
 

 

__________________________________ 

Corresponding Author: Ranjit Kumar Paul 

E-mail: ranjitstat@gmail.com 
 

Special Proceeding of the 21
st
 Annual Conference of SSCA held at SV Agricultural College (ANGRAU), 

Tirupati, during January 29-31, 2019; pp 83-92 
 

Long Memory and Structural Break in Seasonal Rainfall in India 
 

Ranjit Kumar Paul, Dipankar Mitra, A.K. Paul and L.M. Bhar 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India 

 
Received: 24 June 2019; Revised: 29 June 2019; Accepted: 01 July 2019 

Abstract 

 

Agricultural performance of a country depends to a great extent on the quantity and distribution 

of rainfall. Modeling and forecasting of monthly seasonal rainfall across the country is of great 

concern among the researches. In many situations the datasets may exhibit long memory pattern 

and break in their structure. Sometimes a stationary short memory process that encounters 

occasional structural breaks in mean can show a slower rate of decay in the autocorrelation 

function and misinterpreted as long memory process. This phenomenon is called as spurious long 

memory. In this paper, we have employed a procedure for estimating the fractional differencing 

parameter in semiparametric contexts, namely exact local Whittle (ELW) estimator proposed by 

Shimotsu and Phillips (2005) to analyse seasonal rainfall data sets across different zones of 

India. The results indicate that some of the series exhibit long memory. Furthermore, an 

empirical fluctuation process using the ordinary least square (OLS)-based Chow test for the 

break date is applied. Break dates are detected in North-East and Central-North data sets. 

Moreover, Qu test (Qu, 2011) has been considered for testing for true versus spurious long 

memory and no test is found to be significant. 

 

Key words: Long memory; Structural breaks; Spurious long memory. 

1  Introduction 

 

Indian agriculture is rain-dependent, with almost two-thirds of the net cropped area being 

rain-fed. Modeling and forecasting of monthly seasonal rainfall for different metrological zones 

over different seasons is important for climatic assessment and planning. Any modeling effort on 

the rainfall data will have to be based on an understanding of the time dependency among the 

past observations. Over last few decades, Box-Jenkins’s Autoregressive integrated moving 

average methodology (ARIMA) (Box et al., 2007) has been efficiently used to get forecasts of 

the time series having dependency at fewer lags i.e. short memory process. But in many 

situations, the observations separated by distant time lags may be dependent and this 

phenomenon is commonly known as long memory or long range dependency. Under this 

situation ARIMA class of short memory model fail to get accurate and reliable forecasts. 

Moreover, some long memory time series models like Autoregressive fractionally integrated 
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moving average methodology (ARFIMA)(Granger and Joyeux, 1980) need to be called for 

capturing the long memory. Hence, detection of presence of long memory in the dataset prior to 

fitting any forecasting models is important for proper understanding of the underlying pattern. 

Paul et al. (2013) have investigated the modelling of Indian monsoon rainfall data and concluded 

that wavelet methodology has greater accuracy than that of ARIMA model. Paul et al. (2015) 

investigated the trend in mean temperatures in different agro-climatic zones in India using both 

parametric and nonparametric methods. Paul and Birthal (2016) have applied advanced statistical 

approach for describing variability in rainfall in different agro-climatic zones of India. Paul 

(2017) found the significant presence of long memory in maximum and minimum temperatures 

in India. 

 

In econometrics and statistics, a structural break is an unexpected change over time in the 

parameters of regression models, which can lead to huge forecasting errors and unreliability of 

the model in general. Rainfall data may be subjected to the structural break due to numerous 

reasons like El-Nino, etc. Ignorance of the break points can lead to serious bias and error in the 

estimates of the model parameters. Studies by Cheung (1993) and Diebold and Inoue (2001)have 

shown that there is a bias in favour of finding long memory processes when structural breaks are 

not accounted for in a time series. Observed long memory behaviour can be due to neglected 

structural breaks. Before fitting any model the detection of break points of long memory process 

is essential to capture the long memory pattern over different horizons. Paul et al. (2014) 

investigated structural break in mean temperature in different agro-climatic zones of India. In the 

last decade, a lot of interest has been paid to the issue of confusing long memory and occasional 

structural breaks in mean (Diebold and Inoue, 2001 and Granger and Hyung, 2004). Indeed, 

there is evidence that a stationary short memory process that encounters occasional structural 

breaks in mean can show a slower rate of decay in the autocorrelation function and other 

properties of fractionally integrated (I(d)) processes. Therefore, a time series with structural 

breaks can generate a strong persistence in the autocorrelation function, which is an observed 

behaviour of a long memory process. On the contrary, long memory processes may cause breaks 

to be detected spuriously. In this paper, we have used the term ‘true long memory’ to refer to 

fractionally integrated series. Sometimes real time-series data may exhibit long memory pattern 

due to possible presence of structural change. This phenomenon is commonly called as spurious 

long memory. The literature on the tests to distinguish between true long memory and various 

spurious long memory models has been steadily growing. For example, Berkes et al. (2006) and 

Shao and Zhang (2010) proposed a testing procedure to discriminate a stationary long memory 

time series from a short-range dependent time series with change points in the mean; Qu (2011) 

proposes a test in the frequency domain based on the profiled local Whittle likelihood function. 

 

2 Methodology 

2.1  Long Memory 

 

Long memory models are statistical models that describe strong correlation or 

dependence across time series data. This kind of phenomenon is often referred to as “long 

memory” or “long-range dependence.” It refers to persisting correlation between distant 

observations in a time series. For scalar time series observed at equal intervals of time that are 

covariance stationary, so that the mean, variance, and auto-covariances (between observations 
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separated by a lag j) do not vary over time, it typically implies that the auto-covariances decay so 

slowly, as j increases, as not to be absolutely summable. However, it can also refer to certain 

non-stationary time series, including ones with an autoregressive unit root, that exhibit even 

stronger correlation at long lags. Evidence of long memory has often been found in economic 

and financial time series, where the noted extension to possible non-stationarity can cover many 

macroeconomic time series, as well as in such fields as astronomy, agriculture, geophysics, and 

chemistry. 

 

 Most of the research works in time-series analysis assume that the observations 

separated by long time span are independent of each other or nearly so. But in many empirical 

series it is seen that the distant observations are dependent, though the correlation is small but 

not negligible. The statistical dependency of any time-series data is generally measured by 

plotting the ACF of the dataset. Let �� 	(� = 1,2, … , �) be an equally spaced, real valued and 

covariance stationary time-series process so that the mean
 = �(��)and lag−� autocovariances 

(or variance when � = 0) 

 �(�) = ���(��, ����)	
 

do not depend on �. 

  

 Further, consider that the autocorrelation function of the time-series with a time lag of � 

is given as 

 

 �� = ���(��, ����)/���(��). 

 

 The series ��	(� = 0,1,2, … . )  is said to have short memory if the autocorrelation 

coefficient at lag � approaches to zero as � tends to infinity, i.e.lim�→$ �� = 0. 

 The autocorrelation functions of most of stationary and invertible (ARMA) time-series 

process decay very rapidly at an exponential rate, so that �� ≈ |'|�, where |'| < 1 . 

 For long memory processes, decaying of autocorrelations functions occur at much 

slower rate (hyperbolic rate) which is consistent with �� ≈ ��)*��, as� increases indefinitely, 

where � is a constant and + is the long memory parameter. The autocorrelation function of a 

long memory process exhibits persistency structure which is neither consistent with an I(1) 

process nor anI(0) process. 

There are different approaches for estimating long memory parameter+; these are R/S 

statistic (Hurst, 1951), ACF plot, Maximum likelihood method of estimation (MLE) (Beran, 

1995), GPH (Geweke and Porter-Hudak, 1983), exact local Whittle estimator (ELW) of 

Shimotsu and Phillips (2005). In this study we have used ELW estimator to estimate long 

memory parameter as it is consistent and asymptotically normal and provides estimate of 

stationary as well as non-stationary processes. An interesting application of long memory in 

climate data can be found in Paul and Anjoy (2018). 
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2.2 Structural Break 

 

A structural break occurs when there will be a sudden change in a time series or a 

relationship between two time series. Literally, structural change can be described as 

fundamental shift in the structure of the series under consideration which may be due to 

economic growth, policy decisions, revolution, etc. This change could involve a change in mean 

or a change in the other parameters of the process that produce the series. Being able to detect 

the structural changes of the time series can give insights into the problem which are under 

study. Structural break tests help to determine when and whether there is a significant change in 

the dataset. If the presence of breaks is completely ignored, forecasts become poor and 

inaccurate. Therefore, detection of structural break is prime importance prior to the analysis of 

time-series data. For detection of structural break Cumulative sum (CUSUM), Chow, Andrew’s 

LR tests are commonly used. 

 

2.3 Spurious Long Memory 

 

Sometimes real time-series data may exhibit long memory pattern due to possible 

presence of structural change. This phenomenon is commonly called as spurious long memory. 

There are mainly two situations - one is the structure of the time-series process might be 

mistaken as long memory due to presence of structural break and next one is the co-existence of 

long memory and structural break in the given data set. Two important features of a long-

memory process are that its spectral density at the origin is unbounded and that its 

autocorrelation function decays at a hyperbolic rate at long lags. But these features also can be 

present for a short-memory process affected by a regime change or a smooth trend, leading to so-

called “spurious” long memory. This has been widely documented (Perron and Qu, 2010). 

Recent contributions for tests against true long memory (in the sense of fractional integration) 

include Ohanissian et al. (2008), Perron and Qu (2010), Qu (2011). Qu (2011) proposes a test in 

the frequency domain based on the profiled local Whittle likelihood function. The test turns out 

to be powerful when the series is solely generated by random level shifts, non-monotonic trends 

or Markov regime switching. 

 

3 Illustration 

3.1 Dataset  

 

In this study monthly rainfall data corresponding to five zones of India viz., North-West 

(NW), West-Central (WC), North-East (NE), Central-North (CN), Peninsular (P) as well as all 

India (AI) are collected from Indian Institute of Tropical Meteorology (www.tropmet.res.in), 

Pune, India for analysis. The data set comprises of monthly rainfall over 146 years (from 1871 to 

2016), measured in mm. The monthly data is accumulated to obtain seasonal data corresponding 

to four seasons viz., January and February (JF); March, April and May (MAM); June, July, 

August and September (JJAS); October, November and December (OND). Finally, the annual 

rainfall series (ANN) is obtained by summing over 12 months. The pattern of monsoon rainfall 

i.e. total rainfall of the season JJAS along with annual rainfall in different zones as well as at All 

India level is depicted in Figure 1. 

 The summary statistics of the seasonal rainfall as well as annual rainfall for all the 

zones of India along with All India rainfall is reported in Table 1. We considered mean, median, 
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maximum value, minimum value, standard deviation, coefficient of variation, Skewness, 

Kurtosis and Jarque-Bera statistic. A perusal of Table 1 indicates that the monsoon rainfall as 

well as annual rainfall is highest NE zone and lowest in NW zone. In terms of CV the variability 

in monsoon rainfall and annual rainfall is highest in NW zone. J-B statistic implied that in all the 

zones, annual rainfall is normally distributed. 

 

 

Figure 1. The pattern of monsoon rainfall and annual rainfall in different zones of India 
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CN 

  

P 

  

 

 

Table 1. Summary statistics of seasonal and annual rainfall in different zones of India  

 AI NW 

JF MAM JJAS OND ANN JF MAM JJAS OND ANN 

Mean 232 943 8481 1201 10859 140 203 4924 207 5476 

 Med. 216 919 8585.5 1204 10879.5 108.5 165.5 4944.5 129 5469.5 

 Max. 611 1665 10202 2099 13470 421 977 8168 1382 10572 

 Min. 30 552 6040 501 8109 7 5 1620 0 1755 

SD 116.25 205.47 834.52 345.61 1013.68 101.16 158.24 1291.89 225.34 1368.44 

Skew. 0.67 0.70 -0.51 0.36 -0.02 0.91 2.26 -0.27 2.28 0.10 

 Kurt. 3.21 3.66 2.91 2.72 3.10 2.98 9.88 2.90 9.43 3.72 

CV 

(%) 50.10 21.77 9.84 28.77 9.33 71.96 77.66 26.23 108.74 24.99 

J-B 11.08 14.48 6.42 3.58 0.08 20.12 412.81 1.82 377.37 3.43 

 Prob. 0.00 0.00 0.04 0.17 0.96 0.00 0.00 0.40 0.00 0.18 

WC NE 

Mean 189 437 9276 843 10746 422 4251 14072 1764 20511 

 Med. 151 384.5 9377.5 814 10711 402 4206 14117.5 1707.5 20692 

 Max. 665 1297 12116 2147 14433 1182 6565 17929 3738 25044 

 Min. 0 106 5323 79 5933 9 2266 11399 263 15764 

SD 142.11 223.19 1237.22 428.48 1412.31 228.25 820.13 1275.02 722.26 1850.81 

Skew. 0.97 1.21 -0.32 0.53 -0.19 0.69 0.20 0.20 0.39 -0.02 

 Kurt. 3.39 4.64 2.91 3.00 3.26 3.52 2.69 2.86 2.80 2.81 

CV 

(%) 74.94 51.05 13.34 50.79 13.14 54.04 19.29 9.06 40.93 9.02 

J-B 24.03 52.04 2.58 6.96 1.34 13.39 1.56 1.12 3.94 0.23 

 Prob. 0.00 0.00 0.28 0.03 0.51 0.00 0.46 0.57 0.14 0.89 
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CN P 

Mean 340 729 9921 915 11906 199 1386 6609 3432 11628 

 Med. 324.5 681.5 9983.5 837.5 11990 124.5 1295.5 6533 3378.5 11672 

 Max. 1039 1836 13536 2539 16055 993 2808 9378 5855 15677 

 Min. 8 176 6144 76 8275 1 524 4044 929 7052 

SD 210.29 308.58 1154.02 515.14 1335.69 190.61 456.99 984.50 929.71 1373.27 

 

Skew. 0.76 0.65 -0.13 0.74 0.07 1.42 0.96 0.26 0.04 -0.23 

 Kurt. 3.51 3.35 3.96 3.31 3.39 4.81 3.71 3.05 2.90 3.50 

CV 

(%) 61.77 42.32 11.63 56.25 11.22 95.42 32.97 14.89 27.08 11.81 

J-B 15.49 10.97 5.98 13.74 1.03 69.13 25.50 1.64 0.10 2.82 

 Prob. 0.00 0.00 0.05 0.00 0.60 0.00 0.00 0.44 0.95 0.24 

 

 

3.2 Test for Long Memory 

 

ELW estimator is applied to estimate the long memory parameter for all the series and 

the results are provided in Table 2. The results show that the parameter is significant for JF and 

OND series of all India data, JF and OND of North-west, OND and ANN of West-Central, ANN 

of North-west and JF of Peninsular. It establishes the presence of long range dependency in 

aforesaid rainfall data. 

Table 2.Exact local Whittle estimator of long memory 

Region JF MAM JJAS OND ANN 

All India 0.158* -0.092 0.035 0.150* 0.116 

North-West 0.084* 0.080 0.013 0.231* 0.027 

West-Central 0.161 -0.025 0.111 0.204* 0.194* 

North-East 0.074 -0.024 0.117 0.106 0.176* 

Central-North 0.097 0.037 0.110 0.018 0.080 

Peninsular 0.231* 0.086 -0.129 0.038 0.008 

*significant at 5% level 

 

3.3 Test for the Presence of Structural Break 

The OLS based Chow test has been applied to the dataset to see the presence of structural 

break and the results are reported in Table 3. The results depicts that the test is significant for 

JJAS and ANN rainfall data of North-East and Central-North of India indicating presence of 

break in the respective datasets. According to this test there is a break point in the data set which 
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at 1957 i.e. at 87
th

 observation for North-East datasets and in the year of 1965 i.e. at 95
th

 

observation for Central-North datasets. 

Table 3: Chow F-test for structural break 

Region JF MAM JJAS OND ANN 

All India 6.387 1.982 6.387 3.788 3.747 

North-West 4.765 5.235 1.850 3.890 2.034 

West-Central 4.211 3.075 3.895 2.535 3.335 

North-East 6.836 3.459 11.400* 4.892 10.812* 

Central-North 4.315 3.787 8.844* 1.666 9.163* 

Peninsular 5.397 6.349 1.896 1.522 3.373 

*significant at 5% level 

3.4 Test for Spurious Long Memory 

 

Qu test for differentiation of true long memory from the spurious long memory has been 

conducted to all of the series and the results are listed in Table 4. Since the test statistics values 

are less than the critical value at 5% level i.e. 1.155 leading to acceptance of null hypothesis that 

the series is a true long memory process. In order words, the test results indicate that no series is 

wrongly detected as long memory process. 

 

Table 4: Qu test for true long memory against spurious long memory 

Region JF MAM JJAS OND ANN 

All India 0.731 0.553 0.794 0.646 0.612 

North-West 0.475 0.315 0.653 0.766 0.652 

West-Central 0.280 0.818 1.109 0.665 0.664 

North-East 0.399 0.698 0.832 0.523 0.997 

Central-North 0.625 0.643 0.565 0.564 0.800 

Peninsular 0.733 1.048 0.399 0.845 0.793 

 

4 Conclusions 

It may happen that long memory and structural changes are easily confused and the time 

series is mistakenly detected as long memory process. However, most researchers choose to 
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ignore the problem of structural break in testing for long memory. It is a known fact that short 

memory with structural break may exhibit the properties of long memory. To avoid the 

confusion test has to be performed to differentiate true long memory from spurious long 

memory. The main contribution of the paper is to detect if the DGP of monthly seasonal rainfall 

series of some zones across India is generated by a true long memory process. In this paper, we 

have employed exact local Whittle (ELW) estimator to estimate the long memory parameter. The 

results indicate that some of the series exhibit long memory pattern. Next, an empirical 

fluctuation process using the ordinary least square (OLS)-based Chow test is applied to detect the 

break date. Break dates are detected in two series of North-East and Central-North data sets in 

the year 1957 and 1965, respectively. Moreover, Qu test (Qu, 2011) has been considered for 

testing for true versus spurious long memory and no test is found to be significant. It means that 

the series are truly long memory processes. 
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