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1. Orthogonal Latin Squares  
 

A Latin square of order (or, side) s is an s  s matrix (array) with entries from a set of   

s ≥ 2 distinct symbols (or, letters) such that each symbol appears in each row and each 

column precisely once.  
 

Two Latin squares of the same order are said to be orthogonal to each other if, when 

any of the squares is superimposed on the other, every ordered pair of symbols appears 

exactly once.  
 

For example, consider the following pair of Latin squares of order s = 4:  

 

,1

CABD

DBAC

ACDB

BDCA

L       .2









L  

 

Superimposing L2 over L1, one gets the following arrangement:  
 

.1









CABD

DBAC

ACDB

BDCA

L   

 

Clearly, L1 and L2 are orthogonal to each other, because in L, each Latin alphabet appears with 

each Greek alphabet exactly once.  
 

An arrangement like L is now called an Eulerian square, named after the legendary 

mathematician Leonhard Euler (1707–1783), who studied such objects in 1782 and also made 

a famous conjecture about their existence. Eulerian squares are also called Graeco-Latin 

squares in Statistics literature.  
 

If in a set of Latin squares every pair is orthogonal, then the set is said to form a set of 

mutually orthogonal Latin squares (MOLS). The number of MOLS of order s is bounded 

above by s − 1 and if this upper bound is attained, we say that there is a complete set of 

MOLS.  
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A complete set of MOLS of order s can be constructed if s is a prime or a prime power, 

i.e., if s = p
q

 

where p is a prime number and q ≥ 1 is an integer. Such a complete set of MOLS 

was constructed by R.C. Bose (1938) and independently, by W.L. Stevens (1939). It is not 

known yet whether the above condition, viz., s is a prime or prime power for the existence of 

a complete set of MOLS of order s, is necessary as well.  
 

Clearly, in order to construct an Eulerian square, one needs a pair of orthogonal Latin 

squares. One of the most intriguing questions regarding orthogonal Latin squares is:  
 

Can one construct a pair of orthogonal Latin squares of order s for every integer  s> 2?  
 

In 1779, Euler started looking at the problem of finding Eulerian squares of every order. 

In fact, in his 1779 paper (which was published in 1782), Euler was able to construct an 

Eulerian square of every order s, where s is (i) either an odd integer or, (ii) a multiple of 4. 

Thus, the existence of Eulerian squares of all orders s where s ≡ 0, 1, or 3 (mod 4) was settled 

by Euler in 1782. The only case not settled till then was for orders s ≡ 2 (mod 4). This brings 

us to the problem of 36 officers.  
 

2. The Problem of 36 Officers  
 

Here is the statement of the problem.  
 

There are 36 army officers, 6 from each rank and 6 from each regiment. Is it possible 

to arrange these 36 officers in a 6  6 square arrangement such that each rank and each 

regiment shows up in each row and each column?  

 

How did this problem arise in the first place? Folklore has the following „explanation‟:  

It appears that the Emperor was to visit a garrison town in which six regiments were 

quartered and the commandant took into his head to arrange 36 officers in a square, one of 

each rank from each regiment, so that, whichever row or column the Emperor walked along, 

he would meet one officer of each of the six ranks and one from each of the six regiments.  
 

In the IMS Bulletin of 1987, at the initiative of the then Editor, George Styan, a prize 

was offered for the first correct (or most plausible) answers to the following questions:  

• Who was the Emperor?  

• Which was the garrison town?  

• Who was the commandant?  
 

Three responses were received to these questions and the prize was given to         S.C. 

Pearce who stated that Joseph II was the Emperor! The garrison town was probably St. 

Petersburg. Nothing is known about the commandant!  
 

The commandant, of course, had set himself an impossible task as, the solution to the 

problem is provided by a 66 Eulerian square, which was later shown to be non-existent. 

Euler (1782) himself could not find an Eulerian square of order 6; he proceeded to „show‟ the 

non-existence of such a square using an argument that is not entirely correct in method but 

correct in its conclusion. Having failed to construct an Eulerian square of order 6, Euler went 

on to make the following conjecture.  
 

EULER‟S CONJECTURE: There does not exist a pair of orthogonal Latin squares of order s 

≡ 2(mod 4), or equivalently, no Eulerian square of order s ≡ 2 (mod 4) exists.  
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G. Tarry in 1900, by an exhaustive and laborious search showed the impossibility when 

s = 6. A shorter proof of the non-existence of an Eulerian square of order 6, based on coding 

theory was given by D. R. Stinson (1984). J. Peterson (1901) and P. Wernicke (1910) made 

erroneous attempts to prove Euler‟s conjecture as did MacNeish (1922). The arguments used 

by Peterson and MacNeish were shown to be false by F.W. Levi (1942) and the falsity of 

Wernicke‟s argument was shown by MacNeish (1922). Two leading statisticians, R.A. Fisher 

and F. Yates, in 1934 published a list of all possible Latin squares of order 6 and concluded 

as below:  
 

(Fisher & Yates, 1934) Euler’s conclusion that no Graeco-Latin 6  6 square exists is 

easily verified from the 12 types of 6  6 Latin squares exemplified in this paper.  
 

3. The MacNeish-Mann Conjecture  
 

For an integer s, let N(s) denote the maximum number of MOLS of order s. Then, as 

seen earlier, N(s)= s − 1, if s is a prime or a prime power. A challenging problem is to 

determine the value of N(s) when s is neither a prime nor a prime power. One of the earliest 

results in this direction is due to H.F. MacNeish (1922); this was generalized somewhat and 

put on an algebraic foundation by H.B. Mann (1942). Let mn

m

nn
ppps 21

21  be the 

decomposition of s, where p1,...,pm are distinct primes and n1,...,nm are positive integers.  

Define  

.1},min{)( 21

21  mn

m

nn
pppsn    

 

MacNeish (1922) showed that N(s) ≥ n(s). MacNeish went further to conjecture that n(s) is 

also the upper bound on N(s) and therefore, N(s)=n(s). This is the MacNeish-Mann 

conjecture.  
 

Note that had the MacNeish-Mann conjecture been true, it would have shown the truth 

of Euler‟s conjecture as, by the MacNeish-Mann conjecture, N(s)=1 if s ≡ 2 (mod 4). 

However, E.T. Parker (1959a) showed that the MacNeish-Mann conjecture is false.  
 

The first result casting serious doubts on the truth of Euler‟s conjecture is due to    R.C. 

Bose and S.S. Shrikhande (1959) who were able to construct an Eulerian square of order s = 

22. In the same year, Parker (1959b) proved another result, an application of which yielded a 

pair of orthogonal Latin squares of order 10 (or, an Eulerian square of order 10). This is 

shown next, where the symbols of both the Latin squares are 0, 1, 2,..., 9.  

 

A Pair of Orthogonal Latin squares of order 10 

00 47 18 76 29 93 85 34 61 52 

86 11 57 28 70 39 94 45 02 63 

95 80 22 67 38 71 49 56 13 04 

59 96 81 33 07 48 72 60 24 15 

73 59 90 82 44 17 58 01 35 26 

68 74 09 91 83 55 27 12 46 30 

37 08 75 19 92 84 66 23 50 41 

14 25 36 40 51 62 03 77 88 99 

21 32 43 54 65 06 10 89 97 78 

42 53 64 05 16 20 31 98 79 87 

 

The above Eulerian square of order 10 was first obtained by Parker using a UNIVAC 

computer and appears to be the first attempt to use computers for solving a combinatorial 

problem.  
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Once Eulerian squares of orders 10 and 22 were found, more doubts about the validity 

of Euler‟s conjecture arose as both 10 and 22 are congruent to 2 mod 4. Further results 

casting serious doubts on the truth of Euler‟s conjecture were provided by Bose and 

Shrikhande (1960). That the Euler‟s conjecture is false for all orders s =4t +2, t> 1 was 

shown by Bose, Shrikhande and Parker (1960). Their result is stated below.  
 

There exists at least two MOLS of side s ≡ 2 (mod 4), s  6.  
 

The methods of Bose, Shrikhande and Parker to prove the falsity of Euler‟s conjecture 

used, among other things, a combinatorial arrangement called balanced incomplete block 

designs. Let V be a finite set of v objects (or, treatments, using the terminology of statistical 

design of experiments) and B,a collection of k-subsets of V, where 2 ≤ k<v; these subsets are 

called blocks. The pair (V, B) is a balanced incomplete block (BIB) design if (i) every treat-

ment appears in r blocks and (ii) each pair of treatments occurs together in λ blocks. If |B| = b, 

where |·| denotes the cardinality of a set, then the integers v, b, r, k, λ are called the 

parameters of a BIB design.  

Although BIB designs were first used as experimental designs in 1936, such objects 

were known even in the 19th century.  T.P. Kirkman (1850) solved the following problem, 

originally proposed by W.S.B. Woolhouse (1844):  

A school mistress is in the habit of taking 15 girls of her school for a daily morning 

walk in 5 batches of 3 girls each, so that each girl has 2 companions. Is it possible to find an 

arrangement so that for 7 consecutive days, no girl walks with any of her companions in any 

batch more than once?  

The solution of the above problem (called the Kirkman‟s schoolgirl problem) has a one-

one correspondence with the solution of a BIB design and such a BIB design is also called a 

Kirkman Triple System, KTS(15). A KTS(15) is shown next, where the schoolgirls are 

labelled 1, 2,..., 15:  
 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

1,6,11 1,8,10 1,3,9 1,2,5 2,9,6, 1,7,17 1,12,13 

2,7,12 2,9,11 2,13,14 3,10,12 5,7,13 3,5,11 2,4,10 

3,8,13 3,4,7 4,5,8 4,11,12 8,9,12 4,6,12 5,6,9 

4,9,14 5,12,14 6,7,10 6,8,14 10,11,14 9,10,13 7,8,11, 

5,10,15 6,13,15 11,12,15 7,9,15 1,4,15 2,8,15 3,14,15 

 

It is easily seen that the above plan is a BIB design with parameters v = 15,b = 35, r =7, k =3, 

λ = 1 when triplets of girls are treated as blocks. A solution of Kirkman‟s Triple System KTS 

(m) for all m ≡ 3 (mod 6) was provided by D.K. Raychoudhuri and R.M. Wilson (1971).  
 

J. Steiner (1853) proposed the problem of arranging n objects in triplets (called 

Steiner‟s triple systems) such that every pair of objects appears in exactly one set. We now 

recognize that such triples are in fact BIB designs with block size 3.  
 

4. A Slice of History  
 

The literature on Latin squares is at least three centuries old, one of the earliest 

references being a monograph Koo-Soo-Ryak by Choi Seok-Jeong (1646–1715), who used 

orthogonal Latin squares of order 9 to construct a magic square and stated that he cannot find 

orthogonal Latin squares of order 10. Recall that a (traditional) magic square of order n ≥ 2 
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with magic constant e = n(n
2

 

+1)/2 is an nn matrix  A =(aij) with entries 1, 2,...,n
2
, such that:   

(i)  


n

i ij njea
1

,1,  

(ii)  


n

j ij niea
1

,1,  

(iii)  


n

j ii ea
1

and,  

(iv)    
n

i ini ea
1 )1(, .   

 

Orthogonal Latin squares can be used to construct magic squares. As an example, consider 

the following pair of orthogonal Latin square of order 4, written with symbols 0,1,2,3: 

 

,

2301

0123

1032

3210

1 L      ,

1032

2301

0123

3210

1 L  

 

Superimposing one square over the other, one gets the following square:  

21300312

02132031

10013223

33221100

1 L  

Replacing the element (ij) of L by 4i +j +1, one obtains the following magic square of order 4 

(e = 34):  

101347

38914

521512

161161

M  

 

Euler‟s interest in this area also probably originated from the connection of Eulerian 

squares to magic squares. Euler, in a paper entitled “De quadratis magicis” and read before 

the Academy of Sciences at St. Petersburg on October 17, 1776, constructed magic squares of 

orders 3, 4 and 5 from orthogonal Latin squares. He could not construct an Eulerian square of 

order 6 which prompted him to make his conjecture.  

For over a century, no progress was made on Euler‟s conjecture, though it was not 

totally neglected by mathematicians of that time. In 1842, Gauss and Schumacher 

corresponded about a work of Clausen, who apparently established the impossibility of an 

Eulerian square when s = 6 and conjectured the impossibility when s = 2 (mod 4). This work 

was never published!  

Latin square amulets go back to medieval Islam (c1200) and a magic square of the 

famous Arab sufi, Ahmad ibn Ali ibn Yusuf al-Buni indicates the knowledge of a pair of 

orthogonal Latin squares of order 4. A new edition of J. Ozanam‟s four-volume treatise 

“Recreations math´ematiques et physiques ...”, published in 1723 had the following puzzle:  

There are 16 playing cards of four denominations, ace (A), king (K), queen (Q) and 

jack (J) from each of the four suits, spade, heart, diamond and club. Is it possible to arrange 

these 16 cards in a 4 × 4 square such that each denomination and each suit appears in each 
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row, each column and (additionally) on the two diagonals exactly once?  

Here is a solution to this problem.  

 

A Q J K  

K J  Q A 

Q  A K J 

J K A  Q 

 
It is not hard to see that the above solution is given by the Eulerian square of order 4, shown 

in the beginning of the article.  

In 1896, E. H. Moore published an influential paper “Tactical Memoranda I–III” in the 

American Journal of Mathematics. In Memorandum II of this paper, Moore used finite fields 

of order s to construct a complete set of MOLS of order s, a result rediscovered much later by 

Bose (1938) and independently by Stevens (1939). Clearly, neither Bose nor Stevens were 

aware of the work of Moore.  
 

The final results of Bose, Shrikhande and Parker on the falsity of Euler‟s conjecture for 

all orders s = 2 (mod 4), s > 6, were announced in the annual meeting of the American 

Mathematical Society, held in New York during the last week of April, 1959. This major 

result was reported on the front page of the Sunday edition of the New York Times of April 

26, 1959 with the header  

 

Major Mathematical Conjecture Propounded 177 Years Ago Is Disproved.  
 

The New York Times in the report also made the following remark:  

The three mathematicians who finally cracked the problem are now known among their 

colleagues as Euler’s Spoilers.  

 

References  

 
Bose, R.C. (1938). On the application of the properties of Galois fields to the problem of 

construction of hyper-Graeco-latin squares. Sankhya, 3, 323-338.  

Bose, R.C. and Shrikhande, S.S. (1959). On the falsity of Euler‟s conjecture about the non-

existence of two orthogonal latin squares of order 4t+2. Proc. Natl. Acad. Sci. U.S.A., 

45, 734-737.  

Bose, R.C. and Shrikhande,  S.S. (1960). On the construction of sets of mutually orthogonal 

latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc., 95, 191-

209.  

Bose, R.C., Shrikhande, S.S. and Parker, E.T. (1960). Further results on the constructon of 

mutually orthogonal latin squares and the falsity of Euler‟s conjecture. Can. J. Math., 

12, 189-203.  

Dey, A. (2013). Orthogonal Latin squares and the falsity of Euler‟s conjecture. In :Connected 

at Infinity II (R. Bhatia et al. Eds.), New Delhi: Hindustan, pp. 1-17.  

Euler, L. (1782). Recherches sur une nouvelle espece de quarr´es magiques. Verh. Zeeuw. 

Gen. Weten. Vlissengen, 9, 85-239.  

Fisher, R.A. and Yates, F. (1934). The 6  6 Latin squares. J. Cambridge Phil. Soc., 30, 492-

507.  

 



                                                                         The Problem of 36 Officers                                                                           7 
 

Kirkman, T.P. (1850). On the triads made with fifteen things. London, Edinburgh and Dublin 

Philos. Mag. and J. Sci., 37, 169-171.  

Levi, F.W. (1942). Finite Geometrical Systems. University of Calcutta.  

MacNeish, H. F. (1922). Euler squares. Ann. Math., 23, 221-227.  

Mann, H.B. (1942). The construction of orthogonal latin squares. Ann. Math. Statist., 13, 

418-423.  

Moore, E.H. (1896). Tactical memoranda I–III. Amer. J. Math., 18, 264-303.  

Ozanam, J. (1723). Recreations Math´ematiques et Physiques, qui contiennent Plusieurs 

Probl´emes utiles & agr´eables, d’Arithmetique, de Geometrie, d’Optique, de 

Gnomonique, de Cosmographie, de M´ecanique, de Pyrotechnie, & de Physique. 4 

Vols. Paris: Jombert (updated edition).  

Parker, E.T. (1959a). Construction of some sets of pairwise orthogonal Latin squares. Proc. 

Amer. Math. Soc., 10, 946–951.  

Parker, E.T. (1959b). Orthogonal latin squares. Proc. Natl. Acad. Sci. U.S.A., 45, 859–862.  

Peterson, J. (1901). Les 36 officieurs. Ann. Math., 1, 413–427.  

Raychoudhuri, D.K. and Wilson, R.M. (1971). Solution of Kirkman‟s schoolgirl problem. 

Proc. Symp. Pure Math. Amer. Math. Soc., 19, 187–204.  

Steiner, J. (1853). Kombinatorische aufgabe. J. Reive Agnew. Math., 45, 181–182.  

Stevens, W.L. (1939). The completely orthogonalised Latin squares. Ann. Eugen., 9, 82–

93.  

Stinson, D.R. (1984). A short proof of the nonexistence of a pair of orthogonal Latin 

squares of order six. J. Combin. Theor. Ser., A 36, 373–376.  

Tarry, G. (1900). Le probl´eme des 36 officers. Comptes Rendus de l’Association Francaise 

pour l’Avancement des Sciences: S´erie de math´ematiques, astronomie, g´eod´esie et 

m´ecanique, 29, 170–203.  

Wernicke, P. (1910). Das problem der 36 offiziere. Deutsche Math.-Ver., 19, 264–267.  

Woolhouse, W.S.B. (1844). Prize question 1733. Lady’s and Gentleman’s Diary.  


