that n independent and identical items are put on a life test simultaneously.
The lifetimes of these items are assume to have follow glinear failure rate distribution. Let
x = (x1, x2, ..., xn) be the failure times of the items. The Likelihood function for α, β is given
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by
L(α, β; x) = βn

(α + β)n

n∏
i=1

(β2xi + α(1 + βxi)e− β2
2 x2

i )e−βxi (7)

The log-likelihood function is

L = L(α, β; x) = nlnβ − nln(α + β) − β
n∑

i=1
xi +

n∑
i=1

lnAi(α, β) (8)

where Ai(α, β) = β2xi + α(1 + βxi)e− β2
2 x2

i , i = 1, 2, ..., n.

Taking partial derivatives of the log-likelihood in (8) w.r.t. α and β, we have

Lα = − n

α + β
+

n∑
i=1

Ai,α(α, β)
Ai(α, β) (9)

Lβ = n

β
− n

α + β
−

n∑
i=1

xi +
n∑

i=1

Ai,β(α, β)
Ai(α, β) (10)

where

Ai,α(α, β) = ∂Ai(α, β)
∂α

= (1 + βxi)e− β2
2 x2

i ,

Ai,β(α, β) = ∂Ai(α, β)
∂β

= 2βxi + αxie
− β2

2 x2
i − αβ(1 + βxi)x2

i e
− β2

2 x2
i .

The second derivative of the log-likelihood are

Lα,α = n

(α + β)2 +
n∑

i=1

Ai(α, β)Ai,α2(α, β) − (Ai,α(α, β))2

(Ai(α, β))2

Lα,β = n

(α + β)2 +
n∑

i=1

Ai(α, β)Ai,αβ(α, β) − (Ai,α(α, β))(Ai,β(α, β))
(Ai(α, β))2 (11)

Lβ,β = − n

β2 + n

(α + β)2 +
n∑

i=1

Ai(α, β)Ai,β2(α, β) − (Ai,β(α, β))2

(Ai(α, β))2

where

Ai,α2(α, β) = 0,

Ai,αβ(α, β) = xie
− β2

2 x2
i (1 − βxi(1 + βxi)),

Ai,β2(α, β) = 2xi + αxie
− β2

2 x2
i (−βxi − 3βx2

i + β2x3
i (1 + βxi)).

To calculate the information matrix, the expectation of the following matrix is required

T (α, β) = −
[
Lα,α Lα,β

Lα,β Lβ,β

]

Equating the derivatives in (9) and (10) to zero and solving them numerically to obtain the
mle of α and β, say α̂ and β̂ such that T (α̂, β̂) is positive definite.
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For Interval estimation of (α, β), the mle of parameters α and β are asymptotically
normally distributed with means equal the true values of α and β and variances given by
the inverse of the observed information matrix,T (α̂, β̂), i.e.[

α̂

β̂

]
∼ N2

[[
α
β

]
, T̂ −1

]
(12)

where T̂ −1 is the inverse of T (α̂, β̂). Using (12), large sample (1−ν)100% confidence intervals
for α and β are α̂±zν/2

√
var(α̂), β̂ ±zν/2

√
var(β̂), where zν/2 is the upper 100ν/2 quantile

of the standard normal distribution and var(α̂) and var(β̂) are the main diagonal of T̂ −1.

4. Bayesian estimation

Let x1, x2, ..., xn be a random sample from glinear failure rate distribution. The
likelihood of this sample is given by (7). Let the two parameters α and β are independent
random variables with prior distributions gamma(a1, b1) and gamma(a2, b2), respectively.
That is, the joint prior density of α and β is

g0(α, β) ∝ αa1−1βa2−1e−b1α+−b2β, α, β > 0 (13)

where the hyperparameters ai and bi, i = 1, 2. are assumed to be positive and known. Using
the likelihood function (7) and the joint prior density function (13) and applying Bayes’
theorem, we get the joint posterior density function of (α, β), given the data, as

g(α, β|x) ∝ αa1−1βa2+n−1

(α + β)n
e−b1α+−b2β

n∏
i=1

(β2xi + α(1 + βxi)e− β2
2 x2

i )e−βxi , α, β > 0 (14)

Bayes estimators of the unknown parameters of any function of the unknown parameters,
say h(θ), can be obtained as follows

E(h(θ)|x) =
´∞

0

´∞
0 h(θ)g0(α, β)exp(L)dαdβ´∞

0

´∞
0 g0(α, β)exp(L)dαdβ

, (15)

Formula (15) involves a ratio of two multidimentional integrals and does not have analytical
solution. Thus, some approximation methods were suggested to approximate these integrals
and calculate the ratio of the integrals such as the methods discussed by Lindley (1958) and
Tierney and Kadane (1986) . These methods work well for low dimensions. In this paper
we will use Tierney and Kadane’s approximation method. They approximate (15) by using
Laplace method as follow

E(h(θ)|x) =
(

detΣ∗

detΣ

)1/2

exp(n(L(θ̂∗) − L(θ̂))) (16)

where nL(θ̂∗) = lnh + lng0 + L, nL(θ̂) = lng0 + L and Σ∗ and Σ are minus the inverse
Hessian of L(θ̂∗) and L(θ̂) evaluated at θ∗ and θ, respectively. For more details about
Laplace approximation see Crawford (1994) and Tierney et al. (1989).
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For many applications, Bayesian inference is performed using Markov Chain Monte
Carlo (MCMC), which estimates expectations w.r.t. g(θ|x) by sampling from it. One of
MCMC, Metropolis-Hastings (MH) algorithm, is proposed here. MH algorithm requires a
proposal distribution and a common choice of it is the multivariate normal distribution.
Metropolis-Hastings algorithm steps are

1. Specify the size of the random draws, say m.

2. Choose an initial value of θθθ, say θθθ(0).

3. For i = 1, 2, . . . , m, repeat the following steps:

(a) Set θ(i) = θ(i−1).
(b) Generate a candidate value θ∗ from a proposal distribution p(θ(∗)|θ(i)).

(c) Compute the ratio κ = min(1, g(θθθ(∗)|data)/p(θθθ(∗)|θθθ(i)

g(θθθ(i)|data)/p(θθθ(i)|θθθ(∗))).

(d) Generate a random value u from uniform distribution on (0, 1).
(e) Put θθθ(i) = θθθ∗, ifκ ≥ u, otherwise put θ(i) = θ(i−1).

4. Return the values θθθ(0), θθθ(1), . . . , θθθ(m).

For more details about MH algorithm see Puza (2015). For other applications where θ
is high dimensional or fast computation is of primary interest, variational Bayesian (VB)
is an attractive alternative to MCMC. Yamaguchi et al. (2010) developed a VB approach
for approximately computing posterior distributions of parameters of mixture of Erlang
distribution and they investigated that computation speed of the VB becomes up to 200
times faster than that of MCMC. VB approximates the posterior distribution by a probability
distribution with density q(θ) belonging to some tractable family of distributions Q such as
Gaussians. The VB method treats an optimization to minimize the Kullback–Leibler (KL)
divergence from an approximate posterior distribution to the exact posterior distribution,
i.e. The best VB approximation q∗ ∈ Q is

q∗ = argmin
q∈Q

{
KL(q||g(., x)) :=

ˆ
q(θ)log

q(θ)
g(θ|x)dθ

}
.

5. Simulation study

A simulation study was carried out to investigate the performance of the accuracy
of point and interval estimates of the two parameters of the glfr(α, β) distribution. The
following steps are carried out:

1. Specify the values of the parameters α and β.

2. Specify the sample size n.

3. Generate a random sample (x1, x2, x3, ..., xn) with size n from glfr(α, β) distribution
using the following algorithm:
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• Generate U ∼ uniform(0, 1) with size n.
• Generate V ∼ gamma (2, β) with size n.
• Generate W ∼ linear failure rate (β, β2) with size n.
• If u ≤ β/(α + β) set x = u, otherwise set u = w

4. Calculate the mle of the two parameters.

5. Repeat steps 2-4, N times.

6. Calculate the mean squared error (MSE), the average of the confidence interval widths,
and the coverage probability for each parameter. The MSE associated with the MLE
of the parameter θ, MSEθ, is

MSEθ = 1
N

N∑
i=1

(θ̂ − θ)2,

where θ̂ is the MLE of θ. Coverage probability is the proportion of the N simulated
confidence intervals which include the true parameter θ.

The simulation study is carried out using N = 1000. The sample sizes are 50, 75, 100, 150
and 200 and the selected parameter values are (α, β)= (0.8, 0.8), (0.8, 1.0), (1.0, 1.0), (1.0,
1.2), (1.2, 1.2) and (1.6, 2.5). Table 1 presents the MSE, coverage probability (CPθ) and
average width (AWθ) of 95% confidence intervals of each parameter. This table shows that
,in the most cases, the MSEs and the average widths decrease as the sample size increases
and the coverage probability are close to the nominal level of 95%.

6. Applications

In this section, to illustrate the applicability of the two new distributions proposed
in this paper, we analyze three data sets. The first data set represents the remission times
(in months) of a random sample of 128 bladder cancer patients. Bladder cancer is a disease
in which abnormal cells multiply without control in the bladder. The most common type
of bladder cancer recapitulates the normal histology of the urothelium and is known as
transitional cell carcinoma.This data were studied by Zea et al. (2012).The second data
represents a complete data with the exact times of failure. This data is considered a data
set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure
at the 90% stress level until all had failed. This data is considered by Ogunde et al. (2017).
The three data set is provided in Murthy et al. (2004), page 278, about time between failures
for repairable item.

We will refer to these data sets as data set 1, data set 2 and data set 3, respectively.
For each data set, we fit the proposed distributions and other distributions such as the quasi
xgamma (qxgamma), xgamma, quasi Lindley (qLinley), Lindley, linear failure rate (lfr) and
gamma distributions. Goodness-of-fit tests are applied to verify which distribution better
fits these data sets. The tests were carried out at 5% level of significance. We consider
the common-known Kolmogorov-Smirnov (K-S) statistic, the Anderson-Darling (A-D), and
Cramér-von Mises (C-M) statistics. Moreover, we consider some well-known measures such
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as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the
consistent Akaike information criterion (CAIC) and the Hannan-Quinn information criterion
(HQIC). These criterions are defined by:

AIC = −2L(θ̂θθ) + 2p;
BIC = −2L(θ̂θθ) + plog(n);

CAIC = −2L(θ̂θθ) + 2pn

n − p − 1;

HQIC = −2L(θ̂θθ) + 2log(log(n)).

where L(θ̂θθ) denotes the log-likelihood function evaluated at the maximum likelihood esti-
mates for parameters θθθ, p is the number of parameters and n is the sample size.Table 2 shows
the MLE of the parameters of each model, the corresponding maximum log-likelihood value,
the AIC, BIC, CAIC and HQIC for the three data sets. Table 3 presents the values of the
statistics K-S, (A-D) (A*) and C-M (W*) for the three data sets using each model. The
required numerical evaluations are carried out using R software.

For the first two data sets, glfr model has the smallest value of the Kolmogorov-
Smirnov (largest P value), Anderson-Darling and the Cramér-von Mises gooness-of-fit tests
statistics which indicate that the best fit is provided by glfr model for these data sets. For
the third data set, gamma model is a better fit than glfr (α, β) model, see Table 3

Figure 3: The histogram for the three data sets and fitted pdf of the gLinear
failure rate distribution



202 R.M. MANDOUH [Vol. 21, No. 2

Figure 4: The empirical cdf for the three data sets and fitted cdf of the gLinear
failure rate distribution

Figure 5: The TTT for the three data sets
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From the results in Table 2, one can note that the values of AIC, BIC, CAIC and
HQIC are smaller for the glfr distribution compared with those values of the other models,
so the new distribution seems to be a very competitive model to the the first two data sets.
For the third data set, gamma model has smaller values than glfr model.

Also, we plotted the scaled total time on test transform (TTT) which can help for
selecting a model. The empirical scaled TTT transform (Aarset (1987)) can be used to
identify the shape of the hazard function. As displayed in Figure 5 The TTT plot shows
that the data set 1 has a unimodel hazard, while the rest of data sets have increasing hazards.

For Bayesian computations, we concern with three approaches; the Laplace approxi-
mation, MCMC and variational Bayes (VB). We obtain the approximate Bayes estimates of
the two unknown parameters of the glfr distribution based on real data sets and simulated
samples with true values α = 1.2, β = 1.2. R package is used to compute these estimates.
Using the first two data sets and gamma priors with different values of hyper parameters
((ai, bi) = (1, 0.001) and (0.001, 0.001), i = 1, 2), the Laplace approximation, MCMC and
variational Bayes are carried out and the results are shown in Tables 4-5. From these tables,
one can note that the results are close for each other and for simulated data, the results get
closer to the true values as the sample size increases. Also, the results are close to each other
for different hyper parameters and Tables 4-5 display the results in the case of the gamma
priors with (a1, b1) = (1, 0.001). For MCMC, Figures 6- 7 show the trace, the approximated
posterior density functions and autocorrelation plots of the two parameters of the glfr dis-
tribution. These Figures show that as the sample size increases, the chains look stationary,
the kernel densities look Gaussian, and the ACF’s or autocorrelation function plot show low
autocorrelation.

7. Conclusion

A new mixture distribution named glinear failure rate distribution (glfr) is proposed
in this paper. The glfr is a mixture of gamma and failure rate distributions. Based on
some goodness of fit tests and some criteria for choosing the best fit among several, it is
observed that the glfr gives a better fit than some common distributions. The maximum
likelihood and Bayesian methods are applied to estimate the two unknown parameters of
the glfr distribution. For Bayesian method, we used Laplace approximation, MCMC and
Variational Bayes and the results are close to each other and for simulated data, the results
get closer to the true values as the sample size increases.
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Figure 6: The trace, the approximated posterior density functions and autocor-
relation plots of the two parameters for the simulated data

Figure 7: The trace, the approximated posterior density functions and autocor-
relation plots of the two parameters for the two data sets
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ANNEXURE
Table 1: MSE, coverage probability (CP) and average width (AW)

α β n MSEα MSEβ CPα% AWα CPβ% AWβ

0.8 0.8 50 0.8392 3.5144 99.5 3.2434 99.5 13.7551
75 0.4296 2.5246 99.6 1.6422 99.7 9.8887
100 0.3147 1.5077 98.9 1.1966 99.9 5.9097
150 0.2112 0.1055 93.1 0.7744 94.7 0.3997
200 0.1907 0.0972 93.1 0.6707 93.6 0.3628

0.8 1.0 50 0.5761 2.0099 99.5 2.2118 99.8 7.8758
75 0.9416 1.3697 99.9 3.6092 99.9 5.3624
100 0.3623 0.1921 90.4 1.2151 91.1 0.6762
150 0.3131 0.1643 86.5 0.9748 90.8 0.5614
200 0.2879 0.1544 88.1 0.8692 89.8 0.5184

1.0 1.0 50 2.5306 7.2913 98.8 9.8568 98.5 28.4180
75 1.2069 4.7571 99.3 4.6747 99.3 18.5986
100 0.7010 3.5606 99.6 2.7089 99.6 13.9390
150 0.2758 0.1388 94.2 1.0408 95.8 0.5321
200 0.2635 0.1197 93.7 0.9921 95.3 0.4594

1.0 1.2 50 2.26458 7.1844 99.5 8.8561 99.5 28.1341
75 0.5315 3.0952 99.4 2.0152 99.8 12.1331
100 0.3748 2.0887 93.4 1.3431 99.9 8.1863
150 0.3503 0.1840 89.5 1.1865 92.9 0.6266
200 0.3500 0.1709 89.6 1.1591 91.1 0.5976

1.2 1.2 50 1.8795 5.0542 99.6 7.2992 99.6 19.7939
75 0.6501 2.8649 99.8 2.472 99.8 11.2279
100 0.3362 0.1913 90.5 1.2115 94.8 0.7192
150 0.3096 0.1483 92.3 1.1403 94.3 0.5555
200 0.2896 0.1416 92.5 1.0543 93.9 0.5360

1.6 2.5 50 1.4358 0.8157 83.1 4.0621 87.0 2.5023
75 1.4005 0.7625 76.4 3.3660 94.2 2.5460
100 1.5233 0.5758 73.0 3.5535 89.8 1.8990
150 1.3813 0.4837 61.7 2.7944 89.1 1.5026
200 1.2944 0.4622 55.0 2.4079 85.8 1.3990
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Table 2: The MLEs and some measures for the fitted models

Data set Model Parameter Estimates l(θ̂θθ) AIC BIC CAIC HQIC
Data 1 glfr(α, β) α̂ = 0.1911 and β̂ = 0.1342 -411.8 827.6 833.3 827.7 830

glfr(β) β̂ = 0.0888 -412.6 827.2 830.0 827.2 828.3
qxgamma α̂ = 2.8289 and β̂ = 0.1655 -416.9 837.9 843.6 838.0 840.2
xgamma β̂ = 0.2689 -429.4 860.7 863.6 863.8 861.9
qLindley α̂ = 2.5292 and β̂ = 0.1381 -414.9 833.7 839.4 833.8 836.1
Lindley β̂ = 0.1960 -419.5 841.1 843.9 841.1 842.2
lfr β̂ = 0.0608 -427.2 856.6 859.3 856.5 857.6
gamma β̂ = 0.2135 -426.8 855.6 858.4 855.6 856.8

Data 2 glfr(α, β) α̂ = 0.2086 and β̂ = 0.9439 -122.2 248.4 253.1 248.6 250.3
glfr(β) β̂ = 0.5537 -124.0 250.0 252.4 250.1 251
qxgamma α̂ = 0.2009 and β̂ = 1.3561 -122.5 249.0 253.6 249.1 250.8
xgamma β̂ = 1.0330 -126.3 254.7 257.0 254.7 255.6
qLindley α̂ = 0.2947 and β̂ = 0.8823 -122.0 248.0 252.7 248.2 249.9
Lindley β̂ = 0.7948 -123.7 249.4 251.7 294.4 250.3
lfr β̂ = 0.3329 -124.5 251.0 253.3 251.0 251.9
gamma β̂ = 1.0210 -123.2 248.4 250.7 248.4 249.3

Data 3 glfr(α, β) α̂ = 0.1394 and β̂ = 1.3079 -39.70 83.40 86.10 83.84 84.30
glfr(β) β̂ = 0.8413 -41.25 84.50 85.90 84.64 84.94
qxgamma α̂ = 0.1599 and β̂ = 1.156 -40.52 85.04 87.84 85.48 85.94
xgamma β̂ = 1.2690 -42.14 86.28 87.69 86.42 86.73
qLindley α̂ = 0.4026 and β̂ = 1.2962 -40.59 85.18 87.98 85.62 86.07
Lindley β̂ = 0.9947 -41.09 84.18 85.59 84.33 84.63
lfr β̂ = 0.4408 -40.73 83.46 84.86 83.60 83.91
gamma β̂ = 1.3250 -39.52 81.04 82.44 81.19 81.49
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Table 3: Statistics K-S (P value), A* and W* for the three data sets

Data set Model K-S (P value) A* W*
Data 1 glfr(α, β) 0.059 (0.800) 0.3835 0.0607

glfr(β) 0.055 (0.800) 0.6957 0.1236
qxgamma 0.100 (0.100) 1.0160 0.1687
xgamma 0.160(0.003) 2.2250 0.3787
qLindley 0.074 (0.500) 0.9005 0.1510
Lindley 0.120 (0.060) 1.0260 0.1717
lfr 0.180 (6e-04) 2.2630 0.3849
gamma 0.140 (0.010) 0.7260 0.1211

Data 2 glfr(α, β) 0.091 (0.500) 0.6425 0.1102
glfr(β) 0.130 (0.200) 0.4919 0.8261
qxgamma 0.110 (0.300) 0.7579 0.1266
xgamma 0.150 (0.070) 0.9901 0.1698
qLindley 0.120 (0.200) 0.6356 0.1082
Lindley 0.120 (0.200) 0.6907 0.1173
lfr 0.130 (0.200) 1.0470 0.1807
gamma 0.098 (0.400) 0.7005 0.1182

Data 3 glfr(α, β) 0.099 (0.900) 0.1520 0.0200
glfr(β) 0.130 (0.700) 0.1328 0.0188
qxgamma 0.120 (0.800) 0.2934 0.0401
xgamma 0.160 (0.400) 0.2481 0.03293
qLindley 0.120 (0.800) 0.1930 0.0258
Lindley 0.130 (0.700) 0.1843 0.2436
lfr 0.110 (0.900) 0.3036 0.0465
gamma 0.095 (0.900) 0.1496 0.0195
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Table 4: Summary results for the posterior parameters in the case of the glfr
distribution based on real data sets

Laplace Approximation
Data set Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

Data 1 α 0.3471 0.1829 0.0000 0.7128 0.00
β 0.1061 0.0172 0.0718 0.1404

Data 2 α 0.1157 0.1063 0.0000 0.3282 0.00
β 0.9410 0.1049 0.7312 1.1509

MCMC
Data set Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

Data 1 α 0.5968 0.5940 0.1383 2.1327 0.09
β 0.10478 0.0186 0.0784 0.1475

Data 2 α 56.4094 65.2242 0.0934 230.0292 0.07
β 0.4108 0.1615 0.2878 0.9777

Variational Bayesian
Data set Parameter Estimate: Mean Standard Deviation LB UB Minutes

of run-
time

Data 1 α 0.4631 0.0996 0.2639 0.6622 0.02
β 0.1028 0.0114 0.0799 0.1257

Data 2 α 0.1763 0.9364 0.0000 0.3636 0.02
β 0.9162 0.1047 0.7068 1.1255
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Table 5: Summary results for the posterior parameters in the case of the glfr
distribution based on simulated samples with true values α = 1.2, β = 1.2

Laplace Approximation
Samples Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

n=300 α 1.2886 0.3798 0.6621 2.1081 0.00
β 1.2314 0.1419 0.9973 1.5034

n=500 α 1.2361 0.2786 0.6789 1.7934 0.00
β 1.1732 0.1003 0.9726 1.3738

n=1000 α 1.1895 0.1850 0.8196 1.5595 0.01
β 1.2200 0.0742 1.0792 1.3608

MCMC
Samples Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

n=300 α 2.3272 3.2792 0.6940 12.1946 0.12
β 1.1551 0.2263 0.6647 1.4986

n=500 α 1.4436 0.4626 0.8844 2.6375 0.16
β 1.1368 0.1152 0.8791 1.3386

n=1000 α 1.2741 0.2175 0.9189 1.7781 0.26
β 1.9835 0.0740 1.0441 1.3348

Variational Bayesian
Samples Parameter Estimate: Mean Standard Deviation LB UB Minutes

of run-
time

n=300 α 1.3167 0.3329 0.6508 1.9826 0.02
β 1.2242 0.13173 0.9607 1.4876

n=500 α 1.3633 0.2822 0.7990 1.9276 0.04
β 1.1455 0.0983 0.9490 1.3420

n=1000 α 1.2414 0.1901 0.8613 1.6215 0.07
β 1.2086 0.0703 1.0680 1.3492
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Abstract
Products or systems with high reliability and durability require more time for in-

spection as it is difficult to detect failures under normal operating conditions. In literature,
accelerated life testing methods are discussed to accelerate the decision, in which products
are tested under severe than normal stress conditions with failure mechanisms similar to the
one observed in the field. The most commonly applied stressis constant stress. We propose
life test sampling plans for establishing a quantile life for the Weibull distribution under a
constant acceleration factor. As the accelerated life test plans require more sample size than
those without acceleration, the previous history has been used as per EWMA and Modified
EWMA schemes to make them somewhat economical. Tables of optimal design parameters
are presented for three different acceleration constants for establishing a Weibull median life.
Published real-life data sets are used to demonstrate the proposed life test sampling plans.

Key words: Acceleration Factor; Quantile; Weibull Distribution; EWMA; Modified EWMA.
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1. Introduction

The era of a competitive market with rapid developments in technology motivates
manufacturers to supply products with high durability and reliability. To achieve this di-
mension of quality, in literature, online, and offline product control techniques are discussed
in which the acceptance sampling or product control is an offline technique for deciding to
accept or reject a lot through sample inspection before sending them to market.The most
popular acceptance sampling plan is the single sampling plan in which a random sample
of size (n) is taken from a lot of size (N) and number of defectives (d) are observed, and
the decision to accept the lot if d ≤ c (acceptance number) otherwise reject the lot. The
concept and usage of acceptance sampling were first narrated by Dodge and Romig (1941)
for inspecting bullets.
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The acceptance sampling plans are developed based on life tests known as life test
sampling plans (LSP). To reduce the cost of testing, a sample of products is put on life test
for a time smaller than the specified mean or quantile life, when the mean or quantile life of
products exceeds the specified mean or quantile life, the lot of products under inspection is
accepted otherwise it is rejected. Several authors have given LSPs which are based on mean
lifetimes, to mention are Epstein (1954) gave those for the exponential distribution, Goode
and Kao (1960 and 1961) for Weibull distribution, Baklizi and Masri (2004) for Birnbaum
Model, Rosaiah and Kantam (2005) for inverse Rayleigh distribution, Tsai and Wu (2006)
for Generalized Rayleigh distribution, and, Khan and Alqarni (2020) for inverse Weibull
distribution.

Engineers focus more on the product’s percentile life during life testing applications
than its mean life. The reason is that the mean may not be an appropriate measurement
when one perceives a product’s quality to be in the low percentile. A small decrease in mean
with a simultaneous small increase in variance can result in a downward shift in small per-
centiles of interest. Gupta (1962), Balakrishnan et al. (2007), Singh et al. (2015)and Singh
and Tripathi (2017) gave time-truncated attribute LSPs for Normal and Log-Normal, gener-
alized Birnbaum-Saunders distribution, generalized inverted exponential distribution, inverse
Weibull distribution respectively for median lifetimes. Lio et al. (2009), Rao and Kantam
(2010), Aslam et al. (2011), Rao et al. (2012), Rao et al. (2013), Rao and Rao (2013), Rao
(2013), Malathi and Muthulakshmi (2016), Kaviyarasu and Fawaz (2017), Pradeepaveeraku-
mari and Ponneeswari (2017) and Raykundaliya et al. (2022) developed LSPs assuring per-
centile lifetime of a product when life time distribution are respectively Birnbaum-Saunders,
Log-logistic Burr type XII, inverse Rayleigh distribution, Half Normal, generalized Logistic,
Marshall-Olkin extended exponential, Gompertz, Modified Weibull, Exponential Rayleigh,
and Weibull.

In a competitive environment, to maintain a brand name, one needs to produce
products of high reliability and durability. Such products not only require more time for
inspection but also fail to detect failures under normal operating conditions. Industries of
the above nature require a mechanism that reduces the time required for testing. Acceler-
ated testing reduces testing time and helps to draw quick inferences about the product being
tested, that is products under inspection are subjected to higher than usual stress. Nelson
(1990) gave the basic idea of accelerated life testing and graphical analysis to estimate prod-
uct life. Lin and Chiu (1995) constructed a cost model for an accelerated life test sampling
plan. Escobar and Meeker (2006) have outlined some of the basic ideas behind accelerated
testing. Xiaoyang et al. (2015) developed accelerated life testing plans considering lognormal
distribution. Aslam et al (2019) gave accelerated LSPs by studying the mean life of Weibull
distribution.

The scale family of distributions plays a very important role in lifetime data analy-
sis. Among them the Weibull distribution is widely used in reliability studies because of its
flexibility to take various shapes and, IFR - DFR properties. It is popular in warranty anal-
ysis, utility services, and industries manufacturing bearings, capacitors, because lifetimes
under accelerated testing continue to follow the Weibull distribution with nearly the same
shape parameter. This makes development of accelerated LSPs for assuring a specified life
of Weibull distribution mathematically tractable. However, the accelerated LSPs require a
higher sample size than the usual LSPs because of collecting only restricted lifetime data.
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The sample size can be reduced by considering weighted average of the current lot informa-
tion with the past lot information (see Aslam et al., 2017). Using this approach, Divecha and
Raykundaliya (2020) have designed LSPs as per EWMA and Modified EWMA, and showed
that they are more economical than those developed based on only current lot information.
In this paper, we propose LSPs for assuring quantile Weibull lifetime under constant accel-
eration using EWMA and Modified EWMA for early decision with lesser sample size. The
organization of the paper is as follows:

In Section 2, we briefly discuss the Weibull distribution in the context of the newer
term, constant acceleration factor (AF). In Section 3, we discuss the proposed LSPs for
the Weibull distribution with acceleration (WDwALSP) followed by economical WDwALSP
based on the EWMA and Modified EWMA.In Section 4, we illustrate the LSPs and give
hypothetical example. In Section 5, we give two real-life examples to demonstrate the use
of proposed plans and compared them with LSPs without acceleration. Concluding remarks
are given in Section 6.

2. Weibull distribution and probability of failure under accelerated quantile
life ratio

The cumulative distribution function of the Weibull distribution is defined by

F (t) = 1 − e−(σt)θ ; t > 0, σ > 0, θ > 0, (1)

where θ and σ are respectively shape and scale parameters of the distribution.

Let tU denotes lifetime of a product under normal conditions following Weibull dis-
tribution with CDF,

F (tU) = 1 − e−(σU tU )θ

. (2)

It’s 100qth quantile life time is tqU = (− log(1−q))
1
θ

σU
= b

σU
, where b = (−log(1 − q)) 1

θ .

Therefore,
σU = b

tqU

. (3)

Let tA be the lifetime of a product under constant stress (acceleration) having Weibull
distribution with CDF,

F (tA) = 1 − e−(σAtA)θ with σA = b

tqA

. (4)

It’s 100qth quantile life is tqA = b(AF )
σA

, where, AF = tU

tA
,

implies
tA = tU

AF
(5)

and
σA

σU

= (AF )tqU

tqA

(6)

Let σA

σU

= RAR (ratio of acceleration rate, RAR > AF ) (7)



214 D. P. RAYKUDALIYA, SANJAY CHRISTIAN AND JYOTI DIVECHA [Vol. 21, No. 2

Let, τA = tU0
AF

, where tU0 is truncation time under normal conditions defined as tU0 = δ0t
0
qU ,

0 < δ0 < 1 is a constant called termination ratio, and tqA

t0
qA

, is the ratio of true quantile lifetime

to the specified quantile lifetime representingthe quality of a lot. Using (6), τA =
δ0

(
σA
σU

1
AF

t0
qA

)
AF

for which the CDFin terms of AF and RAR, using (4) and (7) is,

F (τA) = 1 − e
−

(
(b)θ(δ0)θ(RAR)θ( 1

AF )θ

(
tqA

t0
qA

)−θ
)

(8)

The specified accelerated quantile life t0
qA, lot quality ratio

(
tqA

t0
qA

)
(> 1), accelerated test

termination time truncation ratio δ0 (< 1), AF (> 1), and RAR (> AF) are decided by the
producer.

Further, we know that H0: tqU ≥ t0
qU Vs H1: tqU < t0

qU and H0: tqA ≥ t0
qA Vs H1: tqA < t0

qA

are equivalent and let truncated time for acceleratedlife tests as τA.

3. Procedure of LSPs for the Weibull distribution with acceleration (WD-
wALSP)

Suppose that producer submit a lot of units for accelerated testing, whose lifetimes
follow the Weibull (θ, σ) and claims that the true quantile life tqA of the lot is better than
the specified qaunitle life t0

qA. To support producer’s claim, we propose the design of a time
truncated LSPs based on accelerated quantile lifetime, with following procedure:

Step1: Suppose ‘n’ items from a lot are taken and put on life test until accelerated test
time τA and observe lifetimes Xj (j = 1, 2, . . . , n).

Step 2: Define an indicator variable say, Ij;(j = 1, 2, . . . , n)

Ij =
{

1, if 0 < Xj ≤ τA, j = 1, 2, . . . , n

0, Otherwise
(9)

Let ‘d’ denote failed items during test time (0, τA]. Define d = ∑n
j=1 Ij.

Step 3: If d ≤ c, accept the lot, otherwise reject the lot.

While inspecting items with acceleration during the time interval (0, τA], the sample under
study may fail with probability p where p = F (τA), given by (8), and the count of failed
items‘d’ follows the binomial distribution having parameters n and p, with mean np and
variance np(1 − p). A lot must be accepted if the data support the null hypothesis H0 :
tqA ≥ t0

qA against the alternative hypothesis H1 : tqA < t0
qA satisfying both producer’s and

consumer’s requirements.

The design parameters (n, c) are to be obtained by solving the following two inequal-
ities simultaneously.

L(p1) =
c∑

d=0

(
n
d

)
pd

1(1 − p1)n−d ≥ 1 − α

L(p2) =
c∑

d=0

(
n
d

)
pd

2(1 − p2)n−d ≤ β

(10)
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where, p1 = F (τA) at tqA

t0
qA

> 1 and p2 = F (τA) at tqA

t0
qA

= 1 denotes the probability of failure
for a good lot and for a poor lot during the time (0, τA].

Under normal approximation, binomial probabilities given in equation (10) represent-
ing producer’s and consumer’s requirements are given in terms of standard normal distribu-
tions Φ as

Φ
(

c−np1√
np1(1−p1)

)
≥ 1 − α

Φ
(

c−np2√
np2(1−p2)

)
≤ β

(11)

The normal approximation to the binomial is known to be satisfactory for pa approximately
1
2 and n > 10. In general, if 1

n+1 < pA < n
n+1 then the normal approximation is adequate. In

numerical form, if npA > 10 and 0.1 ≤ pA ≤ 0.9 then normal approximation is appropriate
to the binomial distribution. Referto Montgomery (2001) (Page no. 76-77).

3.1. WDwALSP using EWMA

Accelerated LSP almost requires more than double the sample size, thereby increas-
ing the cost of inspection, than those by the standard LSP that is without accelerated tests.
Therefore, there has to be a procedure by which it can be brought down to the sample
size of the standard LSPs. Use of EWMA statistics to summarize the previous lot inspec-
tion number of failures with the current one brings down the sample size effectively for
Weibull (Aslam, 2017), and Generalized Exponential distributions (Divecha and Raykun-
daliya, 2018). Therefore, if an industry maintains a database of inspection history of lots,
step3 in section 3 would be as follows.

Step 3: Calculate the EWMA statistic of Roberts (1959), based on dl for l = 1, 2, . . .

EWMAl = λdl + (1 − λ)EWMAl−1; EWMA1 = d1 (12)

where 0 < λ < 1, λ is a smoothing constant chosen because. if λ = 0.6 means the weight
attached to the current sample is 0.6 and the weights attached to the past sample is 0.4, the
current number of failures will be affected not by more than the previous 5 lot information.

Then, Accept the lot if EWMAl ≤ c, otherwise, reject the lot.

Following Montgomery (2001) the mean and variance of EWMA statistic are given
by,

µEW MA = np

and
σ2

EW MA = np(1 − p)
(

λ

2 − λ

)
(13)

Therefore, the WDwALSP-based EWMA design consists of estimating (n, c), subject to the
producer’s and consumer’s requirements in terms of probabilities of accepting the lot as those
given in (10) are

L(p1) = P (EWMAl ≤ c)
L(p2) = P (EWMAl ≤ c) (14)
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After normalization and using (13), (14) becomes,

L(p) = Φ
(

c − µEW MA

σEW MA

)
(15)

with p = p1 and p2 appropriately.

The probability of accepting a good and poor lot using (15) are

L(p1) = Φ
 c−np1√

np1(1−p1)( λ
2−λ)

 ≥ 1 − α

L(p2) = Φ
 c−np2√

np2(1−p2)( λ
2−λ)

 ≤ 1 − β

(16)

This pair of equations is used to determine the WDwALSP parameters under EWMA.

3.2. WDwALSP using modified EWMA

A further reduction in sample size for WDwALSP is possible by using Modified
EWMA (Khan et al., 2016) as shown in Divecha and Raykundaliya (2020) as the Modi-
fied EWMA statistic has a variance smaller than that of EWMA.

Step 3 in Section 3 is taken as follows.

Step 3: Calculate Modified EWMA statistic

MEWMAl = λ/2(dl + dl−1) + (1 − λ)MEWMAl−1; MEWMA1 = d1 (17)

where, 0 < λ < 1; l > 1, λ is a smoothing constant chosen just as in the EWMA scheme.

If MEWMAl ≤ c, Accept the lot, otherwise, reject the lot.

The mean and variance of Modified EWMA statistic are µMEW MA = np

and

σ2
MEW MA = np(1 − p)

(
λ

2

)
(18)

Similar to Section 3.1, the probabilities of accepting a good and poor lot are

L(p1) = Φ
 c−np1√

np1(1−p1)(λ
2 )

 ≥ 1 − α

L(p2) = Φ
 c−np2√

np2(1−p2)(λ
2 )

 ≤ β

(19)

This pair of equations is used to determine the WDwALSP parameters under modified
EWMA.
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4. Constructions of tables of proposed LSP

Tables 2 – 4 of WDwALSP are constructed by satisfying (11) to establish the 50th

quantile life with fixed Producer’s risk α = 0.05, consumer’s risks (β = 0.25, 0.10, 0.05, 0.01),
shape parameters (θ = 1.5, 2.0, 2.5), quality levels

(
tqA

t0
qA

= 1.25, 1.50, 1.75, 2.00, 2.25
)

, termi-
nation ratios (δ0 = 0.6, 0.8), acceleration factors (AF=1.5,2.0,2.5) and the ratio of accelera-
tion rate(RAR=2.0,2.5,3.0).

Tables 5 – 13 of WDwALSP using EWMA and Tables 14 – 22 of WDwALSP using
Modified EWMA are obtained by satisfying equations (16) and (19) with the above parame-
ters and smoothing constant (λ = 0.2, 0.4, 0.6, 0.8, 1.0) as per EWMA and Modified EWMA
statistic. All tables are constructed using R 3.6 language.

From all of the constructed tables, the following observations are made:

1. Keeping fixed producer risk, with the increase in termination ratio (that is increase
the truncation time), quality level (that is true process quantile lifetime is much higher
than specified quantile lifetime), consumer risk, shape parameter (that is probability
of failure of a product is increased) as a result there is a decrease in sample size and
acceptance number.

2. With the increase in the smoothing constant, there is an increase in sample size and
acceptance number. It means, if information about the quality history of a lot is less
to the producer, for testing of a lot, higher sample size is required, and hence cost of
inspection of a lot is increased.

Among the comparison of all constructed tables of WDwALSP, WDwALSP with
EWMA, and WDwALSPwithModified EWMA lesser sample sizes are required under the
last type.

Usually,the question arises in our mind what should be sample size required for in-
spection when acceleration is given and not given? Which of the LSPs is better? To address
these questions, we give tables for optimal design parameters for LSP for Weibull distribution
(WDLSP) and LSP for Weibull distribution with acceleration (WDwALSP) with EWMA
and modified EWMA respectively in tables 23 - 25 and 2 - 4 for different shape parame-
ters and different process parameters. The Tables 23 - 25 obtains using (11), (16) and (19)
after substituting AF=1 and RAR=1 in (8). From both plans’ tables, we observed that
somewhat higher sample size is required for the inspection of a lot in WDwALSP compared
to WDLSP.Lin and Chiu (1995) showed in their paper using an example that, accelerated
plans required a higher sample size in comparison to the plans without acceleration. They
also showed that the overall cost of the experiment and time of experiments are reduced
compared to plans without acceleration. From Tables (2-4), it is observed that the WD-
wALSP with EWMA or modified EWMA requires a moderately lesser sample size than the
WDLSP. Hence under acceleration, plans with EWMA or modified EWMA are economical
and preferable provided inspection histories of lots are available.
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5. Illustration

We use two data sets, Lawless (1982, Page 228) ball bearing data and Murthy et al.
(2004) repairable item data to illustrate WDwALSP introduced in this paper.

5.1. Lawless dataset

A million revolutions before failure for each of the 23 ball bearings tested
were as follows.

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80,
68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

The maximum likelihood estimators of shape and scale parameters of the well-fitted
Weibull distribution (AIC = 231.37, KS-test D = 0.1502(p = 0.62)) for the number of
million revolutions before failure were respectively,2.1014 (considered as 2) and 0.0122.

5.1.1. WDLSP

We illustrate the proposed LSP with and without acceleration using the ball bearing
data. We estimate the 50th quantile of lifetimes, which is 67.80. Suppose producer and
consumer with specified risks (0.05, 0.1) agrees to accept the lot if the true median life is
1.75 times better than the specified median life, which would be 38.75. Further, they agree
on test termination time to be 0.8 of the specified median time, which results in 31. The LSP
design parameters for this set of constants are read from the Table 23. So, the parameters
(n, c) of chosen LSP is (12,2). During this test time, the total number of failed items in the
given sample is 2, which is equal to the acceptance number hence, the lot is accepted.

5.1.2. WDLSP with EWMA and modified EWMA

When the previous history of lot inspection is available, the user can take advantage
and inspect the lot with lesser items on the test.

Since the history of data is not available, we have generated four samples (using R
Language) of size 6 having shape parameter θ̂ = 2.1014 and σ̂ = 0.0122

Under the same set of constants as above the parameter of WDLSP with EWMA
from Table 24 are (n = 6, c = 1), requiring only 6 items to be tested instead of 10 items. To
illustrate this, we suppose the lifetimes of previous lot inspections are not available, hence
we simulate four samples of Weibull distributed lifetimes having shape parameter 2 and scale
parameter 0.01 each of size 6, which are:

41.69, 59.15, 39.53, 15.26, 52.65, 23.28
124.89, 42.78, 44.61, 24.58, 139.28, 55.40
139.65, 17.83, 87.01, 88.02, 23.83, 26.95
78.04, 32.49, 81.28, 11.78, 51.21, 58.62

Real-life data: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60

Their inspection results in the number of failures as d1 = 2, d2 = 1, d3 = 3, d4 = 1,
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d5 = 2. As per (12), the corresponding EWMA statistics values are EW MA1 = 2,
EW MA2 = 1.40, EW MA3 = 2.36, EW MA4 = 1.54, and EW MA5 = 1.81,
respectively. Since EW MA5 > 1, the decision would bea current lot is rejected. Notice
that, a bad history may change the decision.

Modified EWMA statistic uses the historical information slightly differently and may
further reduce the sample size needed to establish the quality and decision about a lot.
Observe that under the same set of constants as above the parameter of WDLSP with
Modified EWMA from Table 25 are (n = 5, c = 1), less by one more item than needed by
WDLSP under EWMA. The number of failures as d1 = 1, d2 = 1, d3 = 2, d4 = 1, d5 = 2
As far as the decision process is concerned, we calculate as per (17) the Modified EWMA
statistics and find them as MEW MA1 = 1, MEW MA2 = 1, MEW MA3 = 1.3,
MEW MA4 = 1.42, and MEW MA5 = 1.468, respectively. Since MEW MA5 =
1.468 > c = 1, The decision is once again to reject the lot because of a bad third lot.

5.1.3. WDwALSP

We extend the use of ball bearing data to illustrate the LSPs for Weibull distribution
under acceleration factor AF = 2. The data set is transformed accordingly (dividing by 2),
so they are,

8.94, 14.46, 16.5, 20.76, 21.06, 22.8. 24.4, 25.92, 25.98, 27.06, 27.78, 33.9, 34.22, 34.32,
34.44, 42.06, 46.56, 49.32, 52.56, 52.92, 63.96, 64.02, 86.7.

The accelerated 50th quantile of failure time is t0.5A = 33.9. We need to specify the
ratio RAR = σA

σU
> 2. (∵ Eq. 6 and Eq. 7). The test time to establish a true median life of

1.75 better than the specified, under termination ratio ratio δ0 = 0.8, and RAR = 2.5 would
be τA = 15.49 units. The WDwLSP(n, c) for consumer risk β = 0.1, and other constants
(θ̂,

tqA

t0
qA

, δ0, AF, RAR) = (2, 1.75, 0.8, 2, 2.5), are (23,8) as per Table 3. The sample inspection
shows that two items have failed. Since d = 2 < c = 8, the lot is accepted.

Use of previous lot inspection data and use of EWMA or Modified EWMA statistic
to judge a lot is advisable because the sample size increases marginally with an increase in
the acceleration factor (See Tables 1-3).

5.1.4. WDwALSP with EWMA and modified EWMA

For consumer risk β = 0.1, the value of (n, c) for (θ̂,
tqA

t0
qA

, δ0, AF, RAR, λ) = (2, 1.75, 0.8, 2, 2.5, 0.6)
from the Table 9 is (n = 11, c = 4)

Since the history of data is not available, we have generated four Weibull lifetimes
samples of size 11 having shape parameter θ̂ = 2.1014 and σ̂ = 0.0122 in R. They are,

20.84, 29.57, 19.76, 7.63, 26.32, 11.64, 45.57, 42.43, 66.55, 27.68, 38.695
62.44, 21.39, 22.30, 12.29, 69.64, 27.7, 16.46, 24.62, 18.40, 39.91, 50.43
69.82, 8.91, 43.50, 44.01, 11.91, 13.47, 38.69, 39.59, 33.165, 42.65, 35.24
39.02, 16.24, 40.64, 5.89, 25.60, 29.31, 18.97, 43.48, 20.44, 16.01, 23.21

Real-life data: 8.94, 14.46, 16.5, 20.76, 21.06, 22.8. 24.4, 25.92, 25.98, 27.06, 27.78
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The inspection of the past 4 lots results in the following number of failures from 5
items using (2) we have: d1 = 2, d2 = 1, d3 = 3, d4 = 1 while the current lot is
having d5 = 2. As per (12), the corresponding EWMA statistics values are EW MA1 =
2, EW MA2 = 1.40, EW MA3 = 2.36, EW MA4 = 1.54, and EW MA5 = 1.81,
respectively. Since EW MA5 = 1.8176 < c = 4, the decision would be a current lot is
accepted.

For the same set of constraints, WDwA with Modified EWMA from Table 18 the
value of (n, c) is (8,3). Also, the inspection of the past 4 lots results in the following num-
ber of failures from 8 items: d1 = 2, d2 = 1, d3 = 3, d4 = 1 while the current
lot i.e., the 5th lot is having some failures items as d5 = 2. We calculate as per (17)
the Modified EWMA statistics and find them as MEW MA1 = 2, MEW MA2 =
1.7, MEW MA3 = 1.88, MEW MA4 = 1.952, and MEW MA5 = 1.6808 respec-
tively. Since MEW MA5 = 1.6808 < c = 3, the decision is once again accepted. 11.5

Table 1: Summary: Comparison of ball bearing data by considering with and
without acceleration
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WDwLSP

A
F

=
2

t q
A

=
33

.9

t0 q
A

=
19

.3
7

τ A
=

15
.4

96 (23,8)

Accept the Lot
WDwALSP
with
EMMA

(11,4)

WDwALSP
with Modified
EMMA

(8,3)

WDLSP

A
F

=
1

t q
A

=
67

.8
0

t0 q
=

38
.7

42
8

t 0
=

30
.9

94
2 (12,2) Accept the Lot

WDLSP
with
EMMA

(6,1) Reject the Lot

WDLSP
with Modified
EMMA

(5,1) Reject the Lot

Murthy et. al. (2004) represent data from 30 observations about the time between
failures for the repairable item. 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59,
0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23,0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37,
0.63, 1.23, 1.24, 1.97, 1.86, 1.17

Arranging the data in ascending order

0.11, 0.3, 0.4, 0.45, 0.59, 0.63, 0.7, 0.71, 0.74, 0.77, 0.94, 1.06, 1.17, 1.23, 1.23, 1.24, 1.43,
1.46, 1.49, 1.74, 1.82, 1.86, 1.97, 2.23, 2.37, 2.46, 2.63, 3.46, 4.36, 4.73
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The maximum likelihood estimators of shape and scale parameters of the Weibull dis-
tribution for the number of million revolutions before failure are respectively θ̂ = 1.4633 ∼= 1.5
and σ̂ = 0.5848. Further, AIC = 83.8207, KS-test value D = 0.074869, and the correspond-
ing p-value is 0.996 which is greater than 0.05, suggesting that the Weibull distribution fits
well with the data.

Transformed Original Data for the proposed plan by taking AF = 2.5
(
∵∵∵ AF = tU

tA

)
0.57, 0.04, 0.28, 0.31, 1.05, 0.60, 1.38, 0.98, 0.24, 0.30, 0.49, 0.38, 1.74, 0.16, 0.70, 1.89, 0.89,
0.18, 0.28, 0.42, 0.58, 0.12, 0.73, 0.95, 0.25, 0.49, 0.50, 0.79, 0.74, 0.47

Arranging data in ascending order:

0.04, 0.12, 0.16, 0.18, 0.24, 0.25, 0.28, 0.28, 0.30, 0.31, 0.38, 0.42, 0.47, 0.49, 0.49, 0.50,
0.57, 0.58, 0.60, 0.70, 0.73, 0.74, 0.79, 0.89, 0.95, 0.98, 1.05, 1.38, 1.74, 1.89

The accelerated 50th quantile of failure time is t0.5A = 0.495 with shape parameter
θ̂ = 1.5 and let us take the ratio σA

σU
= RAR > AF ⇒ 3.0 > 2.5

To establish the ratio tqA

t0
qA

> 1, we take tqA

t0
qA

= 1.75 ⇒ t0
qA = 0.2828, also we take termination

ratio δ0 = 0.8

τA = δ0t
0
qA = 0.8(0.2828) = 0.2262

Therefore, the total number of failed items in the given lot is d = 4. For consumer risk
β = 0.25, the value of (n, c) for (θ̂,

tqA

(t0
qA

, δ0, AF, RAR) = (1.5, 1.75, 0.8, 2.5, 3), from Table 2
is (25,10).

Here, d = 4 < c = 10 (d < c), Hence, the lot is accepted.

5.1.5. WDwALSP with EWMA and modified EWMA

For consumer risk β = 0.25,and (θ̂,
tqA

t0
qA

, δ0, AF, RAR, δ) = (1.5, 1.75, 0.8, 2.5, 3, 0.8)
the value of (n, c) from the Table 7 is (15,6).

To create history, we simulated the previous four samples (using R Language) each
of size 15 having shape parameters 1.5 and scale parameter 0.5848 taking AF = 2.5. They
are shown below along with the real-life data set.

0.17, 0.17, 0.82, 0.56, 1.16, 0.16, 0.76, 0.17, 0.08, 1.55, 0.19, 0.33, 1.31, 0.51, 0.82
0.21, 0.54, 0.23, 0.04, 0.16, 1.30, 1.06, 0.34, 0.78, 0.63, 0.18, 0.65, 1.16, 0.24, 0.41
0.61, 0.27, 0.35, 1.34, 1.67, 0.36, 0.99, 0.84, 1.02, 0.63, 0.34, 0.58, 0.95, 0.62, 0.63
1.50, 0.62, 0.35, 1.67, 0.18, 0.67, 0.54, 0.13, 0.39, 0.20, 0.60, 0.22, 0.78, 0.17, 0.04

0.57, 0.04, 0.28, 0.31, 1.05, 0.60, 1.38, 0.98, 0.24, 0.30, 0.49, 0.38, 1.74, 0.16, 0.70

The inspection of the past 4 lots results in the following number of failures from 15 items
using (2) we have d1 = 6, d2 = 4, d3 = 0, d4 = 6 while the current lot is having d5 = 2.
The EWMA statistics using (12) results in values 6,4.4,0.88, 4.97, and 2.59 respectively,
leading to the decision to accept the lot, since EW MA5 = 2.59 < c = 6.
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Under the same set of constants, the value of (n, c) for WDwALSP with Modified EWMA
from the Table 16 is (10,4). Consequently, an inspection of the first 10 items from the past 4
lots and the current lot gives d1 = 5, d2 = 3, d3 = 0, d4 = 3 and d5 = 1. The resultant
Modified EWMA statistics using (17) for each lot are respectively, 5, 4.2, 2.04, 1.61, and
1.92. The lot is accepted as MEW MA5 = 1.92 < c = 4.

6. Conclusion

In this paper, LSPs are proposed based on Weibull distribution for establishing a
quantile life of a lot rather quicker than the usual inspection time, which is achieved by
testing the items under constant stress calledacceleration factor.More the acceleration, the
lesser the inspection times but the marginally higher the sample size.Further, usage of the
previous history of the lot reduces the sample size of inspection with acceleration compared
to without acceleration and lot history. Hence,under acceleration, plans with EWMA or
modified EWMA are more economical. Readymade tables are given for the use of the plan
in industries manufacturing durable items. Theplans have straightforward extensions for
other lifetime distributions as well as other time-censoring schemes.
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Table 2: Optimum parameters for WDwA assuring 50th quantile when shape pa-
rameter θ = 1.5, Acceleration Factor (AF = 1.5, 2, 2.5) and Acceleration Consumer
Ratio (RA = 2, 2.5, 3)

AF = 1.5, RA = 2 AF = 2, RA = 2.5 AF = 2.5, RA = 3

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8 δ0 = 0.6 δ0 = 0.8 δ0 = 0.6 δ0 = 0.8
n c n c n c n c n c n c

0.25

1.25 146 53 106 53 152 51 118 55 160 51 114 51
1.5 47 16 36 17 51 16 41 18 57 17 38 16

1.75 28 9 20 9 30 9 24 10 32 9 25 10
2.0 20 6 14 6 21 6 15 6 22 6 16 6

2.25 17 5 12 5 15 4 13 5 19 5 13 5

0.1

1.25 229 80 174 84 245 79 182 82 261 80 188 81
1.5 79 25 56 25 82 24 60 25 86 24 63 25

1.75 44 13 34 14 48 13 34 13 51 13 38 14
2.0 33 9 23 9 35 9 25 9 37 9 26 9

2.25 27 7 19 7 29 7 20 7 27 6 21 7

0.05

1.25 291 100 214 102 312 99 227 101 325 98 240 102
1.5 97 30 69 30 109 31 77 31 111 30 78 30

1.75 57 16 40 16 62 16 43 16 65 16 45 16
2.0 42 11 29 11 42 10 29 10 44 10 33 11

2.25 33 8 23 8 35 8 25 8 37 8 26 8

0.01

1.25 423 142 308 144 455 141 333 145 482 142 346 144
1.5 145 43 103 43 158 43 111 43 166 43 116 43

1.75 83 22 58 22 90 22 65 23 95 22 66 22
2.0 58 14 40 14 67 15 46 15 67 14 46 14

2.25 49 11 31 10 53 11 36 11 56 11 38 11

Table 3: Optimum parameters for WDwA assuring 50th quantile when shape pa-
rameter θ = 2.0, Acceleration Factor (AF = 1.5, 2, 2.5) and Acceleration Consumer
Ratio (RA = 2, 2.5, 3)

AF = 1.5, RA = 2 AF = 2, RA = 2.5 AF = 2.5, RA = 3

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8 δ0 = 0.6 δ0 = 0.8 δ0 = 0.6 δ0 = 0.8
n c n c n c n c n c n c

0.25

1.25 90 29 62 31 100 29 68 31 107 29 70 30
1.5 34 10 24 11 34 9 24 10 36 9 25 10

1.75 18 5 14 6 20 5 15 6 22 5 16 6
2.0 15 4 10 4 13 3 8 3 14 3 11 4

2.25 12 3 8 3 13 3 8 3 10 2 9 3

0.1

1.25 147 45 96 46 160 44 108 47 175 45 112 46
1.5 52 14 35 15 58 14 36 14 62 14 41 15

1.75 29 7 20 8 36 8 23 8 35 7 24 8
2.0 22 5 14 5 25 5 15 5 27 5 17 5

2.25 19 4 12 4 21 4 13 4 23 4 14 4

0.05

1.25 187 56 121 57 208 56 131 56 223 56 142 57
1.5 66 17 41 17 74 17 48 18 79 17 51 18

1.75 39 9 24 9 44 9 27 9 47 9 29 9
2.0 29 6 18 6 33 6 20 6 35 6 21 6

2.25 22 4 13 4 29 5 17 5 31 5 18 5

0.01

1.25 272 79 177 81 307 80 195 81 326 79 205 80
1.5 98 24 61 24 110 24 70 25 118 24 72 24

1.75 57 12 37 13 69 13 41 13 74 13 44 13
2.0 43 8 26 8 49 8 29 8 53 8 31 8

2.25 36 6 21 6 40 6 24 6 44 6 26 6
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Table 4: Optimum parameters for WDwA assuring 50th quantile when shape pa-
rameter θ = 2.5, Acceleration Factor (AF = 1.5, 2, 2.5) and Acceleration Consumer
Ratio (RA = 2, 2.5, 3)

AF = 1.5, RA = 2 AF = 2, RA = 2.5 AF = 2.5, RA = 3

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8 δ0 = 0.6 δ0 = 0.8 δ0 = 0.6 δ0 = 0.8
n c n c n c n c n c n c

0.25

1.25 66 19 40 20 72 18 45 20 83 19 46 19
1.5 23 6 13 6 27 6 15 6 29 6 16 6

1.75 13 3 7 3 15 3 8 3 16 3 11 4
2 10 2 5 2 11 2 6 2 12 2 9 3

2.25 10 2 5 2 11 2 6 2 12 2 7 2

0.25

1.25 108 29 61 29 120 28 71 30 136 29 77 30
1.5 39 9 22 9 45 9 25 9 50 9 27 9

1.75 25 5 14 5 29 5 15 5 31 5 17 5
2 17 3 9 3 20 3 13 4 22 3 14 4

2.25 13 2 9 3 15 2 11 3 17 2 12 3

0.25

1.25 138 36 80 37 159 36 90 37 169 35 95 36
1.5 51 11 28 11 59 11 32 11 64 11 34 11

1.75 32 6 17 6 37 6 20 6 41 6 21 6
2 24 4 13 4 28 4 15 4 31 4 16 4

2.25 20 3 11 3 23 3 12 3 26 3 13 3

0.25

1.25 200 50 114 51 235 51 131 52 257 51 142 52
1.5 75 15 43 16 87 15 46 15 96 15 50 15

1.75 48 8 25 8 56 8 29 8 61 8 32 8
2 35 5 18 5 41 5 21 5 46 5 23 5

2.25 31 4 16 4 36 4 18 4 40 4 20 4

Table 5: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 1.5, Acceleration Factor (AF = 1.5) and Acceleration
Consumer Ratio (RA = 2.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 22 8 42 15 66 24 99 36 146 53 12 6 28 14 46 23 72 36 106 53
1.5 6 2 15 5 24 8 35 12 47 16 9 4 13 6 17 8 28 13 36 17

1.75 6 2 9 3 15 5 19 6 28 9 5 2 7 3 9 4 16 7 20 9
2 6 2 7 2 10 3 13 4 20 6 5 2 5 2 7 3 12 5 14 6

2.25 4 1 7 2 7 2 10 3 17 5 3 1 5 2 5 2 7 3 12 5

0.1

1.25 32 11 60 21 100 35 152 53 229 80 23 11 50 24 79 38 116 56 174 84
1.5 13 4 22 7 35 11 53 17 79 25 9 4 16 7 27 12 38 17 56 25

1.75 7 2 14 4 21 6 31 9 44 13 5 2 10 4 17 7 24 10 34 14
2 7 2 11 3 15 4 22 6 33 9 5 2 8 3 10 4 18 7 23 9

2.25 4 1 8 2 12 3 19 5 27 7 3 1 8 3 8 3 13 5 19 7

0.05

1.25 35 12 76 26 125 43 195 67 291 100 29 14 59 28 96 46 147 70 214 102
1.5 13 4 26 8 42 13 65 20 97 30 12 5 21 9 30 13 46 20 69 30

1.75 7 2 18 5 25 7 39 11 57 16 5 2 10 4 20 8 30 12 40 16
2 7 2 12 3 19 5 27 7 42 11 5 2 8 3 13 5 19 7 29 11

2.25 4 1 12 3 16 4 21 5 33 8 3 1 8 3 11 4 17 6 23 8

0.01

1.25 54 18 110 37 185 62 283 95 423 142 41 19 77 36 137 64 212 99 308 144
1.5 17 5 37 11 64 19 98 29 145 43 12 5 29 12 48 20 67 28 103 43

1.75 11 3 23 6 38 10 57 15 83 22 8 3 16 6 26 10 42 16 58 22
2 8 2 17 4 25 6 41 10 58 14 6 2 14 5 20 7 29 10 40 14

2.25 8 2 13 3 22 5 32 7 49 11 6 2 9 3 15 5 22 7 31 10
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Table 6: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 1.5, Acceleration Factor (AF = 2.0) and Acceleration
Consumer Ratio (RA = 2.5)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 18 6 42 14 69 23 104 35 152 51 15 7 30 14 54 25 77 36 118 55
1.5 10 3 16 5 25 8 35 11 51 16 7 3 14 6 18 8 25 11 41 18

1.75 7 2 10 3 17 5 20 6 30 9 5 2 7 3 12 5 17 7 24 10
2 4 1 7 2 11 3 14 4 21 6 5 2 5 2 8 3 10 4 15 6

2.25 4 1 7 2 11 3 11 3 15 4 3 1 5 2 5 2 8 3 13 5

0.1

1.25 31 10 62 20 112 36 164 53 245 79 27 12 49 22 80 36 122 55 182 82
1.5 14 4 24 7 38 11 58 17 82 24 10 4 17 7 29 12 41 17 60 25

1.75 11 3 15 4 22 6 33 9 48 13 5 2 13 5 18 7 26 10 34 13
2 4 1 12 3 16 4 24 6 35 9 5 2 8 3 11 4 17 6 25 9

2.25 4 1 8 2 13 3 17 4 29 7 3 1 6 2 9 3 14 5 20 7

0.05

1.25 38 12 82 26 139 44 208 66 312 99 27 12 61 27 99 44 153 68 227 101
1.5 14 4 28 8 49 14 74 21 109 31 10 4 20 8 35 14 52 21 77 31

1.75 11 3 19 5 27 7 42 11 62 16 8 3 13 5 19 7 30 11 43 16
2 8 2 13 3 21 5 29 7 42 10 6 2 9 3 15 5 23 8 29 10

2.25 8 2 9 2 17 4 26 6 35 8 3 1 9 3 12 4 18 6 25 8

0.01

1.25 55 17 116 36 200 62 310 96 455 141 39 17 85 37 147 64 223 97 333 145
1.5 22 6 44 12 70 19 106 29 158 43 18 7 31 12 49 19 75 29 111 43

1.75 12 3 25 6 41 10 62 15 90 22 11 4 17 6 31 11 43 15 65 23
2 9 2 18 4 31 7 45 10 67 15 6 2 15 5 21 7 31 10 46 15

2.25 9 2 15 3 24 5 34 7 53 11 6 2 10 3 17 5 26 8 36 11

Table 7: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 1.5, Acceleration Factor (AF = 2.5) and Acceleration
Consumer Ratio (RA = 3.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 22 7 44 14 69 22 110 35 160 51 18 8 34 15 54 24 76 34 114 51
1.5 10 3 17 5 27 8 37 11 57 17 7 3 12 5 19 8 26 11 38 16

1.75 7 2 11 3 14 4 21 6 32 9 5 2 8 3 10 4 15 6 25 10
2 4 1 8 2 11 3 15 4 22 6 5 2 5 2 8 3 13 5 16 6

2.25 4 1 8 2 8 2 12 3 19 5 3 1 5 2 8 3 8 3 13 5

0.1

1.25 36 11 72 22 114 35 173 53 261 80 28 12 51 22 81 35 125 54 188 81
1.5 11 3 25 7 40 11 61 17 86 24 10 4 18 7 28 11 43 17 63 25

1.75 8 2 16 4 23 6 35 9 51 13 8 3 11 4 19 7 27 10 38 14
2 8 2 12 3 17 4 25 6 37 9 6 2 9 3 12 4 20 7 26 9

2.25 5 1 9 2 13 3 18 4 27 6 3 1 6 2 9 3 15 5 21 7

0.05

1.25 40 12 83 25 146 44 219 66 325 98 33 14 61 26 106 45 160 68 240 102
1.5 15 4 30 8 48 13 74 20 111 30 13 5 21 8 36 14 52 20 78 30

1.75 8 2 20 5 32 8 45 11 65 16 8 3 14 5 20 7 31 11 45 16
2 8 2 13 3 22 5 31 7 44 10 6 2 9 3 15 5 24 8 33 11

2.25 5 1 13 3 18 4 24 5 37 8 6 2 9 3 13 4 19 6 26 8

0.01

1.25 58 17 122 36 207 61 326 96 482 142 41 17 89 37 149 62 231 96 346 144
1.5 23 6 46 12 73 19 112 29 166 43 16 6 32 12 54 20 81 30 116 43

1.75 13 3 26 6 43 10 65 15 95 22 9 3 18 6 30 10 45 15 66 22
2 9 2 19 4 33 7 47 10 67 14 9 3 13 4 23 7 33 10 46 14

2.25 9 2 15 3 25 5 36 7 56 11 7 2 11 3 17 5 25 7 38 11

Table 8: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 1.5, Acceleration Factor (AF = 2.5) and Acceleration
Consumer Ratio (RA = 3.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 16 5 25 8 43 14 62 20 90 29 8 4 16 8 26 13 42 21 62 31
1.5 7 2 10 3 17 5 24 7 34 10 7 3 9 4 11 5 15 7 24 11

1.75 4 1 7 2 11 3 14 4 18 5 5 2 5 2 7 3 9 4 14 6
2 4 1 4 1 8 2 11 3 15 4 3 1 5 2 5 2 7 3 10 4

2.25 4 1 4 1 4 1 8 2 12 3 3 1 3 1 5 2 5 2 8 3

0.1

1.25 23 7 39 12 62 19 98 30 147 45 15 7 25 12 44 21 67 32 96 46
1.5 11 3 15 4 26 7 37 10 52 14 7 3 12 5 14 6 23 10 35 15

1.75 4 1 12 3 16 4 21 5 29 7 5 2 5 2 10 4 13 5 20 8
2 4 1 9 2 9 2 17 4 22 5 3 1 5 2 8 3 11 4 14 5

2.25 4 1 5 1 9 2 14 3 19 4 3 1 3 1 6 2 9 3 12 4

0.05

1.25 27 8 50 15 80 24 127 38 187 56 15 7 32 15 53 25 83 39 121 57
1.5 11 3 19 5 31 8 46 12 66 17 7 3 12 5 19 8 29 12 41 17

1.75 8 2 13 3 18 4 26 6 39 9 5 2 8 3 11 4 16 6 24 9
2 5 1 9 2 14 3 19 4 29 6 3 1 6 2 9 3 12 4 18 6

2.25 5 1 9 2 11 2 16 3 22 4 3 1 6 2 9 3 10 3 13 4

0.01

1.25 31 9 72 21 117 34 186 54 272 79 22 10 46 21 79 36 118 54 177 81
1.5 12 3 28 7 41 10 66 16 98 24 10 4 18 7 28 11 43 17 61 24

1.75 9 2 18 4 28 6 38 8 57 12 6 2 11 4 17 6 23 8 37 13
2 9 2 11 2 21 4 31 6 43 8 6 2 9 3 13 4 19 6 26 8

2.25 6 1 11 2 17 3 24 4 36 6 4 1 7 2 10 3 14 4 21 6
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Table 9: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 2.0, Acceleration Factor (AF = 2.0) and Acceleration
Consumer Ratio (RA = 2.5)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 14 4 28 8 45 13 69 20 100 29 11 5 20 9 31 14 46 21 68 31
1.5 8 2 11 3 15 4 26 7 34 9 5 2 7 3 12 5 17 7 24 10

1.75 4 1 8 2 12 3 16 4 20 5 3 1 5 2 5 2 10 4 15 6
2 4 1 5 1 9 2 13 3 13 3 3 1 3 1 5 2 8 3 8 3

2.25 4 1 5 1 9 2 9 2 13 3 3 1 3 1 5 2 6 2 8 3

0.1

1.25 22 6 40 11 69 19 109 30 160 44 14 6 30 13 46 20 71 31 108 47
1.5 8 2 17 4 25 6 41 10 58 14 5 2 13 5 18 7 26 10 36 14

1.75 5 1 9 2 14 3 23 5 36 8 3 1 8 3 11 4 14 5 23 8
2 5 1 9 2 14 3 19 4 25 5 3 1 6 2 9 3 12 4 15 5

2.25 5 1 6 1 11 2 16 3 21 4 3 1 6 2 7 2 10 3 13 4

0.05

1.25 26 7 52 14 93 25 141 38 208 56 19 8 35 15 61 26 89 38 131 56
1.5 13 3 21 5 34 8 52 12 74 17 8 3 13 5 21 8 32 12 48 18

1.75 5 1 14 3 20 4 30 6 44 9 3 1 9 3 12 4 18 6 27 9
2 5 1 10 2 16 3 22 4 33 6 3 1 7 2 10 3 13 4 20 6

2.25 5 1 10 2 12 2 18 3 29 5 3 1 7 2 7 2 11 3 17 5

0.01

1.25 38 10 77 20 134 35 207 54 307 80 24 10 53 22 84 35 130 54 195 81
1.5 14 3 32 7 46 10 74 16 110 24 11 4 20 7 31 11 45 16 70 25

1.75 10 2 20 4 31 6 43 8 69 13 6 2 13 4 19 6 29 9 41 13
2 6 1 17 3 23 4 35 6 49 8 6 2 10 3 14 4 21 6 29 8

2.25 6 1 13 2 19 3 27 4 40 6 4 1 8 2 12 3 16 4 24 6

Table 10: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 2.0, Acceleration Factor (AF = 2.5) and Acceleration
Consumer Ratio (RA = 3.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 15 4 30 8 48 13 70 19 107 29 12 5 21 9 33 14 49 21 70 30
1.5 4 1 12 3 16 4 24 6 36 9 5 2 8 3 10 4 15 6 25 10

1.75 4 1 9 2 13 3 13 3 22 5 3 1 6 2 8 3 11 4 16 6
2 4 1 5 1 9 2 13 3 14 3 3 1 3 1 6 2 9 3 11 4

2.25 4 1 5 1 5 1 10 2 10 2 3 1 3 1 3 1 6 2 9 3

0.1

1.25 23 6 47 12 74 19 113 29 175 45 17 7 32 13 51 21 78 32 112 46
1.5 9 2 18 4 27 6 40 9 62 14 8 3 11 4 19 7 27 10 41 15

1.75 5 1 10 2 15 3 25 5 35 7 3 1 6 2 12 4 15 5 24 8
2 5 1 10 2 11 2 21 4 27 5 3 1 6 2 10 3 10 3 17 5

2.25 5 1 6 1 11 2 17 3 23 4 3 1 6 2 7 2 10 3 14 4

0.05

1.25 28 7 56 14 96 24 151 38 223 56 20 8 40 16 62 25 92 37 142 57
1.5 13 3 23 5 37 8 55 12 79 17 8 3 14 5 23 8 34 12 51 18

1.75 10 2 15 3 21 4 32 6 47 9 6 2 9 3 13 4 19 6 29 9
2 6 1 11 2 17 3 24 4 35 6 4 1 7 2 10 3 14 4 21 6

2.25 6 1 11 2 13 2 19 3 31 5 4 1 7 2 8 2 12 3 18 5

0.01

1.25 37 9 86 21 144 35 222 54 326 79 23 9 54 21 92 36 138 54 205 80
1.5 15 3 34 7 54 11 79 16 118 24 9 3 18 6 33 11 48 16 72 24

1.75 11 2 22 4 34 6 51 9 74 13 7 2 13 4 20 6 31 9 44 13
2 11 2 18 3 25 4 38 6 53 8 4 1 11 3 15 4 23 6 31 8

2.25 7 1 14 2 21 3 29 4 44 6 4 1 8 2 12 3 17 4 26 6

Table 11: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 2.5, Acceleration Factor (AF = 1.5) and Acceleration
Consumer Ratio (RA = 2.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 11 3 21 6 28 8 45 13 66 19 6 3 10 5 18 9 28 14 40 20
1.5 4 1 8 2 12 3 16 4 23 6 4 2 7 3 9 4 11 5 13 6

1.75 4 1 8 2 8 2 12 3 13 3 3 1 5 2 5 2 7 3 7 3
2 4 1 5 1 5 1 9 2 10 2 3 1 3 1 5 2 5 2 5 2

2.25 4 1 5 1 5 1 5 1 10 2 3 1 3 1 3 1 5 2 5 2

0.1

1.25 15 4 30 8 49 13 71 19 108 29 11 5 17 8 32 15 42 20 61 29
1.5 8 2 13 3 18 4 26 6 39 9 5 2 7 3 12 5 17 7 22 9

1.75 5 1 9 2 10 2 15 3 25 5 3 1 5 2 8 3 11 4 14 5
2 5 1 6 1 10 2 12 2 17 3 3 1 3 1 6 2 6 2 9 3

2.25 5 1 6 1 6 1 12 2 13 2 3 1 3 1 6 2 6 2 9 3

0.05

1.25 19 5 38 10 61 16 92 24 138 36 11 5 24 11 37 17 54 25 80 37
1.5 9 2 14 3 23 5 36 8 51 11 5 2 10 4 15 6 20 8 28 11

1.75 5 1 10 2 16 3 22 4 32 6 3 1 6 2 9 3 12 4 17 6
2 5 1 6 1 12 2 18 3 24 4 3 1 6 2 6 2 9 3 13 4

2.25 5 1 6 1 12 2 14 2 20 3 3 1 4 1 6 2 7 2 11 3

0.01

1.25 24 6 52 13 88 22 136 34 200 50 18 8 29 13 49 22 76 34 114 51
1.5 10 2 20 4 35 7 50 10 75 15 8 3 13 5 19 7 27 10 43 16

1.75 6 1 12 2 23 4 35 6 48 8 3 1 9 3 12 4 16 5 25 8
2 6 1 12 2 19 3 27 4 35 5 3 1 7 2 10 3 14 4 18 5

2.25 6 1 8 1 15 2 22 3 31 4 3 1 4 1 8 2 12 3 16 4
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Table 12: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 2.5, Acceleration Factor (AF = 2.0) and Acceleration
Consumer Ratio (RA = 2.5)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 8 2 20 5 32 8 48 12 72 18 7 3 16 7 20 9 29 13 45 20
1.5 5 1 9 2 13 3 18 4 27 6 5 2 5 2 10 4 10 4 15 6

1.75 5 1 5 1 10 2 10 2 15 3 3 1 3 1 5 2 8 3 8 3
2 5 1 5 1 6 1 10 2 11 2 3 1 3 1 3 1 6 2 6 2

2.25 5 1 5 1 6 1 6 1 11 2 3 1 3 1 3 1 3 1 6 2

0.1

1.25 17 4 30 7 56 13 86 20 120 28 12 5 19 8 31 13 50 21 71 30
1.5 5 1 15 3 20 4 30 6 45 9 5 2 8 3 11 4 19 7 25 9

1.75 5 1 11 2 12 2 18 3 29 5 3 1 6 2 9 3 12 4 15 5
2 5 1 6 1 12 2 13 2 20 3 3 1 4 1 7 2 7 2 13 4

2.25 5 1 6 1 7 1 13 2 15 2 3 1 4 1 4 1 7 2 11 3

0.05

1.25 22 5 44 10 71 16 106 24 159 36 12 5 27 11 39 16 61 25 90 37
1.5 10 2 16 3 27 5 42 8 59 11 6 2 11 4 17 6 23 8 32 11

1.75 6 1 12 2 18 3 25 4 37 6 3 1 7 2 10 3 13 4 20 6
2 6 1 7 1 14 2 20 3 28 4 3 1 4 1 7 2 11 3 15 4

2.25 6 1 7 1 14 2 16 2 23 3 3 1 4 1 7 2 8 2 12 3

0.01

1.25 32 7 60 13 101 22 157 34 235 51 18 7 35 14 58 23 88 35 131 52
1.5 12 2 23 4 40 7 58 10 87 15 6 2 15 5 21 7 33 11 46 15

1.75 7 1 14 2 27 4 40 6 56 8 6 2 10 3 14 4 21 6 29 8
2 7 1 14 2 22 3 31 4 41 5 4 1 8 2 12 3 16 4 21 5

2.25 7 1 9 1 17 2 26 3 36 4 4 1 5 1 9 2 13 3 18 4

Table 13: Optimum parameters for WDwAwith EWMA assuring 50th quantile
when shape parameter θ = 2.5, Acceleration Factor (AF = 2.5) and Acceleration
Consumer Ratio (RA = 3.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
n c n c n c n c n c n c n c n c n c n c

0.25

1.25 13 3 22 5 35 8 57 13 83 19 10 4 15 6 22 9 34 14 46 19
1.5 5 1 10 2 15 3 20 4 29 6 3 1 8 3 8 3 13 5 16 6

1.75 5 1 6 1 10 2 11 2 16 3 3 1 3 1 6 2 9 3 11 4
2 5 1 6 1 6 1 11 2 12 2 3 1 3 1 3 1 6 2 9 3

2.25 5 1 6 1 6 1 7 1 12 2 3 1 3 1 3 1 6 2 7 2

0.1

1.25 19 4 37 8 61 13 89 19 136 29 13 5 23 9 36 14 54 21 77 30
1.5 10 2 16 3 22 4 33 6 50 9 3 1 9 3 12 4 18 6 27 9

1.75 6 1 12 2 13 2 24 4 31 5 3 1 6 2 7 2 10 3 17 5
2 6 1 7 1 13 2 15 2 22 3 3 1 4 1 7 2 10 3 14 4

2.25 6 1 7 1 8 1 15 2 17 2 3 1 4 1 4 1 8 2 12 3

0.05

1.25 24 5 48 10 77 16 116 24 169 35 13 5 26 10 42 16 66 25 95 36
1.5 11 2 18 3 29 5 46 8 64 11 6 2 12 4 16 5 25 8 34 11

1.75 7 1 13 2 20 3 27 4 41 6 4 1 7 2 11 3 14 4 21 6
2 7 1 8 1 15 2 22 3 31 4 4 1 4 1 8 2 12 3 16 4

2.25 7 1 8 1 15 2 17 2 26 3 4 1 4 1 8 2 9 2 13 3

0.01

1.25 30 6 70 14 111 22 171 34 257 51 19 7 38 14 60 22 93 34 142 52
1.5 13 2 25 4 44 7 64 10 96 15 9 3 16 5 23 7 36 11 50 15

1.75 8 1 21 3 29 4 44 6 61 8 4 1 8 2 15 4 20 5 32 8
2 8 1 16 2 24 3 34 4 46 5 4 1 8 2 13 3 17 4 23 5

2.25 8 1 10 1 19 2 29 3 40 4 4 1 5 1 10 2 15 3 20 4

Table 14: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 1.5, Acceleration Factor (AF = 1.5) and
Acceleration Consumer Ratio (RA = 2)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 22 8 33 12 44 16 58 21 12 6 22 11 32 16 44 22
1.5 6 2 12 4 18 6 21 7 9 4 11 5 13 6 17 8

1.75 6 2 9 3 12 4 13 4 5 2 7 3 9 4 9 4
2 6 2 7 2 10 3 10 3 5 2 5 2 7 3 7 3

2.25 4 1 7 2 7 2 7 2 3 1 5 2 5 2 5 2

0.1

1.25 26 9 49 17 75 26 97 34 23 11 37 18 56 27 72 35
1.5 12 4 19 6 25 8 35 11 9 4 16 7 18 8 25 11

1.75 7 2 10 3 17 5 17 5 5 2 10 4 12 5 12 5
2 7 2 10 3 11 3 15 4 5 2 5 2 8 3 10 4

2.25 4 1 8 2 8 2 12 3 3 1 5 2 8 3 8 3

0.05

1.25 32 11 61 21 90 31 122 42 23 11 44 21 65 31 86 41
1.5 13 4 23 7 32 10 39 12 9 4 16 7 23 10 30 13

1.75 7 2 14 4 18 5 25 7 5 2 10 4 15 6 20 8
2 7 2 11 3 15 4 19 5 5 2 8 3 8 3 13 5

2.25 4 1 8 2 12 3 16 4 3 1 6 2 8 3 11 4

0.01

1.25 48 16 89 30 128 43 170 57 32 15 62 29 92 43 124 58
1.5 17 5 34 10 44 13 61 18 12 5 24 10 31 13 43 18

1.75 11 3 19 5 30 8 34 9 8 3 13 5 21 8 26 10
2 8 2 16 4 20 5 25 6 6 2 11 4 14 5 17 6

2.25 8 2 13 3 17 4 22 5 6 2 9 3 12 4 15 5
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Table 15: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 1.5, Acceleration Factor (AF = 2.0) and
Acceleration Consumer Ratio (RA = 2.5)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 18 6 33 11 51 17 66 22 13 6 26 12 39 18 47 22
1.5 10 3 13 4 16 5 22 7 7 3 9 4 14 6 16 7

1.75 7 2 7 2 10 3 14 4 5 2 7 3 7 3 12 5
2 4 1 7 2 7 2 11 3 5 2 5 2 5 2 8 3

2.25 4 1 4 1 7 2 8 2 3 1 5 2 5 2 5 2

0.1

1.25 28 9 53 17 81 26 99 32 20 9 40 18 60 27 73 33
1.5 10 3 17 5 27 8 34 10 10 4 12 5 22 9 24 10

1.75 7 2 11 3 15 4 22 6 5 2 8 3 13 5 16 6
2 4 1 8 2 12 3 16 4 5 2 8 3 8 3 11 4

2.25 4 1 8 2 12 3 12 3 3 1 6 2 6 2 9 3

0.05

1.25 38 12 63 20 98 31 126 40 27 12 52 23 72 32 92 41
1.5 14 4 25 7 35 10 46 13 10 4 20 8 25 10 32 13

1.75 8 2 15 4 23 6 27 7 8 3 11 4 16 6 19 7
2 8 2 12 3 16 4 20 5 6 2 9 3 11 4 14 5

2.25 8 2 9 2 13 3 17 4 3 1 6 2 9 3 12 4

0.01

1.25 52 16 97 30 142 44 184 57 39 17 69 30 101 44 133 58
1.5 18 5 33 9 51 14 66 18 13 5 23 9 36 14 46 18

1.75 12 3 20 5 29 7 37 9 11 4 14 5 20 7 28 10
2 9 2 17 4 22 5 27 6 6 2 12 4 15 5 19 6

2.25 9 2 14 3 19 4 24 5 6 2 10 3 13 4 16 5

Table 16: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 1.5, Acceleration Factor (AF = 2.5) and
Acceleration Consumer Ratio (RA = 3.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 19 6 38 12 50 16 66 21 16 7 27 12 38 17 47 21
1.5 7 2 14 4 20 6 27 8 7 3 12 5 14 6 19 8

1.75 7 2 7 2 11 3 14 4 5 2 5 2 10 4 10 4
2 4 1 7 2 8 2 11 3 3 1 5 2 8 3 8 3

2.25 4 1 4 1 8 2 8 2 3 1 5 2 6 2 8 3

0.1

1.25 33 10 59 18 85 26 108 33 21 9 42 18 58 25 79 34
1.5 11 3 18 5 29 8 36 10 10 4 15 6 20 8 28 11

1.75 8 2 12 3 19 5 23 6 8 3 8 3 11 4 16 6
2 8 2 12 3 13 3 17 4 3 1 6 2 9 3 12 4

2.25 5 1 9 2 9 2 13 3 3 1 6 2 6 2 9 3

0.05

1.25 40 12 73 22 103 31 136 41 26 11 52 22 73 31 99 42
1.5 15 4 26 7 37 10 48 13 13 5 18 7 26 10 34 13

1.75 8 2 16 4 24 6 28 7 8 3 11 4 14 5 20 7
2 8 2 13 3 17 4 22 5 6 2 9 3 12 4 15 5

2.25 5 1 9 2 14 3 18 4 6 2 7 2 10 3 13 4

0.01

1.25 51 15 102 30 146 43 197 58 36 15 72 30 108 45 137 57
1.5 19 5 35 9 54 14 69 18 16 6 27 10 38 14 46 17

1.75 13 3 22 5 30 7 39 9 9 3 15 5 21 7 27 9
2 9 2 18 4 23 5 29 6 7 2 10 3 16 5 20 6

2.25 9 2 15 3 20 4 25 5 7 2 10 3 14 4 17 5

Table 17: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 2.0, Acceleration Factor (AF = 1.5) and
Acceleration Consumer Ratio (RA = 2)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 16 5 22 7 28 9 37 12 8 4 14 7 20 10 26 13
1.5 7 2 7 2 10 3 14 4 6 3 7 3 9 4 11 5

1.75 4 1 7 2 7 2 11 3 5 2 5 2 5 2 7 3
2 4 1 4 1 4 1 8 2 3 1 5 2 5 2 5 2

2.25 4 1 4 1 4 1 4 1 3 1 3 1 3 1 5 2

0.1

1.25 20 6 33 10 49 15 62 19 15 7 21 10 35 17 42 20
1.5 8 2 11 3 18 5 22 6 7 3 7 3 12 5 14 6

1.75 4 1 8 2 12 3 16 4 5 2 5 2 8 3 10 4
2 4 1 8 2 9 2 9 2 3 1 5 2 6 2 8 3

2.25 4 1 5 1 5 1 9 2 3 1 3 1 3 1 6 2

0.05

1.25 20 6 40 12 60 18 77 23 15 7 30 14 42 20 49 23
1.5 8 2 15 4 23 6 27 7 7 3 12 5 17 7 17 7

1.75 8 2 9 2 13 3 17 4 5 2 8 3 8 3 11 4
2 5 1 9 2 10 2 14 3 3 1 6 2 6 2 9 3

2.25 5 1 5 1 10 2 10 2 3 1 3 1 6 2 6 2

0.01

1.25 31 9 55 16 86 25 110 32 22 10 37 17 57 26 72 33
1.5 12 3 24 6 32 8 41 10 10 4 15 6 20 8 28 11

1.75 9 2 14 3 19 4 24 5 6 2 9 3 14 5 17 6
2 5 1 10 2 15 3 20 4 3 1 6 2 9 3 12 4

2.25 5 1 10 2 12 2 17 3 3 1 6 2 7 2 10 3
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Table 18: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 2.0, Acceleration Factor (AF = 2) and Accel-
eration Consumer Ratio (RA = 2.5)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 14 4 24 7 31 9 45 13 9 4 18 8 22 10 31 14
1.5 8 2 11 3 15 4 15 4 5 2 7 3 7 3 12 5

1.75 4 1 4 1 8 2 8 2 3 1 5 2 5 2 5 2
2 4 1 4 1 8 2 8 2 3 1 3 1 5 2 5 2

2.25 4 1 4 1 5 1 5 1 3 1 3 1 3 1 3 1

0.1

1.25 18 5 36 10 51 14 69 19 14 6 23 10 32 14 46 20
1.5 8 2 16 4 21 5 25 6 5 2 10 4 13 5 18 7

1.75 5 1 9 2 13 3 14 3 3 1 6 2 8 3 11 4
2 5 1 5 1 10 2 10 2 3 1 3 1 6 2 6 2

2.25 5 1 5 1 10 2 10 2 3 1 3 1 6 2 6 2

0.05

1.25 26 7 45 12 67 18 86 23 14 6 28 12 42 18 56 24
1.5 12 3 17 4 26 6 30 7 8 3 11 4 16 6 21 8

1.75 5 1 10 2 15 3 19 4 3 1 6 2 9 3 12 4
2 5 1 10 2 11 2 16 3 3 1 6 2 7 2 10 3

2.25 5 1 6 1 11 2 12 2 3 1 6 2 7 2 7 2

0.01

1.25 38 10 65 17 96 25 123 32 24 10 41 17 60 25 77 32
1.5 14 3 23 5 36 8 46 10 11 4 14 5 22 8 28 10

1.75 10 2 16 3 21 4 27 5 6 2 10 3 13 4 16 5
2 6 1 12 2 17 3 23 4 6 2 7 2 11 3 14 4

2.25 6 1 12 2 13 2 19 3 4 1 7 2 8 2 11 3

Table 19: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 2.0, Acceleration Factor (AF = 2.5) and
Acceleration Consumer Ratio (RA = 3)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 15 4 26 7 37 10 48 13 7 3 14 6 21 9 28 12
1.5 4 1 8 2 12 3 16 4 5 2 5 2 10 4 10 4

1.75 4 1 8 2 9 2 9 2 3 1 5 2 6 2 8 3
2 4 1 5 1 5 1 9 2 3 1 3 1 3 1 6 2

2.25 4 1 5 1 5 1 5 1 3 1 3 1 3 1 3 1

0.1

1.25 23 6 35 9 55 14 70 18 15 6 27 11 34 14 49 20
1.5 9 2 17 4 22 5 27 6 8 3 11 4 14 5 19 7

1.75 5 1 10 2 14 3 15 3 3 1 6 2 9 3 9 3
2 5 1 10 2 11 2 11 2 3 1 6 2 7 2 9 3

2.25 5 1 6 1 6 1 11 2 3 1 4 1 7 2 7 2

0.05

1.25 24 6 48 12 68 17 92 23 15 6 30 12 45 18 60 24
1.5 9 2 18 4 27 6 33 7 8 3 14 5 17 6 20 7

1.75 9 2 11 2 16 3 21 4 6 2 9 3 10 3 13 4
2 6 1 11 2 12 2 17 3 4 1 7 2 7 2 10 3

2.25 6 1 7 1 12 2 13 2 4 1 4 1 7 2 8 2

0.01

1.25 33 8 66 16 99 24 132 32 23 9 41 16 64 25 82 32
1.5 15 3 25 5 39 8 49 10 9 3 15 5 24 8 30 10

1.75 11 2 17 3 23 4 29 5 7 2 10 3 14 4 20 6
2 7 1 13 2 19 3 25 4 4 1 8 2 11 3 15 4

2.25 7 1 13 2 14 2 20 3 4 1 8 2 9 2 12 3

Table 20: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 2.5, Acceleration Factor (AF = 1.5) and
Acceleration Consumer Ratio (RA = 2)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 7 2 14 4 21 6 28 8 4 2 8 4 12 6 16 8
1.5 4 1 8 2 8 2 12 3 4 2 5 2 7 3 7 3

1.75 4 1 4 1 8 2 8 2 3 1 5 2 5 2 5 2
2 4 1 4 1 5 1 5 1 3 1 3 1 3 1 5 2

2.25 4 1 4 1 5 1 5 1 3 1 3 1 3 1 3 1

0.1

1.25 15 4 26 7 37 10 45 12 11 5 15 7 19 9 30 14
1.5 8 2 9 2 13 3 18 4 5 2 5 2 10 4 10 4

1.75 5 1 5 1 10 2 10 2 3 1 5 2 5 2 8 3
2 5 1 5 1 6 1 10 2 3 1 3 1 3 1 6 2

2.25 5 1 5 1 6 1 6 1 3 1 3 1 3 1 6 2

0.05

1.25 19 5 31 8 42 11 58 15 11 5 21 10 26 12 37 17
1.5 9 2 13 3 18 4 23 5 5 2 8 3 10 4 13 5

1.75 5 1 10 2 11 2 15 3 3 1 6 2 6 2 9 3
2 5 1 6 1 11 2 12 2 3 1 3 1 6 2 6 2

2.25 5 1 6 1 7 1 7 1 3 1 3 1 4 1 6 2

0.01

1.25 20 5 40 10 60 15 80 20 16 7 27 12 38 17 47 21
1.5 10 2 15 3 25 5 30 6 8 3 11 4 16 6 19 7

1.75 6 1 12 2 17 3 23 4 3 1 6 2 9 3 12 4
2 6 1 7 1 13 2 14 2 3 1 6 2 7 2 10 3

2.25 6 1 7 1 13 2 14 2 3 1 4 1 7 2 8 2
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Table 21: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 2.5, Acceleration Factor (AF = 2.0) and
Acceleration Consumer Ratio (RA = 2.5)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 8 2 16 4 24 6 32 8 7 3 9 4 16 7 18 8
1.5 5 1 9 2 9 2 13 3 5 2 5 2 5 2 10 4

1.75 5 1 5 1 5 1 9 2 3 1 3 1 5 2 5 2
2 5 1 5 1 5 1 5 1 3 1 3 1 3 1 3 1

2.25 5 1 5 1 5 1 5 1 3 1 3 1 3 1 3 1

0.1

1.25 13 3 26 6 39 9 52 12 12 5 17 7 24 10 31 13
1.5 5 1 10 2 15 3 20 4 5 2 8 3 8 3 11 4

1.75 5 1 6 1 11 2 12 2 3 1 3 1 6 2 6 2
2 5 1 6 1 7 1 12 2 3 1 3 1 6 2 6 2

2.25 5 1 6 1 7 1 7 1 3 1 3 1 4 1 4 1

0.05

1.25 22 5 35 8 53 12 66 15 12 5 22 9 29 12 39 16
1.5 10 2 15 3 21 4 26 5 6 2 9 3 11 4 14 5

1.75 6 1 11 2 12 2 18 3 3 1 6 2 7 2 10 3
2 6 1 7 1 12 2 13 2 3 1 4 1 7 2 7 2

2.25 6 1 7 1 8 1 13 2 3 1 4 1 4 1 7 2

0.01

1.25 27 6 50 11 74 16 97 21 15 6 28 11 43 17 53 21
1.5 11 2 22 4 29 5 39 7 6 2 12 4 15 5 21 7

1.75 7 1 13 2 20 3 26 4 6 2 7 2 11 3 11 3
2 7 1 13 2 15 2 17 2 4 1 7 2 8 2 11 3

2.25 7 1 9 1 15 2 17 2 4 1 5 1 8 2 9 2

Table 22: Optimum parameters for WDwAwith Modified EWMA assuring 50th

quantile when shape parameter θ = 2.5, Acceleration Factor (AF = 2.5) and
Acceleration Consumer Ratio (RA = 3.0)

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
n c n c n c n c n c n c n c n c

0.25

1.25 13 3 22 5 26 6 35 8 10 4 12 5 17 7 22 9
1.5 5 1 10 2 10 2 15 3 3 1 6 2 8 3 8 3

1.75 5 1 5 1 10 2 10 2 3 1 3 1 3 1 6 2
2 5 1 5 1 6 1 6 1 3 1 3 1 3 1 3 1

2.25 5 1 5 1 6 1 6 1 3 1 3 1 3 1 3 1

0.1

1.25 14 3 28 6 42 9 56 12 10 4 18 7 23 9 31 12
1.5 10 2 11 2 17 3 22 4 3 1 6 2 9 3 12 4

1.75 6 1 11 2 12 2 13 2 3 1 6 2 7 2 7 2
2 6 1 7 1 7 1 13 2 3 1 4 1 4 1 7 2

2.25 6 1 7 1 7 1 8 1 3 1 4 1 4 1 4 1

0.05

1.25 24 5 39 8 53 11 72 15 13 5 21 8 29 11 42 16
1.5 11 2 17 3 23 4 29 5 6 2 9 3 12 4 16 5

1.75 6 1 12 2 14 2 20 3 4 1 7 2 7 2 10 3
2 6 1 8 1 14 2 15 2 4 1 4 1 7 2 8 2

2.25 6 1 8 1 9 1 15 2 4 1 4 1 5 1 8 2

0.01

1.25 30 6 55 11 80 16 106 21 19 7 30 11 41 15 60 22
1.5 12 2 24 4 31 5 43 7 7 2 10 3 17 5 20 6

1.75 8 1 15 2 22 3 29 4 4 1 8 2 11 3 12 3
2 8 1 15 2 17 2 24 3 4 1 8 2 9 2 12 3

2.25 8 1 10 1 17 2 19 2 4 1 5 1 9 2 10 2

Table 23: Optimum parameters for the Weibull Distribution assuring 50th quan-
tile when shape parameter θ = 2

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
n c n c

0.25

1.25 20 3 15 4
1.5 14 2 9 2

1.75 14 2 9 2
2 9 1 5 1

2.25 9 1 5 1

0.1

1.25 38 5 22 5
1.5 26 3 16 3

1.75 20 2 12 2
2 20 2 12 2

2.25 14 1 8 1

0.05

1.25 49 6 29 6
1.5 31 3 18 3

1.75 31 3 14 2
2 25 2 14 2

2.25 25 2 14 2

0.01

1.25 74 8 43 8
1.5 56 5 32 5

1.75 42 3 24 3
2 42 3 24 3

2.25 35 2 20 2
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Table 24: Optimum parameters for the Weibull Distributionwith EWMA assur-
ing 50th quantilewhen shape parameter θ = 2

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

n c n c n c n c n c n c n c n c n c n c

0.25

1.25 6 1 7 1 12 2 13 2 20 3 4 1 4 1 8 2 11 3 15 4
1.5 6 1 7 1 7 1 13 2 14 2 4 1 4 1 4 1 8 2 9 2

1.75 6 1 7 1 7 1 8 1 14 2 4 1 4 1 4 1 5 1 9 2
2 6 1 7 1 7 1 8 1 9 1 4 1 4 1 4 1 5 1 5 1

2.25 6 1 7 1 7 1 8 1 9 1 4 1 4 1 4 1 5 1 5 1

0.1

1.25 7 1 14 2 16 2 29 4 38 5 4 1 9 2 9 2 17 4 22 5
1.5 7 1 8 1 16 2 18 2 26 3 4 1 5 1 9 2 11 2 16 3

1.75 7 1 8 1 10 1 18 2 20 2 4 1 5 1 6 1 11 2 12 2
2 7 1 8 1 10 1 12 1 20 2 4 1 5 1 6 1 7 1 12 2

2.25 7 1 8 1 10 1 12 1 14 1 4 1 5 1 6 1 7 1 8 1

0.05

1.25 8 1 16 2 24 3 33 4 49 6 5 1 9 2 14 3 19 4 29 6
1.5 8 1 10 1 18 2 27 3 31 3 5 1 6 1 11 2 12 2 18 3

1.75 8 1 10 1 12 1 21 2 31 3 5 1 6 1 7 1 12 2 14 2
2 8 1 10 1 12 1 14 1 25 2 5 1 6 1 7 1 8 1 14 2

2.25 8 1 10 1 12 1 14 1 25 2 5 1 6 1 7 1 8 1 14 2

0.01

1.25 9 1 25 3 36 4 54 6 74 8 9 2 11 2 21 4 31 6 43 8
1.5 9 1 19 2 23 2 35 3 56 5 6 1 11 2 13 2 20 3 32 5

1.75 9 1 13 1 23 2 28 2 42 3 6 1 7 1 13 2 16 2 24 3
2 9 1 13 1 16 1 28 2 42 3 6 1 7 1 9 1 16 2 24 3

2.25 9 1 13 1 16 1 28 2 35 2 6 1 7 1 9 1 16 2 20 2

Table 25: Optimum parameters for the Weibull Distributionwith Modified
EWMA assuring 50th quantile when shape parameter θ = 2.5

β
tqA

t0
qA

δ0 = 0.6 δ0 = 0.8
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8

n c n c n c n c n c n c n c n c

0.25

1.25 6 1 6 1 7 1 12 2 4 1 4 1 4 1 8 2
1.5 6 1 6 1 7 1 7 1 4 1 4 1 4 1 4 1

1.75 6 1 6 1 7 1 7 1 4 1 4 1 4 1 4 1
2 6 1 6 1 7 1 7 1 4 1 4 1 4 1 4 1

2.25 6 1 6 1 7 1 7 1 4 1 4 1 4 1 4 1

0.1

1.25 7 1 8 1 14 2 15 2 4 1 8 2 9 2 9 2
1.5 7 1 8 1 9 1 15 2 4 1 5 1 5 1 9 2

1.75 7 1 8 1 9 1 10 1 4 1 5 1 5 1 6 1
2 7 1 8 1 9 1 10 1 4 1 5 1 5 1 6 1

2.25 7 1 8 1 9 1 10 1 4 1 5 1 5 1 6 1

0.05

1.25 8 1 15 2 16 2 23 3 5 1 9 2 10 2 14 3
1.5 8 1 9 1 10 1 18 2 5 1 5 1 6 1 10 2

1.75 8 1 9 1 10 1 12 1 5 1 5 1 6 1 7 1
2 8 1 9 1 10 1 12 1 5 1 5 1 6 1 7 1

2.25 8 1 9 1 10 1 12 1 5 1 5 1 6 1 7 1

0.01

1.25 9 1 18 2 26 3 35 4 5 1 10 2 15 3 20 4
1.5 9 1 12 1 20 2 23 2 5 1 7 1 12 2 13 2

1.75 9 1 12 1 14 1 23 2 5 1 7 1 8 1 13 2
2 9 1 12 1 14 1 16 1 5 1 7 1 8 1 9 1

2.25 9 1 12 1 14 1 16 1 5 1 7 1 8 1 9 1





Statistics and Applications {ISSN 2454-7395 (online)}
Volume 21, No. 2, 2023 (New Series), pp 235–257
http://www.ssca.org.in/journal

Agricultural Price Forecasting Based on Variational Mode
Decomposition and Time-Delay Neural Network

Kapil Choudhary1, Girish K. Jha2, Ronit Jaiswal1, P. Venkatesh2 and Rajender
Parsad1

1ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012
2ICAR-Indian Agricultural Research Institute, PUSA, New Delhi-110012

Received: 24 May 2022; Revised: 16 March 2023; Accepted: 21 March 2023

Abstract
Agricultural commodities prices are very unpredictable and complex, and thus, fore-

casting these prices is one of the research hotspots. In this paper, we propose a new hybrid
VMD-TDNN model combining variational mode decomposition (VMD) and time-delay neu-
ral network (TDNN) to improve the accuracy of agricultural price forecasting. Specifically,
the VMD decomposes a price series into a set of intrinsic mode functions (IMFs), and the
obtained IMFs are modelled and forecasted separately using the TDNN models. Finally, the
forecasts of all IMFs are combined to provide an ensemble output for the price series. VMD
overcomes the limitation of the mode mixing and end effect problems of the empirical mode
decomposition (EMD) based variants. The prediction ability of the proposed model is com-
pared with TDNN, and EMD based variants coupled with TDNN model using international
monthly price series of maize, palm oil, and soybean in terms of evaluation criteria like root
mean squared error, mean absolute percentage error and, directional prediction statistics.
Additionally, Diebold-Mariano test and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), a ranking system, are used to evaluate the accuracy of the mod-
els. The empirical results confirm that the proposed hybrid model is superior in terms of
evaluation criteria and improves the prediction accuracy significantly.

Key words: Agricultural price forecasting; Empirical mode decomposition; Intrinsic mode
function; Time-delay neural network; Variational mode decomposition.

1. Introduction

Price forecasting of agricultural commodities is a challenging task as there are sev-
eral unpredictable factors, both natural and man-made, which influence the production and
price of the commodities. Thus, the price series become inherently nonstationary and non-
linear in nature posing a severe threat to food security in developing countries, see FAO
(2011). Accurate and reliable agricultural price forecasts are thus very necessary not only
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for mitigating the threat of food security but also to balance the demand with supply, en-
sure remunerative prices to farmers, and the welfare of the consumers, see Jaiswal et al.
(2022). A thorough review of the existing literature confirms that significant efforts have
been done to improve price forecasting using various time series models. The various time
series models developed for price forecasting can be broadly classified into two categories, i.e.
statistical models and artificial intelligence (AI) models. Among statistical models, autore-
gressive integrated moving average (ARIMA), see Box et al. (2015), and constituent models,
see Hayat and Bhatti (2013); Jadhav et al. (2017), are most frequently used as prediction
models. However, ARIMA models assume linear relationships among data points, despite
real-world agricultural price data being usually nonlinear. As a result, the ARIMA model is
unable to capture the hidden patterns in the agricultural price series effectively, leading to
unsatisfactory forecasting results.

In recent years, artificial neural network (ANN) in the category of AI models has
become the most efficient modelling method in dealing with the complex nature of time se-
ries. ANN has been widely utilized to model nonlinear time series with minimal assumptions
and high prediction accuracy due to its self-learning capabilities, see Zhang et al. (1998).
ANN has been effectively employed as a universal function approximator in a wide range of
research areas like electricity price forecasting, exchange forecasting, wind speed forecasting,
solar energy forecasting, etc. In agricultural price forecasting, Jha and Sinha (2014)used
the time-delay neural network (TDNN) model to predict monthly wholesale prices of differ-
ent oilseeds and concluded that the ANN-based forecasting model outperforms the ARIMA
model in terms of prediction accuracy. Similarly, Xu and Zhang (2021) investigated both
univariate and bivariate neural network modelling for corn cash prices and found that simple
neural networks with twenty hidden nodes and two lags provided better forecasting accuracy
for short-term forecasting. Despite the better prediction performance of ANN-based mod-
els in many areas, their accuracy is still not satisfactory when dealing with nonstationary
and nonlinear time series data. However, the accuracy can be further increased using the
hybridization technique, i.e. combining different models according to their strength and
producing a synergetic effect. In a hybrid model class, the decomposition-and-ensemble-
methodology is the most promising one, see Qian et al. (2019). This methodology follows
the principle of “divide and conquer” whereby using some techniques, a complex series is
divided into a number of simple subseries such that each subseries now has better charac-
terization and thus can be easily captured, resulting in better forecasting accuracy.

For the decomposition of any nonlinear and nonstationary time series, empirical mode
decomposition (EMD), see Huang et al. (1998), and its variants like ensemble empirical mode
decomposition (EEMD), see Wu and Huang (2009), and complementary ensemble empirical
mode decomposition with adaptive noise (CEEMDAN), see Torres et al. (2011), are com-
monly used. The essence of the EMD and its variants is that they decompose a time series
into a set of subseries (modes) called intrinsic mode functions (IMFs) and residual. These
IMFs and residual are further modelled by any of the forecasting techniques like TDNN.
For instance, Yu et al. (2008) evaluated EMD based feed-forward neural network (FNN)
for crude oil predictions and concluded that decomposition-based hybrid models outperform
standalone forecasting models. Choudhary et al. (2019) used EEMD for decomposing the
daily potato price series of two different markets. Fang et al. (2020) applied EEMD to differ-
ent agricultural commodities for decomposition, whereas ARIMA, neural network (NN) and
support vector machine (SVM) models for predicting the decomposed components. Prasad
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et al. (2018) demonstrated the superiority of a hybrid model that combines CEEMDAN and
an extreme learning machine (ELM) to forecast soil moisture.

However, EMD and its variants have major drawbacks, such as the frequent appear-
ance of mode mixing, noise sensitiveness and end effects, leading to meaningless subseries
that negatively impact the precision of decomposition. In order to address these limita-
tions, variational mode decomposition (VMD) is proposed as an adaptive, non-recursive
and multiresolution decomposition technique by Dragomiretskiy and Zosso (2014). VMD
decomposes original time series into a set of distinct independent IMFs based on their cen-
tral frequencies. The VMD proved its superiority over EMD based decomposition in the
different areas of time series forecasting, see Bisoi et al. (2019); Dragomiretskiy and Zosso
(2014); Lahmiri (2016); Liu et al. (2018). Therefore,in view of the superior performance of
VMD as a unique data-adaptive decomposition technique and the advantageous properties
of TDNN for forecasting any nonlinear series, a novel hybrid VMD-TDNN model is proposed
for agricultural price forecasting.

The main idea of our study is to utilise a new adaptive multiresolution technique in
the context of modelling and predicting nonstationary and nonlinear agricultural price series.
However, the most significant contributions of this paper are as follows. First, a novel agri-
cultural price forecasting framework is proposed by combining VMD with the TDNN model.
VMD is a decomposition technique that breaks a highly complex agricultural price series into
several uniform subseries with stable fluctuations. VMD has the advantage of being noise
robust as it denoises a time series using simulated harmonic functions. In this context, for
an agricultural price series that is known to be very noisy, the VMD is more suitable for its
better characterization leading to faster convergence and better predictive accuracy. Second,
for empirical evaluation of our proposed model, we use three real agricultural price series to
test how well the proposed model can tackle high-frequency events such as fluctuations in
fuel prices, strikes, etc. and also the low-frequency events such as lower production, higher
export, optimum rainfall, etc. Third, it is seen that many scientists believe that machine
learning is a black box, and the results obtained from any machine learning technique are
either not trustworthy or are not able to provide proper interpretations otherwise. Another
reason for this belief is that the datasets and the code for machine learning-related forecasting
research are often not publicly available, making it difficult for the forecasting community to
adapt such research and verify the claimed performance. Thus, considering one of the major
goals of our study to make this work replicable by the whole research fraternity for practical
forecasting tasks, we use the datasets available in the public domain and for each of the
hybrid models used in this study, we develop and publish packages namely, “eemdTDNN”
and “vmdTDNN”, see Choudhary et al. (2021, 2022), in CRAN. Fourth, we compare the
prediction accuracy of the VMD-TDNN with different decomposition-based techniques, and
the empirical evidence shows that the VMD-TDNN model outperforms EMD and its variants
based hybrid models in terms of each evaluation criteria. Finally, for the robust validation
and to check the superiority of the forecasting ability of the developed model, we use Diebold-
Mariano test for checking the significant improvement achieved by it. Further, we also use
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for ranking the
models based on overall performance.

The remainder of the paper is organised as follows: Section 2 describes the proposed
VMD-TDNN hybrid model for agricultural price forecasting in detail. For empirically eval-
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uating the proposed model, three internationally traded agricultural commodities, namely
maize, soybean oil and palm oil monthly price series, are described in Section 3. Section 4
concludes the work.

2. Methodology

2.1. Variational mode decomposition

VMD, see Dragomiretskiy and Zosso (2014), is a novel data-adaptive decomposition
technique that overcomes the limitations of traditional frequency-based decomposition tech-
niques. This technique effectively improves the end effect, mode mixing, recursive sifting
process, sensitivity to noise, a fixed number of modes, and other shortcomings of EMD
variants, see Wu and Huang (2009). The algorithm used in VMD is non-recursive as it ex-
tracts modes concurrently, assuming limited bandwidth of central frequency for each IMF.
Moreover, the modes obtained after VMD have a particular property called sparsity which
means each mode is mostly compact around a centre pulsation in the frequency spectrum.
The advantages of using VMD over other techniques are that the modes are robust with
respect to noise and have faster convergence with better accuracy. These characteristics of
VMD make it highly suitable for addressing complex agricultural price data consisting of
multi-frequency signals. The bandwidth of a mode is estimated using the following steps:

1. For each mode cj(t), the Hilbert transformation (HT) is used to obtain a one-sided
frequency spectrum.

2. The sifting of the frequency spectrum of the mode is determined using the modulation
properties.

3. The bandwidth of cj(t) is estimated finally using H 1 Gaussian smoothness of the de-
modulated signal i.e. the squared L2-norm of the gradient.

The following constraints of the variation problem can be used to explain VMD:

min
{ωj},{cj}

∑
j

∥∥∥∥∂t

[(
δ(t) + i

πt

)
∗ cj(t)

]
e−iωjt

∥∥∥∥2

2


such that ∑n

j=1 cj(t) = y(t); where y(t) is the original price series, {cj} := {c1, c2, · · · cn} is
the set of modes, {wj} := {w1, w2, · · ·wn} is the of central frequencies, δ(t) is the impulse
function, ∂t(.) is the partial derivative of time t, n is the number of modes, ∗ denotes convolu-
tion operation, ∥.∥ denotes norm processing, and i =

√
−1. Lagrangian multipliers λ(t) and

quadratic penalty terms are used to transform a constraint problem into an unconstrained
problem that is easy to solve:

L ({cj} , {ωj} , λ) = α
∑

j

∥∥∥∥∂t

[(
δ(t) + i

πt

)
cj(t)

]
e−iωjt

∥∥∥∥2

2

+
∥∥∥∥∥∥y(t)−

∑
j

cj(t)
∥∥∥∥∥∥

2

2

+
λ(t), y(t)−

∑
j

cj(t)




2023] VMD-TDNN 239

where α is said to be a balance parameter or penalty parameter of data fidelity constraint.

Furthermore, an iterative sequence called the alternate direction method of multipliers
(ADMM) is applied to the above equation for updating cj, ωj and λ in two directions. The
results are obtained as follows:

ĉk+1
j (ω) =

ŷ(ω)−∑l ̸=j ĉl(ω) + λ̂(ω)
2

1 + 2α (ω − ωj)2 ; ωk+1
j =

´∞
0 ω |ĉj(ω)|2 dω´∞

0 |ĉj(ω)|2 dω

and λ̂k+1(ω)← λ̂k(ω) + τ

ŷ(ω)−
∑

j

ĉk+1
j (ω)

 .

The stopping criterion for the iterations is∑j
∥ĉk+1

j −ĉk
j∥

2
2

∥ĉk
j∥

2
2

<ϵ, where ϵ > 0, ŷ(ω), ĉj(ω), λ̂(ω)

and ĉk+1
j (ω) are fourier transformations of y(t), cj(t), λ(t), and ck+1

j (t), respectively, and k is
the number of iterations.

2.2. Time-delay neural network (TDNN)

The artificial neural network (ANN) technique, which uses nonlinear units (neurons)
to model any complex nonlinear time series, is being frequently utilized in many applications.
There are three layers in a standard ANN architecture: input layer, where data is introduced
to the network; hidden layer, where data is processed; and output layer, where the results
of the given inputs are produced. There are two ways to model time series using neural
networks: either using a recurrent neural network or creating short-term memory at the
network’s input layer, see Haykin (2009). TDNN is an example of the latter, which uses
the temporal dimension of a univariate time series to develop a short-term memory, called
heteroassociative memory, in its network. The usual TDNN is a feed-forward network with
interconnected hidden and output neurons. A TDNN with a single hidden layer has the
following generic expression, see Jha and Sinha (2014)

ŷ(t) = g

α0 +
q∑

j=1
αjf

(
β0j +

p∑
i=1

βijy(t− i)
)

where ŷ(t) is the predicted value, y(t − i) is the ith input (lag), αj(j = 0, 1, 2, . . . , q) and
βij(i = 0, 1, 2, . . . , p; j = 1, 2, . . . , q) are connection weights, p and q are the numbers of input
and hidden nodes, respectively, f and g denote the activation functions at the hidden and
output layer of the model.

2.3. VMD-TDNN model for agricultural price series

A nonstationary and nonlinear time series is decomposed into IMFs using VMD as
a decomposition tool. Several models of TDNN are built for each IMF separately, varying
the hyperparameters of the TDNN, and the best-fitted model is selected for each IMF to
predict them separately, followed by ensemble prediction. Thus, a hybrid model, namely,
VMD-TDNN, is proposed by integrating VMD and TDNN, and its details are displayed in
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Figure 1. The procedure for this model can be separated into three parts:

1. Data decomposition – VMD decomposes agricultural price series y(t) into n inde-
pendent modes (IMFs), which are stationary and nonlinear. These IMFs have different
oscillations of agricultural prices from high to low frequencies. These modes have a reg-
ular structure and stable fluctuation. Now, the patterns of each IMF can be captured
more conveniently and accurately through TDNN.

2. Individual prediction – Each IMF is split into training and testing sets to ensure the
generalization ability of the forecasting model. The TDNN model is used for modelling
each of the IMFs as it is well suited for capturing nonlinear patterns.

3. Ensemble prediction - The final forecast of the original price series is obtained by
adding the predicted values of all IMFs as:

ŷ(t) =
n∑

j=1
ĉj(t)

where, ∑n
j=1 ĉj(t) represent the ensemble of predicted values of IMFs.

Figure 1: Flowchart of VMD-TDNN model for agricultural price forecasting

2.4. Forecasting evaluation criteria

Each prediction model employed in this paper is evaluated in terms of root mean
squared error (RMSE), mean absolute percentage error (MAPE), directional prediction
statistics (Dstat ), and Diebold-Mariano (DM) test, since individual decision criteria is unable
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to capture errors completely, see Jaiswal et al. (2022). Moreover, for the ranking of each
model, TOPSIS method, see Hwang and Yoon (1981), is employed, which ranks each model
by giving weights after normalizing the decision matrix of all evaluation criteria and calcu-
lating the geometric distance between the different models. The following are the forecasting
evaluation criteria for comparing the proposed model with other models:

1. Root mean squared error (RMSE):

RMSE =
√∑h

t=1(y(t)− ŷ(t))2

h

2. Mean absolute percentage error (MAPE):

MAPE = 1
h

h∑
t=1

∣∣∣∣∣y(t)− ŷ(t)
y(t)

∣∣∣∣∣
3. Directional prediction statistics (Dstat ):

Dstat = 1
h

h∑
t=1

at × 100%

where y(t) and ŷ(t) are the actual value and predicted value, respectively, h is the size

of the testing set and at =
{

1, if [y(t + 1)− y(t)][ŷ(t + 1)− y(t)] ≥ 0
0, otherwise

.

4. Diebold-Mariano (DM) test:
For a given time series y(t), the Diebold-Mariano (DM) test statistics is defined as:

zDM = d̄√
V̂d̄

where h is the test size, {etet}h
t=1 and {eref}h

t=1 are error for test model and reference
model respectively, g is the loss function, d̄ = 1

h

∑h
t=1 [g (etet )− g (eref )] is the sample

mean, V̂d̄ = 1
h

[
γ0 + 2∑l−1

j=1 γj

]
is the estimate of variance using l step forecasts and

γj = cov (dt, dt−j) is the estimate of jth autocovariance of [g (etet)− g (eref )].

5. TOPSIS:
For a given decision matrix X =(xij) and a weight vector W =[w1, w2, · · · , we], rank
of ith model is defined as:

Ri = d−
i

d−
i + di

+
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where xij denotes jth evaluation criteria for ith prediction model for 1 ≤ i ≤ m and 1 ≤

j ≤ e, d+
i =

√∑e
j=1

(
vij − v+

j

)2
and d−

i =
√∑e

j=1

(
vij − v−

j

)2
are measures of separation

between the positive and negative ideal solutions, vij = wj ∗nij is weighted normalized
decision matrix where ∑e

j=1 wj = 1, nij = xij√∑
i

xij
2 is the normalized value of xij, v+

j ={
max vij, if j is positive criterion
min vij, if j is negative criterion and v−

j =
{

min vij, if j is positive criterion
max vij, if j is negative criterion

are extremely positive and extremely negative performance on each criterion.

3. Empirical results and discussion

Three different agricultural commodity price series are used in this section to empiri-
cally evaluate the proposed model’s performance. In this study, all the model developments
and their statistical analysis are done in R statistical software of version 4.1.2. The detailed
R codes are given in the Appendix. In this section, data description, different decomposition
techniques, and prediction results of the models are analysed for the price series.

3.1. Data description

This paper examines the efficiency of the proposed hybrid VMD-TDNN model us-
ing monthly international Maize, Palm oil, and Soybean oil price (dollar per metric tonne,
$/MT ) data. Data are obtained from the “World Bank Commodity market” from January
1960 to December 2021(https://www.worldbank.org/en/research/commodity-markets).
Each price series contains 744 observations divided into training and testing sets to ensure
generalization capability. The training set carrying 732 data points is used to train the
model, while the remaining 12 data points are used to test the effectiveness of the proposed
model. Figure 2 shows time plots and the complex behaviour of each series, which is the
characteristic of agricultural price data. Table 1 shows the basic descriptive statistics for
each price series.

Figure 2: Time plots for monthly international Palm oil, Soybean oil and Maize
price ($/MT ) series

https://www.worldbank.org/en/research/commodity-markets
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Table 1: Descriptive statistics of the price ($/MT) series (from January 1960 to
December 2021)

Statistics Maize Palm oil Soybean oil
Mean 120.31 512.49 574.07

Maximum 333.05 1377.22 1574.67
Minimum 38.00 141.73 157.00

Standard deviation 59.65 257.75 294.08
Skewness 1.28 0.93 1.01
Kurtosis 1.80 3.58 0.82

Jarque-Bera 299.40 118.26 146.97

Since agricultural price series are complex and may exhibit nonstationarity and non-
linearity properties, it becomes necessary to test these properties, which can be helpful in
skilful handling of data while fitting the model. The Augmented Dickey-Fuller (ADF) test,
see Kumar et al. (2020), and Brock-Dechert-Scheinkman (BDS) test, see Choudhary et al.
(2019), are used to check the stationarity and linearity characteristics, respectively. Table
2 shows the ADF test results that confirm the nonstationarity of each price series. Table 3
presents the BDS test results, which confirm the nonlinearity nature of each price series.

Table 2: Augmented Dickey-Fuller (ADF) test results

Price Series ADF Test Conclusiont-statistic Probability
Maize −3.12 0.10 Nonstationary

Pam Oil −3.14 0.09 Nonstationary
Soybean Oil −3.01 0.15 Nonstationary

Table 3: Brock-Dechert-Scheinkman (BDS) test results

Price Series
Embedding dimension

ConclusionEpsilon 2 3
Statistics Probability Statistics Probability

Maize
0.5 σ 133.23 < 0.001 224.66 < 0.001

Nonlinear1.0 σ 67.16 < 0.001 77.15 < 0.001
1.5 σ 52.64 < 0.001 53.64 < 0.001
2.0 σ 41.41 < 0.001 39.72 < 0.001

Palm oil
0.5 σ 230.22 < 0.001 399.29 < 0.001

Nonlinear1.0 σ 98.24 < 0.001 119.26 < 0.001
1.5 σ 64.78 < 0.001 67.36 < 0.001
2.0 σ 53.68 < 0.001 51.77 < 0.001

Soybean oil
0.5 σ 193.52 < 0.001 335.36 < 0.001

Nonlinear1.0 σ 85.31 < 0.001 102.54 < 0.001
1.5 σ 60.46 < 0.001 62.45 < 0.001
2.0 σ 52.53 < 0.001 50.74 < 0.001
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Table 4: VMD parameters for different price series

Price series α τ n ϵ
Maize 2000 0 9 1×10−6

Palm Oil 2000 0 9 1×10−7

Soybean Oil 2000 1 9 1×10−6

Table 5: Comparison of different decomposition algorithm in terms of θ

Price series EMD EEMD CEEMDAN VMD
Maize 0.1669 0.0472 0.0435 0.0214
Palm Oil 0.0420 0.0292 0.0190 0.0121
Soybean Oil 0.0608 0.0443 0.0279 0.0140

3.2. Decomposition of the agricultural price series

For the hybrid VMD-TDNN model, VMD is used to decompose the original agricul-
tural price series into a set of IMFs. For decomposition, VMD requires four hyperparameters:
(i) balancing parameter of the data-fidelity constrain(α), (ii) tolerance of convergence crite-
rion (τ), (iii) number of modes (n), and (iv) time-step of the dual ascent (ϵ). The values
of these hyperparameters are selected through experimentation in order to keep the energy
evaluation parameter value (θ) as close to zero as possible to achieve superior decomposi-
tion outcomes and are presented in Table 4. While in the case of the number of modes,
unlike EMD variants, a VMD technique provides as many modes as it is asked to produce,
which significantly affects the accuracy of decomposition results. However, there is no prac-
tical or theoretical method to determine the optimum number of modes, see Dragomiretskiy
and Zosso (2014); Lahmiri (2016). Therefore, in order to make all models comparable, the
number of modes by VMD is chosen the same as that obtained by EMD and its variants.
Accordingly, each price series is decomposed into nine different independent IMFs through
VMD. Figure 3 shows the decomposed IMFs through VMD of the three price series from
high frequency to low frequency. Here, high frequency shows the effect of short term fluc-
tuations of the market, whereas low frequency represents any particularly significant event
(like changes in policy, adverse effects of several biotic and abiotic factors, etc.) affecting the
demand-supply equilibrium at that time. For instance, in our case, the two most significant
events are observed in 2008 and 2011, which can be observed in Figure 3 in the form of spikes
around 580th and 620th observations, respectively. Reasons behind both the events are the
2007-08’s world food crisis and the production of biofuels, see Trostle (2011). For ethanol
fuel production, usage of maize increased from 15% (2006) to 40% (2012) of total U.S. maize
production. Moreover, the VMD based decomposed IMFs show more independent frequency
distribution than the EMD variants, which can be empirically verified through the energy
evaluation parameter (θ), see Zhu et al. (2016), defined as:

θ =

∣∣∣√∑n
j=1 E2

j(t) − Ey(t)

∣∣∣
Ey(t)

; Ey(t) =
√∑T

t=1 y2(t)
T

;

where Ey(t) and Ej(t) are the energy values of the original time series and jthIMF, respectively.
Here, θ is used as an evaluation parameter for orthogonality of IMFs such that θ closer to 0
indicates more orthogonality, whereas greater θ indicates the presence of elusive components
among IMFs. Table 5 compares different decomposition methods in terms of θ for each price
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series, which shows that the value of θ in the case of VMD is the smallest. This motivates
us to choose VMD over other techniques to construct the TDNN based hybrid model.

Figure 3: The decomposed IMFs for Maize, Palm oil and Soybean oil price series
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3.3. Forecasting results and discussion

The datasets and code for machine learning-related forecasting studies are often not
publicly available, making it impossible for the forecasting community to replicate and val-
idate the stated performance. Thus, keeping in mind that one of the primary goals of our
study is to make this work replicable by the entire research community for practical fore-
casting tasks, we develop two R software packages named eemdTDNN, see Choudhary et al.
(2021) and vmdTDNN, see Choudhary et al. (2022), which are published in the compre-
hensive R archive network (CRAN). Here, the emdTDNN, EEMDTDNN, ceemdanTDNN
and VMDTDNN are the functions of the above packages which are used to model and fore-
cast each price series. The forecasting performance of the proposed VMD-TDNN model
is compared with the existing individual model, i.e. TDNN and different hybrid models
like EMD-TDNN, EEMD-TDNN, and CEEMDAN-TDNN for each price series. Figure 4
displays the plots of the predicted series by all models, along with the level series for each
price series. The figure clearly shows that the VMD-TDNN model captures price movement
patterns and directions better than conventional models. Moreover, the prediction ability
of different models is tested in terms of different forecasting evaluation criteria. In this
paper, RMSE, MAPE and directional prediction statistics (DStat) are employed to evalu-
ate the performance of each model. Table 6 shows that all the hybrid models, including
EMD-TDNN, EEMD-TDNN, CEEMDAN-TDNN and VMD-TDNN, outperform the single
prediction model, i.e. TDNN, for each price series in terms of RMSE and MAPE.

It is mainly due to the “decomposition-ensemble principle” where decomposition tech-
niques (EMD, EEMD, CEEMDAN, and VMD) reveal the hidden patterns of agricultural
prices series and produce stationary and nonlinear modes which improve the forecasting abil-
ity of the TDNN. Among hybrid models, VMD-TDNN outperforms EMD-TDNN, EEMD-
TDNN and CEEMDAN-TDNN in terms of both level and directional statistics since VMD
is better than EMD variants, as discussed in section 3.2. With regards to DStat in particular,
the results of the proposed VMD-TDNN model show better directional prediction than its
competing models by showing 90% direction accuracy for maize series, almost 82% for palm
oil, and 100% for soybean oil (Table 6). Though the different evaluation criteria used above
show the superiority of the proposed model individually, there is ambiguity in choosing the
best among other benchmark models as their results are not consistent. To get a better
interpretation and a proper order of all models, we employ a novel technique called TOPSIS,
which ranks all the models by combining their performances in both level and directional
measures. Table 6 shows the ranks of each model obtained by the TOPSIS method.

Apart from these assessment criteria, the Diebold-Mariano (DM) test is also used
to compare the predicting accuracy of various models statistically. Table 7 summarises
the results of the DM test for each prediction model, and the following conclusions can be
drawn. Firstly, the proposed VMD-TDNN model outperforms all existing models at a 5%
significance level for each series. Secondly, all the hybrid models perform better than the
TDNN model at the significance level of less than 1% for each series except for EMD-TDNN
for palm oil which is significant at 4%.
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Figure 4: The predicted results of different models for Maize, Palm oil and
Soybean oil price series
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From the empirical analysis of various models using maize, palm oil, and soybean oil
price series, it is clear that the proposed VMD-TDNN model significantly outperforms all
other models regarding different forecasting evaluation criteria and thus can be considered as
a competitive model for agricultural price forecasting. However, the VMD algorithm requires
predetermination of the number of variational modes to be extracted contrary to the EMD
and its variants. For EMD variants, the total number of modes is equal to log2T , where T
is the total number of observations in the price series. Further, there is no theoretical or
practical approach to determine the number (n) of extracted modes by VMD. For simplicity
and to make all models comparable, the number of modes by VMD is chosen the same as
that obtained by EMD and its variants, see Bisoi et al. (2019); Dragomiretskiy and Zosso
(2014); Lahmiri (2016); Liu et al. (2018). Indeed, setting a higher number will further reduce
the θ even if it is just a little but this will inevitably lead to higher computational burden and
processing time during the decomposition process and the training of TDNN. In contrary,
setting a lower number may lead to an inefficient representation and characterization of the
original time series. The fact that with nine IMFs the VMD–TDNN achieved higher accuracy
than others for all price series is very encouraging and promising in itself. However, a formal
methodology should be developed in this regard in future works.
Table 6: Forecasting performance of different models for Maize, Palm oil and
Soybean oil prices

Forecasting Models Maize Palm oil Soybean oil TOPSIS Rank
MAPE RMSE Dstat MAPE RMSE Dstat MAPE RMSE Dstat

TDNN 0.2725 76.29 45.45 0.0690 107.68 36.36 0.0854 143.64 72.73 5
EMD-TDNN 0.1075 36.09 54.54 0.0739 101.38 36.36 0.0477 91.02 90.91 4
EEMD-TDNN 0.0794 27.26 90.90 0.0613 92.57 36.36 0.0449 85.06 81.81 3
CEEMDAN-TDNN 0.0644 24.85 81.82 0.0575 88.86 81.81 0.0377 70.98 90.90 2
VMD-TDNN 0.0345 9.49 90.90 0.0478 76.90 81.81 0.0259 47.28 100.00 1

Table 7: Forecasting performance in terms of DM test of different models for
Maize, Palm oil and Soybean oil prices for the one-year forecast horizon

Series Tested Model Benchmark Models
TDNN EMD-TDNN EEMD-TDNN CEEMDAN-TDNN

Maize
EMD-TDNN 12.16(0.000)
EEMD-TDNN 13.96(0.000) 2.54(0.013)
CEEMDAN-TDNN 11.03(0.000) 5.44(0.000) 1.28(0.111)
VMD-TDNN 8.05(0.000) 3.12(0.004) 2.46(0.015) 3.67(0.001)

Palm Oil
EMD-TDNN 2.18(0.046)
EEMD-TDNN 2.83(0.002) 2.27(0.019)
CEEMDAN-TDNN 2.36(0.018) 2.31(0.018) 2.39(0.015)
VMD-TDNN 2.76(0.009) 2.81(0.005) 2.08(0.053) 2.56(0.012)

Soybean Oil
EMD-TDNN 5.19(0.000)
EEMD-TDNN 4.42(0.000) 1.76(0.042)
CEEMDAN-TDNN 4.87(0.000) 1.91(0.040) 1.39(0.095)
VMD-TDNN 4.66(0.000) 2.05(0.031) 1.90(0.041) 3.44(0.002)

4. Conclusions

Agricultural price series are highly vulnerable to several risks due to biotic and abiotic
factors, which account for several characteristics, including nonlinearity and nonstationarity.
This paper proposes a new hybrid VMD-TDNN model to improve the prediction accuracy
of agricultural price data. The VMD algorithm decomposes a series into a set of subseries
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or modes for the proposed model. These obtained modes are forecasted separately using the
TDNN model, and their forecasted values are aggregated to give a final forecast for a given
price series data. VMD has many advantages over EMD based methods, including a better
mathematical foundation, data adaptiveness capability, robustness to noise and faster con-
vergence with better accuracy. For empirical evaluation, an extensive comparative analysis
of the forecasting performance of the proposed VMD-TDNN model with the four different
models is performed using three monthly international price series. The empirical results
show that the VMD-TDNN outperforms the competing models in terms of different fore-
casting evaluation criteria like MAPE, RMSE and Dstat. In addition, to better understand
the proper order, we utilise a unique technique called TOPSIS, which ranks all models by
combining their performances of both level and directional metrics, and VMD-TDNN stands
first among all. Further, the DM test result shows that the VMD-TDNN model significantly
improves forecasting accuracy from other models. Overall, we can state that the proposed
model provides a valuable decision support tool for every agricultural stakeholder who falls
in the domain of agricultural price forecasting.
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Appendix

R codes used for empirical evaluation of the study

# To check and install the packages used in this analysis
ipak <- function(pkg){

new.pkg <- pkg[!(pkg %in% installed.packages()[ ,"Package"])]
if (length(new.pkg))

install.packages(new.pkg, dependencies = TRUE)
sapply(pkg, require, character.only = TRUE)

}
# usage
packages <- c("tseries", "moments", "Rlibeemd", "VMDecomp")
ipak(packages)
library(tseries)
library(moments)
library(Rlibeemd)
library(VMDecomp)

#Importing the actual price data specifying the location of the data file
data=read.csv(file.choose(), header=TRUE)
data
#plotting of the imported data
plot(ts(data))

#transforming the data into numeric vector (1-dimensional)
data=as.matrix(data)
data=as.vector(data)

#Basic descriptive of the data set
library(moments)
summary(data)
sd(data)
skewness(data)
kurtosis(data)
jarque.test(data)

#Stationarity and linearity test
adf.test(data) # Augmented Dickey-fuller test for testing stationarity
bds.test(data) # Brock-Dechert Shienkman test for testing nonlinearity

#Data Decomposition through EMD, EEMD, CEEMDAN, and VMD
library(Rlibeemd)

# Decomposition of price data using EMD technique
EMD=emd(data, num_imfs = 0, S_number = 4L, num_siftings = 50L)
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# Decomposition of price data using EEMD technique
EEMD=eemd(ts(data), num_imfs = 0, ensemble_size = 250L, noise_strength = 0.2,

S_number = 4L, num_siftings = 50L, rng_seed = 0L, threads = 0L)↪→

# Decomposition of price data using CEEMDAN technique
CEEMDAN=ceemdan(ts(data), num_imfs = 0, ensemble_size = 250L, noise_strength =

0.2, S_number = 4L, num_siftings = 50L, rng_seed = 0L, threads = 0L)↪→

# Decomposition of price data using VMD technique
VMD=vmd(data, alpha = 2000, tau = 0, K = 9, DC = FALSE, init = 1, tol = 1e-06)

# Plotting of decomposed series

# PLotting of decomposed series extracted by EMD technique
plot(EMD,xlab="Time (Month)")

# PLotting of decomposed series extracted by EEMD technique
plot(EEMD,xlab="Time (Month)")

# PLotting of decomposed series extracted by CEEMDAN technique
plot(CEEMDAN,xlab="Time (Month)")

# VMdecomp package does not allow for auto-plot of all series,
# so we will extract all the decomposed series one by one done by VMD technique
# and then combine them in a two dimensional matrix and then plot them

#Extraction of all IMFS
AllIMF <- ts(VMD$u)

# VMD decompose price series in reverse order (From low to high frequency)
# in contrary to EMD variants.So IMF1 will be the last column, IMF2 will be
# the second last column,...

# Extraction of each IMF one by one
IMF1=ts(AllIMF[,9])
IMF2=ts(AllIMF[,8])
IMF3=ts(AllIMF[,7])
IMF4=ts(AllIMF[,6])
IMF5=ts(AllIMF[,5])
IMF6=ts(AllIMF[,4])
IMF7=ts(AllIMF[,3])
IMF8=ts(AllIMF[,2])
IMF9=ts(AllIMF[,1])

# Combining of all IMFs
VMD_IMFs <- cbind.data.frame(IMF1, IMF2, IMF3, IMF4, IMF5, IMF6, IMF7, IMF8,IMF9)
VMD_IMFs <- ts(VMD_IMFs)

# Plotting of all IMFs of VMD together



254 K. CHOUDHARY ET AL. [Vol. 21, No. 2

plot(VMD_IMFs)

# Modelling and Forecasting results of EMDTDNN model
emd_tdnn=function(data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L)
{

n.IMF <- num.IMFs # To find the total number of IMFs
AllIMF <- emd(data, num_imfs = n.IMF, S_number = s.num, num_siftings =

num.sift)↪→

data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the
training set↪→

data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (IMF in 1:ncol(IMF_trn)) {
IndIMF <- NULL
IndIMF <- IMF_trn[, IMF]
EMDTDNNFit <- forecast::nnetar(as.ts(IndIMF))
EMDTDNN_fcast = forecast::forecast(EMDTDNNFit, h = stepahead)
EMDTDNN_fcast_Mean = EMDTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(EMDTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalEMDTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_EMDTDNN = mean(abs(data_test - FinalEMDTDNN_fcast))
MAPE_EMDTDNN = mean(abs(data_test - FinalEMDTDNN_fcast)/data_test)
rmse_EMDTDNN = sqrt(mean((data_test - FinalEMDTDNN_fcast)ˆ2))
Plot_IMFs <- AllIMF
AllIMF_plots <- plot(Plot_IMFs)
return(list(TotalIMF = n.IMF, AllIMF = AllIMF, data_test = data_test,

AllIMF_forecast = Fcast_AllIMF, FinalEMDTDNN_forecast =
FinalEMDTDNN_fcast,↪→

MAE_EMDTDNN = MAE_EMDTDNN, MAPE_EMDTDNN = MAPE_EMDTDNN,
rmse_EMDTDNN = rmse_EMDTDNN, AllIMF_plots = AllIMF_plots))

}
EMDTDNN=emd_tdnn(data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L)
EMDTDNN

# Forecasting result of EEMDTDNN model
EEMD_TDNN=function (data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
{

n.IMF <- num.IMFs # To find the total number of IMFs
AllIMF <- eemd(ts(data), num_imfs = n.IMF, ensemble_size = ensem.size,
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noise_strength = noise.st, S_number = s.num, num_siftings =
num.sift,↪→

rng_seed = 0L, threads = 0L)
data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the

training set↪→

data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (IMF in 1:ncol(IMF_trn)) {
IndIMF <- NULL
IndIMF <- IMF_trn[, IMF]
EEMDTDNNFit <- forecast::nnetar(as.ts(IndIMF))
EEMDTDNN_fcast = forecast::forecast(EEMDTDNNFit, h = stepahead)
EEMDTDNN_fcast_Mean = EEMDTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(EEMDTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalEEMDTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_EEMDTDNN = mean(abs(data_test - FinalEEMDTDNN_fcast))
MAPE_EEMDTDNN = mean(abs(data_test - FinalEEMDTDNN_fcast)/data_test)
rmse_EEMDTDNN = sqrt(mean((data_test - FinalEEMDTDNN_fcast)ˆ2))
Plot_IMFs <- AllIMF
AllIMF_plots <- plot(Plot_IMFs)
return(list(TotalIMF = n.IMF, data_test = data_test, AllIMF_forecast =

Fcast_AllIMF,↪→

FinalEEMDTDNN_forecast = FinalEEMDTDNN_fcast, MAE_EEMDTDNN =
MAE_EEMDTDNN,↪→

MAPE_EEMDTDNN = MAPE_EEMDTDNN, rmse_EEMDTDNN = rmse_EEMDTDNN,
AllIMF_plots = AllIMF_plots))

}
EEMDTDNN=EEMD_TDNN(data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
EEMDTDNN

#Forecasting Result of CEEMDANTDNN model
ceemdan_TDNN=function (data, stepahead = 12, num.IMFs =

emd_num_imfs(length(data)),↪→

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
{

n.IMF <- num.IMFs # To find the total number of IMFs
AllIMF <- ceemdan(ts(data), num_imfs = n.IMF, ensemble_size = ensem.size,

noise_strength = noise.st, S_number = s.num, num_siftings =
num.sift,↪→

rng_seed = 0L, threads = 0L)
data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the

training set↪→
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data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (IMF in 1:ncol(IMF_trn)) {
IndIMF <- NULL
IndIMF <- IMF_trn[, IMF]
CEEMDANTDNNFit <- forecast::nnetar(as.ts(IndIMF))
CEEMDANTDNN_fcast = forecast::forecast(CEEMDANTDNNFit,

h = stepahead)
CEEMDANTDNN_fcast_Mean = CEEMDANTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(CEEMDANTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalCEEMDANTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_CEEMDANTDNN = mean(abs(data_test - FinalCEEMDANTDNN_fcast))
MAPE_CEEMDANTDNN = mean(abs(data_test - FinalCEEMDANTDNN_fcast)/data_test)
rmse_CEEMDANTDNN = sqrt(mean((data_test - FinalCEEMDANTDNN_fcast)ˆ2))
Plot_IMFs <- AllIMF
AllIMF_plots <- plot(Plot_IMFs)
return(list(TotalIMF = n.IMF, data_test = data_test, AllIMF_forecast =

Fcast_AllIMF,↪→

FinalCEEMDANTDNN_forecast = FinalCEEMDANTDNN_fcast, MAE_CEEMDANTDNN
= MAE_CEEMDANTDNN,↪→

MAPE_CEEMDANTDNN = MAPE_CEEMDANTDNN, rmse_CEEMDANTDNN =
rmse_CEEMDANTDNN,↪→

AllIMF_plots = AllIMF_plots))
}
CEEMDANTDNN=ceemdan_TDNN(data, stepahead = 12, num.IMFs =

emd_num_imfs(length(data)),↪→

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st =
0.2)↪→

CEEMDANTDNN

# Forecasting Result of VMDTDNN model
VMD_TDNN=function (data, stepahead = 12, nIMF = 9, alpha = 2000, tau = 0,

D = FALSE)
{

data <- ts(data)
data <- as.vector(data)
v <- vmd(data, alpha = 2000, tau = 0, K = nIMF, DC = D, init = 1,

tol = 1e-06)
AllIMF <- v$u
data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the

training set↪→

data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),



2023] VMD-TDNN 257

]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (AllIMF in 1:(ncol(IMF_trn))) {
IndIMF <- NULL
IndIMF <- IMF_trn[, AllIMF]
VMDTDNNFit <- forecast::nnetar(as.ts(IndIMF))
VMDTDNN_fcast = forecast::forecast(VMDTDNNFit, h = stepahead)
VMDTDNN_fcast_Mean = VMDTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(VMDTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalVMDTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_VMDTDNN = mean(abs(data_test - FinalVMDTDNN_fcast))
MAPE_VMDTDNN = mean(abs(data_test - FinalVMDTDNN_fcast)/data_test)
RMSE_VMDTDNN = sqrt(mean((data_test - FinalVMDTDNN_fcast)ˆ2))
return(list(AllIMF = AllIMF, data_test = data_test, AllIMF_forecast =

Fcast_AllIMF,↪→

FinalVMDTDNN_forecast = FinalVMDTDNN_fcast, MAE_VMDTDNN =
MAE_VMDTDNN,↪→

MAPE_VMDTDNN = MAPE_VMDTDNN, RMSE_VMDTDNN = RMSE_VMDTDNN))
}
VMDTDNN=VMD_TDNN(data, stepahead = 12, nIMF = 9, alpha = 2000, tau = 0,

D = FALSE)
VMDTDNN
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Abstract
Let {Xj : j ≥ −m + 1} be a homogeneous Markov chain of order m taking values

in {0, 1}. For j = 0, −1, . . . , −l + 1, we will set Rj = 0 and we define Rj = ∏j−l
i=j−1(1 −

Ri)
∏j+k−1

i=j Xi. Now Rj = 1 implies that an l-look-back run of length k has occurred starting
at j. Here Rj is defined inductively as a run of 1’s starting at j, provided that no l-look-back
run of length k occurs, starting at time j − 1, j − 2, . . . , j − l respectively. We study the
conditional distribution of the number of overlapping runs of length k1 until the stopping
time i.e. the rth occurrence of the l-look-back run of length k where k1 ≤ k and obtain
it’s probability generating function. The number of overlapping runs of length k1 until the
stopping time has been expressed as the sum of r independent random variables with the
first random variable having a slightly different distribution. We introduce a new discrete
distribution, namely generalized Binomial type distribution, which plays a central role in our
study. The conditional distributions are identified using this and other known distributions,
such as extended negative binomial distribution of order k. Our results also generalize the
known results for the number of successes until a stopping time.

Key words: Overlapping runs; Stopping time; Markov chain; Strong Markov property; Prob-
ability generating functions.

AMS Subject Classifications: 60C05, 60E05, 60F05

1. Introduction

Since Feller (1968) introduced runs of successes as an example of a renewal event, the
theory of distributions of runs has been explored widely by the researchers. The application
of powerful techniques such as Markov embedding technique (see Fu and Koutras (1994)),
method of conditional p.g.f.s (see Ebneshahrashoob and Sobel (1990)) etc. has paved way to
develop and study the distributions of various run statistics and their properties extensively.

Two schemes of counting runs, namely non-overlapping counting and the overlapping
counting, have been extensively studied in the literature. As the name suggests, in the
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non-overlapping counting, runs are not allowed to overlap while in the overlapping counting
scheme the runs may overlap as much as possible. Philippou and Makri (1986) studied the
distribution of number of non-overlapping runs of successes of length k for i.i.d. Bernoulli
trials and introduced the Binomial distribution of order k. Ling (1988) derived the distri-
bution of the number of overlapping runs of successes of length k for a sequence of i.i.d.
Bernoulli trials. This distribution is referred as the Type II Binomial distribution of order k.
Aki and Hirano (1994) obtained the marginal distributions of number of failures, successes
and success-runs of length less than k until the first occurrence of consecutive k successes
when the underlying random variables were either i.i.d. or Markov dependent or binary
sequence of order k. Aki and Hirano (1995) derived the joint distributions of number of
failures, successes and runs of success under the same set up. Under different types of count-
ing schemes like runs of length k1, non overlapping runs of length k1, overlapping runs of
length k1 etc., Hirano et. al. (1997) gave interesting results on the distributions of number
of success runs of length l until the first occurrence of the success run of length k for an
mth order homogeneous Markov chain. The joint distributions of the waiting time and the
number of outcomes such as failures, successes and success runs of length less than k under
the set up of an mth order homogeneous Markov chain was developed by Uchida (1998) for
various enumeration schemes of runs. Chadjiconstantindis and Koutras (2001) also obtained
the distribution of failures and successes in a waiting time problem.

Another scheme of µ-overlapping counting was introduced by Aki and Hirano (2000)
where an overlap of at most µ successes was allowed between two consecutive runs of length
k where 0 ≤ µ ≤ k−1. They also introduced the generalized Binomial distribution of order k
and investigated some of it’s properties. It is easy to observe that when µ = 0, the counting
scheme matches with the non-overlapping counting while µ = k − 1 yields the overlapping
counting scheme. Han and Aki (2000) have extended this counting scheme for the negative
values of µ in which there should be at least |µ| trials between any two consecutive success
runs of length k. They have derived recurrence relations for the probability generating
function (pgf) of the number of µ-overlapping success runs of length k. Inoue and Aki (2003)
derived exact formulae for the pgf of the above-mentioned random variable in the case of two-
state Markov dependent trials. They also derived explicitly, in the same case, the pgf of the
waiting time until the rth occurrence of the µ-overlapping success run of length k. Makri and
Philippou (2005) obtained the exact formulas for the probability distribution function of the
number of µ-overlapping success runs of length k in n trials. Makri et. al. (2007) considered
the concept of µ-overlapping success runs in the Polya-Eggenberger sampling scheme and
obtained the distribution of the number of drawings according to the Polya-Eggenberger
sampling scheme until the rth occurrence of the µ-overlapping success run of length k. They
have also introduced Polya, inverse Polya, and circular Polya distributions of order k for
µ-overlapping success runs of length k.

Anuradha (2023) introduced the l-look-back counting scheme for runs of successes. In
this scheme, if a run has been counted starting at time i, i.e., {Xi = Xi+1 = · · · = Xi+k−1 =
1}, then no runs can be counted till the time point i + l and the next counting of runs can
start only from the time point i + l + 1, where Xi = 1 represents a success at time i and
l is a non-negative integer. This process is repeated every time a run is counted. In other
words, if a run is counted starting at time i, then there are k-consecutive successes starting
from the time point i and no runs of length k has been counted starting at time points
i − 1, i − 2, . . . , i − l. The mathematical definition has been provided in the section 3.
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The look-back counting scheme generalizes the concept of run counting and encom-
passes both the definitions of overlapping counting as well as the non-overlapping counting
thereby giving rise to new objects for further study. Indeed, if l = 0, this matches exactly
with the counting of overlapping runs of length k, and if l = k − 1, this counting scheme
results in the counting of non-overlapping runs of length k. It should further be noted that
µ-overlapping scheme, for positive values of µ, can also be identified as l-look-back counting
where µ = k − l − 1. However, for negative values of µ, the definitions do not match with
the corresponding value of l = k − µ − 1. We illustrate this difference with the same example
as cited in Han and Aki (2000). Consider the following sequence of successes and failures:

1111011000111111110000111.

In this sequence, for k = 3 and l = 3, we have four 3-look-back runs of length 3 starting at
trials 1, 11, 15 and 23, while there are only three (−1)-overlapping runs of length 3, starting
at 1, 11 and 15. Therefore l-look-back counting scheme is an entirely new scheme of counting
which has not yet been studied in detail.

Under the set up of mth order homogeneous Markov chain, Anuradha (2023) proved
that the waiting time distribution of the nth occurrence of the l-look-back run of length k
converges to an extended Poisson distribution when the system exhibits strong propensity
towards success. Further central limit theorem was established for the number of l-look-back
runs of length k till the nth trial.

Aki and Hirano (2000) established that the number of (l − 1)-overlapping runs of
length k (l < k) until the nth overlapping occurrence of success run of length l follows a
generalized Binomial distribution of order (k − l) for the i.i.d. as well as the mth order
homogeneous Markov chain. In this paper, we pose a different problem from the counting
perspective. We fix two positive integers k1 ≤ k and another integer l ≥ 0 and count the
number of overlapping runs of length k1 until the nth occurrence of l-look-back run of length
k. The stopping time originates from the l-look-back counting scheme which encompasses
non-overlapping, overlapping as well as µ-overlapping (for positive µ) counting schemes. We
should also note that there is no restriction on l, which may equal or exceed k. Our focus is
on counting of runs of smaller lengths (k1) until a stopping rule which involves occurrences
of runs of larger length (k). We obtain a decomposition of the number of runs until the
stopping time into a sum of independent random variables. This, in turn, brings out a new
discrete distribution of order k and also establishes new connections with the other known
discrete distributions.

Koutras (1997) defined a Markov Negative Binomial distribution of order k where he
studied the waiting time distributions associated with the runs of length k for a two-state
Markov chain. In this paper, we introduce a new distribution which is different from the
above. We denote it by generalized Binomial type distribution. The probability generating
function of this distribution has been derived, which also shows how it generalizes the classical
Binomial distribution and the classical negative Binomial distribution (refer to Definition 1).
In our study, the generalized Binomial type distribution will play a central role, along with
the extended negative binomial distribution of order k with parameters n and (p1, p2, . . . , pk)
which was introduced by Aki (1985).

Our results show that the number of overlapping runs of length k1 up to the rth

occurrence of the l-look-back run of length k (k1 ≤ k) can be split into a sum of r independent
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random variables. We further establish that except the first one, all the other random
variables are identically distributed. The result has a number of interesting corollaries. For
example, the results of Aki and Hirano (1994), on the number of successes until the first
occurrence of the k consecutive successes for the i.i.d. as well as the Markov chain set-up
can be derived as a corollary from our result (see Corollary 3). We also show that under
the assumption of strong tendency towards failure after k consecutive successes, the number
of overlapping success runs of length k1 can be approximated by Poisson random variable
translated by r (see Corollary 2).

We employ a new technique to prove our results. First we convert the mth order
Markov chain to a first order Markov chain which takes values in a finite set and recast our
problem into this new set-up, i.e., define the success / failure in the original chain in terms
of the new chain and convert all relevant definitions in terms of the new chain. Thereafter,
the main tool that we employ is the method of generating functions. We use the strong
Markov property on this first order Markov chain to derive a recurrence relations between
the probabilities. This, in turn, yields recurrence relations between the probability generating
functions (pgfs). Finally we consider the generating function of the pgfs. Using the recurrence
relations between the pgfs we obtain a linear equation involving the generating function of
the pgfs which is used to establish its expression. Expanding this generating function of the
pgfs, we obtain the expression for the individual pgf.

In the next section, we introduce the new discrete distribution, namely generalized
Binomial type distribution and provide the probability generating function of the distribution.
In section 3, we give all the definitions and state the main result and the corollaries. Section
4 is devoted to setting up the new Markov chain and recasting of the problem in terms of
the new Markov chain. In Section 5, the proof of the main theorem has been established. In
the final section, we provide the conclusion of the paper.

2. A new discrete distribution

In this section we introduce a discrete distribution which will be important for our
work.

Definition 1: We say that a random variable W follows a generalized Binomial type distri-
bution with parameters 0 < p < 1, n ≥ 0 and t ≥ 1 (denoted by GB(p, n, t)) if

W =
n∑

i=1
Wi

where each {Wi : i = 1, . . . , n} is i.i.d. geometric random variable truncated at t with
parameter p. In case n = 0, the sum should be understood as 0. In other words, for
i = 1, . . . , n,

P (Wi = u) =


qpu if 0 ≤ u < t

pt if u = t

0 otherwise.

If n = 1, we will refer a GB(p, n, t) random variable as a generalized Bernoulli type
and we will denote it by a GBer(p, t).
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The probability generating function χ(p,n,t) of the GB(p, n, t) is given by

χ(p,n,t)(s) =
(
q + qps + · · · + qpt−1st−1 + ptst

)n
. (1)

Thus, the generating function of a GBer(p, t) is given by

χ(p,t)(s) =
(
q + qps + · · · + qpt−1st−1 + ptst

)
.

It should be noted that if t = 1, W follows the binomial distribution with parameters
n and p. In this sense, this can be thought of as a generalization of the binomial distribution.
Further, if n is fixed and t ↑ ∞, then W follows the usual negative binomial distribution
with parameters n and p. Also note that, if we set p = λ/n, then

χ(p,n,t)(s) =
[
1 − λ

n

(
1 − s

)
+ o

( 1
n

)]n

→ exp
(
−λ(1 − s)

)
(2)

as n → ∞. The limit is the probability generating function of a Poisson random variable
with parameter λ. Hence, when p and n are related in such a way as above, then GB(p, n, t)
converges to a Poisson random variable as n → ∞.

Another discrete distribution will be important for our results. Aki (1985) had defined
an extended negative binomial distribution of order t with parameters n and (p1, p2, . . . , pt)
and gave the probability generating function as

φ(s; n, (p1, p2, . . . , pt)) =
[

p1p2 . . . pts
t

1 − ∑t
j=1 p1p2 · · · pj−1qjsj

]n

. (3)

We will mostly consider the case when p1 = p2 = · · · = pt = p. Indeed, when t = 1,
this is the usual negative binomial distribution with parameters 0 < p < 1 and n ≥ 1. When
n = 1 and p1 = p2 = · · · = pt = p, we will call this distribution as extended geometric
distribution of order t with parameter p.

3. Definitions and statement of results

Let X−m+1, . . . , X0, X1, . . . be a sequence of stationary m-order {0, 1} valued Markov
chain. Assume that the states of X−m+1, . . . , X0 are known i.e., x0, x−1, . . . , x−m+1 are known
and we take the initial state as X0 = x0, X−1 = x−1, . . . , X−m+1 = x−m+1.

Define the set Si = {0, 1, . . . , 2i − 1} for any i ≥ 0. It is clear that Si and {0, 1}i

can be connected by the one-to-one and onto mapping x = (x0, x1, . . . , xi−1) −→ ∑i−1
j=0 2jxj.

Since {Xn : n ≥ −m+1} is the mth order Markov chain, we have the transition probabilities

px = P(Xn+1 = 1|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) (4)

where x = ∑m−1
j=0 2jxj ∈ Sm, for any n ≥ 0. Therefore, we have qx = P(Xn+1 = 0|Xn =

x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) = 1 − px. We assume that 0 < px < 1 for all x ∈ Sm.
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Definition 2: (l-look-back run) (Anuradha (2023)) Fix two integers k ≥ 1 and l ≥ 0. We
set Ri(k, l) = 0 for i = 0, −1, . . . , −l + 1 and for any i ≥ 1, define inductively,

Ri(k, l) =
i−l∏

j=i−1
(1 − Rj(k, l))

i+k−1∏
j=i

Xj (5)

where the first product is to be taken as 1 when l = 0. If Ri(k, l) = 1, we say that a
l-look-back run of length k has been recorded which started at time i.

It should be noted that for a l-look-back run to start at the time point i, we need to
look back at the preceding l many time points, i.e., i − 1 to i − l, none of which can be the
starting point of a l-look-back run of length k.

Next we define the stopping times where the rth l-look-back run of length k is com-
pleted.

Definition 3: For r ≥ 1, the stopping time τr(k, l) be the (random) time point at which
the rth l-look-back run of length k is completed. In other words,

τr(k, l) = k − 1 + inf{n :
n∑

i=1
Ri(k, l) = r}. (6)

Note that rth l-look-back run of length k is completed at time point τr(k, l). Next we
define the overlapping runs of length k.

Definition 4: (Overlapping runs of length k) When k(≥ 1) consecutive successes occur,
we call it an overlapping run of length k.

We may represent this mathematically as follows:

R
(k)
i =

k∏
j=1

Xi+j−1.

Note here that R
(k)
i = 1 if and only if an overlapping run of length k starts at time point

i. Here a trial can contribute to more than one runs. Indeed, if k + 1 successes appear
consecutively, starting from time i, two overlapping runs will be counted with first one
starting at i and the next one starting at i + 1. Clearly all successes between time i + 1 to
i + k − 1 will contribute to two overlapping runs.

Let Nn(k) be the number of occurrences of overlapping runs of length k until time n.
In other words,

Nn(k) =
n−k+1∑

i=1
R

(k)
i .

In this paper, we study the number of overlapping runs of length k1 till the stopping time
τr(k, l) (see Definition (3)). Fix any constant k1 ≤ k. For each r ≥ 1, we define the random
variable

Nr(k1) := Nτr(k,l)(k1) =
τr(k,l)∑

i=1
R

(k1)
i (7)
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as the number of overlapping runs of length k1 until the stopping time τr(k, l).

Let us consider the following example to facilitate understanding: Consider the fol-
lowing sequence of 1’s and 0’s of length 25

1110111010110111111101011.

Let k = 3 and l = 1. Now using the definition we have R1(3, 1) = R5(3, 1) = R14(3, 1) =
R16(3, 1) = R18(3, 1) = 1, while for other values of i, Ri(3, 1) = 0. Thus, stopping times
become τ1(3, 1) = 3, τ2(3, 1) = 7, τ3(3, 1) = 16, τ4(3, 1) = 18 and τ5(3, 1) = 20. For k1 = 2,
the number of the overlapping runs of length 2 till the stopping times are given by N1(2) =
2, N2(2) = 4, N3(2) = 7 and N4(2) = 9 and N5(2) = 11.

Let us define the probability generating function of Nr(k1) as follows

ζr(s; k1) =
∞∑

n=0
P(Nr(k1) = n)sn =

∞∑
n=0

gr(n; k1)sn. (8)

Now we state our main result which we prove in Section 5.

Theorem 1: For any initial condition x ∈ Sm and k2 = k − k1 and k1 ≥ m, the probability
generating function of Nr(k1) is given by,

ζr(s; k1) =
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

[(
p2m−1s

)l+1

+
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
]r−1

.

In the above and subsequently, we have used the convention that the sum is taken
to be 0 if the starting index of the sum is bigger than the ending index of the sum (which
happens in the above expression when we take k2 = 0).

Now the result of theorem 1 provides a powerful representation of Nr(k1) through the
extended geometric random variables and generalized Bernoulli type distribution.

Let us define the indicator function as follows:

I{u}(v) =
{

1 if u = v

0 otherwise.
(9)

Corollary 1: Suppose that {G
(E)
i : i = 1, . . . , r} and {B

(G)
i : i = 1, . . . , r} are independent

families of i.i.d. random variables where each G
(E)
i is having an extended geometric distribu-

tion of order k2 with parameter p2m−1 and each B
(G)
i is a generalized Bernoulli type random

variable GBer(p2m−1, l + 1). Then

Nr(k1) d=
(
1 + G

(E)
1

)
+

r∑
i=2

[
B

(G)
i +

(
1 + G

(E)
i

)(
1 − I{l+1}

(
B

(G)
i

))]
.



266 ANURADHA [Vol. 21, No. 2

Indeed, we have that the generating function of any G
(E)
i is given by the equation

(3). Also, the generating function of B
(G)
i +

(
1 + G

(E)
i

)(
1 − I{l+1}

(
B

(G)
i

))
is given by

∞∑
i=0

l+1∑
j=0

s
j+(1+i)

(
1−I{l+1}(j)

)
P(G(E)

i = i)P(B(G)
i = j)

=
∞∑

i=0

l∑
j=0

sj+(1+i)P(G(E)
i = i)P(B(G)

i = j) +
∞∑

i=0
sl+1P(G(E)

i = i)P(B(G)
i = l + 1)

= s
∞∑

i=0
siP(G(E)

i = i)
l∑

j=0
sjP(B(G)

i = j) + sl+1
(
p2m−1

)l+1 ∞∑
i=0

P(G(E)
i = i)

=
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
+

(
p2m−1s

)l+1
.

Thus using the independence of the random variables, we now conclude that the generating
functions of the random variables of both sides of the corollary 1 are same. This proves the
corollary.

If r = 1, the distribution of N1(k1) is actually an extended geometric distribution of
order k2 and parameter p2m−1 translated by 1. If k2 = 0, i.e., k = k1, we have that G

(E)
i = 0

and hence we have

Nr(k1) d= 1 +
r∑

i=2

[
B

(G)
i + 1 − I{l+1}

(
B

(G)
i

)]

= r +
r∑

i=2

[
B

(G)
i − I{l+1}

(
B

(G)
i

)]
= r +

r−1∑
i=1

D
(G)
i

where D
(G)
i = B

(G)
i+1 − I{l+1}

(
B

(G)
i+1

)
for i = 1, 2, . . . , r − 1. Now, we observe that D

(G)
i has a

geometric distribution truncated at l. Indeed, for j < l, it is easy to see that P(D(G)
i = j) =

P(B(G)
i+1 = j) = q2m−1

(
p2m−1

)j
and for j = l, we have P(D(G)

i = l) = P(B(G)
i+1 = l) + P(B(G)

i+1 =

l + 1) = q2m−1
(
p2m−1

)l
+

(
p2m−1

)l+1
=

(
p2m−1

)l
. Thus, Nr(k1) − r has generalized Binomial

type distribution with parameters p2m−1, r − 1 and l.

Under the assumption that the system has a strong tendency towards failure when
m consecutive successes are observed, i.e., p2m−1 as a function of r converges to 0 in such a
way that

rp2m−1 → λ > 0 as r → ∞, (10)
using the equation (2) and the subsequent discussion, we can easily obtain the following
corollary.

Corollary 2: For any initial condition x ∈ Sm, if the condition (10) holds and if k2 = 0, we
have

Nr(k1) − r ⇒ Poi(λ)
where Poi(λ) is the Poisson distribution with parameter λ.
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If we set k1 = 1, Nr(k1) represents the number of successes till the rth occurrence of
the l-look-back run of length k. Thus, we have the following corollary:

Corollary 3: For the i.i.d. case or the Markov dependent case, the probability generating
function of the number of successes till the rth occurrence of the l-look-back run of length k,
i.e., Nr(1) is given by,

ζr(s; 1) =
s
(
p2m−1s

)k−1

1 − ∑k−2
j=0 q2m−1

(
p2m−1

)j
sj+1

[(
p2m−1s

)l+1

+
s
(
p2m−1s

)k−1

1 − ∑k−2
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
]r−1

.

For r = 1, the expression reduces to

ζ1(s; 1) =

(
p2m−1

)k−1
(1 − p2m−1s)sk

1 − s + q2m−1
(
p2m−1

)k−1
sk

which is the probability generating function of the number of successes until the first occur-
rence of k consecutive successes. For the i.i.d. case, we have p2m−1 = p and for the Markov
dependent case, we have p2m−1 = p11. Putting these values, we observe that we may obtain
the results (Proposition 3.4 and Theorem 3.2) of Aki and Hirano (1994). Therefore our result
provides a generalized version of pgf for all values of r.

4. A new Markov chain

Now we outline the underlying set up which will be used in the subsequent sections
to establish the results. Let us define two functions f0, f1 : Sk1 → Sk1 by

f1(x) = 2x + 1 (mod 2k1) and f0(x) = 2x (mod 2k1).

Further define a projection θm : Sk1 → Sm by θm(x) = x (mod 2m). Now, set X−m =
X−m−1 = · · · = X−k1+1 = 0. Define a sequence of random variables {Yn : n ≥ 0} as follows:

Yn =
k1−1∑
j=0

2jXn−j.

Since Xi ∈ {0, 1} for all i, Yn assumes values in the set Sk1 . The random variables Xn’s
are stationary and forms an mth order Markov chain, hence we have that {Yn : n ≥ 0} is a
homogeneous Markov chain with transition matrix given by

P(Yn+1 = y|Yn = x) =


pθm(x) if y = f1(x)
1 − pθm(x) if y = f0(x)
0 otherwise.
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Note that Yn is even if and only if Xn = 0. This motivates us to define the function
κ : Sk1 → {0, 1} by

κ(x) =
{

1 if x is odd
0 if x is even.

Therefore, κ(Yn) = 1 if and only if Xn = 1. Hence, the definition of l-look-back run
can be described in terms of Yn’s as

Ri(k, l) =
i−1∏

j=i−l

(1 − Rj(k, l))
i+k−1∏

j=i

κ(Yj).

Let us fix any initial condition x ∈ Sm. We denote the probability measure governing
the distribution of {Yn : n ≥ 1} with Y0 = x ∈ Sk by Px. Since we have set X−m = X−m−1 =
· · · = X−k+1 = 0, we have Y0 = x.

In order to obtain the recurrence relation for the probabilities, we will condition the
process after the first occurrence of the run of length k1. Therefore, we consider the stopping
time T when the first occurrence of a run of length k1 ends, i.e., when we observe k1 successes
consecutively for the first time. More precisely, define

T := inf{i ≥ k1 :
i∏

j=i−k1+1
Xj = 1}. (11)

We would like to translate the above definition to Yi’s. It must be the case that when T
occurs, last k1 trials have resulted in success, which may be described by κ(Yj) = 1 for
j = i − k1 + 1 to i. Therefore, YT must equal 2k1 − 1. Since this is the first occurrence, this
has not happened earlier. So, T can be better described as

T = inf{i ≥ k1 : Yi = 2k1 − 1},

i.e., the first visit of the chain to the state 2k1 − 1 after time k1 − 1. Now, we note that
{Yn : n ≥ 0} is a Markov chain with finite state space. Further, since 0 < pu < 1 for
u ∈ Sm, this is an irreducible chain; hence, it is positive recurrent. So we must have
Px(T < ∞) = 1. We observe that when the first occurrence of k consecutive successes
happen, we must have the occurrence of k1 successes previously since k1 ≤ k. Therefore, we
have Px(T ≤ τ1(k, l)) = 1.

5. Overlapping runs till the stopping time

In this section, we study the distribution of overlapping runs of length k1. We will
employ the method of generating functions to derive these results.We obtain a recurrence
relation between the probabilities in order to derive the generating functions.

Let us define the probability, for x ∈ Sm, n ∈ Z,

g(x)
r (n; k1) = Px

(
Nr(k1) = n

)
. (12)

We note that since Nr(k1) ≥ 1, Px

(
Nr(k1) = n

)
= 0 for n ≤ 0. Also, if r = 1 and

k2 = k − k1 = 0, i.e, k = k1, we have that N1(k1) = 1.
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We will show that these probabilities g(x)
r (n; k1) is actually independent of the initial

condition x. First we consider the case when r = 1. As we have already observed, if k2 = 0,

g
(x)
1 (1; k1) = I{1}(n)

where I{u}(v) is the indicator function defined in (9). Clearly we have g
(x)
1 (n; k1) is indepen-

dent of x.

Now, we concentrate on the case when r = 1 and k2 = k − k1 > 0, i.e., k > k1. We
note that N1(k1) ≥ (k2 + 1) and hence Px(N1(k1) = n) = g

(x)
1 (n; k1) = 0 for n ≤ k2.

Theorem 2: For n > k2 and k2 = k − k1 > 0, we have

g
(x)
1 (n; k1) =

k2−1∑
t=0

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n) (13)

where I{u1}(u2) is the indicator function defined in (9).

Proof: When k2 = k − k1 > 0 and r = 1, using the fact that YT = 2k1 − 1 with probability
1, we have

g
(x)
1 (n; k1) = Px(N1(k1) = n) = Px(N1(k1) = n, YT = 2k1 − 1)

=
k2−1∑
t=0

Px(N1(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
+ Px(N1(k1) = n, YT = 2k1 − 1YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1). (14)

We look at the terms in the summation first. For any 0 ≤ t ≤ k2 − 1, we have,

Px(N1(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
× Px(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2). (15)

The second term in (15) can be written as

Px(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(YT +t+1 = 2k1 − 2 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1)

×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1).

Now, T + j − 1 is also a stopping time for any 1 ≤ j ≤ t. We denote by FT +j−1,
the σ-algebra generated by the process Yn up to the stopping time T + j − 1, and by
F(T +j−1)+, the σ-algebra generated by the process after the stopping time T + j −1. Clearly,
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{YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1} ∈ FT +j−1 and {YT +j = 2k1 − 1} ∈ F(T +j−1)+. Thus,
by strong Markov property, we can write

Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)
= PYT +j−1(YT +j = 2k1 − 1) = P2k1 −1(Y1 = 2k1 − 1) = p2m−1. (16)

A similar argument shows that

Px(YT +t+1 = 2k1 − 2 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1) = q2m−1. (17)

For the first term in (15), we note that T + t + 1 is also a stopping time and {YT +1 =
2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2} ∈ FT +t+1. Since Yτ1(k1) = 2k1 − 1, we must
have XT −k1 = 0 and XT −j = 1 for j = 0, 1, . . . , k1 − 1. Further, since Yτ1(k1)+j = 2k1 − 1 for
j = 1, . . . , t and YT +t+1 = 2k1 − 2, we also have XT +j = 1 for j = 0, 1, . . . , t and XT +t+1 = 0.
Therefore, we have a sequence of 1′s of length k1 + t with t > 0 which contributes to t + 1
overlapping runs of length k1 and since there are no runs of length k1 before T , by the very
definition of T , we have that the number of overlapping runs of length k1 up to time T + t+1
is 1 + t. Since t ≤ k2 − 1, we have that T + t + 1 < τ1(k, l). Let us define Y ′

i = Yi+T +t+1 for
i ≥ 0. Now, using the strong Markov property, we have that {Y ′

i : i ≥ 0} is a homogeneous
Markov chain with same transition matrix as that of {Yi : i ≥ 0} with Y ′

0 = 2k1 − 2. Now,
define τ ′

1(k, l) as the stopping time for the process {Y ′
i : i ≥ 0}. From the above discussion,

we have that τ1(k, l) = T + t + 1 + τ ′
1(k, l). Further, if we define, N ′

1(k1) as the number of
overlapping runs of length k1 up to time τ ′

1(k, l) for the process {Y ′
i : i ≥ 0}, we must have

that N ′
1(k1) = n − t − 1. Therefore, we have,

Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= P(2m−2)(N ′

1(k1) = n − t − 1) = g
(2m−2)
1 (n − t − 1; k1). (18)

The last term in (14) can be similarly written as

Px(N1(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2 = 2k1 − 1)

=
k2∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)

× Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)

=
(
p2m−1

)k2Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1).

Note that given {YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1}, we
have τ1(k, l) = T + k2. Further, in such a case we have exactly k2 + 1 many overlapping
runs of length k1 until time T + k2. Therefore, N1(k1) = n if and only if n = k2 + 1. In
other words, Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 =
2k1 − 1) = 1{k2+1}(n) where I is the indicator function as defined in (9).
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Thus combining the above equation with equations (14) - (18), we can express

g
(x)
1 (n; k1) =

k2−1∑
t=0

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n).

This completes the proof.

We note that the right hand side of (13) does not involve the initial condition x ∈ Sm.
Therefore g

(x)
1 (n; k1) must be independent of x. So, we will drop x and denote the above

probability by g1(n; k1). Thus, we have the following corollary from theorem 2.

Corollary 4: For n ≥ k2 + 1 and k2 > 0, we have

g1(n; k1) =
k2−1∑
t=0

q2m−1
(
p2m−1

)t
g1(n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n). (19)

Let us recall that

ζr(s; k1) =
∞∑

n=0
P(Nr(k1) = n)sn =

∞∑
n=0

gr(n; k1)sn.

When k2 = 0, we have
ζ1(s; k1) = s.

For k2 > 0, we may use the equation (19) to derive its generating function. We have

ζ1(s; k1) =
∞∑

n=k2+1
gr(n; k1)sn

=
∞∑

n=k2+1

[k2−1∑
t=0

q2m−1
(
p2m−1

)t
g1(n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n)
]
sn

=
(
p2m−1

)k2
sk2+1 +

k2−1∑
t=0

q2m−1
(
p2m−1

)t
st+1

∞∑
n=k2+1

g1(n − t − 1; k1)sn−t−1

=
(
p2m−1

)k2
sk2+1 + ζ1(s; k1)

k2−1∑
t=0

q2m−1
(
p2m−1

)t
st+1.

This linear equation can now be solved to yield the following corollary.

Corollary 5: For r = 1, we have

ζ1(s; k1) =
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

. (20)

Now we consider the case when r > 1. In this case also, we note that Nr(k1) ≥
(k2 + 1) + (r − 1)(l + 1). Hence g(x)

r (n; k1) = Px(Nr(k1) = n) = 0 for n ≤ (r − 1)(l + 1) + k2.
Now, we derive the recurrence relation.
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Theorem 3: For n ≥ (k2 + 1) + (r − 1)(l + 1) and x ∈ Sm, we have

g(x)
r (n; k1) =

(
p2m−1

)k2+(r−1)(l+1)
I{n}(k2 + (r − 1)(l + 1) + 1)

+
k2−1∑
j=0

q2m−1
(
p2m−1

)j
g(2m−2)

r (n − j − 1; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
g

(2m−2)
r−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1). (21)

where Iv1(v2) is the indicator function, as defined in the previous theorem.

Proof: We proceed in the same way as in the previous theorem. Conditioning on the first
occurrence of k1 many successes, i.e., T , we have, for any n ≥ (k2 + 1) + (r − 1)(l + 1),

g(x)
r (n; k1) =

k2+(r−1)(l+1)−1∑
t=0

Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
+ Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +(r−1)(l+1)−1 = 2k1 − 1, YT +(r−1)(l+1) = 2k1 − 1). (22)

The last term in (22) is similar to the last term in equation (14) in the previous
theorem. Thus this term can be simplified in the similar way. Indeed using the same
arguments, as done after equation (18), we get

Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +(r−1)(l+1)−1 = 2k1 − 1, YT +(r−1)(l+1) = 2k1 − 1)

=
(
p2m−1

)k2+(r−1)(l+1)
I{n}(k2 + (r − 1)(l + 1) + 1). (23)

The terms in the summation in (22) can also be handled in the similar way as done
in the previous theorem. Fix any j with 0 ≤ t ≤ k2 + (r − 1)(l + 1) − 1 and we obtain that

Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(Nr(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
× P(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2). (24)

The last term in the product above is again simplified using the product of conditional



2023] GENERALIZED RUNS 273

terms and the strong Markov property. Since YT = 2k1 − 1 with probability 1, we have

P(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(YT +t+1 = 2k1 − 2 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1)

×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)

= Px(YT +t+1 = 2k1 − 2 | YT +t = 2k1 − 1) ×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT +j−1 = 2k1 − 1)

= q2m−1
(
p2m−1

)t
. (25)

For the first term, we note that the event {YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t =
2k1 − 1, YT +t+1 = 2k1 − 2} implies that at time T + t + 1, we have just observed k1 + t many
successes followed by a failure. This string of k1 + t many successes, will contribute t + 1
many overlapping runs of successes. Since T is the first time when we observe first k1 many
consecutive successes, we have t + 1 overlapping success runs completed at time T + t + 1.
Thus, we are left with n − t − 1 many runs for the remaining part, i.e., after time T + t + 1.

At time T + t + 1, we have the information that k1 + t many successes followed by
a failure has just been observed. Using the strong Markov property, we can think that the
process restarts with this information. In other words, considering the converted Y process,
we are restarting the process with the initial condition YT +t+1 = 2k1 − 2.

Now, we examine the two cases namely k2 = k − k1 = 0, i.e., k = k1 and k2 > 0,
i.e., k > k1 separately. When k2 = 0 and k1 + t many successes followed by a failure has
just been observed, then we have already completed 1 + ⌊t/(l + 1)⌋ many l-look-back runs
of length k where ⌊a⌋ is the largest integer smaller or equal to a. Thus, we are left with
r −⌊t/(l+1)⌋−1 many l-look-back runs of length k, which is to be completed by the process
after the time T + t + 1. Hence, we obtain,

Px(Nr(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= P2m−2(Nr−⌊t/(l+1)⌋−1(k1) = (n − t − 1)) = g

(2m−2)
r−⌊t/(l+1)⌋−1(n − t − 1; k1). (26)

For k2 > 0, the argument is essentially the same, except for one part. When t ≤ k2−1,
we would have k1 + t ≤ k1 + k − k1 − 1 = k − 1 many successes followed by a failure. This
will not contribute to any run of l-look-back run of length k. But for t ≥ k2, we will have
1 + ⌊(t − k2)/(l + 1)⌋ many l-look-back runs of length k which have been completed. Thus,
we have

Px(Nr(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

=

g(2m−2)
r (n − t − 1; k1) if t ≤ k2 − 1

g
(2m−2)
r−⌊(t−k2)/(l+1)⌋−1(n − t − 1; k1) if t ≥ k2.

(27)
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Therefore, combining all the terms above from equations (24), (25), (26) and (27), we have
k2+(r−1)(l+1)−1∑

t=0
Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

=
k2−1∑
j=0

q2m−1
(
p2m−1

)j
g(2m−2)

r (n − j − 1; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
g

(2m−2)
r−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1). (28)

Now combining the equations (22), (23) and (28), the proof of the theorem is completed.

If r = 1, we have that g(x)
r (·; k1) is independent of x ∈ Sm (see Corollary 4). By

induction, assume that g(x)
r (·) is independent of x ∈ Sm. Clearly, from the above relation,

we have that g
(x)
r+1(·; k1) can be expressed as weighted sums of g

(x)
i (·; k1) for i = 1, 2, . . . , r.

Since the right hand side of the above relation does not involve any x ∈ Sm, g
(x)
r+1(·; k1) must

be independent of x. Therefore, from now on we will drop the superscript x from g(x)
r (·; k1).

Hence we have the following corollary.

Corollary 6: For any x ∈ Sm, the probability g(x)
r (n; k1) = Px(Nr(k1) = n) is independent

of x and satisfies the recurrence relation

gr(n; k1)

=
k2−1∑
j=0

q2m−1
(
p2m−1

)j
gr(n − j − 1; k1) +

(
p2m−1

)k2+(r−1)(l+1)
1n(k2 + (r − 1)(l + 1) + 1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
gr−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1). (29)

We now derive the generating function ζr(s; k1) of Nr(k1) using the recurrence relation.
For r = 1, we have already obtained the expression of ζ1(s; k1) (see Corollary 5). For r ≥ 2,
we can’t directly obtain the expression of ζr(s; k1). Instead, we will obtain a recurrence
relation in terms of the generating functions. Indeed, for r ≥ 2, we have

ζr(s; k1) = s
(
p2m−1s

)k2+(r−1)(l+1)
+

∞∑
n=0

k2−1∑
j=0

q2m−1
(
p2m−1

)j
gr(n − 1 − j; k1)sn

+
∞∑

n=0

r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2

× gr−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1)sn

= s
(
p2m−1s

)k2+(r−1)(l+1)
+

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1ζr(s; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1s
(
p2m−1s

)k2+j1(l+1)+j2
ζr−1−j1(s; k1). (30)
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Simplifying equation (30), we obtain a recurrence relation involving ζr(s; k1). This is given
in the following lemma.

Lemma 1: For r ≥ 2, the sequence of the probability generating functions satisfies the
following recurrence relation

(
1 −

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
ζr(s; k1)

=
(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
) r−2∑

j1=0

(
p2m−1s

)j1(l+1)
ζr−1−j1(s; k1)

+ s
(
p2m−1s

)k2+(r−1)(l+1)
. (31)

Now, we are ready to prove the main theorem, namely Theorem 1.

Proof: The generating function of the sequence {ζr(s; k1) : r ≥ 1} is denoted by Ξ(z; k1),
i.e.,

Ξ(z; k1) =
∞∑

r=1
ζr(s; k1)zr.

Now, using (31) we obtain the generating function Ξ(z; k1) as follows:

(
1 −

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
Ξ(z; k1)

=
∞∑

r=1

(
1 −

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
ζr(s; k1)zr

=
(

1 −
k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
ζ1(s; k1)z +

∞∑
r=2

s
(
p2m−1s

)k2+(r−1)(l+1)
zr

+
∞∑

r=2

(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
) r−2∑

j1=0

(
p2m−1s

)j1(l+1)
ζr−1−j1(s; k1)zr

= sz
(
p2m−1s

)k2 + sz
(
p2m−1s

)k2
∞∑

r=1

(
p2m−1s

)r(l+1)
zr

+
(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
) ∞∑

j1=0

(
p2m−1s

)(l+1)j1
∞∑

r=j1

ζr−j1+1(s; k1)zr+2

=
sz

(
p2m−1s

)k2

1 −
(
p2m−1s

)(l+1)
z

+

(
p2m−1s

)k2
(∑l

j=0 q2m−1s
(
p2m−1s

)j
)

zΞ(z; k1)

1 −
(
p2m−1s

)(l+1)
z

. (32)
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Now, from the above equation (32), we can easily solve Ξ(z; k1) to obtain

Ξ(z; k1) =
[
sz

(
p2m−1s

)k2
][(

1 −
k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)

×
(

1 −
(
p2m−1s

)(l+1)
z

)
− z

(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
)]−1

=
zs

(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

[
1 −

(
p2m−1s

)(l+1)
z

−
z

(
p2m−1s

)k2
(∑l

j=0 q2m−1s
(
p2m−1s

)j
)

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

]−1

=
zs

(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

×
[
1 − z

((
p2m−1s

)(l+1)
+

(
p2m−1s

)k2
(∑l

j=0 q2m−1s
(
p2m−1s

)j
)

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

)]−1

. (33)

Now, we obtain ζr(s; k1) by calculating the coefficient of zr in the equation (33). Observe
that coefficient of zr is obtained by multiplying the coefficient of zr−1 in the expression in
the last line in (33) by s

(
p2m−1s

)k2
/

(
1 − ∑k2−1

j=0 q2m−1
(
p2m−1

)j
sj+1

)
. Using the expansion

(1 − az)−1 = ∑∞
t=0 atzt, we have

ζr(s; k1) =
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1s

(
p2m−1s

)j

[(
p2m−1s

)l+1

+
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
]r−1

.

This completes the proof of theorem 1.

6. Conclusion

In this article we have defined a new discrete distribution, called generalized Binomial
type distribution. The probability generating function of the distribution has been given along
with its connections to the classical Binomial distribution as well as the negative Binomial
distribution. We have studied the number of overlapping runs of length k1 until the rth

occurrence of l-look-back run of length k (k1 ≤ k) for the mth order Markov chain and
obtained the explicit expression of its probability generating function. Further, we have
shown that our result generalizes the results of Aki and Hirano (1994) when we consider
r = 1 for both i.i.d. as well as Markov dependent case. Since our stopping time is quite
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general, our theorem will also provide similar results when we apply it to different cases such
as the rth occurrence of non-overlapping runs or rth occurrence of overlapping runs or rth

occurrence of µ-overlapping runs (for positive µ).

Our result shows that the conditional distribution, that we have considered, has a
renewal structure (see Feller (1968)) in the sense that it splits into independent sums of
random variables, which may be interpreted as arrival times in a renewal process. Further,
it is also seen that the arrival times are identical except the first arrival time. In other
words, it admits a delayed renewal structure. We are able to identify the arrival times
through the newly defined generalized Binomial type distribution and extended geometric
discrete distribution. This renewal structure, in turn, can also be used to obtain approximate
distribution of number of runs when the value of r is large. For instance, we may obtain the
strong law of large numbers for the number of overlapping runs of length k1.

We also provide a versatile method of proving the result where we convert our problem
from the mth order Markov chain into a simple Markov chain by combining the states. This
allows us to use the Markov chain machinery, namely the strong Markov property, to derive
the recurrence relation and use the method of generating functions effectively to obtain our
results. Our method is quite powerful and can be used to prove similar results for other run
statistic. We expect that, in future, there will be more applications of our method.
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Abstract
In this paper, we introduce a new generated distribution called the Topp-Leone Gen-

erated q-Weibull(TLqW) Distribution. The described distribution’s many distributional
attributes and reliability traits are covered. Some well-known special cases of the mentioned
model are also listed. When the lifetimes follow this distribution, it is better to establish a
new reliability test plan, which aids in picking the best choices. The maximum likelihood
method is investigated for parameter estimation in models. Using actual data sets, we used
empirical evidence to demonstrate the value and adaptability of the new model in the model
building process. The new test plan is then used to demonstrate how it may be used for
creating dependable software in commercial settings.

Key words: Topp-Leone generated q-Weibull distribution; Quantile function; Reliability test
plan; Maximum likelihood estimation.
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1. Introduction

Numerous statistical distributions, including exponential, Weibull, logistic, and oth-
ers, are significant in modelling survival and life-time data. The support for almost all of
these distributions is unbounded. However, there are instances in real life where observa-
tions can only represent values in a small range, such percentages, proportions, or fractions.
According to Papke and Wooldridge (1996), the variable is limited between zero and one
in many economic scenarios, including the percentage of total weekly hours spent working,
pension plan participation rates, industry market shares, percentage of land area given to
agriculture, etc. As a result, for models to produce results that make sense, the unit in-
terval must be used as the definition. Additionally, some writers use continuous models
with finite support to characterise lifetime data while conducting reliability analysis. The
most prevalent distribution for modelling continuous variables in the unit interval is the
beta distribution, as is widely known. Due to the excellent flexibility of its density function,
this distribution is well-liked in the fields of engineering, economics, biology, and ecology,
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among others. However, the mathematical formulation is found to be challenging because
its distribution function cannot be written in closed form and it incorporates the incomplete
beta function. In contrast, a number of scholars have suggested alternatives to the beta
distribution by reviving the one Kumaraswamy suggested in 1980.

Topp and Leone’s new distribution, known as the Topp Leone (TL) distribution, de-
fined on finite support, was introduced in 1955. Several authors researched this distribution.
The Topp Leone distribution offers closed variants of the probability density function (pdf)
and cumulative density function (cdf), and it describes empirical data with a J-shaped his-
togram, such as powered tool band failures and automatic adding machine failure. Prior to
being identified by Nadarajah and Kotz (2003), the Topp Leone distribution has gotten little
attention. They examined various aspects of TL distribution and supplied its moments, cen-
tral moments, and characteristic functions. Some reliability metrics of the TL distribution,
including a hazard function, mean residual life, reversed hazard rate, predicted inactivity
time, and its stochastic orderings were presented by Ghitany et al. (2005). Kotz and Seier
(2002) reported a discussion on the TL distribution’s kurtosis.

If a random variable X belongs to the TL distribution, it can have either finite (0 <
x < b) or infinite (0 < x < b < ∞) support. To avoid using any additional functions
for creating a new family of produced distributions, we here largely concentrate on the TL
distribution with b = 1 (see Zografos and Balakrishnan (2009), Alzaatreh et al. (2013), Lee
et al. (2013)).

Topp and Leone concentrated on creating J-shaped histogram distributions for em-
pirical data. A random variable X is distributed as the TL, bounded on (0,1) with cdf

FT L(x) = xα(2 − x)α; 0 < x < 1, (1)

where α > 0. Its pdf associated with equation (1) is

fT L(x) = 2αxα−1(1 − x)(2 − x)α−1. (2)

This distribution can alternatively be seen as one in which the failure rate is propor-
tional to a power of time, assuming the random variable X represents the failure times. The
survival and hazard functions are the other crucial traits. They are respectively

s(x) = 1 − xα(2 − x)α,

and

h(x) = 2αxα−1(1−x)(2−x)α−1

1−xα(2−x)α .

Life time distributions’ hazard rate functions can be monotonically increasing, mono-
tonically decreasing, or U-shaped (bath tub shaped). Each example has applications in the
real world. In the case of the TL distribution, the failure rate decreases over time if the
shape parameter’s value is less than one, remains constant over time if it is equal to one,
and rises over time if it is more than one. Additionally, Nadarajah and Kotz noted that the
bathtub shape of the hazard function is provided by the TL distribution when 0 < α < 1.
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To get the Topp-Leone generated (TLG) family of distribution, use the TL distri-
bution as the generating distribution. Then relation of a random variable X having the
TLG distribution and a random variable T having TL distribution is X = G−1(T ), with
T ∼ TL(α). This relationship depicts how the function G(.) transforms the TL distribu-
tion’s pdf (2) into a new probability function.

FT LG(x) = 2α

ˆ G(x)

0
tα−1(1 − t)(2 − t)α−1dt = G(x)α(2 − G(x))α. (3)

By differentiating, we get the corresponding pdf,
fT LG(x) = 2αg(x)(1 − G(x))G(x)α−1(2 − G(x))α−1. (4)

The Topp-Leone generated exponential (TLE) distribution was introduced by Sangsa-
nit and Bodhisuwan (2016) as an illustration of the Topp-Leone generated distribution. Even
though exponential distribution is frequently used in reliability analysis, its constant hazard
rate still remains a limitation of this distribution. The two-parameter Weibull distribu-
tion is one of the most well-known generalisations of the exponential distribution. Weibull
distribution has many applications in real data analysis. Aryal et al. (2017) discussed
characterizations and applications of Topp-Leone generated Weibull distribution. We can
generalize TLE distribution into TLW distribution using a transformation. If X follows
TLE distribution then the distribution of Y = X

1
γ , γ > 0 follows TLW distribution. Hence,

a random variable X is said to follow TLW distribution if it has the cdf and the pdf as in
the form

FT LW (x) = 1 − exp(−2(νx)γ)α, γ, α, ν > 0, (5)

fT LW (x) = 2αγνγxγ−1exp(−2(νx)γ)(1 − exp(−2(νx)γ)α−1, (6)
where α, γ are shape parameter and ν is the scale parameter.

Authors have recently examined a variety of q-type distributions, including q-exponen-
tial, q-Weibull, q-logistic, etc. Since the exponential form can be attained gradually as q → 1,
the q-exponential distribution can be seen as a stretched model of the exponential distribu-
tion (see Beck (2006), Beck and Cohen (2003), Mathai(2005)). According to Tsallis statistics
and many research based on q-type distributions, including q-Weibull, Wilk and Wlodarczyk
(2000, 2001) and Tsallis (1988). Costa et al. (2006) described a research of dielectric break-
down in electronic device oxides and demonstrated that a q-Weibull distribution provides
a satisfactory fit for the data. For x > 0 and for q > 1 the distribution function and the
density function of the q-Weibull distribution is,

F1(x) = 1 − [1 + (q − 1)(λx)γ]
q−2
q−1 , (7)

f1(x) = γλγ(2 − q)xγ−1[1 + (q − 1)(λx)γ]
−1

q−1 . (8)
where, γ, λ > 0, 1 < q < 2. For x > 0 and q < 1,the cdf and the density function of q -
Weibull distribution becomes

F2(x) = 1 − [1 − (1 − q)(λx)γ]
2−q
1−q , 0 ≤ x ≤ 1

λ(1 − q)
1
γ

, (9)
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f2(x) = γλγ(2 − q)xγ−1[1 − (1 − q)(λx)γ]
1

1−q . (10)

Clearly, as q tends to 1 f1(x) and f2(x) tend to the usual Weibull distribution with two
parameters γ, λ.

The rest of the paper is organized as follows. In section 2 we will introduce the Topp-
Leone q-Weibull Distribution (TLqW) and further properties. In section 3, we described a
new reliability test plan for TLqW distribution. In section 4, we study the estimation of
parameters of the TLqW distribution, using the method of maximum likelihood. Simulation
studies, real data illustrations, and reliability test applications of TLqW distribution are also
discussed in section 5. Concluding remarks are addressed in section 6.

2. Topp Leone q - Weibull distribution

The applications of the q-weibull distribution have recently been studied by a number
of researchers in the contexts of information theory, statistical mechanics, reliability mod-
elling, etc. In terms of reliability, the TL distribution is a fairly adaptable distribution. We
therefore use the origin of the TLG distribution to merge these two distributions inspired by
this. As a result, we present the TLqW distribution.

A random variable X possessing the TLqW distribution with q > 1 has the cdf and
pdf respectively are

F1T LqW =
(

1 − (1 + (q − 1)(λx)γ)
2q−4
q−1

)α

, x > 0, λ, α, γ > 0, 1 < q < 2. (11)

and

f1T LqW (x) = 2αγλγ(2 − q)xγ−1[1 + (q − 1)(λx)γ]
q−3
q−1 {1 − [1 + (q − 1)(λx)γ]

2q−4
q−1 }α−1, (12)

where x > 0, λ, α, γ > 0, 1 < q < 2.

Figure 1: Plots of pdf and cdf of TLqW distribution

The plots of pdf and cdf of TLqW for various values of the shape parameters α, γ and q are
shown in Figure 1. Survival function is the probability that a system will survive beyond a
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given time. The survival function S(x) for TLqW distribution is

S(x) = 1 − FT LqW (x)
= 1 − {1 − (1 + (q − 1)(λx)γ)2 q−2

q−1 }α. (13)

The TLqW distribution’s hazard function is

h(x) = fT LqW (x)
1 − FT LqW (x)

=
2αγλγ(2 − q)xγ−1[1 + (q − 1)(λx)γ]

q−3
q−1 {1 − [1 + (q − 1)(λx)γ]2 q−2

q−1}α−1

1 − {1 − (1 − [1 + (q − 1)(λx)γ]2
q−2
q−1 )}α

. (14)

One can see the behaviour of hazard function using Figure 2. The Cumulative hazard

Figure 2: Plot of h(x) of TLqW distribution

function H(x)is defined as

H(x) =
ˆ t

0
h(t)dt

= − ln{1 − {1 − (1 + (q − 1)(λx)γ)2 q−2
q−1 }α}. (15)

There are several new as well as well known distributions that can be obtained from
the TLqW distributions. The sub-models include the following distributions:

1. When q → 1, we obtain Topp Leone Weibull (TPW) distribution

2. When γ =1, we obtain Topp Leone q Exponential (TPqE) distribution

3. If q → 1 and γ =1, we have the Topp Leone Exponential (TLE) distribution
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2.1. L - Class property

The class L distributions are a significant class of distributions utilised in queuing
theory and risk theory.

A distribution F belongs to the class L if

lim
x→∞

1 − F (x − y)
1 − F (x) = 1, ∀y ∈ R.

2.2. Quantile function

Probability distributions can be defined in terms of distribution functions or quantile
functions when modelling and analysing statistical data. Quantile functions are more prac-
tical for analysis since they possess a number of intriguing characteristics that distributions
do not share. The quantile function Q(u) is defined as for a non-negative random variable
X with distribution function F (x) (see Nair et al. (2013)),

Q(u) = F −1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1.

For every -∞ < x < ∞ and 0 < u < 1, we have

F (x) ≥ u if and only if Q(u) ≤ x.

As a result, Q(u) is the smallest value of x satisfying F (x) = u and F (Q(u)) = u
if there is an x such that F (x) = u. By solving the equation F (x) = u, we may get x in
terms of u, which is the quantile function of X, if F (x) is continuous and strictly growing.
Moreover, if Q(u) is the only value of x such that F (x) = u, then F (x) = u. The quantile
function of TLqW distribution when 1 < q < 2 is obtained as,

Q(u) =


(√

1 − u
1
α

)( q−1
q−2 )

− 1

(q − 1)λγ


1/γ

, 1 < q < 2.

where u is chosen at random from the uniform distribution throughout the range (0, 1).
By matching population features with comparable sample characteristics, quantile-based
measures of distributional properties such as location, dispersion, skewness, and kurtosis
can be used to estimate model parameters. We can obtain the median as

M = Q(1
2) =

1 − (1 − 0.50 1
α )

1−q
4−2q

(1 − q)λγ


1
γ

.

The inter-quartile-range (IQR) of the TLqW model is,

IQR = Q(3
4) − Q(1

4) =
1 − (1 − 0.75 1

α )
1−q

4−2q

(1 − q)λγ


1
γ

−

1 − (1 − 0.25 1
α )

1−q
4−2q

(1 − q)λγ


1
γ

.
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The Galton’s coefficient of skewness (S) of the TLqW model is,

S =
Q(3

4) + Q(1
4) − 2Median

IQR

=

(
1−(1−0.75

1
α )

1−q
4−2q

(1−q)λγ

) 1
r

−
(

1−(1−0.25
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

− 2
(

1−(1−0.50
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

(
1−(1−0.75

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1−0.25
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

.

Moor’s coefficient of kurtosis (T) of the TLqW model is,

T =
Q(7

8) − Q(5
8) + Q(3

8) − Q(1
8)

IQR

=

(
1−(1− 7

8
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1− 5
8

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1− 3
8

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1− 1
8

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

(
1−(1− 3

4
1
α )

1−q
4−2q

(1−q)λγ

) 1
r

−
(

1−(1− 1
4

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

.

2.3. Simulation

A random variable Y having TLqW distribution can be simulated, for 1 < q < 2 as,

Y =

 [1 − U
1
α ]

q−1
2(q−2) − 1

(q − 1)(λ)γ


1
γ

,

where U ∼ U(0, 1).

3. Reliability test plan

The acceptance sampling plan inspection method, which is used to decide whether to
accept or reject a specific quantity of material (see Kantam et al. (2001), Rao et al. (2011),
Jose and Joseph (2018), etc.), is prescribed. If it is applied to a series of lots, the method
will give a specific probability of accepting lots of a given quality. Here we establish the
reliability test, with its operating characteristic function plan for accepting or rejecting a
lot where the lifetime of the product follows Topp-Leone generated q-Weibull distribution.
The process in a life testing experiment is to call the test off at a predetermined time t and
record the number of failures. We accept the lot with a specified probability of at least p
if the number of failures at the end of time t does not exceed a predetermined number c,
known as the acceptance number. However, we reject the lot if the failure rate reaches c
before time t. We are interested in obtaining the smallest sample size possible in order to
arrive at a decision for such a truncated life test and the accompanying decision rule.

Although many distributions from the Topp-Leone produced family have been created
with a variety of uses, none of them have been used in acceptance sampling to create relia-
bility test plans. Assume that the lifetime of a product T follows the Topp-Leone generated
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q -Weibull distribution with cdf

F (t) = {1 − [1 + (q − 1)( t

λ
)γ]2( q−2

q−1 )}α, t > 0, λ, α, γ > 0, 1 < q < 2. (16)

Let λ0 be the required minimum average life time and the shape parameters α,γ and
q are known. Then

FT LqW (t; α, q, γ, λ) ≤ GT LqW (t; α, q, γ, λ0) ⇔ λ ≥ λ0. (17)

The number of units under test n, the acceptance number c, the maximum test time
t, and the minimum average lifetime λ0 are used to define a sampling plan. The consumer’s
risk (chance of accepting a bad lot) shouldn’t be higher than the value 1 − p∗, where p∗ is
a lower bound on the likelihood that the sampling plan will reject a lot with a true value
of λ below λ0 . The sampling plan is defined by (n, c, t/λ0) for fixed p∗ . For sufficiently
large lots, the acceptance probability can be determined using the binomial distribution. For
given values of c and t/λ0, the goal is to find the smallest positive integer n such that

L(p0) =
c∑

i=0

(
n

i

)
p0

i(1 − p0)n−i ≤ 1 − p∗. (18)

The operational characteristic function is increasing in λ, as indicated by the fact that
the product’s average lifespan increases with λ and the failure probability p(λ) decreases.
Where p0 = FT LqW (t; α, q, γ, λ0) is given in (16) and denotes the failure probability before
time t, which solely depends on the ratio t/λ0. For α = 2, q = 1.1,γ = 1.2 and p∗=0.75
and t/λ0 = 0.248, 0.361, 0.482, 0.602, 0.903, 1.204, 1.505 and 1.806, the minimal values of n
fulfilling (18) are obtained. Table 1 presents the findings.

The binomial probability can be approximated by the Poisson probability with the
parameter θ = np0 if p0 = FT LqW (t; α, q, γ, λ0) is small and n is very large. As a result, (18)
becomes true.

L1(p0) =
c∑

i=0

θi

i! e−θ ≤ 1 − p∗. (19)

For the same set of values for α,γ, q, p∗ and t/λ0, the minimum values of n satisfying
(19) are obtained and shown in Table 2. In the beginning equation,

L(p0) =
c∑

i=0

(
n

i

)
p0

i(1 − p0)n−i, (20)

and in the end equation, p = F (t, λ), where λ is taken into consideration, the probability
L(p0) of accepting the lot is given by the operating characteristic function of the sampling
plan (n, c, t/λ0). When p∗ and t/λ0 are given values, the values of n and c are calculated using
the operating characteristics (OC) function, taking into account the fact thatp = F ( t

λ0
/ λ

λ0
),

and the results are displayed in Table 3.

The probability of rejecting a lot when λ > λ0 is the producer’s risk. By first de-
termining that p = F (t; λ) and then employing the binomial distribution function, we may
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calculate the producer’s risk. For illustration, we generate p from the sample plan provided
in Table 1 for the given value of producer’s risk, say 0.05, under the constraint that

c∑
i=0

(
n

i

)
p0

i(1 − p0)n−i ≥ 0.95. (21)

The minimal value of meeting (21) λ/λ0 for the sampling plan (n, c, t/λ0) and for the specified
p∗ are reported in Table 6.

3.1. Explanation of the tables

Assume that q=1.1 and α=2 correspond to the TLqW distribution throughout the
lifespan. Let us say the experimenter wants to confirm that the true unknown average life is
at least 1000 hours with a p∗ = 0.75 level of confidence. At t = 903 hours, the experiment
should come to an end. The required n is hence 9 for an acceptance number c = 4 (Table
1). With a confidence level of 0.75, the experimenter can claim that the average life is
at least 1000 hours if, during the course of 903 hours, no more than 4 failures out of 9
are detected. The value of n is 11 if the Poisson approximation to binomial probability is
utilized (Table 2). The operational characteristic values from Table 3 are reported in Table
4 for this sample plan (n = 9, c = 4, t/λ0 = 0.903) under the TLqW distribution. The
operational characteristic values from Table 3 are reported in Table 5 for the sample plan
(n = 7, c = 4, t/λ0 = 1.806) with the consumer’s risk of 0.05 under the TLqW distribution.
This demonstrates that producers’ risk is 0.05 when λ/λ0 = 3 and insignificant when λ/λ0
= 4. According to Table 3 for this plan, the minimum value of λ/λ0, which represents the
producer’s risk as 0.05, is 3. When the consumer’s risk is 0.25 or p∗ =0.75, c = 4 and
t/λ0 = 0.903, the minimum ratio, λ/λ0 = 1.9619 (from Table 6) which indicates that if
λ ≥ 1.9619 × (t/0.903) = 2.1726t = 1961.9 hours, then, with sample size n = 9 and c = 4,
the lot will be rejected with probability less than or equal to 0.05.

4. Maximum likelihood estimation

Let x1, x2, ..., xn be an observed random sample from TLqW distribution with 1 <
q < 2 unknown parameter vector θ = (α, γ, λ, q)T . The likelihood function is then expressed
as

L(θ) =
n∏

i=1
2αγλγ(2 − q)xγ−1

i (1 + (q − 1)(λxi)γ)
q−3
q−1 {1 − (1 + (q − 1)(λxi)γ)2 q−2

q−1 }α−1.

The log-likelihood function is given by,

l(θ) = ln L(θ) = n ln 2 + n ln α + n ln γ + nγ ln λ + n ln(2 − q) + (γ − 1)
n∑

i=1
ln xi+

q − 3
q − 1

n∑
i=1

ln(1 + (q − 1)(λxi)γ) + (α − 1)
n∑

i=1
ln{1 − (1 + (q − 1)(λxi)γ)2 2−q

1−q }.

Let zi(x) = 1 + (q − 1)(λxi)γand k = 2 (q−2)
(q−1) , then l(θ) can be written as,
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Table 1: Using the Binomial approximation, minimum sample size

p∗ c t/λ0
0.248 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75 0 18 8 5 3 2 1 1 1
1 35 16 10 7 4 3 2 2
2 51 21 14 10 6 4 4 3
3 66 30 18 13 8 6 5 5
4 82 37 22 16 9 7 6 6
5 60 33 22 17 11 9 8 7
6 70 38 25 19 13 10 9 8
7 79 43 29 22 14 12 10 9
8 88 48 32 24 16 13 11 11
9 97 52 35 27 18 14 13 12
10 106 57 39 30 20 16 14 13

0.90 0 29 13 8 5 3 2 2 1
1 50 23 13 9 5 4 3 3
2 69 31 18 13 7 5 4 4
3 86 39 23 16 9 7 6 5
4 103 47 28 19 11 8 7 6
5 120 54 32 23 13 10 8 7
6 136 62 37 26 15 11 9 9
7 152 69 41 29 17 13 11 10
8 168 76 46 32 19 14 12 11
9 184 84 50 35 21 16 13 12
10 200 91 55 38 22 17 14 13

0.95 0 39 17 10 7 4 3 2 2
1 61 27 16 11 6 4 3 3
2 81 36 21 15 8 6 5 4
3 100 45 27 18 10 8 6 5
4 118 53 32 22 12 9 7 7
5 135 61 36 25 14 11 9 8
6 153 69 41 29 16 12 10 9
7 170 77 46 32 18 14 11 10
8 186 84 50 35 20 15 13 11
9 203 92 55 38 22 16 14 12
10 219 99 59 42 24 18 15 14

0.99 0 58 26 15 10 5 4 3 2
1 85 38 22 15 8 6 4 4
2 107 48 28 19 10 7 6 5
3 128 58 34 23 13 9 7 6
4 149 67 39 27 15 11 9 7
5 168 75 45 31 17 12 10 9
6 187 84 50 34 19 14 11 10
7 205 92 55 38 21 15 13 11
8 224 101 60 41 23 17 14 12
9 242 109 65 45 25 18 15 14
10 259 117 70 47 27 20 17 15
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Table 2: Using the Poisson approximation, the minimal sample size

p∗ c t/λ0
0.248 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75 0 19 9 6 4 3 2 2 2
1 36 17 10 7 5 4 4 3
2 52 24 15 11 7 6 5 5
3 67 31 19 14 9 7 6 6
4 83 38 24 17 11 9 8 7
5 98 45 28 20 13 10 9 8
6 113 52 32 23 14 12 10 10
7 127 59 36 26 16 13 12 11
8 142 66 40 29 18 14 13 12
9 157 72 45 32 20 16 14 13
10 171 79 49 35 22 17 15 15

0.90 0 31 14 9 7 4 3 3 4
1 51 24 15 11 7 6 5 6
2 70 33 20 15 9 7 7 7
3 88 41 25 18 11 9 8 9
4 105 49 30 22 14 11 10 10
5 122 57 35 25 16 12 11 12
6 138 64 39 28 18 14 13 13
7 155 72 44 32 20 16 14 15
8 171 79 49 35 22 17 15 16
9 187 86 53 38 24 19 17 17
10 202 94 57 41 26 20 18 18

0.95 0 40 19 12 8 5 4 4 4
1 63 29 18 13 8 7 6 6
2 83 39 24 17 11 9 8 7
3 102 47 29 21 13 11 9 9
4 120 56 34 25 15 12 11 10
5 138 64 39 28 18 14 13 12
6 156 72 44 32 20 16 14 13
7 173 80 49 35 22 17 16 15
8 190 88 54 39 24 19 17 16
9 206 95 59 42 26 21 18 17
10 223 103 63 45 28 22 20 19

0.99 0 61 28 18 13 8 6 6 5
1 87 41 25 18 11 9 8 8
2 111 51 32 23 14 11 10 10
3 132 61 38 27 17 13 12 11
4 152 71 43 31 19 15 14 13
5 172 80 49 35 22 17 16 15
6 191 89 54 39 24 19 17 16
7 210 97 60 43 27 21 19 18
8 228 106 65 47 29 23 20 19
9 246 114 70 50 31 25 22 21
10 264 122 75 54 33 27 24 22
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Table 3: Values for the sample plan’s operating characteristic function (n, c, t/λ0)

λ/λ0
p∗ n c t/λ0 2 2.5 3 3.5 4 4.5 5

0.75 82 4 0.241 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
37 4 0.361 0.9991 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
22 4 0.482 0.9980 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
16 4 0.602 0.9952 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999
9 4 0.903 0.9856 0.9984 0.9997 0.9999 0.9999 0.9999 0.9999
7 4 1.204 0.9587 0.9938 0.9989 0.9998 0.9999 0.9999 0.9999
6 4 1.505 0.9162 0.9838 0.9968 0.9993 0.9998 0.9999 0.9999
6 4 1.806 0.7663 0.9360 0.9838 0.9958 0.9988 0.9996 0.9998

0.90 103 4 0.241 0.9993 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
47 4 0.361 0.9975 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
28 4 0.482 0.9940 0.9995 0.9999 0.9999 0.9999 0.9999 0.9999
19 4 0.602 0.9894 0.9990 0.9998 0.9999 0.9999 0.9999 0.9999
11 4 0.903 0.9621 0.9951 0.9993 0.9998 0.9999 0.9999 0.9999
8 4 1.204 0.9192 0.9864 0.9976 0.9995 0.9998 0.9999 0.9999
7 4 1.505 0.8195 0.9587 0.9910 0.9979 0.9994 0.9998 0.9999
6 4 1.806 0.7663 0.9360 0.9838 0.9958 0.9988 0.9996 0.9998

0.95 118 4 0.241 0.9987 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
53 4 0.361 0.9958 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999
32 4 0.482 0.9894 0.9991 0.9999 0.9999 0.9999 0.9999 0.9999
22 4 0.602 0.9801 0.9980 0.9997 0.9999 0.9999 0.9999 0.9999
12 4 0.903 0.9448 0.9925 0.9988 0.9998 0.9999 0.9999 0.9999
9 4 1.204 0.8659 0.9747 0.9953 0.9990 0.9997 0.9999 0.9999
7 4 1.505 0.8195 0.9587 0.9910 0.9979 0.9994 0.9998 0.9999
7 4 1.806 0.5795 0.8572 0.9587 0.9884 0.9966 0.9989 0.9996

0.99 149 4 0.241 0.9965 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999
67 4 0.361 0.9889 0.9991 0.9999 0.9999 0.9999 0.9999 0.9999
39 4 0.482 0.9763 0.9977 0.9997 0.9999 0.9999 0.9999 0.9999
27 4 0.602 0.9551 0.9950 0.9993 0.9999 0.9999 0.9999 0.9999
15 4 0.903 0.8705 0.9788 0.9965 0.9993 0.9998 0.9999 0.9999
11 4 1.204 0.7287 0.9366 0.9866 0.9970 0.9993 0.9998 0.9999
9 4 1.505 0.5732 0.8659 0.9645 0.9908 0.9975 0.9993 0.9997
7 4 1.806 0.5795 0.8572 0.9587 0.9884 0.9966 0.9989 0.9996

Table 4: Values of the OC function for values of λ/λ0 at (n = 9, c = 4, t/λ0 = 0.903)

λ/λ0 2 2.5 3 3.5 4
L(p) 0.9856 0.9984 0.9997 0.9999 0.9999

Table 5: Values of the OC function for values of λ/λ0 at (n = 7, c = 4, t/λ0 = 1.806)

λ/λ0 2 2.5 3 3.5 4 4.5 5
L(p) 0.5795 0.8572 0.9587 0.9884 0.9966 0.9989 0.9996
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Table 6: Minimum of λ/λ0 for the acceptability of a lot with producer’s risk of 0.05

p∗ c t/λ0
0.241 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75 0 4.4202 4.6647 5.0961 5.4557 6.3239 6.7439 7.9027 9.2078
1 2.6177 2.6953 2.9073 3.1296 3.4508 3.7272 3.7349 4.2172
2 2.0644 2.1350 2.2313 2.3367 2.6114 2.7601 3.2916 3.2154
3 1.8393 1.8984 1.9580 2.0957 2.3727 2.5925 2.7851 3.2154
4 1.7188 1.7616 1.8008 1.8853 1.9619 2.1962 2.3978 2.7845
5 1.6234 1.6725 1.7327 1.7773 1.8712 2.1316 2.1554 2.5061
6 1.5622 1.6067 1.6543 1.6999 1.8052 1.9422 2.1922 2.2987
7 1.5160 1.5582 1.5945 1.6415 1.7548 1.8168 2.0356 2.1467
8 1.4796 1.5078 1.5479 1.5962 1.6361 1.8256 1.9156 2.0420
9 1.4459 1.4784 1.5107 1.5293 1.6141 1.7264 1.8159 1.9256
10 1.4182 1.4546 1.4804 1.5026 1.5949 1.6536 1.7332 1.8456

0.90 0 5.5043 5.8420 6.3102 6.4500 7.6763 8.4810 10.5436 10.1158
1 2.9925 3.1559 3.2234 3.3993 3.7805 4.4528 4.6590 5.5908
2 2.3788 2.4760 2.5309 2.7041 2.8758 3.1049 3.3046 3.9655
3 2.0771 2.1603 2.2278 2.3005 2.4810 2.7966 3.1275 3.2283
4 1.9092 1.9837 2.0451 2.0857 2.2539 2.4017 2.6903 2.7896
5 1.8031 1.8494 1.9003 1.9837 2.1086 2.3241 2.3978 2.5061
6 1.7165 1.7739 1.8216 1.8785 2.0026 2.1140 2.1922 2.6307
7 1.6558 1.6997 1.7458 1.7932 1.9211 2.0932 2.2509 2.4552
8 1.6064 1.6464 1.6942 1.7292 1.8635 1.9541 2.1100 2.2987
9 1.5685 1.6095 1.6466 1.6791 1.8133 1.9541 1.9979 2.1791
10 1.5355 1.5748 1.6167 1.6377 1.7172 1.8530 1.8996 2.0798

0.95 0 6.1698 6.4672 6.8688 7.3394 8.6576 10.1799 10.6012 12.7215
1 3.2479 3.3789 3.5622 3.7318 4.1507 4.4294 4.6590 5.5908
2 2.5480 2.6414 2.7313 2.9068 3.1138 3.4832 3.8811 3.9558
3 2.2262 2.3104 2.4118 2.4561 2.6408 3.0678 3.1275 3.2348
4 2.0322 2.0980 2.1983 2.2504 2.3868 2.6242 2.6903 3.2283
5 1.9003 1.9664 2.0179 2.0759 2.2092 2.4962 2.6688 2.8774
6 1.8144 1.8693 1.9220 1.9924 2.0919 2.2655 2.4336 2.6307
7 1.7428 1.7964 1.8492 1.9015 2.0026 2.2189 2.2509 2.4552
8 1.6853 1.7283 1.7741 1.8205 1.9304 2.0729 2.2832 2.2987
9 1.6416 1.6859 1.7281 1.7605 1.8721 1.9541 2.1580 2.2269
10 1.6012 1.6414 1.6779 1.7354 1.8256 1.9541 2.0530 2.2796

0.99 0 7.3513 7.8632 8.1828 8.6528 9.5893 11.4865 12.6403 12.7215
1 3.7743 3.9580 4.1543 4.3619 4.7903 5.5126 5.5958 6.6232
2 2.8869 3.0280 3.1469 3.2614 3.5104 3.8505 4.3540 4.6433
3 2.4840 2.6006 2.6998 2.7758 3.0848 3.3080 3.5050 3.7417
4 2.2557 2.3496 2.4185 2.5203 2.7413 3.0228 3.2723 3.2283
5 2.1068 2.1774 2.2695 2.3402 2.5059 2.6634 2.9051 3.2026
6 1.9953 2.0701 2.1332 2.1804 2.3501 2.5615 2.6635 2.9203
7 1.9227 1.9558 2.0314 2.0857 2.2155 2.3494 2.6372 2.7011
8 1.8377 1.8936 1.9542 1.9924 2.1256 2.2896 2.4426 2.5942
9 1.7811 1.8370 1.8958 1.9414 2.0488 2.1522 2.3121 2.5897
10 1.7328 1.7899 1.8419 1.8636 1.9827 2.1266 2.3142 2.4587
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l(θ) = n ln 2 + n ln α + n ln γ + nγ ln λ + n ln(2 − q) + (γ − 1)
n∑

i=1
ln xi

+ q − 3
q − 1

n∑
i=1

ln zi(x) + (α − 1)
n∑

i=1
ln{1 − zi(x)k}.

Differentiating l(θ) with respect to α, γ, λ,and q,we have
∂l(θ)
∂α

= n

α
+

n∑
i=1

ln{1 − zi(x)k}.

∂l(θ)
∂γ

= n

γ
+ n ln(λ) +

n∑
i=1

ln(xi) + (q − 3)
n∑

i=1
ln(λxi)(λxi)γ 1

zi(x)

− (α − 1)(q − 1)k
n∑

i=1
ln(λxi)(λxi)γ zi(x)k−1

1 − zi(x)k
.

∂l(θ)
∂λ

= nγ

λ
+

[
(q − 1)γλγ−1

] {q − 3
q − 2

n∑
i=1

xγ
i

zi(x) − (α − 1)k
n∑

i=1
xi

γ zi(x)k−1

1 − zi(x)k

}
.

∂l(θ)
∂q

= − n

2 − q
+ 2

(q − 1)2

n∑
i=1

ln zi(x) + q − 3
q − 1

n∑
i=1

(λxi)γ

zi(x)

− (α − 1)
n∑

i=1

1
1 − zi(x)k

d

dq
(zi(x))k,

where
d

dq
(zi(x))k = zi(x)k{k

(λxi)γ

zi(x) + k + 2
q − 1 ln zi(x)}.

Now, setting the non-linear system of equations,∂l(θ)
∂α

= 0, ∂l(θ)
∂γ

= 0, ∂l(θ)
∂λ

= 0,
∂l(θ)

∂q
= 0 and solving them simultaneously we obtain the maximum likelihood estimate,

θ̂ = (α̂, λ̂, γ̂, q̂)T . One can utilise iterative techniques like the Newton-Raphson type algo-
rithm to calculate the estimate when solving non-linear equations numerically.

5. Numerical illustration

5.1. Simulation study

In this section, we do simulation tests to assess how well the MLEs of the TLqW
distribution parameters perform over the long term. Numerous finite sample sizes are taken
into account and to be more specific, we create samples from the TLqW distribution with n
= 50, 75, 100 and 110 for the parameter values α = 1.275, λ = 1.5, γ = 7.8 and q = 1.7. Also,
the iteration is conducted 1000 times. The mean values of the biases, root mean squared
errors (RMSEs), 95% (asymptotic) coverage probabilities (CPs), and average lengths (ALs)
of the 95% (asymptotic) CIs corresponding to each of the parameter estimates for every
replication are calculated with respect to the corresponding sample sizes. From Table 7 it
can be seen that the RMSEs and ALs corresponding to each estimate decrease as the sample
size increases.
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Table 7: Simulation results

Sample Size Parameter MLE Bias RMSE CP AL
n=50 α 1.415 0.140 0.141 1.000 0.425

λ 1.469 -0.031 0.131 0.931 0.437
γ 9.557 1.758 10.14 0.971 11.469
q 0.024 -0.023 0.197 0.906 0.534

n=75 α 1.415 0.140 0.140 1.000 0.347
λ 1.477 -0.023 0.100 0.937 0.351
γ 8.727 0.927 3.177 0.967 7.500
q 1.695 -0.005 0.111 0.917 0.371

n=100 α 1.415 0.139 0.140 0.999 0.300
λ 1.481 -0.019 0.084 0.936 0.299
γ 8.562 0.762 1.838 0.969 6.146
q 1.703 0.003 0.083 0.925 0.302

n=110 α 1.415 0.139 0.139 0.878 0.286
λ 1.482 -0.017 0.077 0.944 0.282
γ 8.539 0.738 1.674 0.964 5.779
q 1.706 0.006 0.076 0.916 0.283

5.2. Data illustration for failure time data

In the reliability tests described in this section, lifetime data from engineering equip-
ment are used to show one use of the TLqW distribution. The example uses data from a
set measuring how long it took 500 MW generators to fail for the first time (see Jia et al.
(2020)). The data are (thousands of hours) 0.058, 0.070, 0.090, 0.105, 0.113, 0.121, 0.153,
0.159, 0.224, 0.421, 0.570, 0.596, 0.618, 0.834, 1.019, 1.104, 1.497, 2.027, 2.234, 2.372, 2.433,
2.505, 2.690, 2.877, 2.879, 3.166, 3.455, 3.551, 4.378, 4.872, 5.085, 5.272, 5.341, 8.952, 9.188
and 11.399. The use of the TLqW illustrates the ability of this distribution in dealing with
the non-monotonic hazard rate function, which includes a set of problems with relevant ap-
plications in the reliability context; for more information, see Jiang et al. (2003). Commonly
used distributions like Weibull are barely suitable to fit the mentioned failure data. The

Table 8: Goodness of fit for different distributions on the failure time data

Model Estimates(SE) lnL K-S p value AIC
Weibull λ̂=2.3118(0.256) -68.6906 0.1219 0.1880 141.3812

γ̂= 0.8156(0.058)
MWE λ̂=0.2130(0.133) -68.2628 0.1046 0.2900 142.5276

θ̂= 10.0923(0.003)
γ̂= 0.6920(0.001)

ENH λ̂=0.1430(1.934) -68.3560 0.1021 0.3330 142.712
η̂= 1.6347 (0.248)
γ̂= 0.6415(0.181)

TPW λ̂=0.4754(0.424) -68.4044 0.2483 0.0192 142.8089
α̂= 1.3378(0.859)
γ̂= 0.1337(0.046)

TLqW λ̂=0.1816(0.029) -46.9633 0.0852 0.9361 101.9265
α̂= 0.0794(0.019)
γ̂= 6.4944(0.154)
q̂=1.8799(0.013)

P − P plot of the failure time data is given in Figure 3. The estimated standard error values
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Figure 3: P -P plot of failure time data

are given in parentheses. It can be easily seen from the Table 8 that the TLqW distribution
is a good alternative to the other lifetime models, namely the Weibull, modified Weibull
extension (MWE), exponentiated Nadarajah-Haghighi (ENH), and TPW distributions.

5.3. Data illustration for fibre strength data

We use the original uncensored observations of the 1.5 cm glass fibre strengths made
by employees of the UK National Physical Laboratory (see Merovci et al. (2016)). The fibre
strength data are 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27,
1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55,
1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,
1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00,
2.01 and 2.24.

Table 9: Goodness of fit for different distributions on fibre strength data

Model Estimates(SE) lnL K-S p value AIC
qW λ̂=0.0357(0.028) -296.15 0.1113 0.4053 598.31

γ̂= 1.2934(0.830)
q̂= 1.2934(0.142)

TLqW λ̂=0.0360(0.007) -294.74 0.1062 0.4654 594.49
γ̂= 0.8304(0.206)
α̂= 3.0546(0.024)
q̂=1.1747(0.012)

Figure 4 gives the P − P plot of the fibre strength data. It can be easily seen from
the Table 9 that TLqW distribution gives better fit than q-Weibull (qW) distribution.

5.4. Reliability test comparison with Marshall-Olkin extended exponential dis-
tribution

Comparing Reliability Test Plans for Marshall-Olkin Extended Exponential distri-
bution (see Rao et al. (2011)) with TLqW distribution, the minimal sample size is 49
using binomial approximation, whereas for α=2, acceptance number c=9, for the stated
ratio t/λ0=0.482 and confidence level p∗=0.75, whereas for TLqW distribution it is 35. The



2023] TOPP-LEONE GENERATED Q-WEIBULL DISTRIBUTION 295

Figure 4: P -P plot of fibre strength data

scaled termination time is uniformly less than that for the current reliability test plans if
we take into account each value of c and each value of t/λ0. The new test plan is now
more advantageous due to this modification, which also aids in selecting the best possible
decisions.

5.5. Real life application of the new test plan

Take into account the following software release failure times, which are ordered and
expressed in hours from the moment the software begins to run until a failure occurs (see,
Wood(1996)). The observations 254, 788, 1054, 1393, 2216, 2880, 3593, 4281, and 5180 make
up an ordered sample of this data with a size of n = 9.

Let’s assume that the desired average lifetime is 1000 hours and that the testing time
is 903 hours. This results in a ratio of t/λ0 = 0.903, with a corresponding sample size of n
= 9 and an acceptance number of c = 4, which is determined from Table 1 for p∗ = 0.75. As
a result, the sampling strategy for the sample data presented above is (n = 9, c = 4, t/λ0 =
0.903). We must choose whether to accept or reject the product in light of the observations.
Only products with fewer than or equal to four failures prior to 903 hours are accepted. The
sampling plan, however, only ensures the confidence level if the given life times follow the
TLqW distribution. We compared the sample quantiles and the corresponding population
quantiles and discovered a reasonable agreement, proving that the given sample is produced
by lifetimes following the TLqW distribution. As a result, it would seem appropriate to
adopt the sampling plan’s decision rule. There are just two failures in the sample of 9 units,
occurring 254 and 788 hours before t = 903 hours. Consequently, we approve the product.

6. Conclusion

The TLqW distribution is introduced in this paper as a generalization of the Weibull
distribution. Class L is where the new distribution fits in. Additionally, the generation of
random variates using the new model is straightforward. The Weibull distribution is shown to
be a competitor of the new model, and the model’s adaptability is demonstrated by fitting it
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to two sets of real-world data. Additionally, we determine the minimal sample size required
for a lot to be accepted or rejected using percentiles. The test strategy was established
using some helpful tables that were provided. Therefore, we draw the conclusion that the
Topp Leone q-Weibull distribution is the most appropriate model among those taken into
consideration, as well as a model that is particularly capable of explaining lifetime scenarios.
We anticipate that the new model will grab researchers’ attention as a serious threat to the
Weibull distribution.
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Abstract
Share frailty models are often used to model heterogeneity in survival analysis. In these

models, it is assumed that each individual from a group shares common frailty, but sometimes
it may be possible that some individuals will have zero susceptibility to an event. In such
cases, compound distributions are more proper to model shared frailty than usually preferred
distributions, gamma, lognormal etc. In this paper we have considered compound Poisson
and compound negative binomial frailty distributions with IDB as baseline distribution.
Since it has increasing, decreasing, constant and bathtub shaped hazard function. MCMC
approach have been used to estimate the parameters involved in the models. A real life data
analysis is also considered by applying the proposed models.. . .

Key words: Bayesian model comparison; Compound negative binomial distribution; Com-
pound Poisson distribution; IDB distribution; MCMC; Shared frailty.

AMS Subject Classifications: 62F15, 62N01, 62P10

1. Introduction

In survival data, researchers are interested to study effect of covariates on life times of
individuals from a group. For example, medical practitioner in case of lung cancer patients,
may be interested to study how the factors such as age, health condition of the patient and
the type of tumor may affect the survival times. In experiments on the time to failure of
electrical insulation, engineer is interested to find the effect of the voltage, the insulation
is subject to. Also in clinical trials, the experimenter is interested to study effect of the
treatment assigned to a patient on the survival time. Unfortunately, many of the times it is
impossible to include all relevant covariates. May be because, we have little or no information
on the individual level. For example, it is known that excretion of small amounts of albumin
in the urine is a diagnostic marker for increased mortality, however we are unable to include
this variable, unless we actually obtain urine and analyze samples for each individual under
study. Furthermore, we may not aware the relevance of the risk factor or even that the factor
we ought to include in the analysis. For example, a genetic factor as we do not know all
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possible genes having influence on survival. In other cases, it may be impossible to measure
the risk factor without great financial cost or time effort. In such cases, the usual practice
is to ignore such covariates. The neglect of such covariates leads to heterogeneity into the
data. This heterogeneity is named as frailty by Vapuel et al. (1979). To address the frailty,
it is necessary to include random effect term into the model. Such models are well known as
frailty models.

Sometimes individuals from a group share a common frailty, for example, if we consider
data on twins then for monozygotic twins, sex, any other genetically based covariates, date
of birth and pre-birth environment is common. For the timings of failures of several paired
human organs like kidneys, lungs, eyes, ears etc. shares common frailty because they are of
same individual. In case of sequences of times of asthmatic attacks of asthma patients or
in tumor diagnosis, tumor recurrence times in individual patients also has common frailty
because occurrence time of an event is on same individual. In industrial applications, if we
consider the breakdown times of dual generator in a power plant or failure times of two
engines in a two engines airplane then common environment is shared by both the engines
and generators. In such situations, shared frailty models are suggested in the literature (see
Clayton (1978)).

Hanagal (2005) proposed a positive stable frailty model with bivariate exponential of
Marshall-Olkin (1967) as baseline distribution. Hanagal (2006) discussed the gamma frailty
regression model in the bivariate survival data and Hanagal (2007) also presented the gamma
frailty regression models in the mixture distributions. Hanagal and Sharma (2013, 2015a,
2015b, 2015c) analyzed diabetic retinopathy data, acute leukaemia data and kidney infection
data using shared gamma and inverse Gaussian frailty models.

In shared frailty models, it is assumed that, each individual from a group experiences
an event of interest but sometimes it may be possible that some individuals are immune to a
particular event i.e., they are non-susceptible or they have zero susceptibility. For example,
some cancer patients survive their cancer. In medicine, there are several examples of diseases
primarily attacking people with particular susceptibility, for instance, a genetic kind, other
people having virtually zero susceptibility of getting the disease. Another example is fertility,
some couples are unable to conceive children so that the time to have first child birth for
them have zero susceptibility. In case of marriages, some people never marry, some marriages
are not prone to dissolve so that time to divorce for such couples have zero susceptibility.
In such type of data, compound distribution having some positive mass at zero value can
be a suitable choice. For example, compound Poisson distribution or compound negative
binomial distribution.

Aalen (1992) considered a compound Poisson distribution as a mixture distribution in
survival analysis. Also, Moger and Aalen (2005), Hanagal (2010a), Hanagal (2010b), Hanagal
and Dabade (2012) and Hanagal and Kamble (2015) have considered compound Poisson
frailty models. Hanagal and Dabade (2013) and Hanagal and Kamble (2016) have introduced
compound negative binomial shared frailty model. Recently Hanagal (2023a, 2024a, 2024b)
introduced compound Poisson frailty models based on additive hazard, correlated compound
Poisson frailty models based on the hazard rate and reversed hazard rates to analyze kidney
infection data and Australian twin data. Hanagal (2023b) proposed correlated compound
geometric frailty models to analyze kidney infection data. More details on compound Poisson
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frailty models are available in Hanagal (2011, 2019).

A random variable Z following a compound distribution is defined as,

Z =
{
Y1 + Y2 + · · · + YN ; N > 0
0 ; N = 0. (1)

where N is also random variable with some statistical distribution and Y1, Y2, · · · , YN are
independent, identically gamma distributed random variables with scale parameter ν and
shape parameter γ having density function,

f(y) =
{

νγ

Γ(γ)y
γ−1e−νy ; y > 0, ν > 0, γ > 0

0 ; otherwise.

Here, variable Yi represents length of ith failure. If N = 0 frailty is not at all affecting the
life times of an individual from a group and if N > 0 then frailty is cumulative effect of
heterogeneity due to N failures.

Aalen and Tretli (1999) modelled testis cancer data using compound Poisson frailty
model. A man receives damages during a critical period of their fetal development which may
develop testis cancer after the hormonal process of puberty has started. The damage may be a
result of the mother’s exposure to environmental factors, for example an excessive estrogenic
burden, and may also interact with genetic factors. Aalen and Tretli (1999) represented Yi

as size of the damage at ith occasion and N be the number of damages occurred. Thus Z is
now cumulative effect of damages occurred. Some other examples can be given as, in case of
marriage data, Z may represents cumulative heterogeneity for not getting a perfect partner
due to different unknown difficulties like, medical issues of an individual, hereditary problems
etc. In case of fertility, Z may be cumulative effect due to different unknown reasons such
as, effect of miss-carriages on health, male infertility, age related issues etc. However, Aalen
and Tretli (1999) says, this point of view should not be taken too literally as a description of
biological reality. The main reason for using compound frailty random variables is statistical
convenience. Compound Poisson and compound negative binomial distribution both have
simple and closed from expression of Laplace transform, which a requirement of any frailty
model.

To complete the parametric form of the model we now make assumption on baseline
distribution. Weibull distribution is one of the most widely used baseline distribution. Haz-
ard function for Weibull distribution is a monotone function, which increases with time to
infinity when shape parameter α is greater than one and it decreases up to the value zero for
α < 1. At time zero, it has a zero-failure rate implies that almost no failure will occur which
is hardly feasible in real life. Also, other usually preferred baseline distributions such as,
gamma, lognormal etc. has monotone hazard function. So, there is a need to have another
baseline distribution which is feasible to model increasing, decreasing and bathtub shape
hazard function. Hjort (1980) introduced Increasing, Decreasing, Constant and Bathtub-
shaped failure rate distribution (IDB) which has all the above shapes. Also at time zero,
failure rate is positive. So, we thought IDB distribution can be better than Weibull to model
as baseline distribution.

For estimation of parameters of the model, we have considered MCMC technique. To
check the performance of the model we have considered simulation study. Also, we have
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applied the proposed models to a bivariate survival data set of McGrilchrist and Aisbett
(1991) related to kidney infection and suggested the best model by using Bayesian model
comparison techniques. The remainder of the paper is organized as follows, in Section 2,
we provide introduction to general bivariate shared frailty model. In Section three, baseline
distribution IDB is discussed. Section four and five respectively considers compound Poison
and compound negative binomial shared frailty models. Section 6 is contributing to proposed
models. In section 7 estimation procedure is discussed followed by simulation study and data
analysis of kidney infection data in Section 8 and 9 respectively. Finally, paper concluded
with Conclusion.

2. General bivariate shared frailty model

Suppose n individuals are observed for the study and let a bivariate random variable
(T1j, T2j) be represent first and second survival time of jth individual (j = 1, 2, 3, . . . , n).
Also suppose that there are k observed covariates collected in a vector Xj = (X1j, . . . , Xkj)
for jth individual where Xaj (a = 1, 2, 3, . . . , k) represent the value of ath observed covariate
for jth individual. Here we assume that both the survival times for each individual share the
same value of the covariates.

Let Zj be represent shared frailty variable for jth individual. Assuming that the frailties
are acting multiplicatively on the baseline hazard function and both the survival times of
individuals are conditionally independent for given frailty, the conditional hazard function
and hence conditional survival function for jth individual at ith (i = 1, 2) survival time tij > 0
for given frailty Zj = zj has the form respectively,

h(tij | zj, Xj) = zjh0(tij)ηj (2)
S(tij | zj, Xj) = e−zjH0(tij)ηj (3)

where h0(tij) and H0(tij) are respectively baseline hazard and cumulative baseline hazard
functions at time tij > 0; ηj = eXjβ and β is a vector of order k, of regression coefficients.
Under the assumption of independence, bivariate conditional survival function for given
frailty Zj = zj at time t1j > 0 and t2j > 0 is,

S(t1j, t2j | zj, Xj) = e−zj(H01(t1j)+H02(t2j))ηj (4)

Unconditional bivariate survival function at time t1j > 0 and t2j > 0 is obtained by integrat-
ing over frailty variable Zj having the probability function f(zj), for jth individual.

S(t1j, t2j | Xj) =
ˆ

Zj

S(t1j, t2j | zj)f(zj)dzj = LZj
[(H01(t1j) +H02(t2j))ηj]

where LZj
(.) is Laplace transform of frailty variable of Zj for jth individual. Thus, uncondi-

tional bivariate survival function for jth individual at time t1j > 0 and t2j > 0 is,

S(t1j, t2j | Xj) = LZj
[(H01(t1j) +H02(t2j))ηj] (5)

Here onwards we represent S(t1j, t2j | Xj) as S(t1j, t2j).

Once we have unconditional survival function of bivariate random variable (T1j, T2j)
we can obtain likelihood function and estimate the parameters of the model.
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3. Baseline distribution

A continuous random variable T is said to follow three parameters Increasing, De-
creasing, Constant and Bathtub-shaped (IDB) distribution if its survival function is given
by,

S0(t) =


e− λt2

2

(1 + αt)
θ
α

; t > 0, α > 0, λ > 0, θ > 0

1 ; otherwise.

(6)

Corresponding density function, hazard function and cumulative hazard function are
respectively;

f0(t) =


θ + λt (1 + αt)
(1 + αt)1+θ/α

exp
(
−λt2

2

)
; t > 0, α > 0, λ > 0, θ > 0

0 ; otherwise.
(7)

h0(t) =


λt+ θ

1 + αt
; t > 0, α > 0, λ > 0, θ > 0

0 ; otherwise.
(8)

H0(t) =


λt2

2 + θ

α
log (1 + αt) ; t > 0, α > 0, λ > 0, θ > 0

0 ; otherwise.
(9)

It is easy to observe that, first term of hazard function increases and second term
decreases with increase in time. So, if λ is 0 then hazard function is decreasing function and
for θ = 0 it is increasing in nature. From the difference between hazard function for two

different time points 0 < t1 < t2, h0(t1) −h0(t2) = (t2 − t1)
[

αθ

(1 + αt1)(1 + αt2)
− λ

]
, we can

observe that, for λ ≥ αθ hazard function is increasing function and for 0 < λ < αθ hazard
function will have bathtub shape. For λ = 0 = α it has a constant hazard function.

4. Compound Poison shared frailty model

A random variable defined in (1) is said to follow compound Poisson distribution if N
is Poisson distributed with mean ρ. The distribution of Z consists of two parts; a discrete
part which corresponds to the probability of zero susceptibility, and a continuous part on
the positive real line. The discrete part is, P (Z = 0) = e−ρ, which decreases as ρ increases
and the distribution of the continuous part can be found by conditioning N and using the
fact that the Y ‘

i s are gamma distributed. It can be written as

f(z; γ, ν, ρ) =


1
z
e−(ρ+νz)

∞∑
n=1

ρn(νz)nγ

Γ(nγ)n! ; z > 0, ρ > 0, ν > 0, γ > 0
0 ; otherwise
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The parameter set for the compound Poisson distribution is ρ > 0, ν > 0, γ > 0. The
moments; mean, variance and Laplace transform of compound Poisson distribution are given
by,

LZ(s) = exp
{

−ρ
[
1 −

(
ν

ν + s

)γ]}
(10)

E(Z) = ργ

ν
; V ar(Z) = ργ(γ + 1)

ν2 . (11)

The shared frailty models are suffering from non-identifiability. To resolve the issue, as
usual, we assume Z has expected value equal, which imposes the restriction ν = ργ on the
parameters of compound Poisson distribution. Under the restriction Laplace transformation
of compound Poisson distribution reduces to,

LZ(s) = exp

−ρ

1 −
(

1 + s

ργ

)−γ
 (12)

with variance γ + 1
ργ

. Replacing Laplace transformation in equation (5), we get the uncon-

ditional bivariate survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j, t2j) = exp

−ρ

1 −
(

1 + (H01(t1j) +H02(t2j))ηj

ργ

)−γ
 (13)

Clayton (1978) defined a cross-ratio function given by,

θ∗(t1, t2) = λ1(t1 | T2 = t2)
λ1(t1 | T2 > t2)

= λ2(t2 | T1 = t1)
λ2(t2 | T1 > t1)

=
S(t1, t2)

∂2S(t1, t2)
∂t1∂t2

∂S(t1, t2)
∂t1

∂S(t1, t2)
∂t2

where λ1(.) and λ2(.) are conditional hazard functions of T1 and T2. It is an association
function such that,

θ∗(t1, t2)


> 1 ; positive association
= 1 ; no association
< 1 ; negative association

For compound Poisson shared frailty model cross-ratio function is given by,

θ∗(t1, t2) = 1 + σ2
[
1 + lnS(t1, t2)

ρ

]−1

(14)

It is easy to observe that, cross ratio function is greater than one and is a function of t1, t2.
This implies there is always positive association between the survival times t1 and t2. Also,
it is decreasing function of t1 > 0, t2 > 0 and decreases from 1 + σ2 to 1.
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5. Compound Negative Binomial shared frailty model

A random variable of (1) is said to follow compound negative binomial distribution if N
is negative binomial variate with parameters; the number of successes, r and the probability
of success, p. The probability function of N is given by,

P (x) =


(
x+ r − 1

x

)
prqx ; x = 0, 1, · · · ; 0 < p < 1; q = 1 − p, r = 1, 2, · · ·

0 ; otherwise

Discrete part of probability function of Z is, P (Z = 0) = pr and the continuous part is given
by,

f(z) =


pr 1

z
e−νz

∞∑
N=1

(
N + r − 1

N

)
qN (νz)Nγ

Γ(Nγ) ; z > 0, ν > 0, γ > 0, 0 < p < 1;

q = 1 − p, r = 1, 2, · · ·

0 ; otherwise.

The parameter set for the compound negative binomial distribution is, r = 1, 2, · · · ; 0 <
p < 1; ν > 0 and γ > 0. The Laplace transform, mean and variance of compound negative
binomial variate are respectively given by,

LZ(s) =


p

1 − q
[
1 + s

ν

]−γ


r

(15)

E(Z) = rqγ

pν
;V ar(Z) = rqγ(p+ γ)

p2ν2 (16)

Under the identifiability condition, EZ = 1, the restriction on parameters is ν = rqγ

p
. Under

this restriction, Laplace transform of compound negative binomial distribution reduces to,

LZ(s) =

 p

1 − q
[
1 + d ps

rqγ

]−γ


r

(17)

with variance σ2 = p+ γ

rqγ
. Replacing Laplace transform in equation (5), we get the uncon-

ditional bivariate survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j, t2j) =


p

1 − q

[
1 + p(H01(t1j) +H02(t2j))η

rqγ

]−γ



r

(18)
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For negative binomial shared frailty model cross-ratio function is given by,

θ∗(t1, t2) = 1 −

1 − (γ + 1)

1 − pS(t1, t2)
−

1
r


−1

rγ

We can easily observe that, cross-ratio function is always positive and decreasing function of
t1, t2. It decreases between 1− 1

rγ
+γ + 1

rqγ
to 1− 1

rγ
. This implies that there is always positive

association between the survival times t1 and t2 and it decreases as time t1, t2 increases.

6. Proposed models

The unconditional bivariate survival functions for compound Poisson and compound
negative binomial models at time t1j > 0 and t2j > 0 after substituting cumulative hazard
function for IDB distribution in equations (13) and (18) are,

S(t1j, t2j) = exp

−ρ

1 −
(

1 + ϕ(t1j, t2j)ηj

ργ

)−γ
 (19)

S(t1j, t2j) = pr

1 − q

(
1 + pϕ(t1j, t2j)ηj

rqγ

)−γ
−r

(20)

where ϕ(t1j, t2j) =
λ1t

2
1j

2 +
λ2t

2
2j

2 + θ1

α1
log(1 + α1t1j) + θ2

α2
log(1 + α2t2j). Here onwards we

call equation (19) and (20) as model CP and CNB respectively.

7. Likelihood specification and bayesian estimation of parameters

Suppose there are n individuals under study, whose first and second observed failure
times are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for jth

individual (j = 1, 2, 3, ..., n) for first and second recurrence times respectively. Here we
assume the independence between censoring scheme and life times of individuals.

The contribution of bivariate life time random variable of jth individual in likelihood
function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), ; t1j < c1j, t2j < c2j,
f2(t1j, c2j), ; t1j < c1j, t2j > c2j,
f3(c1j, t2j), ; t1j > c1j, t2j < c2j,
f4(c1j, c2j), ; t1j > c1j, t2j > c2j.

and likelihood function is,

L(θ, β, τ) =
n1∏

j=1
f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)
n3∏

j=1
f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (21)
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where τ , θ = (α1, λ1, θ1, α2, λ2, θ2) and β are respectively vector of frailty parameters, vector
of baseline parameters and vector of regression coefficients. In compound Poisson model
τ = (ρ, γ) and in compound negative binomial model τ = (r, p, γ). Let n1, n2, n3 and n4
be the number of pairs for which first and second failure times (t1j, t2j) lie in the ranges
t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and t1j > c1j, t2j > c2j respectively
and

f1(t1j, t2j) = ∂2S(t1j, t2j)
∂t1j∂t2j

, f2(t1j, c2j) = −∂2S(t1j, c2j)
∂t1j

f3(c1j, t2j) = −∂2S(c1j, t2j)
∂t2j

, f4(c1j, c2j) = S(c1j, c2j)

These functions for CP and CNB model respectively are given by,
CP model:

f1(t1j, t2j) =
[
λ1t1j + θ1

1 + α1t1j

] [
λ2t2j + θ2

1 + α2t2j

] [
1 + ϕ(t1j, t2j)ηj

ργ

]−(γ+2)

γ + 1
ργ

+
[
1 + ϕ(t1j, t2j)ηj

ργ

]−γ
S(t1j, t2j)η2

j

f2(t1j, c2j) =
[
λ1t1j + θ1

1 + α1t1j

] [
1 + ϕ(t1j, c2j)ηj

ργ

]−(γ+1)

S(t1j, t2j)ηj

f3(c1j, t2j) =
[
λ2t2j + θ2

1 + α2t2j

] [
1 + ϕ(c1j, t2j)ηj

ργ

]−(γ+1)

S(t1j, t2j)ηj

f4(c1j, c2j) = S(t1j, t2j)

CNB model:

f1(t1j, t2j) =
pr+2η2

j

rqγ

[
λ1t1j + θ1

1 + α1t1j

] [
λ2t2j + θ2

1 + α2t2j

]
Φ1(t1j, t2j)[

1 + pϕ(t1j, t2j)ηj

rqγ

]2(γ+1)
1 − q

[
1 + pϕ(t1j, t2j)ηj

rqγ

]−γ


r+2

f2(t1j, c2j) = pr+1ηj

λ1t1j + θ1

1 + α1t1j[
1 + pϕ(t1j, c2j)ηj

rqγ

](γ+1)
1 − q

[
1 + pϕ(t1j, c2j)ηj

rqγ

]−γ


r+1

f3(c1j, t2j) = pr+1ηj

λ2t2j + θ2

1 + α2t2j[
1 + pϕ(c1j, t2j)ηj

rqγ

](γ+1)
1 − q

[
1 + pϕ(c1j, t2j)ηj

rqγ

]−γ


r+1

f4(c1j, c2j) = pr

1 − q

(
1 + pϕ(c1j, c2j)ηj

rqγ

)−γ
−r
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where Φ1(t1j, t2j) = qγ(r + 1) + (γ + 1)
[
1 + pϕ(t1j, t2j)ηj

rqγ

]γ {
1 − q

[
1 + pϕ(t1j, t2j)ηj

rqγ

]}

In our study, the likelihood function (21), due to censoring, is not in a simple form and
so the first order derivatives. Hence, to estimate the parameters we have to use Newton-
Raphson iterative procedure, but may be due to large number of parameters MLE’s are not
converging. So, we moved to computational Bayesian approach which does not suffer from
these difficulties.

The joint posterior density function of parameters for given failure times is given by,

π(α1, λ1, θ1, α2, λ2, θ2, τ , β) ∝ L(α1, λ1, θ1, α2, λ2, θ2, τ , β) ∗ g1(α1)g2(λ1)g3(θ1)g4(α2)

g5(λ2)g6(θ2)
f∏

i=1
hi(τi)

k∏
i=1

pi(βi)

where gi(.) (i = 1, 2, · · · , 6), hi(.) (i = 1, 2, · · · , f) and pi(.) (i = 1, 2, · · · , k) are prior
density functions with known hyper parameters of corresponding arguments for baseline,
frailty parameters and regression coefficients. Likelihood function L(.) is given by equation
(21). Here we assume that all the parameters are independently distributed.

A widely used prior for frailty parameter is the gamma distribution with mean one and
large variance, G(ϕ, ϕ), say with a small choice of ϕ and the prior for regression coefficient
is the normal with mean zero and large variance say ϵ2. Similar types of prior distributions
were used in Ibrahim et al. (2001), Sahu etal. (1997) and Santos et al. (2010). So, in
our study also we have used same noninformative prior for frailty parameters and regression
coefficients. We have considered two different noninformative prior distributions for baseline
parameters, one is G(a1, a2) and another is U(b1, b2). All the hyper-parameters ϕ, ϵ2, a1, a2, b1
and b2 are known. Here G(a1, a2) is gamma distribution with shape parameter a1 and scale
parameter a2 and U(b1, b2) represents uniform distribution over the interval b1 to b2. We set
hyper-parameters ϕ = 0.0001, ϵ2 = 1000, a1 = 1, a2 = 0.0001, b1 = 0 and b2 = 100.

We have fitted the Bayesian model with the above prior density functions and likeli-
hood function (21) using Metropolis-Hastings algorithm. We have monitored convergence
of Markov chain to a stationary distribution by Gelman-Rubin convergence statistic and
Geweke test. Trace plots, coupling from the past plots and sample autocorrelation function
plots have been used, to check the behaviour of the chain, to decide burn-in period and
sample autocorrelation lag respectively.

In order to compare the proposed models, we have used Akaike Information crite-
ria (AIC), Bayesian Information Criterion (BIC), Deviance Information Criteria (DIC) and
Conditional Predictive Ordinate (CPO) plot (see Gelfand (1996)). Also, we have used the
Bayes factor Buv for comparison of the models Mu against Mv. To compute Bayes factor,
we have considered MCMC approach given in Kass and Raftery (1995).

8. Simulation study

To evaluate the performance of the Bayesian estimation procedure we have carried out
a simulation study. For the simulation purpose we have considered only one covariate X1. It
is assumed to follow normal distribution. As the Bayesian methods are time consuming, we
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have generated only fifty pairs of life times. According to the assumption, for given frailty
Z, life times of individuals are independent. So, the conditional survival function for an
individual for given frailty Z = z and a covariate X1 at time t > 0 is,

S(t | z,X1) = e−zH0(t)η

Equating S(t | z,X1) to a random number say R (0 < R < 1) over t > 0 we get,

ψ(t) = λt2

2 + θ

α
log(1 + αt) + log(R)

zη
(22)

It is not possible to express explicitly as function of t, so to generate life times we have used
bisection method. Exact step-wise procedure to generate sample is:

1. Generate a random sample of size 50 from frailty distribution as shared frailty for jth

(j = 1, 2, · · · , 50) individual. Firstly, generate a random observation N = n from
Poisson distribution for CP model and from negative binomial for CNB model. If
n = 0 then assign frailty Z = 0 and if n > 0 then generate n gamma variables Xi and
assign Z =

n∑
i=1

Xi.

2. Generate 50 covariate values for X1 from normal distribution and compute ηj = eX1jβ1

for jth individual.

3. Generate 50 pairs of life times (t1j, t2j) for given frailty zj obtained in step 1 by solving
equation (22) using bisection method.

4. Generate censoring times c1j and c2j from exponential distribution and observe survival
time for ith time t∗ij = min(tij, cij) and censoring indicator δij for jth individual (i = 1, 2
and j = 1, 2, . . . , 100), where

δij =
{

1, ; tij ≤ cij

0, ; tij > cij

To estimate parameters of the model using simulated data, we have generated two parallel
chains for both the models using two sets of prior distributions with the different starting
points using Metropolis-Hastings algorithm based on normal transition kernels. We have
iterated both the chains for 10000 times. There is no effect of prior distribution on posterior
summaries because estimates of parameters are nearly same and convergence rate of chains
for both the prior sets is also not greatly different. Also, for both the chains the results are
somewhat similar, so we present here the analysis for only one chain with G(a1, a2) as prior
for baseline parameters, for both the models.

To check the effect of sample size of chain on the posterior summary, we have generated
different samples and obtained posterior summary with small, moderate and large sample
sizes. We have considered sample of size 7 as small, 16 as moderate and maximum possible
sample size allowed by number of iterations and autocorrelation lag as large sample size.
Gelman-Rubin convergence statistic values are nearly equal to one and Geweke test values are
quite small and corresponding p-values are large enough to say the chain attains stationary
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Table 1: Posterior summary for simulation study of CP model

Parameter α1 λ1 θ1 α2 λ2 θ2 ρ γ β1 |Bias|
True values 2.2 4.5 0.5 2.2 4.5 0.5 5 0.5 0.5 -

Sample size = 7;
Estimates 2.0370 4.3470 0.5149 2.2999 4.4598 0.3534 4.5035 0.2865 0.6043

Standard error 0.4637 0.3185 0.2442 0.4083 0.2336 0.2108 0.2601 0.1310 0.1080
Bias 0.1630 0.1530 0.0149 0.0999 0.0402 0.1466 0.4965 0.2135 0.1043 0.6215

Sample size = 16;
Estimates 2.2739 4.3950 0.4292 2.2676 4.5015 0.3621 4.5087 0.3225 0.6281

Standard error 0.4414 0.3094 0.1980 0.4130 0.2098 0.2310 0.2846 0.1591 0.1283
Bias 0.0739 0.1050 0.0708 0.0676 0.0015 0.1379 0.4913 0.1775 0.1281 0.5783

Sample size = 85;
Estimates 2.2268 4.4535 0.4643 2.1980 4.5278 0.4838 4.7066 0.4804 0.5494

Standard error 0.4192 0.2878 0.2458 0.3284 0.2035 0.2277 0.2659 0.2124 0.1494
Bias 0.0268 0.0465 0.0357 0.0020 0.0278 0.0162 0.2934 0.0196 0.0494 0.3068

Table 2: Posterior summary for simulation study of CNB model

Parameter α1 λ1 θ1 α2 λ2 θ2 p γ β1 |Bias|
True values 2.2 4.5 0.5 2.2 4.5 0.5 0.5 0.5 0.5 -

Sample size = 7;
Estimates 2.0312 4.6471 0.5990 2.1994 4.4922 0.4522 0.4821 0.8097 0.4954

Standard error 0.4799 0.1739 0.2175 0.3917 0.2917 0.1978 0.0081 0.1558 0.0569
Bias 0.1688 0.1471 0.0990 0.0006 0.0078 0.0478 0.0179 0.3097 0.0046 0.3982

Sample size = 16;
Estimates 2.3001 4.5286 0.5976 2.2886 4.6000 0.4931 4.4826 0.7890 0.4963

Standard error 0.4100 0.2626 0.1993 0.4110 0.3012 0.1229 0.0112 0.1358 0.0786
Bias 0.1001 0.0286 0.0976 0.0886 0.1000 0.0069 0.0174 0.2890 0.0037 0.3494

Sample size = 85;
Estimates 2.2169 4.4515 0.5234 2.1933 4.5115 0.4980 0.4827 0.7582 0.4923

Standard error 0.4866 0.2707 0.1999 0.3694 0.2571 0.2114 0.0111 0.1457 0.0797
Bias 0.0169 0.0484 0.0234 0.0067 0.0115 0.0020 0.0173 0.2582 0.0077 0.2653

distribution. Simulated values of parameters have autocorrelation of lag k, so every kth

iteration is selected as a sample from posterior distribution. The posterior mean and standard
error with absolute bias for different sample sizes are reported in Table 1 and Table 2 for
model CP and model CNB respectively. Last column of these Tables gives norm of bias which

is calculated as
√

n∑
i=1

(true parameteri − estimated valuei)2. From these Tables, it can be

observed that the estimates become closer and closer to true values as sample size increases.
Also, the standard error reduces as sample size increases.

9. Analysis of kidney infection data

We fit the proposed models to kidney infection data of McGrilchrist and Aisbett (1991).
The data is related to recurrence times to infection at point of insertion of the catheter for
38 kidney patients using portable dialysis equipment. For each patient, first and second
recurrence times (in days) of infection from the time of insertion of the catheter until it has to
be removed owing to infection is recorded. The catheter may have to be removed for reasons
other than kidney infection and this regard as censoring. So, survival time for a patient given
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may be first or second infection time or censoring time. After the occurrence or censoring of
the first infection sufficient (ten weeks interval) time was allowed for the infection to be cured
before the second time the catheter was inserted. So, the first and second recurrence times
are taken to be independent apart from the common frailty component. The data consists
of three risk variables age, sex and disease type GN, AN and PKD where GN, AN and PKD
are short forms of Glomerulo Nephritis, Acute Nephritis and Polycystic Kidney Disease. Let
T1 and T2 be represents first and second recurrence time to infection. Five covariates age,
sex and presence or absence of disease type GN, AN and PKD are represented by X1, X2,
X3, X4, and X5. To analyze kidney infection data, success is defined as getting infection
first time, so we set r = 1.

First, we check goodness of fit of the data for both baseline distributions and then
apply the Bayesian estimation procedure. To check goodness of fit for kidney data set, we
have considered Kolmogorove-Smirnov test, we have applied the test to T1 and T2 separately.
The p-values for CP and CNB models for T1 are 0.9996, 0.4935 and for T2 are 0.5111, 0.3225
respectively.

Table 3: Posterior summary for kidney infection data set for CP model

Parameter Estimates S.E. L.C.L U.C.L
n = 250, B = 1400, k = 390

α1 0.721066 0.125690 0.555642 0.962101
λ1 0.000386 0.000361 0.000068 0.001358
θ1 0.091341 0.047561 0.026447 0.213807
α2 0.759945 0.116958 0.570522 0.982734
λ2 0.000329 0.000300 0.000054 0.001263
θ2 0.050038 0.028556 0.012666 0.128006
ρ 3.455383 0.805696 2.012911 4.910539
γ 2.440900 1.195852 1.032547 5.256461
β1 0.007370 0.116010 -0.013778 0.029776
β2 -1.885846 0.639941 -3.153641 -0.677762
β3 0.168584 0.547786 -0.898598 1.244601
β4 0.786868 0.544851 -0.298998 1.820400
β5 -0.499750 0.980033 -2.549072 1.433960

Table 4: Posterior summary for kidney infection data set for CNB model

Parameter Estimates S.E. L.C.L U.C.L
n = 242, B = 2000, k = 390

α1 0.748220 0.130669 0.555915 0.982400
λ1 0.000875 0.000742 0.000134 0.002706
θ1 0.075700 0.053959 0.018796 0.217971
α2 0.767938 0.124498 0.562309 0.979487
λ2 0.000658 0.000502 0.000128 0.001859
θ2 0.041461 0.024286 0.011405 0.099163
p 0.065639 0.021011 0.041000 0.118163
γ 0.496327 0.049441 0.406921 0.591675
β1 0.009677 0.014753 -0.016473 0.040842
β2 -2.368412 0.662620 -3.736769 -1.133544
β3 0.221596 0.681551 -1.067240 1.394427
β4 0.829265 0.645573 -0.526464 1.853952
β5 -0.426339 1.044975 -2.423081 1.464310
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As in case of simulation, here also we have got same conclusion. So, we present the
analysis for only one chain with G(a1, a2) as prior for baseline parameters, for both the
models. In this case we iterated chains for 99000 times. The posterior summaries for CP
and CNB models are presented in Table 3 and Table 4 respectively. In these Tables, second
and third column represents estimate (posterior mean) and standard error whereas last two
columns represent 95% lower and upper credible limits. The notations n,B and k respec-
tively represent sample size, burn in period and auto-correlation lag.

Table 5: AIC, BIC and DIC values for kidney infection data set

Model WOF CP CNB
AIC 712.3857 711.7692 709.3664
BIC 733.6743 732.7827 730.6550
DIC 708.4433 702.7835 698.9031

Table 5 provides AIC, BIC and DIC values for three models, CP, CNB and the model
with ignoring frailty, which we call as without frailty (WOF) model. AIC and BIC values
for CP and WOF models are nearly same, so cannot be used for comparing models, these
values for CNB model are definitely smaller amongst other models. Further, if we rank DIC
values from smallest to largest then CNB model will get first rank then CP and finally WOF
model. This suggest that, CP and CNB models both are better than WOF model and CNB
is better than CP.

Now consider comparison criteria Duv = 2 log(Buv) for comparing uth numerator model
against vth denominator model, where Buv is Bayes factor. Negative value of Duv favours
denominator model. These values are provided in Table 6.

Table 6: Duv values for comparing CP and CNB models

Numerator Model
WOF CP

Denominator CP -0.7609 -
Model CNB -1.9194 -2.6804

From the Table 6 we can observe that, Duv values for CP against WOF and CNB
against WOF models are negative indicating CP and CNB models are better than WOF
model. This is also confirmed with CPO plot presented in Figures 1 and 2. Large number
of positive points in plot favour CP and CNB models. This implies if we ignore frailty then
we may lose more informative model.

Thus, all the comparison criteria indicate that CNB model is better than CP model.
We are now in a position to say that, both the proposed models, CP and CNB are more
informative than ignoring frailty and CNB model is the best model then CP for modelling
frailty in kidney infection data.
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Figure 1: CPO plot for CP against
WOF model

Figure 2: CPO plot for CNB against
WOF model

10. Discussions

In the present paper, we have discussed compound Poisson and compound negative
binomial shared frailty models. The main advantages of these models in comparison with
other share frailty models is that they deal with the zero susceptibility. Further, the cross-
ratio function is decreasing function of time unlike the other share frailty models, gamma
and inverse Gaussian. Here we have considered IDB as baseline distribution. Even though it
is an old distribution but it is more useful to model life times as it has increasing, decreasing,
constant and bathtub shaped hazard function.

We have used Metropolis-Hastings algorithm to fit all the models. We analysed kidney
infection data using our proposed models and the best model is suggested. We have used
self-written programs in R statistical Environment to perform analysis.

The estimated frailty variances (0.4080) and (1.2118) for compound Poisson and com-
pound negative binomial models respectively indicate that there is heterogeneity in the
population of patients. Some patients are expected to be very prone to infection compared
to others with the same covariate values. In continuation to this, all the model comparison
criteria suggested that compound Poisson and compound negative binomial models are bet-
ter than without frailty model. This indicates importance of frailty component in modelling
of kidney infection data. Further comparing compound Poisson and compound negative
binomial models, compound negative binomial shared frailty model is performing well for
modelling of kidney infection data than compound Poisson model.

In compound negative binomial share frailty model, only one regression coefficient, β2 is
having larger ratio of its estimate to standard error and the value zero is not a credible value
for the credible interval. This means, only covariate X2 i.e., Gender is significantly affecting
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Figure 3: CPO plot for CNB against CP model

on infection rate. Negative value of β2 indicate that the female patients have a lower risk for
infection as compared to male patients. Same conclusion holds for compound Poisson share
frailty models also. The estimated probability of non-susceptibility for compound negative
binomial shared frailty model is 0.0656 indicating almost 6% of patients in the population
are non-susceptible for kidney infection. In case of compound Poisson share frailty model,
it is 3%.

In summary, this paper discussed modelling of survival times using compound frailty
distributions when population consists of non-susceptible individuals.
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Abstract
This paper proposes a hybrid regression model based on the regression tree and

multiple linear regression model for improving prediction accuracy and to overcome one of
the main disadvantages of the Regression Tree. The performance of the proposed model is
compared with regression tree, K-nearest neighbor regression, multiple linear regression, and
support vector regression through a Monte-Carlo simulation study. The simulation result
indicates that the hybrid model outperforms all other regression models irrespective of sample
size when the observations are from a normal distribution and uniform distribution. As an
application, the proposed hybrid model is used to solve a problem faced by cashew nuts
farmers and buyers to decide the most appropriate prices for the cashew nuts. The results
from the hybrid model can be used as a guide by the farmers for fetching better prices in
the market and by buyers for getting a lot of ascertained quality.

Key words: Cashew nuts price; Hybrid model; Regression tree; Support vector regression.
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1. Introduction

Improving efficiency the prediction accuracy of regression model is still an interesting
topic for researchers due to the natural variations in the systems themselves, which may
drastically affect the model performance. In a traditional regression model, one must make
assumptions about the functional form that connects the response variable with explanatory
variable(s) which may not be valid. Most of the non-parametric regression techniques depend
on the appropriate kernel or bandwidth selection and do not perform well in the case of high
dimensional. CART (Classification and Regression Tree) is the most popular, efficient and
widely used method for constructing decision trees introduced by Breiman et al. (1984).
Shih (1997, 2004) observe that the splitting procedure in Regression Tree (RT) is biased
as it searches for all possible splits and suggests that a proper normalization method will
overcome this difficulty.
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The main disadvantages of RT are
a. RT assigns the same predicted value, average value, for all the tuples in a branch that

satisfies the same corresponding splitting criterion.

b. Sometimes RT over fit the datasets, i.e., model completely fits the train data but fails
to generalize for the test data.

To overcome the problem of over fitting, a sequence of values for threshold parameters
are considered. According to cross-validation technique, the final threshold value is selected
based on minimum prediction error criterion. Alternatively, one can also select the final
threshold value by using the 1-standard error rule, which yields a prediction error of one
standard deviation larger than the minimum error estimated by the cross-validation method.
CART has several advantages over the traditional regression model.

The review paper of Domor et al. (2019) highlights the prediction performance of
various decision tree algorithms. They also carried out an in-depth review of various methods
used to improve the performance of the algorithms. Many papers have appeared in the direc-
tion of a hybrid modelling approach to improve prediction accuracy. Bennett et al. (1998)
proposed a Support Vector Machine (SVM) approach to a decision tree to build a hybrid
model. Kumar and Gopal (2010) hybrid SVM model-based decision tree and Chang and
Liu’s (2012) decision tree as an accelerator for SVM are the noticeable works in this direc-
tion. Muhamad Safiih Lola et al. (2016) proposed a hybrid model based on Artificial Neural
Network and Multiple Linear Regression model (MLR). They showed that hybrid approach
could improve the performance of Multiple Linear Regression model. Tanujit Chakraborty
(2019) proposed a hybrid regression model based on Regression Tree and support vector
regression for boiler water quality prediction. Regression Tree can model the arbitrary deci-
sion boundaries and found to be more robust algorithm. It has a built-in variable selection
method and also it can handle missing values.

The proposed approach is similar to local linear regression using the bandwidth
method. Here instead of computing bandwidth to fit regression line locally, the linear re-
gression model is fit to each branch separately after arranging the observations according
to splitting criterion. Since observations in each branch show high intra class similarity, the
fitted model is expected to perform better than the linear model because the linear regres-
sion line is fitted globally. In the hybrid model, the strength of Regression Tree is used to
improve the strength of the Multiple Linear Regression model. The proposed model can be
used to select the best subset of regressors and for the prediction task. It has the advantages
of significant accuracy and easy interpretability.

This work is motivated by a problem faced by cashew nuts buyers and the sellers
to decide the most appropriate price for the cashew nuts. The price of cashew nuts can
be decided from several quality measurements on the raw and kernel of the cashew nuts.
The quality of cashew nuts brought to the market by the farmers varies considerably from
lot to lot. In the case of farmers, if the quality of grown cashew nuts is good but due
to lack of proper assessment about their quality, they may sell their whole lot for a lesser
price. From the point of buyers, after offering a reasonable price for the raw cashew nuts,
if the buyers do not get good quality kernels after de-shelling raw cashew nuts, it leads to
massive losses because raw cashew nuts are purchased in a large number of lots. Also, the
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process of producing kernels ready for marketing involves a large amount of human resources.
Therefore, it is essential to develop a model which accesses the quality of the cashew nuts
with minimal effort and decides optimal remunerative prices for the lot. The cashew nut
plays a vital role in economic activities because the cultivation and marketing of cashew nuts
involve a considerable amount of manpower in India. India is the largest producer of cashew
nuts in the world. The problems associated with its cultivation, trading and marketing are
that the growers do not reap optimal return and traders do not get reasonable profit.

2. Methodology

a. MLR method

Consider the multiple regression model Y = β0X0 +β1X1 + · · ·+βkXk +ε, where Y is
an n × 1 vector of the response variable, X0 is a unit vector of size n × 1 and X0, X1, . . . , Xk

are regressors, β0, β1, . . . , βk are unknown parameters and ε is an n × 1 vector of error
terms. The OLS estimator of β, the model parameter is given by β̂ = (XT X)−1XT Y , where
X = [X0, X1, . . . , Xk].

b. KNN method

This algorithm searches the pattern space for the K- training tuples closest to the
unknown tuple. The closeness is defined in terms of distance between the tuples. It is better
to normalize the values of each attribute before computing the closeness. For KNN, the
unknown tuple is assigned the average value of its K- nearest neighbours as the predicted
value.

c. SVR method

Support Vector Regression (Smola, 2002) is based on Statistical learning theory
(Vapnik, 1995). Consider a linear regression model: f(x) = wT X + b, where w is the
weight of vector, b is the bias and X is the input feature vector. Then a solution that
minimizes the error function is

f(x) =
n∑

i=1
(a∗

i − ai)XT X + b

where a∗
i and ai are lagrange multipliers. The non-zero lagrange multipliers based on training

vectors are called support vectors. The model for nonlinear case based on kernel function
can be represented as:

f(x) =
n∑

i=1
(a∗

i − ai)k(XT X) + b

The Gaussian kernel is commonly used kernel function in k(.) in SVR.

d. RT method

Even though the RT is an efficient method to produce outcomes, the main disadvan-
tage of the RT is that it assigns the same average value of the response variable belonging to
a particular group as the predicted value (constant) for all the observations in a group. Since
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the original values of the response variable are not the same, even though RMSE is minimum,
the predicted value of the response value is of great interest to the decision-making process.
In RT, two branches are grown from each node N corresponding to the condition Xi <
splitting point and Xi ≥ splitting point respectively. The splitting variables and splitting
point define the rectangles Dj as

D1 = {X | Xi < splitting point} i = 1 to k

D2 = {X | Xi ≥ splitting point}

where Xi is the i-th predictor variable, k denotes number of predictor variables. Then
predicted value at p-th node is given by

m̂p =
∑

h YhI{h ∈ Di}
|Dj|

where p = 1 to m and |Dj| denotes number of observations in p-th node. Thus, an estimate
of m(x) in Dj is simply the average response of the Y observations with predictor vector
in Dj. The goal is to find that combination of splitting variables and splitting point, which
leads to minimum residual sum of squares (RSS). In each node, fitted value of the response
variable is constant, m̂p.

Proposed hybrid regression model (RT-MLR)

The formulation of proposed hybrid model is as follows: initially dataset splits into
several branches based on the RT algorithm. Branching is depends on the splitting variables
(significant variables) and best split point, which produces the minimum error. Using RT,
the best subset of variables is selected and redundant features are eliminated. The dataset
in each leaf node is arranged based on the position of tuples that satisfy the corresponding
splitting criterion. Further, a MLR is built for each leaf node with significant variables. The
model parameters are estimated using the least-squares method. Since observations within
each group show high intra class similarities, the application of MLR in each group separately
ensures that the estimated regression function fits well with the data. This hybrid model is
easy, flexible and simplifies the work of selecting the best set of variables separately.

The workflow of the proposed model is as follows:
• Apply RT algorithm to train dataset to construct a RT which holds the split point,

leaf node and significant variables.

• In each leaf node, datasets are arranged according to the positions of the observations,
which satisfies the corresponding splitting criterion.

• Fit MLR model separately, obtain the fitted values and repeat this for all the leaf
nodes.

Therefore, predicted values at p-th node is given by

Ŷhp = α̂ + β̂Xh h = 1 to np

This model is comprises of two steps: significant variables selection using RT and applying
MLR to each leaf node separately to get improved prediction results. Observe that in each
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node, fitted values of the response variable are not constant. Since outputs of RT will be used
in MLR, the proposed model performs better irrespective of problems such as missing values,
noise and outliers. The proposed model can be used to identify the significant variables and
causal parameters.

Dataset with variable list along
with response variable

Construct RT and identify the
significant variables, splitting point

Arrange the datasets in each leaf node

Fit MLR model for each leaf node

Predicted values of response variable

Figure 1: Flow chart of the proposed model

Performance measures

The model performance measure used in the simulation study and data analysis are

Root mean square error (RMSE) =
√

1
n

∑n
i=1(Yi − Ŷi)2

Mean Absolute Error (MSE) = 1
n

∑n
i=1 |Yi − Ŷi|

Coefficient of determination (R2) = 1 −
[∑n

i=1(Yi−Ŷi)2∑n

i=1(Yi−Ȳi)2

]

3. Simulation study

In this section, a simulation study is performed to highlight the distinction between
proposed hybrid RT-MLR model, RT, KNN regression, MLR model and SVR model. The
predictive performance of these models is compared in terms of RMSE and MAE. The
simulation design is as follows:



322 SATYANARAYANA AND ISMAIL B. [Vol. 21, No. 2

1. Considered the linear regression model Y = β0X0 + β1X1 + · · · + βkXk + ε, where
all β’s are set to 1 and X1, X2, X3 are generated randomly from a standard normal
distribution.

2. X1, X2, X3 are also generated randomly from a uniform distribution (0, 1) to check the
robustness of the proposed model.

3. The error ϵ is generated from normal distribution with mean = 0 and variance = 5. The
samples size used are 20, 50, 80, 100, 200, 500, 800, 1000, 2000, 3000. The tree was grown
to consist of three leaf nodes. The threshold stopping parameter for the RT is chosen
as 0.01. For each scenario, 5000 repetitions were performed. In each simulation, the
model is constructed using a train set and performance is evaluated using independently
generated test data.

Table 1: Performance of different regression models for different sample size
when the observations are from a standard normal distribution

Sample size Method RT KNN MLR RT-MLR SVR

20 RMSE 19.6 15.69 4.59 3.74 10.47
MAE 15.65 12.19 3.75 3.15 8.3

50 RMSE 15.82 12.24 4.78 3.85 9.36
MAE 12.4 9.38 3.83 3.15 7.45

80 RMSE 13.77 11.01 4.87 3.81 9.08
MAE 10.72 8.44 3.9 3.12 7.26

100 RMSE 12.92 10.39 4.87 3.82 8.64
MAE 10.05 7.98 3.9 3.12 6.9

200 RMSE 11.84 9.08 4.94 3.9 8.12
MAE 9.27 7.02 3.94 3.18 6.47

500 RMSE 12.74 7.94 4.97 4.26 7.35
MAE 10.04 6.18 3.97 3.45 5.62

800 RMSE 13.29 7.49 4.97 4.6 7.02
MAE 10.47 5.86 3.97 3.71 5.45

1000 RMSE 13.59 7.33 5 4.71 6.78
MAE 10.71 5.75 3.98 3.76 5.18

3000 RMSE 14.61 6.58 4.92 4.94 6.23
MAE 11.52 5.24 3.91 4.04 4.84

From Table 1, the proposed hybrid RT-MLR model outperforms all other with a
significant margin irrespective of sample size. The proposed model, along with overcoming
the disadvantage of the regression tree, also performs better than all other models.

Robustness of the proposed hybrid RT-MLR model

To check the property of robustness of the proposed model about distributions, ob-
servations are generated from uniform distribution and results are summarised in Table 2.
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Observe that proposed hybrid model outperforms all other models, irrespective of sample
size.

Table 2: Performance of different regression model for different sample size when
the observations are from uniform distribution

Sample size Method RT KNN MLR RT-MLR SVR

20 RMSE 7.92 9.22 6.14 4.97 7.76
MAE 6.26 7.32 4.94 4.03 5.34

50 RMSE 7.26 8.83 6.67 5.04 8.74
MAE 5.64 6.96 5.35 4.08 6.27

80 RMSE 7.02 8.74 6.8 5.06 9.12
MAE 5.43 6.9 5.45 4.09 6.74

100 RMSE 6.88 8.65 6.83 5.13 9.26
MAE 5.34 6.83 5.46 4.15 6.82

200 RMSE 6.85 8.51 6.93 5.08 9.56
MAE 5.34 6.72 5.53 4.1 7.12

500 RMSE 7.27 8.39 6.98 5.44 9.85
MAE 5.69 6.62 5.58 4.38 7.5

800 RMSE 7.51 8.31 6.98 5.71 9.89
MAE 5.89 6.57 5.58 4.59 7.62

1000 RMSE 7.62 8.32 6.99 5.8 9.94
MAE 5.97 6.56 5.58 4.66 7.69

3000 RMSE 8 8.24 7.01 6.28 10.1
MAE 6.26 6.51 5.59 5.03 7.84

4. Real life application

The dataset used for the analysis consists of 96 observations and 12 variables related
to the prices of cashew nuts collected from Dakshina Kannada. The variables considered
are raw length, raw breadth, raw thickness, raw width, kernel length, kernel breadth, kernel
thickness, kernel width, net count, sinkers count, moisture, out turn and price of the kernel.
The price of the kernel is calculated based on the quality of the kernel obtained after de-
shelling the raw cashew nuts. In this study price of the kernel is taken as the response
variable. Initially, a sample of 5 kg was drawn from each lot at different spots and then
by hand halving method, a final sample of 1kg was drawn from these samples. Similarly,
96 such representative samples were drawn. For each sample of 1 kg, measurements on 12
variables mentioned is recorded. The dataset is randomly split into training and testing data
sets in a ratio of 70:30. Each experiment is repeated five times with randomly selected test
sets and train sets. The average performance over 5-fold validation is reported in Table 3.
The performance of different regression models RT, KNN, MLR, SVR and hybrid RT-MLR
model were recorded. In the analysis, we used most of the default arguments present in the
packages.



324 SATYANARAYANA AND ISMAIL B. [Vol. 21, No. 2

Table 3: Performance measures for different regression models on test set

Regression model RMSE R2

RT 29.24 58.57
KNN 26.70 68.67
MLR 33.23 45.24
SVR 30.52 62.65
RT-MLR 14.49 88.15

Table 3 shows that proposed hybrid RT-MLR model outperforms all other regression
models with a significant margin based on RMSE and R2. Thus, the proposed model can be
used as an effective tool to fetch the most appropriate price of cashew nuts.

Figure 2: RT-MLR hybrid tree for cashew nuts price prediction

The above hybrid RT-MLR model suggests that the most important predictor variable
for cashew nuts price is moisture content in the raw cashew nuts. Also proposed model
inherently searches the interaction effects, as seen above. The interpretation of these effects
is straightforward.

According to Figure 2, if Moisture < 6.8 and Kernel length ≥ 24 =⇒ High price and
if Moisture ≥ 6.8 and Sinkers count < 59 =⇒ High price.

The proposed hybrid RT-MLR model is used to predict the cashew nut prices and
to identify important casual variables and relationships. To get the optimal price for the
cashew nuts, proposed model recommends checking the moisture level, kernel length and
sinkers count and decide the price for the cashew nuts as shown above. Since out turn cannot
be controlled at the time of purchase or selling, only controllable parameters are given based
on the regression analysis performed using the hybrid model. The hybrid model along with
improved accuracy, also helped the buyers and sellers to decide the most reasonable price
for the cashew nut.
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5. Conclusion

The main objective of this paper is to develop a hybrid model for improving prediction
accuracy. This paper proposes a hybrid regression model based on the RT and MLR model.
The proposed model also successfully overcomes one of the main disadvantage of the RT.
The prediction performance of the proposed hybrid model is compared with many popular
regression models through a simulation study. The simulation results indicate that the
proposed hybrid model outperforms all other models when observations are generated from
a normal distribution. The simulation results also demonstrate that the proposed hybrid
model is fairly robust. The empirical study shows that hybrid model helped the cashew
nuts buyers and farmers to decide the most appropriate price for the cashew nuts with
improved prediction accuracy. The main advantage of this model is its easy interpretability.
The proposed hybrid RT-MLR model can be used for handling both linear and non-linear
datasets effectively. The proposed model approach is extended for classification problems as
future work.
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