
Statistics and Applications {ISSN 2452-7395(online)}
Volume 18, No. 1, 2020 (New Series), pp 181-196

Critical Community Size for COVID-19: A Model Based
Approach for Strategic Lockdown Policy

Sarmistha Das1, Pramit Ghosh2, Bandana Sen3, Saumyadipta Pyne4,5 and
Indranil Mukhopadhyay1

1Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
2Purulia Medical College, Purulia, West Bengal, India

3All India Institute of Hygiene & Public Health, Kolkata, West Bengal, India
4Public Health Dynamics Lab, and Department of Biostatistics, University of Pittsburgh,

Pittsburgh, Pennsylvania, USA
5Health Analytics Network, Pennsylvania, USA

Received: 24 May 2020; Revised: 06 June 2020; Accepted: 08 June 2020

Abstract
Among the U.S. cities hit by the 1918 Spanish flu, social distancing played a pivotal

role in flattening the pandemic curve. Similarly, to fight against COVID-19, restrictive mass
quarantine or lockdown has been implemented as the most important controlling measure.
India has already enforced a lockdown of 10 weeks and is extending the period depending
on the current disease scenario. However, the idea that, if the susceptible population drops
below certain threshold, the infection would naturally die out in small communities after
a fixed time (following the outbreak), unless the disease is reintroduced from outside, was
proposed by M. S. Bartlett in 1957. This threshold was termed as Critical Community Size
(CCS).

We propose an Susceptible-Exposed-Infected-Recovered (SEIR) model that explains
COVID-19 disease dynamics. Using our model, we have calculated state-specific Temporary
Eradication of Spread Time (TEST) and CCS that would essentially determine the ideal
number of lockdown days required and the size of quarantined population. With the given
state-wise rates of death, recovery and other parameters, we have identified that, if at a
place the total number of susceptible population drops below CCS, infection will cease to
exist after a period of expected time to extinction (TTE), unless it is re-introduced from
outside. The expected TTE suggests that the disease might take a long time to fade away
from the human population in absence of pharmaceutical interventions. But we find that
the disease might subside substantially after TEST. This would imply lockdown phases as
much as TEST could be sufficient to contain COVID-19.
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1. Introduction

In the face of COVID-19 pandemic, many countries have implemented restrictive mass
quarantines or lockdown as the primary controlling measure to confine the number of sec-
ondary transmissions of the disease within countries. In absence of any specific medical
treatment to treat the disease, patients are generally given only supportive care. Given the
rapid Phase 3 transmission of the disease, health care systems of even developed countries
are starting to face challenges within a week or two. Therefore, to prevent stage 4 trans-
mission of the disease, along with many other countries India, which is densely populated,
has resorted to complete lockdown already for more than 10 weeks and it is still counting.
Available data confirms that the pandemic has already affected more than five million peo-
ple in around 215 countries till date and already claimed more than 0.3 million lives across
the world within approximately three months. After World Health Organisation (WHO)
declared the outbreak as a pandemic, many countries initiated partial to complete lockdown
as was done in some provinces of China after the outbreak started. By the end of March,
one-third of the global population was under some form of lockdown.

Many countries implemented variable number of lockdown days, but none has come up
with any magic figure for the ideal period of lockdown. No clear-cut guideline or rationale
behind the number of lockdown days has been announced by any country or WHO till date
to the best our knowledge. The initial phase of lockdown of 2-4 weeks was determined mostly
on trial and error basis. The prediction on the number of trial lockdown days was possibly
and partially based on the fact that an affected individual could be contagious in the first 14
days of contracting the disease and also on the information of the number of known positive
cases at the time of taking decision.

The idea of quarantining a small group of people after an epidemic outbreak to arrest
the disease dates back to 1950s when English statistician M.S. Bartlett introduced the term
‘critical community size’. Probably the idea of such mathematical development was driven
by the lessons of social distancing taught by the 1918 flu pandemic or Spanish flu. The
cities with strong social distancing measures, successfully delayed its peak in deaths and
maintained lower death rate (Markel et al., 2007). The flattening of 1918 flu pandemic curve
that took approximately 24 weeks, was disrupted and the cities witnessed sharp increase in
deaths when restrictions were temporarily relaxed after 8-10 weeks.

Bartlett (1957, 1960) proposed the idea that if the susceptible population is below
some threshold, the infection is as likely as not to die out after a period of time (after the
epidemic outbreak) in small communities, unless the disease is reintroduced from outside.
Bartlett termed this threshold as Critical Community Size (CCS). Otherwise speaking, in
absence of pharmaceutical interventions if the susceptible population that is quarantined
together falls below CCS, the infection would die out from the population after a period of
time unless the disease is re-introduced from outside. In the present context, CCS could
guide government/health policy makers with an objective strategy of lockdown period as
opposed to subjective trial and error phases of lockdown.

After an epidemic outbreak in a community, the infection persists long enough to engulf
the entire susceptible population. Local extinction of the disease could be possible if the
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susceptible population gets depleted. In large communities, the tendency of eventual damp
down of the recurrent epidemics is balanced by random variability. But in small communities
the infection would die out when the number of susceptible falls below a certain threshold,
which is the CCS. Only a limited number of works (N̊asell, 2005; Anderson and Britton,
2000) including our work (under review) are available on CCS, may be because it involves
complicated calculations even for simplest mathematical model viz. SI (S: Susceptible, I:
Infected) model. However, since the actual extent of an epidemic can be assessed only
retrospectively, it is essential to calculate the CCS for COVID-19 based on a realistic model
that depends on the parameters which could be determined for a specific locality.

We propose an SEIR (S: Susceptible, E: Exposed, I: Infected, R: Recovered) model
to explain the disease dynamics of COVID-19. We have derived with evidence the ratio-
nale behind the importance and extent of the lockdown period and also the number of
people who could safely stay together in this lockdown phase. In absence of much prior
knowledge on the disease, we have to rely on the mathematical predictions to combat the
virus. In this article, we provide a cautionary note from the mathematical deductions, that
this pandemic might take a very long time to fade away, in absence of any pharmaceu-
tical interventions. Our work resonates the latest updates from WHO executive director
stating “this virus may never go away”. WHO also mentions that it may remain in the
community as another endemic virus like human immunodeficiency virus (HIV). To have
less disease transmission, WHO also stresses on enforcing withdrawal of the lockdown only
when the day-to-day number of COVID-19 cases reaches the lowest possible level; other-
wise, the transmission may accelerate (https://www.aninews.in/news/world/europe/who-
executive-director-says-coronavirus-may-never-go-away20200514012424/).

But there is always a ray of hope. Apart from the fact that, we may learn much from
Spanish flu, SARS, and MERS outbreaks, our deduction suggests that there should be no
reason to panic as the lockdown, if properly followed, could contain the disease. Although
we have to bear the burden of slow economic recovery or even a recession, the COVID-19
epidemic could be controlled and hopefully it would not cause a more severe public health
emergency in the near future.

2. Methods

We propose an SEIR model to explain the dynamics of COVID-19 infection. The entire
population is divided into four compartments. These compartments are mutually exclusive
in the sense that no person can belong to more than one compartment at any time point. The
four compartments are: susceptible individuals (S), individuals with and without symptoms
of the disease but not yet tested positive for COVID-19 (E), infected individuals who are
clinically tested positive (I), and individuals who are known to have recovered from the
disease (R). Note that an individual belonging to class E may transmit the disease during
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the incubation period. Under this situation, we consider the model as:

dS

dt
= Λ− β (I(t) + φE(t)) S(t)

N
− µS(t) (1)

dE

dt
= β (I(t) + φE(t)) S(t)

N
− (γ + µ)E(t) (2)

dI

dt
= γE(t)− (δ + µ+ d)I(t) (3)

dR

dt
= δI(t)− µR(t) (4)

Here β (or βφ) represents the contact rate for COVID-19 transmission from infected (or
exposed) to susceptible individuals, an individual in E moves to I at the rate γ, δ is the
recovery rate, d is death rate due to the disease and µ is the natural death rate in the
population. Moreover, Λ = µN(t) where N(t) is the population size at time t.

Next we calculate the basic reproduction number (R0) defined as the expected num-
ber of secondary cases produced by a single infection in a completely susceptible popu-
lation. We calculate R0 for the above model using next generation matrix G = FV −1,
where, F =

[
∂Fi(x0)
∂xj

]
and V −1 =

[
∂Vi(x0)
∂xj

]
. Here, Fis are the new infections in the sys-

tem, while Vi denotes the transfer of infections from one compartment to another and x0

is the disease-free equilibrium state (section 2.2). In our model, F =
[
βφ S

N
β S
N

0 0

]
and

V −1 =
[
γ + µ 0
−γ δ + µ+ d

]
. R0 is defined as the maximum eigen value of the matrix G.

Based on the above model R0 will be:

R0 = β(φ(δ + µ+ d) + γ)
(γ + µ)(δ + µ+ d) (5)

2.1. Stochastic model and quasi-stationarity

First we note the nature of transition and the respective transition rates from one
compartment to another (Table 1).

We construct the fully stochastic version of the model in (1)-(4) using the transition
rates in Table 1. Denoting s = S/N , e = E/N , i = I/N , r = R/N , the Kolmogorov forward
equations for this process can be written as follows:

p′s,e,i,r(t) =λ1ps−1,e,i,r + λ2ps+1,e,i,r + λ3ps+1,e−1,i,r + λ4ps+1,e,i−1,r

+ λ5ps,e+1,i,r + λ6ps,e+1,i−1,r + λ7ps,e,i+1,r−1 + λ8ps,e,i+1,r

+ λ9ps,e,i,r+1 − κ(s, e, i, r)ps,e,i,r (6)

where κ(s, e, i, r) =
9∑
j=1

λj(s, e, i, r).

We use Kolmogorov forward equations in order to find the expected time to extinction
(TTE) and evaluate CCS based on our model. Now, conditioning on non-extinction, we
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Table 1: Chart of transition rates
Event Transition Transition rate
Immigration of Susceptibles (s, e, i, r)→ (s+ 1, e, i, r) λ1 = λ1(s, e, i, r) = µN
Death of Susceptibles (s, e, i, r)→ (s− 1, e, i, r) λ2 = λ2(s, e, i, r) = µs
Susceptible (S) to Exposed (E) (s, e, i, r)→ (s− 1, e+ 1, i, r) λ3 = λ3(s, e, i, r) = βφse/N
Susceptible (S) to Infected (I) (s, e, i, r)→ (s− 1, e, i+ 1, r) λ4 = λ4(s, e, i, r) = βsi/N
Death of Exposed (s, e, i, r)→ (s, e− 1, i, r) λ5 = λ5(s, e, i, r) = µe
Exposed (E) to Infected (I) (s, e, i, r)→ (s, e− 1, i+ 1, r) λ6 = λ6(s, e, i, r) = γe
Infected (I) to Recovered (R) (s, e, i, r)→ (s, e, i− 1, r + 1) λ7 = λ7(s, e, i, r) = δi
Death of Infected (s, e, i, r)→ (s, e, i− 1, r) λ8 = λ8(s, e, i, r) = (µ+ d)i
Death of Recovered (s, e, i, r)→ (s, e, i, r − 1) λ9 = λ9(s, e, i, r) = µr

have,

qs,e,i,r(t) = P [S(t) = s, E(t) = e, I(t) = i, R(t) = r|E(t) 6= 0, I(t) 6= 0] = ps,e,i,r(t)
1− p•00•(t)

where p•00•(t) =
∞∑
s=0

∞∑
r=0

P [S(t) = s, E(t) = e, I(t) = i, R(t) = r] =
∞∑
s=0

∞∑
r=0

ps,0,0,r(t).
Now, differentiating qs,i,c,a(t) with respect to t, we have,

q′s,e,i,r(t) =
p′s,e,i,r(t)

1− p•00•(t)
+ ps,e,i,r(t)

(1− p•00•(t))2 .p
′
•00•(t). (7)

Now, from (6), we have, after simplification,

p•00•(t) = µp•1 0 •(t) + (δ + µ+ d)p•0 1 •(t) = p(d,µ,δ)
• (t) (say). (8)

From (7-8) we have,

q′s,e,i,r(t) =
p′s,e,i,r(t)

1− p•00•(t)
+ ps,e,i,r(t)

(1− p•00•(t))
.q(d,µ,δ)
• (t) where q(d,µ)

• (t) = p(d,µ,δ)
• (t)

1− p•0 0 0(t) (9)

Now, q′s,e,i,r(t) = 0

=⇒ p′s,e,i,r(t) = − ps,e,i,r(t)
(1− p•0 0 •(t))

.q(d,µ,δ)
• (t)(1− p•0 0 •(t)) = −q(d,µ,δ)

• (t)ps,e,i,r(t)

=⇒ ps,e,i,r(t) = ce−q
(d,µ,δ)
• (t).t = q(d,µ,δ)

• (0)e−q
(d,µ,δ)
• (t).t (10)

Let τQ be the TTE when the initial distribution equals the quasi-stationarity distribu-
tion [N̊asell, 2005]. Hence for stationary distribution,

E(τQ) = 1
q

(d,µ,δ)
•

. (11)
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2.2. Equilibrium points

The disease-free equilibrium is obtained as: Σ0 = (S0, I0, C0, A0) =
(

Λ
µ
, 0, 0, 0

)
.

To find the other endemic equilibrium, if exists, we put N = N(0), x1(t) = S(t)/N ,
x2(t) = E(t)/N , x3(t) = I(t)/N , and x4(t) = R(t)/N . Then equilibrium point is obtained
by equating the first differentiation to zero, i.e.

x′1(t) = µ− β
(
x3(t) + φx2(t)

)
x1(t)− µx1(t) = 0 (12)

x′2(t) = β
(
x3(t) + φx2(t)

)
x1(t)− (γ + µ)x2(t) = 0 (13)

x′3(t) = γx2(t)− (δ + µ+ d)x3(t) = 0 (14)
x′4(t) = δx3(t)− µx4(t) = 0 (15)

For simplicity we use the notations: xj(t) = xj for j = 1, . . . , 4.

Then solving (12) - (15), we have the endemic equilibrium as:

x̂1 = (γ + µ)(δ + µ+ d)
β(γ + φ(δ + µ+ d)) = 1

R0
(16)

x̂2 = µ(1− x̂1)
γ + µ

= µ

γ + µ
(1− 1

R0
) (17)

x̂3 = γµ(1− x̂1)
(γ + µ)(δ + µ+ d) = γµ

(γ + µ)(δ + µ+ d)(1− 1
R0

) (18)

x̂4 = γδ(1− x̂1)
(γ + µ)(δ + µ+ d) = γδ

(γ + µ)(δ + µ+ d)(1− 1
R0

) (19)

2.3. Diffusion approximation

Stationary distribution of an epidemic process may be approximated with a specified
multivariate normal distribution using Ornstein-Uhlenbeck process when the population size
N is very large and R0 ≥ 1. This approximation is valid only in absence of any infection. We
derive an approximate distribution of the quasi-stationarity by limiting Ornstein-Uhlenbeck
process (N̊asell, 2005). We consider a diffusion approximation to the stochastic version of
SEIR model.

Let the changes in the scaled state variables x1, x2, x3, and x4 during the time interval
be denoted by δx1, δx2, δx3, and δx4 respectively, where δxi(t) = xi(t + δt) − xi(t), i =
1, 2, 3, 4.

Under the assumptions of the original process on sequence of transitions, we evaluate
the mean vector and variance-covariance matrix for δxi (i = 1, 2, 3, 4) during the time interval
(t, t+ δt) as follows.

First assume that we are in the state (S,E, I, R). Then the possible transitions from
this state are:
(a) S increases by 1 at the rate µ
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(b) S decreases by 1 at the rate µS
(c) S decreases by 1 and E increases by 1 at the rate βφSE/N + βSI/N
(d) E decreases by 1 and I increases by 1 at the rate γE
(e) E decreases by 1 at the rate µE
(f) I decreases by 1 at the rate (µ+ d)I
(g) I decreases by 1 and R increases by 1 at the rate δI
(h) R decrease by 1 at the rate µR.

The random variable δx1 equals 1
N

in case (1), − 1
N

in cases (2), (3), and 0 in other
cases. Similarly, δx2 equals 1

N
in case (3), − 1

N
in cases (4), (5), and 0 in other cases. δx3

equals 1
N

in case (4), − 1
N

in cases (6), (7), and 0 in other cases. δx4 equals 1
N

in case (7),
− 1
N

in case (8), and 0 in other cases.
Then, E(δx) = b(x)δt+ o(δt)

where b(x) =


µ− β(x3 + φx2)x1 − µx1
β(x3 + φx2)x1 − (γ + µ)x2

γx2 − (δ + µ+ d)x3
δx3 − µx4

 (20)

Now to derive the variance-covariance matrix we find the Jacobian matrix of b(x) at
point x,

B(x) = ∂b(x)
∂x

=


−β(x3 + φx2)− µ −βφx1 −βx1 0

β(x3 + φx2) βφx1 − (γ + µ) βx1 0
0 γ −(δ + µ+ d) 0
0 0 δ −µ


Approximating B(x) at equilibrium point x̂ = (x̂1, x̂2, x̂3, x̂4) by B(x̂), we get,

B(x̂) =


−µR0 −βφx1 −βx1 0

µ(R0 − 1) βφx1 − (γ + µ) βx1 0
0 γ −(δ + µ+ d) 0
0 0 δ −µ


Therefore, variance-covariance matrix of δx = (δx1, δx2, δx3, δx4)′ is,
V (δx) = 1

N
S(x)δt+ o(δt) where,

S(x) = 1
N


β(x3 + φx2)x1 −β(x3 + φx2)x1 0 0

+ µ
N

+ µx1
−β(x3 + φx2)x1 (γ + µ)x2 + β(x3 + φx2)x1 −γx2 0

0 −γx2 (δ + µ+ d)x3 + γx2 −δx3
0 0 −δx3 δx3 + µx4


Again approximating S(x) by S(x̂), where x̂ is the equilibrium point, we obtain,

S(x̂) = 1
N


µ
N

+ µ −µ(1− 1
R0

) 0 0
−µ(1− 1

R0
) 2µ(1− 1

R0
) −µγ

γ+µ(1− 1
R0

) 0
0 −µγ

γ+µ(1− 1
R0

) 2 µγ
γ+µ(1− 1

R0
) −δµγ

(γ+µ)(δ+µ+d)(1−
1
R0

)
0 0 −δµγ

(γ+µ)(δ+µ+d)(1−
1
R0

) 2 −δµγ
(γ+µ)(δ+µ+d)(1−

1
R0

)
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For large N , the process
√
N(x(t) − x̂) is approximated by a multivariate Ornstein-

Uhlenbeck (O-U) process with a local drift matrix B(x̂) and local variance-covariance matrix
S(x̂).

The stationary distribution of this O-U process approximates the quasi stationary
distribution. It is approximately normal with mean zero and variance-covariance matrix Σ,
where Σ is obtained by solving

B(x̂)Σ + ΣB′(x̂) = −S(x̂). (21)

Exact analytical solution for Σ is not straightforward (Anderson and Britton, 2000). Since
we are interested in calculating the CCS, we can easily solve the equation (21) numerically
given the parameter values and the equilibrium point.

Let σij be the solution for the (i, j)th element of Σ, where i, j = 1, . . . , 4. Diffusion
approximation guides us to consider the joint distribution of x1(t), x2(t), x3(t), x4(t) as four-
variate normal distribution with appropriate mean and variance-covariance matrix i.e.
√
N(x(t)− x̂) ∼ N4(0,Σ), with x(t) = (x1(t), x2(t), x3(t), x4(t))′, x̂ = (x̂1, x̂2, x̂3, x̂4),

and Σ =


σ11 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ33 σ34
σ41 σ42 σ43 σ44

 (22)

An approximation for quasi-stationary distribution is obtained from truncated multivariate
normal distribution. Thus in order to evaluate expected time to extinction and subsequently
the CCS, we use results from conditional truncated multivariate normal distribution. Now
define µ∗2 = x̂2 + σ23

σ33
(x3 − x̂3), σ∗22 = σ22 − σ2

23
σ2

33
.

To calculate p•10• (or p•01• or p•00•) first note that for largeN ,
√
N(x−x̂) approximately

follows a four-variate multivariate normal distribution with mean zero and covariate matrix
Σ, as obtained form equation (22). Now, we shall show that these terms contain product of
φ(ν)
Φ(ν) terms. Since N is unknown, we cannot evaluate its values exactly. Thus we use another
approximation to φ(ν)

Φ(ν) based on a logistic function only to make the calculation relatively
simple. Using the idea that |σ(βx) − Φ(x)| is minimum when β = 16x

15 (Birnbaum, 1963;
Haley, 1952)) and putting σ(z) = 1

1+e−z and β = 16
15

π√
3 , we approximate φ(.)

Φ(.) as,

φ(ν)
Φ(ν) = φ(ν)∫ ν

−∞ φ(x)dx = βφ(ν)∫ βν
−∞ φ( y

β
)dy
≈ βφ(ν)
σ(βν) (Williams, 2005)

= βφ(ν)(1 + e−βν) ≈ β
[1 + cos(ν)

2π
]
(1 + e−βν) (Raab, 1961)

≈ β
1 + cos(ν)

2π as, ν →∞ as, N →∞
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Therefore, for y > 0, Φ(y + h)− Φ(y) ≈ h.φ(y), we obtain

p•10• =
∞∑
s=0

∞∑
r=0

P (S = s, E = 1, I = 0, R = r) = P (E = 1, I = 0)

≈P (0.5 < Nx2(t) ≤ 1, 0 ≤ Nx3(t) ≤ 0.5)
≈P (0.5 < Nx2(t) ≤ 1|0 ≤ Nx3(t) ≤ 0.5).P (0 ≤ Nx3(t) ≤ 0.5)

=
Φ(
√
N( 1

N
−µ∗

2)√
σ∗

22
)− Φ(

√
N( 1

2N−µ
∗
2)√

σ∗
22

)

1− Φ(
√
N(0−µ∗

2)√
σ∗

22
)

.
Φ(
√
N( 1

2N−x̂3)
√
σ33

)− Φ(
√
N(0−x̂3)√
σ33

)

1− Φ(
√
N(0−x̂3)√
σ33

)

≈
0.5
N√
σ∗

22√
N

φ(
√
N( 1

2N−µ
∗
2)√

σ∗
22

)

Φ(
√
Nµ∗

2√
σ∗

22
)

.
0.5
N√
σ33√
N

φ(
√
Nx̂3√
σ33

)

Φ(
√
Nx̂3√
σ33

)

≈ 1
2
√
N

1√
σ∗22

β
1 + cos(

√
Nµ∗

2√
σ∗

22
)

2π .
1

2
√
N

1
√
σ33

β
1 + cos(

√
Nx̂3√
σ33

)
2π

Thus we have,

p•10• = 1√
σ∗22

1
2
√
N
β

1 + cos(
√
Nµ∗

2√
σ∗

22
)

2π
1
√
σ33

1
2
√
N
β

1 + cos(
√
Nx̂3√
σ33

)
2π when x3 = 0

p•01• = 1√
σ∗22

1
2
√
N
β

1 + cos(
√
Nµ∗

2√
σ∗

22
)

2π
1
√
σ33

1
2
√
N
β

1 + cos(
√
Nx̂3√
σ33

)
2π when x3 = 1

p•00• = 1√
σ∗22

1
2
√
N
β

1 + cos(
√
Nµ∗

2√
σ∗

22
)

2π
1
√
σ33

1
2
√
N
β

1 + cos(
√
Nx̂3√
σ33

)
2π when x3 = 0

Once we find q(d,µ,δ)
• , we have an expression for expected time to extinction Ê(τQ) using (11).

Clearly, Ê(τQ) will be a function of N. However, N is unknown. To obtain this N which is
nothing but CCS, we equate median time to extinction with the quasi-period (T̂0) (N̊asell,
2005). The quasi-period is obtained as T̂0 = 2π

θ
where θ is the angular frequency. The

angular frequency is determined by linearisation about the critical point that corresponds to
the endemic infection level (Dietz, 1975). The value of N from E(τQ)log2 = T̂0 will be the
CCS value (N̊asell, 2005).

We find the quasi-period of the oscillation about the critical point using linearisation
method (Dietz, 1975). Note that for our model, the linearised system about the equilibrium
point x̂ = (x̂1, x̂2, x̂3, x̂4)′ can be written as:

dx∗

dt
=


−
βµ(1− 1

R0
)

γ+µ (φ+ γ
δ+µ+d) −βφ

R0
− β
R0

0
βµ(1− 1

R0
)

γ+µ (φ+ γ
δ+µ+d) βφ

R0
− (γ + µ) β

R0
0

0 γ −(δ + µ+ d) 0
0 0 δ −µ

x∗ (23)
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where x∗ = x− x̂.

Now we can find the eigen values of the matrix in (23) and find the angular frequency,
provided there are imaginary roots. Putting the values of the parameters, we can find the
angular frequency (θ). The quasi-period is obtained as T̂0 = 2π

θ
, which is independent of N .

From the relation Ê(τQ) log 2 = T̂0 (N̊asell, 2005), we can solve for N , which is the CCS.
Since we are dealing with a system consisting of more than two equations, the calculations
become very complicated. Hence we find an approximate value of CCS numerically.

In a nutshell, our method at first develops a fully stochastic model corresponding
to the deterministic model (1)-(4); then assuming quasi-stationarity and non-extinction of
infection, expected time to extinction TTE (≡ E(τQ)) of the disease is derived. E(τQ)
involves some probability terms that we evaluate using diffusion approximation of the scaled
state variables (S, E, I, R). τQ is a function of the CCS. We derive quasi-period T̂0 in terms
of angular frequency that is obtained using linearised system at equilibrium points. Then
using the relation E(τQ) log 2 = T̂0 (N̊asell, 2005), we could finally evaluate the CCS for the
disease dynamics of COVID-19.

3. Results

For COVID-19 transmission, we have calculated the CCS and TTE of the disease based
on our proposed SEIR model. We note that the value of the CCS is approximate as we have
applied some mathematical approximation while applying diffusion approximation to find
the quasi-stationary distribution. The value of CCS for a community or a country, depends
on its parameters which we deduce from the available information on COVID-19 till date.

We apply our method to different states in India. However, this is a general method and
can be applied to any country or locality provided the values of the parameters are available.
Actual fatality rate due to any epidemic could only be calculated after the epidemic gets
over. But in the middle of the pandemic, it is difficult to assess. So we determine the state-
specific death rate (d) at four time points at an interval of seven days based on the number
of deaths in the duration of May 15− 21, May 8− 14, May 1− 7, and April 24− 30 and the
total number of newly infected individuals during 7 days prior to these dates respectively.
From hereon, we denote the four time points as T1, T2, T3, and T4 respectively.

Different countries have implemented varying criteria of discharging COVID-19 patients
from hospitals making the actual recovery rate very difficult to calculate amid the pandemic.
It is yet unknown whether all the discharged patients have fully recovered from the disease or
some of them would get sick again, shortly afterwards. So we have assumed the recovery rate
(δ) again at four time points at an interval of seven days based on the number of recovered
patients during May 15−21, May 8−14, May 1−7, and April 24−30 and the total number
of newly infected individuals during dates April 24-May 7, April 17 − 30, April 10 − 23,
and April 3− 16 respectively. These Indian state-specific numbers for newly infected cases,
death, and recovery at four time points are obtained from https://api.covid19india.org/.

Another very tricky and state dependent parameter is the rate of detection of positive
cases from among the exposed pool of people, i.e. percentage of exposed people that are
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actually tested to be COVID-19 positive. In absence of enough manpower and testing
kits in this dire situation, we will not be able to know the actual proportion (γ) of the
exposed who could later on become a COVID-19 patient. For calculating γ, we obtained
daily state-wise test positivity rate (TPR) (https://api.covid19india.org/) that is the rate
at which the exposed individuals are tested and reported to be infected daily. We calculate
7-day average TPR (using geometric mean) for each state at three time points mentioned
above. Next we calculated at each time point the geometric mean of 7-day average TPRs
from all states and took the maximum value as γ. We obtain, γ ≈ 0.04. The rationale
behind taking maximum value is due to the fact that, in India the number of tests done
per million is 1823 (as on May 21, 2020), which is much less than many other countries
(https://www.worldometers.info/coronavirus/). It is possible that if we had enough tests,
the actual TPR could be different, rather higher. The per day rate of natural death that
stabilises the population under normal scenario is µ = 1

70
1

365 = 0.0000391 (assuming average
longevity of an Indian is 70 years). In absence of actual contact rate (β), we have assumed
β = 1.1 (Senapati et al., 2020). Another difficult parameter to obtain is the contact rate
for COVID-19 transmission from exposed to susceptible individuals (βφ ). We calculated a
range of βφ values for all Indian states at all time points and assumed the most common
rate. We obtained βφ ≈ 0.0011.

Table 2: CCS and TEST for Indian states at different time points

T4 T3 T2 T1
State CCS R0 TEST CCS R0 TEST CCS R0 TEST CCS R0 TEST
DL 230 5.081 19-23 350 2.186 16-19 380 1.836 15-19 720 1.563 18-21
GJ 170 2.389 13-16 350 2.121 16-19 280 1.782 14-17 70 2.575 9-13
JK 490 2.140 17-20 160 2.320 13-16 240 2.201 14-17 170 1.926 12-15
KA 40 2.416 6-10 460 1.908 17-20 380 2.808 17-20 140 2.518 12-16
MP 320 3.615 17-19 190 1.785 12-15 180 1.664 11-15 70 2.475 9-12
MH 190 2.992 14-17 170 3.317 14-17 60 2.733 9-12 260 2.166 14-18
RJ 590 2.401 19-22 670 1.616 18-21 260 2.088 14-18 310 1.913 15-18
TN 410 2.076 16-19 260 3.168 16-18 550 1.682 17-20 3380 1.037 23-26
TG 270 3.131 16-19 30 2.199 1-7 740 1.402 17-21 270 1.916 14-18
UP 570 2.124 18-21 470 1.715 16-20 450 1.855 17-20 950 1.483 19-23
WB 50 3.644 9-12 400 1.573 15-19 2510 1.179 22-26 70 2.667 10-13
PB 60 4.053 11-13 180 3.436 14-17 160 4.183 15-17
HR 260 2.764 15-18 230 4.035 16-18 360 1.625 15-18
BR 160 2.072 12-15 470 2.632 18-21
CH 400 3.147 17-20 270 3.457 16-19
OR 160 2.124 12-16
UT 140 3.690 14-16
AP 90 2.340 10-13 970 1.285 18-22
KL 80 1.784 7-11
AS 950 1.278 18-22
HP 2330 1.178 15-19

TEST (in weeks) gives a range of lockdown period across different Indian states at all time points; DL:
Delhi, GJ: Gujarat, HR: Haryana, JK: Jammu and Kashmir, KA: Karnataka, MP: Madhya Pradesh, MH:
Maharastra, PB: Punjab, RJ: Rajasthan, TN: Tamil Nadu, TG: Telangana, UP: Uttar Pradesh, WB: West
Bengal, AP: Andhra Pradesh, BR: Bihar, CH: Chandigarh, OR: Odisha, UT: Uttarakhand, KL: Kerala
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Table 3: TEST with minimum CCS across different time points for Indian states

States min CCS T4lower T3lower T2lower T1lower T4upper T3upper T2upper T1upper
DL 230 16 14 13 12 19 17 16 15
GJ 170 13 13 12 9 16 16 15 13
JK 160 12 13 13 12 15 16 16 15
KA 40 6 3 7 6 10 8 10 10
MP 180 14 12 11 9 17 15 15 12
MH 60 9 10 9 7 12 13 12 11
RJ 260 15 13 14 14 18 17 18 17
TN 260 14 16 13 9 17 18 17 13
TG 30 6 1 1 1 9 7 3 6
UP 450 17 16 17 15 20 19 20 19
WB 50 9 2 1 8 12 8 5 11
PB 60 11 10 11 1 13 13 13 4
HR 230 15 16 6 12 18 18 10 16
BR 160 6 12 13 9 15 16
CH 270 16 16 19 19
OR 160 12 6 2 16 10 6
UT 140 14 16
AP 90 10 5 13 9
KL 160 7 11

T1lower (or T2lower or T3lower): minimum TEST (in weeks) required at time point T1 (or T2 or T3), T1upper

(or T2upper or T3upper): maximum TEST (in weeks) required at time point T1 (or T2 or T3); DL: Delhi, GJ:
Gujarat, HR: Haryana, JK: Jammu and Kashmir, KA: Karnataka, MP: Madhya Pradesh, MH: Maharastra,
PB: Punjab, RJ: Rajasthan, TN: Tamil Nadu, TG: Telangana, UP: Uttar Pradesh, WB: West Bengal, AP:
Andhra Pradesh, BR: Bihar, CH: Chandigarh, OR: Odisha, UT: Uttarakhand, KL: Kerala

Table 4: CCS and TEST for India at different time points

δ d CCS R0 TEST
T4 0.4799 0.0327 620 2.1793 23-27
T3 0.4502 0.0321 470 2.3142 21-25
T2 0.4717 0.0305 690 2.2243 23-28
T1 0.5203 0.0270 380 2.0439 19-24

We have computed state-wise CCS at time points T1, T2, T3, and T4 (Table 2). For a
few states, data were missing at some or all time points and so, CCS could not be obtained.
While calculating CCS we observed that the expected TTE in absence of specific treatment
or vaccine, is very large. But the most interesting observation from our study is that complete
lockdowns or restrictive quarantines for a definite period might eradicate the disease almost
completely. We term this period as Temporary Eradication of Spread Time (TEST) for
the disease, which is immensely less than the expected TTE for the disease. Although the
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disease might continue to exist for a very long time on the planet in absence of pharmaceutical
interventions, soothing part from our deduction is that the virus might not be able to create
any havoc on its return. Our study thus provides a rationale behind the determination of
the lockdown period in different Indian states going through the catastrophic effect of the
pandemic. This work may aid public health workers to strategise lockdown policies.

For example, we find in Table 2, CCS of Delhi (DL) at time T2 is 380 and TEST is
15 − 19. This would mean that based on the demographic figures corresponding to time
T2, if the susceptible population (or community size of quarantined people) of DL is below
380, the infection will subside substantially after around 15− 19 weeks of mass quarantine/
restrictive lockdown, unless it is re-introduced from outside. TEST for DL across time points
T1, T2, T3, and T4 suggests that R0 is decreasing. But to understand whether DL or the
other states are improving from the lockdown or not, we need to note Table 3. In Table 3, we
find for DL if the susceptible population is below minimum CCS value among all time points,
both lower and upper limit of TEST decreases over time. This suggests DL is improving in
the sense that the number of lockdown period is decreasing over time. If we observe that
TEST is increasing over time, it would suggest apart from the fact that lockdown should be
increased in those states, the level of infection is increasing.

Using the demographic data for India (https://github.com/CSSEGISandData/COVID-
19/tree/master/csse_covid_19_data/csse_covid_19_time_series), we find the overall
CCS and TEST for India at time points T1, T2, T3, and T4 (Table 4). To compare the in-
fection status of India, we obtained TEST at all time points with minimum CCS. We observe
that if the susceptible population is below minimum CCS value (which is 380) among T1,
T2, T3, and T4, TEST is almost 19−24 weeks at all time points. So, it suggests India might
have to wait at least another 5-6 months for the pandemic curve to flatten while maintaining
maximum possible social distancing norms and in some situations complete lockdown, in
absence of specific treatment.

4. Discussion

As things stand at present, the number of COVID-19 cases from many developed
countries have surpassed those of China, from where this infection had originated. In such
a dire situation, it is very difficult to propose any quintessential lockdown period specific to
any country or state. The whole world is struggling to obtain unbiased data to predict on the
pandemic. At the same time many questions arise in our minds as “Will the implemented
number of lockdown days eradicate the virus?” or “Will it come soon again after the lockdown
is over?” or like “How long should the lockdown be continued for the pandemic curve to
flatten?” In this scenario of utter dilemma, with the available world-wide data, we provide
state-wise estimates of the ideal lockdown phases using our proposed mathematical model for
the Indian states. To the best of our knowledge, any guideline for country-wise mathematical
prediction of lockdown days is not available till date. So, as the famous British statistician
George E. P. Box pointed out, “All models are wrong but some are useful”, we only hope
that our deductions will provide some helpful suggestions to the policy-makers and public
health practitioners, while we are all affected in the pandemic to varying degrees.

Our work suggests that if people are quarantined in limited groups presented by state-
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specific CCS, the disease might become contained after the corresponding expected TTE,
unless the disease is re-introduced from outside. We observe that although TTE in this case
is a very long time (in absence of pharmaceutical interventions), the infection would subside
almost completely after TEST. WHO also predicts that COVID-19 virus might continue
to stay among us like the HIV. This fact matches with our observation. The TEST that
we observed for Indian states or India as a whole shows a trajectory similar to Spanish flu
virus. Markel et al. (2007) observed that during the 1918 Spanish flu, the overall deaths
in the US cities roughly occurs over a period of 24 weeks. COVID-19 appears to have
roughly a similar timeline as that of the Spanish flu. We also observe that as the contact
rate (β) of infected with the susceptible increases, R0 increases steeply. This would mean
that if the lockdown is withdrawn before the infection level becomes substantially low, a
second wave of infection may hit the society. During the Spanish flu, the cities that had
terminated lockdown before the infection was substantially contained, witnessed another
abruptly increasing death peak after a short while. In this direction, our work suggests that
a lockdown should be taken very seriously to fight against COVID-19 pandemic. This paper
provides evidence of the fact that even after the lockdown phase, the disease may recur but it
is not expected to create a comparable pandemic situation. Presently, where contact tracing
of the infected individuals can lead to tracing down of the exposed individuals, we suggest
their quarantining in different feasible groups of sizes not exceeding the state-specific CCS, so
that after TEST (as specified for each state) the disease may subside substantially unless any
infection is re-introduced from outside. We understand that there could be some flexibility
in the lockdown implementation strategies owing to the mathematical approximations made
in our calculation of CCS and TEST of the disease. We note here that our model is robust
to these approximations.

Another undeniable consequence of the current pandemic is the great negative impact
on the economy. This is further magnified by the near paralysed state of transactions in
many sectors due to lockdown. Moreover, there is a fear among the general population that
if any infection recurs, it might lead to another round of spread of the disease. This fear,
which is not unrealistic, may extend the lockdown further. However, after the scheduled
lockdown period, if any individual gets infected and a few others get exposed to that person,
we need to check whether the total number of such individuals is less than the CCS. If
so, the group needs to be quarantined in smaller feasible groups to protect the rest of the
population. A newly exposed group, if larger than the CCS, may be quarantined in separate,
local subgroups of size no larger than CCS. Moreover, such localised lockdown or quarantine
should help in preserving somewhat the daily flow of life and livelihood, and might thereby
prevent, at least to some extent, the economy from being further weakened.

However, lockdown in its truest sense may not be feasible in a vast and diverse country
like India. Therefore, a strategy of localised and limited lockdowns of objectively identi-
fied selected high risk population might be a cost-effective option compared to a generalised
“blanket” lockdown. This would imply comprehensive screening for cases and thorough trac-
ing of contacts. So, our take-home message during the still unfolding COVID-19 pandemic
is that, till the end of TEST, we must be vigilant and careful. With any further onset of
COVID-19 cases in the future, we should follow the quarantine guideline as objectively and
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humanely as possible. Like any other epidemic, COVID-19 has the tendency to recur but
it might not create any alarming pandemic in the future provided we keep a vigilant eye on
our hygiene and have vaccinations and/or treatments. Surely, the realities on the ground −
involving human life and death − are much more complex than any model can possibly ever
capture. We humbly present the findings of our model as possible instruments of guidance
in order to supplement relevant public policies based on ethics and ground realities.
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APPENDIX

Table 5 gives the values of δ and d for four time points considered in our calculation.
‘NA’ indicates that these parameters cannot be calculated based on the available data. As
for example, if there is no death during the period under consideration, the value of d would
be zero, as in case of Orissa. For such cases we did not provide CCS and TEST.

Table 5: δ and d values for different time pints

T4 T3 T2 T1
State δ d δ d δ d δ d
DL 0.212 0.005 0.505 0.004 0.594 0.014 0.700 0.016
GJ 0.422 0.043 0.464 0.061 0.59 0.037 0.395 0.036
JK 0.508 0.012 0.476 0.003 0.5 0.006 0.554 0.024
KA 0.44 0.02 0.552 0.032 0.376 0.019 0.427 0.014
MP 0.264 0.042 0.587 0.038 0.643 0.028 0.430 0.019
MH 0.336 0.035 0.302 0.032 0.378 0.028 0.488 0.025
RJ 0.443 0.02 0.664 0.028 0.515 0.018 0.569 0.013
TN 0.528 0.008 0.34 0.009 0.656 0.008 1.085 0.004
TG 0.348 0.006 0.503 0.003 0.766 0.033 0.553 0.029
UP 0.51 0.015 0.635 0.016 0.585 0.017 0.725 0.029
WB 0.253 0.051 0.487 0.224 0.896 0.059 0.389 0.027
PB 0.253 0.02 0.294 0.028 0.261 0.003 NA NA
HR 0.392 0.01 0.25 0.024 NA NA 0.682 0.006
BR NA NA NA NA 0.532 0.005 0.418 0.003
CH NA NA 0.333 0.019 0.302 0.019 NA NA
OR NA NA 0.512 0.012 NA NA NA NA
UT NA NA 0.25 0.05 NA NA NA NA
AP 0.468 0.008 0.866 0.008 NA NA NA NA
KL 0.615 0.011 NA NA NA NA NA NA
AS NA NA NA NA NA NA 0.833 0.045
HP NA NA NA NA NA NA 3.333 0.029


