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Abstract 

In a mixture experiment, the mean response is expressed as a function of the mixing proportions 

of the ingredients. Often the ingredients can be grouped into classes, depending on their degree 

of usefulness or similarity in use. Each such class is called a major component and the members 

of a class are termed as its minor components. In a major component, the minor components are 

generally subjected to a relational constraint, which gives a range of acceptable values for each 

proportion. In this presentation, we discuss the optimum designs suggested by Pal et al. (2018)* 

for the estimation of the parameters of a mixture model in an experiment with major and minor 

components 

Key words: Mixture experiment; Major and minor components; Relational constraints; D-

optimality criterion. 

1 Introduction   

Mixture experiments are commonly encountered in formulation of industrial products, like 

pharmaceutical drugs, textile fibers, food processing, etc. They also find usefulness in 

agricultural research. For example, a mixture experiment may be conducted to model the yield of 

a crop as a function of the mixture combination of fertilizers or pesticides, when the same 

amount is applied. Many situations arise in agriculture where an overall mixture response is 

more useful than the traditional individual responses, e.g., monoculture vs. multicultural 

cultivars, soil mixtures, seed mixtures, feed mixtures for animals, etc. 

In experiments with mixtures, it is often possible to group the ingredients of the mixture 

into distinct classes, based on their degree of usefulness or similarity in usefulness. For example, 

in an agricultural experiment, the growth of a plant depends on a number of nutrients. The 

nutrients like Nitrogen (N), Phosphorus (P), Potassium (K), Magnesium (Mg), Calcium (Ca) and 

Hydrogen (H), which are required in abundance, may be put in a class, while the nutrients that 

are required in small quantities can be put in another class. These classes are referred to as major 

components, and for each major component there is generally a restriction on the proportion of 
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the component to be used in the mixture. This automatically imposes a relational constraint on 

the mixing proportions of the minor components. In fact, the relational constraint 

gives a range of acceptable values of the proportion of each minor component. Again, in a 

pharmaceutical experiment, the two important components affecting the mean dissolution time of 

an oral tablet are the polymer and diluent. As more than one polymer and one diluent are usually 

used in a tablet, we may define polymer and diluent as the major components, and their minor 

components are respectively the different polymers and diluents used. The relational constraints 

on the minor components are defined by the constraints on the proportions of polymer and 

diluent. 

Pal and Mandal (2013) studied a problem with two major components A and B and 

discussed optimum designs for parameter estimation and also for estimating the optimum mixing 

proportions of minor components in A. The model considered was  
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The present study reflects on the major-minor component problem addressed by Pal et al. 

(2018). The problem had two major components, and their proportions in the mixture are subject 

to specified lower and upper bounds. D-optimality criterion is used to estimate the parameters of 

the response model.  

 

2 The Models 

Consider a mixture of two major components M1 and M2 there being m minor components 

in M1 with proportions )( 21)1( m,..., x, xx=x   and n minor components in M2 with proportions 
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2.1 Consider the mean response ηx given by 
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where the experimental region is  
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Clearly, 1Ξ and 2Ξ denote the experimental regions of M1 and M2, respectively.   

The response model can be re-written as  

 =xη f(x)′β, 

where f(x)=  
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Let D be the class of all competing continuous designs, for which all the parameters of (2.1) are 

estimable. We want to find a design ξ in D that can estimate the parameters with maximum 

accuracy. 

For a continuous design ξ∈D: 

 ξ  =  { x1
*
 , x2

*
,  …  , xN

*  ; w1 , w2 ,  …  , wN} ,      (2.5) 

with masses w1 , w2,  …  , wN , wi>0, ∑wi = 1, at points x1
*
 , x2

*
,  …  ,xN

*,  

the information (moment) matrix is given by M(ξ) = ∑wif(xi
*)f(xi

*)′.  

Design optimality aims at minimizing some function of )(1 ξ−
M , or maximizing some function of

)(ξM . For comparing different designs in D, consider the D-optimality criterion, given by 

  Maximize )).((Det.)(  where),( ξξφξφ MDD =     

 (2.6) 

The above criterion is invariant with respect to the components ofx(1) and x(2). 
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In order to find the design points, it is argued that when the mean response has quadratic 

dependence on the mixing proportions, a reasonable choice for the experimental points would be 

the extreme points of the design space and mid-points of the edges of the space when the 

optimality criterion is invariant with respect to the proportions; while in case of linear 

dependence, only the extreme points of the design space seem to be the reasonable choice. Thus, 

in the present situation, where the model (2.1) is linear in x(2) and quadratic in x(1), it seems only 

logical to start with a class D 1 of designs with support points given by  

(i) )0,...,0,1;0,...,0,( ii δδ − and all possible permutations within the first m co-ordinates and within 

the last n co-ordinates each with mass vi, 2,1 =i ;  

(ii) )0,...,0,0,1;0,...,0,0,( 00 δδ − and all possible permutations within the first m co-ordinates and 

within the last n co-ordinates each with mass v0; 

(iii) )0,...,0,1;0,...,0,2/,2/( iii δδδ − and all possible permutations within the first m co-ordinates 

and within the last n co-ordinates, each with mass wi, 2,1 , =i , 

where the extreme points of 1Ξ and 2Ξ are respectively )0,...,0,( 1δ and )0,...,0,( 2δ and all 

possible permutations within these, and )0,...,0,1( 1δ− and )0,...,0,1( 2δ− and all possible 

permutations within these, while the mid-points of the edges of 1Ξ are )0,...,0,2/,2/( 11 δδ , 

),0,...,0,2/,2/( 22 δδ )0,...,0,0,( 0δ and all possible permutations within these, with

.2/)( 210 δδδ +=  

Pal and Mandal (2013) defined the support points in (i) and (ii) as pure type support points 

and those in (iii) as mixed type support points. For any design ξ∈D1, there are mn points of the 

type (i) and (ii), and m(m-1)n points of the type (iii), for each i= 1, 2  The masses assigned to the 

support points, therefore, satisfy ,1)()2,()( 21210 =++++ wwnmCvvvmn where .),( 
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As noted, the number of support points in ξ∈D1 is very large compared to the number of 

parameters to be estimated, and the difference between the two increases as m and n increase. To 

reduce the number of support points, Lewis et al. (2010), for the case of m = 2 and n = 3, used 

the exchange algorithm. However, the optimum design they derived lack the invariance property 

though the criterion function used, namely D-optimality criterion, is invariant with respect to the 

minor components within each of M1 and M2. This contradicts the well-established fact that in an 

invariant optimality design problem, the support points of the optimum design must be invariant 

with respect to its components (cf. Pukelsheim, 1993). Further, they have assigned equal masses 

to the design points. 

The example considered by Lewis et al. (2010) assumes δ1= 0.1 and δ2= 0.5.  They used 

the exchange algorithm to choose a 9- point design with equal masses, which they claim to be the 

D-optimal design. The 9 points are: 
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 (0.1, 0; 0.9, 0, 0),   (0, 0.5; 0.5, 0 0),   (0.5, 0; 0, 0.5, 0),  

(0, 0.5; 0, 0.5, 0),   (0, 0.1; 0, 0, 0.9),   (0.5, 0; 0, 0, 0.5), 

 (0.25, 0.25; 0.5, 0, 0),   (0.25, 0.25; 0, 0, 0.5),             (0.05, 0.05; 0, 0.9, 0), 

and the determinant of the information matrix is1.50366×10-09. 

Pal et al. (2018) proposed the following ways to reduce the number of support points, while 

retaining the property of invariance.   

2.1.1 Consider a class of designs D2 having the following support points: 

(a) all the pure support points in (i) with the stated masses, 

(b) mixed support points of the form  )0,...,0,1;0,...,0,2/,2/( δδδ − and all possible permutations 

within the first m co-ordinates and within the last n co-ordinates, for some δ∈[δ1, δ2], each with 

mass w. 

The number of support points of a design in D2 is thus nmCmn )2,(2 + . 

For m = 2,n = 3, δ1= 0.1, δ2= 0.5, and equal masses for all design points, the determinant 

of the information matrix is maximum (4.32709×10-09) for a 15-point design with δ = δ2.A 

comparison of this design with that having 18 support points given by (i) and (iii) with equal 

masses shows this design to be better as the determinant of the information matrix of the 18-

point design is 3.91969×10-09. However, this design may not be a D-optimal design since the 

number of design points is more than the number of parameters to be estimated, and in that case 

the optimum masses allocated to the design points may not be equal. To find the D-optimal 

design within D2 for m = 2, n = 3, consider anyξ∈D2.The determinant of the information matrix 

of ξ is given by  

32
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The D-optimal design within D2 is obtained by determining the optimal values of δ, v1,v2 and w 

that maximize (2.7),subject to .13)(6 21 =++ wvv  

2.1.2 To maintain invariance among the minor components within the major components, the 

minimum number of design points required is r = mn + C(m, 2)n. So, consider the sub-class D3 

of r point designs with support points as follows. 

(a) )0,...,0,0,1;0,...,0,0,( 33 δδ − and all possible permutations within the first m co-ordinates and 

within the last n co-ordinates each with mass v; 

(b) )0,...,0,1;0,...,0,2/,2/( 444 δδδ − and all possible permutations within the first m co-ordinates 

and within the last n co-ordinates, each with mass w, 
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where ., 2431 δδδδ ≤≤  

The determinant of the information matrix of ξ∈D3is  
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For m =2,n =3, we have r =9, and 
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2.1.3 For ξ∈D4, where D4 is a sub-class of D3 with  ,43 δδδ ==  

 Det. ,)1(
16

1
)( 268

wv-M δδξ =
 

which is a concave function of δ and is maximized at 7/4=δ and .9/1== wv  

Since ,2δδδ ≤≤1  the optimal value of δ is given by 

 (a) δ= 4/7 if ,7/4 21 δδ ≤≤  

 (b) δ= 1δ  if ,7/41 ≥δ  

 (c) δ= 2δ  if .7/42 ≤δ  

The D-optimal designs within D2, D3 and D4 have been given by Pal et al. (2018) for some 

combinations of (δ1, δ2), when m = 2, n = 3, and are shown in Table 2.1.  
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Table 2.1: D-optimal designs withinD2, D3 and D4 for some combinations of (δ1, δ2) when m = 

2, n = 3. 

(δ1, δ2) Sub-class δ1 /δ3 δ2 / δ4 δ v1 v2 v w Det. 

(0.1,0.4) D2 0.1 0.4 0.4 0.02774 0.0116 - 0.0459 1.7308×10-8 

D3 0.4 0.4 - - - 1/9 1/9 1.6384×10-8 

D4 - - 0.4 - - 1/9 1/9 1.6384×10-8 

(0.1,0.5) D2 0.1 0.5 0.5 0.0398 0.0876 - 0.0788 3.4684×10-8 

D3 0.5 0.5 - - - 1/9 1/9 2. 0931×10-8 

D4 - - 0.5 - - 1/9 1/9 2.0931×10-8 

(0.2,0.6) D2 0.2 0.6 0.6 .07186 .06288  0.06418 4.6625×10-8 

D3 0.2896 0.6 - - - 0.0702 0.1931 3.0188×10-8 

D4 - - 4/7 - - 1/9 1/9 1.8606×10-8 

(.3,.7) D2 0.3  0.7 0.6872 0.0644 0.0639 - 0.0770 4.6903×10-8 

D3 0.7 0.3616 - - - 0.0702 0.1931 4.2936×10-8 

D4 - - 4/7 - - 1/9 1/9 1.8606×10-8 

(.6,.8) D2 0.6 0.8 0.6 1/9 0 - 1/9 1.6481×10-8 

D3 0.6 0.6 - - - 1/9 1/9 1.6481×10-8 

D4 - - 0.6 - - 1/9 1/9 1.6481×10-8 

 

2.2 Consider the response function given by 
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It can be re-written as 
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The experimental region will be, as before, given by .21 Ξ∩Ξ=Ξ  
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2.2.1 Because of invariance among the components in x(1) and x(2), one can start with a class of 

designs D1 defined in sub-section 2.1.For m =2, n = 3, the determinant of the information matrix 

of ξ∈D1 is obtained as 

Det. [ ,]2)([)()]( 323
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2.2.2 As the number of support points of designs in D1 is very large compared to the number of 

parameters to be estimated, one can consider the class D2
*of designs with all support points of (i) 

and (ii), and mixed support points of the type  )0,...,0,1;0,...,0,2/,2/( δδδ − and all possible 

permutations within the first m co-ordinates and within the last n co-ordinates, for some δ∈[δ1, 

δ2], each with mass w. The information matrix for any ξ∈D2
*has the determinant given by 
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For given δi, vi, i= 1, 2 and w, det. [ )( 1ξM ] is a concave function of δ with maximum at δ= 2/3. 

Since δ should belong to [δ1, δ2], the optimal value of δis 

 δ= 2/3 if ,3/2 21 δδ ≤≤  

    = 1δ  if ,3/21 ≥δ  

 = 2δ  if ,3/22 ≤δ  

which is independent of m and n. 

2.2.3 Another way suggested to reduce the number of support points is to consider the class of 

saturated designs D3
*.  Consider δ∈[δ1, δ2], and confine to designs with support points (i)  

)0,...,0,1;0,...,0,( δδ − and all possible permutations within the first m co-ordinates and within the 

last n co-ordinates each with mass v;(ii) )0,...,0,1;0,...,0,2/,2/( iδδδ − and all possible 

permutations within the first m co-ordinates and within the last n co-ordinates, each with mass w, 

such that .1)2,( =+ nwmCmnv In this case, for any design ξ∈D3
*,  
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Det. [ )(ξM ] = .
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For given v and w, Det. [ )(ξM ] is a concave function of δ with maximum value at δ = .
13

2

+m

m
 

Thus, the experiment should be conducted with  
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which is dependent onm but independent of n. 

Table 2.2, reproduced from Pal et al. (2018), shows the optimum designs in the sub-classes D 1, 

D 2
* and D 3

* for some combinations of (δ1, δ2) when (m, n)= (2, 3). 

 

Table 2.2: D-optimal designs withinD1, D2
* and D3

* for some combinations of (δ1, δ2) when (m, 

n)= (2, 3). 

 

Remark: It is observed that the D-optimal design within D3
*performs better than those within 

D1and D2
*. 

(δ1, δ2) Sub-

class 
δ0 δ1 δ2 δ v0 v1 v2 w1 w2 v w Det. 

(0.1,0.5) D1 0.3 0.1 0.5 - 0.034 0.015 0.053 0.049 0.080 - - 1.08119×10  -12 

D2
* - - - 0.5 - 0.055 0.055 - - - 0.088 1.36482×10-12 

D3
* - - - 0.5 - - - - - 1/9 1/9 4.27219×10-12 

(0.3,0.7) D1 0.5 0.3 0.7 - 0.035 0.055 0.040 0.0012 0.072 - - 2.29991×10--12 

D2
* - 0.3 0.7 2/3 - 0.055 0.055 - - - 0.088 3.78612×10-12 

D3
* - - - 4/7 - - - - - 1/9 1/9 8.38711×10-12 

(0.6,0.8) D1 0.7 0.6 0.8 - 0.019 0.039 0.086 0.001 0.044 - - 2.27387×10-13 

D2
* - 0.6 0.8 2/3 - 0.055 0.055 - - - 0.088 3.78229×10-12 

D3
* - - - 0.6 - - - - - 1/9 1/9 8.65667×10-12 
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3 Conclusion 

The study is along the lines of Lewis et al. (2010) involving mixture designs with major 

and minor components subject to relational constraints. Pal et al. (2018) endeavored to exploit 

symmetry and invariance of the model parameters towards identification of D-optimal designs 

within suitably defined subclasses of admissible mixture designs.   
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