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Abstract 

Network based modelling of various physical phenomena has attracted the attention 

of researchers of various scientific disciplines of today. This has led to a tremendous 

development of the area, especially during the last two decades, in both theory and 

applications. This article, in a short span, introduces the fundamental concepts of network 

based modelling. It highlights the prominent properties of real life interaction networks and 

points out their differences with random networks. Most real life large networks are sparse; 

the article discusses the property of sparsity and elaborates on measuring sparsity of network 

graphs. A newly introduced measure of sparsity of the degrees of nodes of a network, called 

sparsity index, has been explained along with some of its uses. 
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1 Introduction 

A wide variety of physical phenomenon can be modelled using network graphs. 

Interactions within a group of entities are frequently studied using network graphs. Examples 

of such interactions are varied and many. A few of them are: voice calls or SMS messages 

exchanged within a certain community of people,  protein-protein interactions in biological 

networks, co-authorship relationship within a community of researchers, interactions among 

brain regions and so on. The entities themselves constitute the nodes of the graph, the 

interactions among the entities are represented by the edges of the graph and intensity or 

strength of interactions is associated with edge-weights. If the direction of the relationship or 

interaction is of any significance for the model, then a directed graph is constructed. For very 

large real life graphs, the largest connected component is often used for analysis, ignoring the 

small components, for tractability. Real life interaction graph data can be multi-relational 

with a large amount of associated auxiliary data and the graph itself can be dynamic (i.e., the 

graph may evolve on a temporal scale). Therefore, the analysis of such networks may turn out 

to be quite complex.  

Interaction networks can be explored from one or more of the following viewpoints: i) 

network characterization – structural and statistical properties of networks are studied to 

formulate the fundamental principles which govern and account for the characteristics of the 

network ii) community detection – detecting the natural grouping of nodes within the 

network iii) dynamic behaviour analysis – discovery of principles for dynamic behaviour of 

networks or network communities over time iv) network based prediction (e.g., predicting the 

missing links in protein-protein interaction networks [Yu 2006], predicting the spread of 

diseases in complex networks [Chen 2014]). 

In subsequent sections, this article provides a glimpse of the prominent network 

properties which characterize a good majority of real life interaction networks. It addresses 
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the particular property of network sparsity and its measurement. It concludes with mentioning 

a few directions in which future research may proceed.  

2 Interaction Networks: Distinguishing Properties 

Real life interaction networks are typically large, in terms of the number of nodes, and 

highly sparse. They tend to display a common set of statistical properties [Newman 2003] 

which distinguish them from regular networks (e.g., lattices) and random networks. We 

review three of these important properties in this section.  

• Small World effect: Watts and Strogatz introduced this property in 1998 as they 

observed: “we find that these systems can be highly clustered, like regular lattices, yet 

have small characteristic path lengths, like random graphs. We call them ‘small-world’ 

networks”. The small world networks lie somewhere in between regular and random 

networks on the scale of increasing randomness and are characterized by small average-

shortest-path-length (or mean geodesic) over the network. The concept of “six degrees of 

separation” stems out of the famous small world experiment by Milgram in the 1960’s. It 

is an experiment of reaching a letter to a target individual, unknown to the person from 

whom the letter originates. Most of the letters were lost, but about a quarter reached the 

target and, in the process, changed hands only about six times on an average. The mean 

geodesic distance between pairs of nodes in a network is given by 
�
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where �
�  is the shortest path length between nodes � and �. 
• Degree Distribution: The number of edges incident on a node is referred to as its degree. 

Degree provides a measure of how connected the particular node is to the rest of the 

graph. If ��denotes the fraction of nodes in a network with degree �, � = 0,1,2,…�������_�� !��, then �� also denotes the probability that a node 

chosen uniformly at random has degree �. If we draw a histogram of the degrees of nodes 

of the network, we get its degree distribution. Real world networks show a marked 

difference in their degree distributions from random networks. In a random network (as 

studied by Erdos-Renyi 1959), each edge is present or not with equal probability, and 

hence the degree distribution is binomial or Poisson in the limit of large graph size. Far 

from being Poisson distribution, the degree distributions of most real life large networks 

are highly right-skewed, i.e., with a long right tail. Moreover, many of them tend to 

display power-law, with ��~�#$ , % > 1. The networks with power law degree 

distributions are often referred to as the scale-free networks.  

• Clustering Coefficient: For the present context, “clustering” means transitivity. In social 

terms, transitivity indicates the likelihood that in the network, friends of a friend are 

friends themselves, i.e., if A and B are friends of C then A and B are also friends. In 

topological terms, transitivity denotes the tendency of the network to form triangles 

among sets of connected triplets of nodes. The clustering coefficient, a measure of 

transitivity, defined at the local and the global level for the network: 
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 is the local 

clustering coefficient of the node � and (is the clustering coefficient of the network. By 

“triplets centred on a vertex”, it means a single vertex with edges running to an unordered 

pair of other vertices. (
 is taken as zero for nodes for which degrees are zero or one (i.e., 

for which both the numerator and the denominator are zeroes in the formula). Clustering 

coefficient lies between 0 and 1. There is an alternative definition of clustering coefficient 



 

 

in the literature which we keep outside of the present discussion.

real life interaction networks tend to differ in terms of this property also; the real life 

interaction networks display a much heightened probability of forming closed triangles. 

Let us reproduce an empirical example of small world netwo

have used in their paper [Watts 

Table 1) for three real networks compared to random networks with the same number of 

nodes (=) and same average number of edges per node.

3 Sparsity of Interaction N

 

Sparsity is a fundamental property of a network. 

indication of the extent of the graph’s deviation from a fully co

the opposite end of the density spectrum of a graph, i.e., the less dense the graph is, the more 

is its sparsity. It is commonly measured by 

of the edge-set to the cardinality of the 

It is computed as: |?|/A|B|C D. Considering the adjacency matrix representation of the graph, 

the E-zero norm, or, even the proportion of zero elements compared to non

the adjacency matrix may serve as sparsity measures. 

it has got certain limitations as a measure of sparsity. For example, for weighted graphs, it 

completely ignores the edge weights.

introduced recently [Goswami 2018]

nodes of the graph, its degree sequence and a constant factor at least as large as the total 

degree of all nodes of the graph. 

Gini index [Gini 1912]. Sparsity ind

degrees of the nodes of the network. 

more fine-grained measure, as it takes into account a lot of other information about the graph. 

Moreover, Goswami et al. have shown that the two measures display the same trend, i.e., if 

edge density of a graph increases by adding more edges to the graph, its sparsity index 

decreases. However, if there are two graphs

higher edge density than the other, it is not necessarily true that the graph with the 

edge density will have a lower sparsity index than the other. 

We consider a graph F =
interactions among G individuals. H = I�
�J)K)with �

  equals to zero

the graph Fis unweighted (binary 

the corresponding nodes). Let the degree of node 

1,2… , G and the total degrees of all nodes in the graph 	∑ �
 =	∑ ∑ �
�)�L<)
L< .)
L< Let the degree sequence of 

I�<, �C, … , �)J.Let the elements of �-th ordered statistic in the sequence of values M< N 	MC N ⋯ N	M).  The vector 
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which we keep outside of the present discussion. Random networks and 

real life interaction networks tend to differ in terms of this property also; the real life 

eraction networks display a much heightened probability of forming closed triangles. 

Let us reproduce an empirical example of small world networks that Watts and Strogatz

have used in their paper [Watts 1998], which lists the clustering coefficient 

for three real networks compared to random networks with the same number of 

and same average number of edges per node. 

Networks 

Sparsity is a fundamental property of a network. For a network graph, 

indication of the extent of the graph’s deviation from a fully connected graph. Sparsity lies at 

the opposite end of the density spectrum of a graph, i.e., the less dense the graph is, the more 

monly measured by edge density, which is the ratio of the cardinality 

ity of the edge-set of the corresponding fully connected graph. 

Considering the adjacency matrix representation of the graph, 

zero norm, or, even the proportion of zero elements compared to non-zero elements of 

the adjacency matrix may serve as sparsity measures. Edge density being just a simple ratio, 

t certain limitations as a measure of sparsity. For example, for weighted graphs, it 

completely ignores the edge weights. A new measure of sparsity of network graphs has been 

[Goswami 2018], named sparsity index, which is based on the number of 

nodes of the graph, its degree sequence and a constant factor at least as large as the total 

degree of all nodes of the graph. The measure has been formulated by using the definition of 

Sparsity index indicates the amount of disparity in distribution of 

degrees of the nodes of the network. In comparison with edge density, sparsity index is a 

grained measure, as it takes into account a lot of other information about the graph. 

ami et al. have shown that the two measures display the same trend, i.e., if 

edge density of a graph increases by adding more edges to the graph, its sparsity index 

if there are two graphs with the same number of nodes

higher edge density than the other, it is not necessarily true that the graph with the 

a lower sparsity index than the other.  

= (P, ?), with |P| = G and |?| = �, as a representation of 

individuals. Let H denote the adjacency matrix of the graph

equals to zero	∀� = 1,2… , G and �
� ∈ S0,1T, �, � = 1,2…
(binary �
� values indicate only the presence of an edge between 

Let the degree of node � be given by �
, where �
 = ∑
total degrees of all nodes in the graph be denoted by U, where  

Let the degree sequence of F be represented by 

Let the elements of � be arranged in an ascending order and let 

th ordered statistic in the sequence of values �<, �C, … , �) ,	i.e., M = IM<, MC, … ,
The vector M is called the ordered degree sequence of the graph 
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, which is the ratio of the cardinality 

corresponding fully connected graph. 

Considering the adjacency matrix representation of the graph, 

zero elements of 

Edge density being just a simple ratio, 

t certain limitations as a measure of sparsity. For example, for weighted graphs, it 

A new measure of sparsity of network graphs has been 

, which is based on the number of 

nodes of the graph, its degree sequence and a constant factor at least as large as the total 

The measure has been formulated by using the definition of 

indicates the amount of disparity in distribution of 

parison with edge density, sparsity index is a 

grained measure, as it takes into account a lot of other information about the graph. 

ami et al. have shown that the two measures display the same trend, i.e., if 

edge density of a graph increases by adding more edges to the graph, its sparsity index 

with the same number of nodes, one with a 

higher edge density than the other, it is not necessarily true that the graph with the higher 

, as a representation of 

denote the adjacency matrix of the graph, such that … ,G. Clearly, 

values indicate only the presence of an edge between ∑ �
�)�L< 	∀� =
, where  U =

be represented by � =
M
 denote the , M)J such that 

is called the ordered degree sequence of the graph F. It 
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follows that  ∑ M
)
L< = U.Let U<be a quantity at least as large as U.The sparsity index of the 

graph F is given by:WX(Y) = 	� − �I∑ [	
\�

�	L� ]�#	���� ^J.The quantity U< is chosen depending 

on the quantity with respect to which we are interested in measuring the sparsity. For U< = U, _`(F) becomes exactly equal to the Gini Index of the degree distribution of the network. For 

a simple graph, undirected and unweighted, the most plausible choice of U< is G(G − 1), to 

calculate sparsity with respect to the potential total degrees in the graph rather than the actual 

total degrees. 

It may be noted that sparsity index is a summary measure and lies between 0 and 1. The 

sparsity index of a regular cycle, for example, with G nodes is 
)#a
)#<, taking U< = G(G − 1), 

whereas, Gini index of a regular cycle is 0.For weighted networks, if the edge-weights are 

integers then the network can be expressed as a multigraph [Newman 2004], i.e., a pair of 

nodes would have those many edges as the weight of the edge between them. In other words, 

the weights add to the degrees of the nodes and hence a sparsity index can be calculated for a 

weighted graph. 

 Gini index and sparsity index together reveal characteristics of a network without even doing 

further analysis. For example, for networks with a Gini index value close to zero, it is highly 

unlikely to find good clusters, as the nodes of the network would have more or less the same 

degrees. On the other hand, a high value of Gini index may indicate the presence of a few 

very well connected individuals (or, influential individuals in social networks) in the network.  

4 Conclusion 

This article has been an attempt to sketch interaction networks on a small canvas. The 

importance of interaction networks to the research community is immense; almost in every 

scientific discipline of today there is some application of such networks. The properties, 

because of which the interaction networks are different from random networks, or other 

special graphs, have been highlighted. However, we have stopped short of discussing 

centrality measures and their various applications. Network community detection is a whole 

area in itself, which we have not discussed here. Newer methods of network community 

detection are coming up even today from different fields, addressing different types of 

networks. More than static networks, dynamic networks or temporal networks are able to 

represent the evolving nature of the relationships among entities in a much better way and 

hence their analysis is gaining momentum. It may be of interest to study how the various 

network measures change over a period of time in a dynamic network. Also, inter-

relationships among different network measures is another area which merits further scrutiny. 
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