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Abstract 
 

 The purpose of the paper is to present developments that have taken place in the area 

of controlled sampling. The article first deals with one dimensional controlled sampling plans 

based on combinatorics of experimental designs and linear programming approaches. Some 

special classes of controlled sampling plans namely balanced sampling plans avoiding 

adjacent units and distance balanced sampling plans are discussed. An overview of two or 

more-dimensional controlled sampling plans is also given. Some statistical applications of 

controlled sampling are discussed in brief. 

 

Key words: Controlled sampling, experimental designs, linear programming, quadratic 
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1. Introduction 
 

 Consider a finite population containing N distinct and identifiable units. The purpose 

in sample theory is the estimation of some population parameter e.g. population mean of a 

character of interest Y by observing a sample s of size n (< N) units from the population. Let S 

denote the set of all possible samples containing n distinct units. The set S is, called the 

sample space for selecting n units out of N units in the population and has cardinality n

N C . In 

certain situations, the sample space S may be partitioned into two disjoint sets 1S  and 2S such 

that the set 1S  contains preferred samples and the set 2S  contains non-preferred samples. The 

objective is to reduce the probability of selection of any sample from the set 2S to as small as 

possible, preferably to zero and to increase the probability of selection from 1S  in such a way 

that the desirable features of uncontrolled sampling designs are retained. This partitioning of 

the sample space S may be due to several reasons. For example, administrative inconvenience 

because of geographical spread of the sampling units may lead to increase in travel cost or 

difficulty in accessing the sampling units. Here 2S contains those samples containing far 

away sampling units. Sometimes the set of non-preferred samples 2S  may contain nearer 

units which gives almost identical information. A sampling plan containing minimum number 

of samples from 2S  is called a controlled sampling plan. 
 

 Goodman and Kish (1950) introduced controlled sampling as a sample selection 

method beyond stratification which reduces the probability of selecting non-preferred 
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samples while retaining the desirable features of an un-controlled probability sampling 

design. It is a useful method for selecting first stage units in multi-stage sampling. While the 

method allows unbiased estimation of population total/mean, it does not provide unbiased 

variance estimation because sampling is no longer independent in the strata. For further work 

on Goodman-Kish method, one may refer to Hess et al. (1976), Waterton (1983), Causey et 

al. (1985) and Cox (1987).  

 

 A new dimension to controlled selection was added by Chakrabarty (1963) by 

establishing a connection between a balanced incomplete block (BIB) design and simple 

random sampling without replacement (SRSWOR). This approach was further exploited by 

Avadhani and Sukhatme (1973) who obtained controlled sampling designs with SRS 

properties. For further work on controlled sampling, one may refer to Wynn (1977), Foody 

and Hedayat (1977), Srivastava and Saleh (1985) and Mukhopadhyay and Vijayan (1996).    

 

 Combinatorial properties of experimental designs were further exploited by Nigam 

and Co-workers (Gupta et al., 1982; Nigam et al., 1984) for obtaining controlled sampling 

designs with inclusion probability proportional to size (IPPS). Hedayat et al. (1989) used the 

method of 'emptying boxes' to construct controlled IPPS sampling plans with the additional 

property Njijiij ,...,2,1,0   where i  denotes the first order inclusion probability 

of the ith unit (i = 1,2, ..., N) and ij  denotes the second order inclusion probability of the 

pair of units i and j, .,...,2,1 Nji   

 

 It is realized that the focus of these efforts was limited to reducing the support size. 

Rao and Nigam (1990) generalized these approaches by using linear programming to derive 

optimal controlled sampling designs with specified properties and minimum probability of 

selection of non-preferred samples. Rao and Nigam (1992) further generalized it to derive 

optimal controlled sampling plans which match the variance of a generalized linear unbiased 

estimator of a specified uncontrolled sampling plan. They covered the Narain-Horvitz-

Thompson estimator under IPPS, Murthy’s estimator under sampling with probabilities 

proportional to sizes and without replacement and ratio estimator under a plan with 

probability of selection proportional to aggregate size of sample units.   

 

 A major drawback of all the above-mentioned approaches is that the methods select 

the whole sample of n units instead of sample selection through unit by unit selection. From 

the selected whole sample, the next step is to identify the selected units. Nigam and Gupta 

(1984) proposed a method which facilitates identification of units contained in the selected 

sample in case of SRSWOR. Nigam and Singh (1994) extended the procedure to SRS with 

replacement. However, both the procedures are difficult to implement for large N. 

 

 A new dimension was added by Hedayat et al. (1988) by developing controlled 

sampling plans excluding contiguous units. Further work on this came from a number of 

authors (Stufken, 1993; Colbourn and Ling, 1998, 1999; Stufken et al., 1999; Stufken and 

Wright, 2001, 2008; Mandal, 2007; Mandal et al., 2008, 2011; Tahir et al., 2010, 2012; and 

Kumar et al., 2016). 

 

 Tiwari and Co-Workers (Tiwari and Nigam, 1998; Tiwari et al., 2007; Tiwari and 

Nigam, 2010; Tiwari and Sud, 2011; Tiwari and Chilwal, 2013) developed controlled 

sampling plans facilitating control in two or more-dimensions. For other related literature, the 

reader may refer to Goodman and Kish (1950), Bryant et al., (1960), Bryant (1961), Hess and 
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Srikantan (1966), Moore et al., (1974), Jessen (1970, 1973, 1975), Gabler (1987), Sitter and 

Skinner (1994), and Lu and Sitter (2002). For an excellent review on controlled sampling 

designs till 2012, the readers may refer to Gupta et al. (2012). 

 

2. Experimental design approach 
 

 There is a long history of using experimental designs   in survey sampling. Some 

recent applications include controlled sampling, handling of sensitive questions and balanced 

subsamples for variance estimation, balanced bootstrap, among others. A good source of the 

applications of experimental designs in survey sampling is by Rao and Vijayan (2008). Some 

of the references cited in the last section relate to some of those exploiting the interplay 

between experimental designs and survey sampling. 

 

 Most work on controlled sampling exploits the combinatorial properties of various 

incomplete block designs to construct designs with minimum support size, that is, with 

minimum number of distinct blocks. Maximum possible numbers of distinct blocks are 

identified with the preferred samples and the remaining with the non-preferred samples. One 

block or sample is then selected at random or with pre-assigned probabilities from the totality 

of blocks, b, in the chosen design. 

 

 In a pioneering work, Chakrabarty (1963) showed that a balanced incomplete block 

(BIB) design can be used to obtain a controlled sampling plan with appealing properties. 

Considering the symbols of BIB design as sampling units, the blocks as samples and 

treatments in a block as the units in the sample, he showed that if from a BIB design with v = 

N symbols in b ( n

NC ) blocks of size k = n with number of replications r and number of 

concurrences of pairs of symbols  , one block is selected with probability 1/b, then this 

sampling design gives the same first and second order inclusion probabilities as in SRSWOR 

design. This can be easily seen that each unit in a BIB design belongs to r blocks and hence, 

with equal probability of selection 1/b, the first order inclusion probability is r/b  = k/v = n/ 

N. Similarly, the second order inclusion probabilities for a pair of units is  /b  = r(k − 1)/b(v 

− 1) = k(k −  1)/v(v − 1) = n(n − 1)/N(N − 1).  The blocks of the BIB design are so selected 

that, as far as possible, they are from the set of preferred samples S1. Clearly, with appropriate 

choice of N and n, the design has much reduced support size than an SRSWOR design.  

 

 The following example from Avadhani and Sukhatme (1973) illustrates the use of BIB 

designs in construction of a controlled sampling design. 

 

Example 1: Suppose n = 3 villages are to be selected from N = 7 villages which are located 

as shown below. 

 

* 2 * 1 * 

7 * 5 * 4 

* 6 * 3 * 

 

 The following 14 samples (1, 2, 3), (1, 2, 6), (1, 3, 6), (1, 3, 7), (1, 4, 6), (1, 4, 7), (1, 

6, 7), (2, 3, 4), (2, 3, 6), (2, 3, 7), (2, 4, 6), (2, 4, 7), (3, 4, 7) and (4, 6,7) are considered as 

non-preferred because of inconvenience in field work. Avadhani and Sukhatme (1973) 

suggested to use the BIB design given below with parameters v = N = 7, b = 7, k = n = 3, r = 

3 and  = 1 as the controlled sampling design: Block 1: (1, 2, 4); Block 2: (2, 3, 5); Block 3: 

(3, 4, 6); Block 4: (4, 5, 7); Block 5: (5, 6, 1); Block 6: (6, 7, 2) and Block 7: (7, 1, 3)*. 
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 Considering blocks as samples, each of the blocks are given equal probability of 

selection 1/7. Since only block 7 is a non-preferred sample, the probability of getting a non-

preferred sample is only 1/7. Note here that the probability of getting a non-preferred sample 

using an uncontrolled SRSWOR design with n = 3 is = 14/
7
C3 = 14/35 = 2/5.  

 

 For large N and n, a BIB design may not exist and if exists, it may be difficult to 

construct. For such situations, Avadhani and Sukhatme (1973) suggested the following 

approach.  
 

i) Divide N units at random into g disjoint groups with ith group having Ni units so that 

NNNN g  ...21 . 

ii) Let ni = nNi/N be an integer, i = 1, 2, ..., g. Take an integer ni' such that a BIB design 

with parameters (v = ni', bi, ri, ni, i ) exists, where iii Nnn  ' , i = 1, 2, ..., g. Then 

select a random sample of ni' units from Ni units in the ith group and do it 

independently for each group.  

iii) Find out the preferred combinations of ni units from ni' units and make a one-to-one 

correspondence between the blocks of the BIB design and the preferred combinations. 

Then select one block at random from the BIB design. This is done for each group 

independently. Thus, the g selected blocks from g BIB designs will constitute the 

controlled sample of size n1 + n2 + ...+ ng = n. 

 

 The idea of using block designs was further extended by Srivastava and Saleh (1985) 

and Mukhopadhyay and Vijayan (1996) who suggested the use of t-designs to construct 

controlled sampling plans.  Wynn (1977) and Foody and Hedayat (1977) suggested use of 

BIB designs with repeated blocks for situations where a BIB design with b < 
v
Ck does not 

exist. 

 

 Controlled plans with inclusion probabilities proportional to sizes of units (IPPS) were 

derived first by Gupta et al. (1982). They used BIB designs to obtain controlled plans 

satisfying IPPS property, that is, ii np , where pi = xi/X, xi is a size measure attached to the 

i-th unit and X is the population total of the xi's. These controlled plans are applicable only to 

those populations which satisfy 
 




si

i
N

n
p

1

1
, for all cSs . Here, s denotes the sample, Sc 

is the support of the plan and the yi are the values of characteristic of interest. Hedayat et al. 

(1989) used the method of 'emptying boxes' to construct controlled IPPS sampling plans with 

the additional property Njijiij ,...,2,1,0   . The latter property ensures the 

unbiasedness and non-negativity of the well-known Sen-Yates-Grundy (Sen, 1953; Yates and 

Grundy, 1953) variance estimator for the Narain-Horvitz Thompson (Narain, 1951; Horvitz 

and Thompson, 1952) estimator ( c
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 However, there is no guarantee that the variance of HTŶ  will always be smaller than 

the variance of the estimator under probability proportional to size (PPS) sampling with 

replacement. Nigam et al. (1984) used typical configurations of experimental designs, 
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including BIB designs, to obtain controlled IPPS sampling plans with the additional property 

Njic jiijji ,...,2,1,   , where c (< 1) is a positive constant, say c = 1/2. The 

property  jiij c    is expected to ensure that the variance estimator (2.1) remains stable. 

Wynn (1977) showed that for a given sampling plan pl(.), there always exists a sampling plan 

p2(.) with support size no greater than N(N – 1)/2 and with the same ij 's (and hence i 's) as 

pl(.). This result, however, does not show us how to construct such a controlled plan p2(.). 

 

 It should be clear from the above overview of controlled sampling that the focus of 

previous work has been on reducing the support size rather than minimizing the probability of 

selecting non-desired combinations to arrive at an optimal controlled plan. The criterion of 

minimum support size, in fact, is not necessarily relevant in constructing an optimal 

controlled plan (see example 1, Rao and Nigam, 1990). Further, the experimental design 

approach could often involve considerable trial and error and computations.  

 

3. Linear programming approach 
 

Experimental design approach is useful in obtaining controlled sampling designs. However, 

unless a design is chosen in such a way that it reduces the probability of selecting non-

preferred samples, the chance of getting a non-preferred sample can be quite high. Such an 

exercise of selecting a suitable design involves a lot of trial and error. To this end, Rao and 

Nigam (1990, 1992) suggested linear programming approach which minimizes the 

probability of non-preferred samples and they termed such a controlled sampling design as 

optimal. They suggested the following formulation to obtain an optimal controlled sampling 

design with desired second order inclusion probabilities: 

Minimize 



2

)(
Ss

sp  subject to constraints            

 i)  1)( 
Ss

sp  

 ii) ji
NN

nn
sp ij

jis

,
)1(

)1(
)(

,









                   (3.1)

    

 iii) Sssp    0)(  

 

where p(s) denote the probability of selecting a sample s of size n. 

 

 They have shown that an optimal solution to the formulation readily gives an optimal 

controlled sampling plan. In fact, all the controlled sampling plans provided by earlier 

authors can be easily obtained by the proposed approach. For example, consider the problem 

of Avadhani and Sukhatme (1973) in Example 1. For instance, using the formulation (3.1) in 

Example 1 above, an optimal solution is obtained, which once again gives 7/1min  , with an 

optimal controlled plan given in Table 1.  
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Table 1: Optimal controlled simple random sampling plan of Example 1  

s  p (s)   s  p (s) 

1 2 4  0.11429  2 3 5  0.14286  

1 2 7  0.02857  2 4 6* 0.02857  

1 3 4  0.02857  2 6 7  0.11429  

1 3 7*  0.11429  3 4 6  0.11429  

1 5 6  0.1428-6  3 6 7  0.02857  

4 5 7  0.14286 

 

 However, the optimal solution to the formulation (3.1) is not unique and there may be 

more than one solution to the same problem. For example, the solution of Avadhani and 

Sukhatme (1973) given in Example 1 is also an optimal solution to the formulation (3.1) with 

min = 1/7. 

 

 The constraints on p(s) in (3.1) were suitably changed by Rao and Nigam (1990) to 

obtain optimal controlled IPPS plans: 

 

Minimize 



2

)(
Ss

sp  subject to constraints            

 i)  1)( 
Ss

sp  

 ii) Ninpsp i

is

,...,2,1)( 


                  (3.2)

  

 iii) ))(()())((
,

ji

jis

ji npnpspnpnpc 


   

 iv) Sssp    0)( , 

 

where c is a suitably chosen constant. 

 

 Using the formulation (3.2), Rao and Nigam (1990) also obtained the controlled IPPS 

plan with N = 7, n = 3 and pi values 0.25, 0.19, 0.16, 0.15, 0.12, 0.08, 0.05 of Nigam et al. 

(1984). In this case, the value of 
min using (3.2) was 0.17 whereas the solution of Nigam et 

al. had  = 0.32. 

 

 Moreover, the objective function may also be suitably modified by giving appropriate 

weights to the probability of selecting samples so that the expected cost of the survey is 

reduced. For details, please see Rao and Nigam (1990, 1992) and Gupta et al. (2012).  

 

 One drawback of the linear programming approach suggested by Rao and Nigam 

(1990, 1992) is that it becomes impractical for large N and n. To handle this problem, Lahiri 

and Mukerjee (2000) suggested a modified version to reduce the dimensionality of the 

problem. For this purpose, they divided the population of N units into t equivalence classes of 

cardinalities N1, N2, ..., Nt with N1 + N2 + ...+ Nt  = N. Within one equivalence class, units are 

associates of each other. Here two units are said to be associate if the set Sn remains unaltered 

if the roles of the units are interchanged. Then they defined a linear programming formulation 

which has fewer constraints and decision variables than the formulations (3.1) and (3.2). 
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4. Quadratic programming approach   
 

Tiwari et al. (2007) used the idea of ‘nearest proportional to size sampling designs’, 

originated by Gabler (1987), to propose a one-dimensional optimal controlled IPPS sampling 

design that matches the original inclusion probabilities (πi’s) of each unit in the population 

and ensures zero probability to non-preferred samples. 

  

In their plan, using the given selection probabilities for N units of the population (pi’s), Tiwari 

et al. (2007) first obtained an appropriate uncontrolled IPPS design p(s), such as Sampford 

(1967) or Midzuno-Sen (1952, 1953) design. After obtaining the initial IPPS design p(s), the 

idea behind their plan is to get rid of the non-preferred samples S2 by confining to the set S1 = 

S – S2 by introducing a new design p0(s) which assigns zero probability of selection to each of 

the non-preferred samples belonging to S2, given by 

 


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
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


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

otherwise                 ,0

for   ,
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                    (4.1) 

   

where p(s) is the initial uncontrolled IPPS sampling plan. 

            

Consequently, p0(s) is no longer an IPPS design. So, applying the idea of Gabler (1987), they 

obtained the ‘nearest proportional to size sampling design’ p1(s) in the sense that p1(s) 

minimizes the directed distance D from the sampling design p0(s) to the sampling design 

p1(s), defined as 
 

1
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subject to the following constraints: 
 

(i)          p1(s)  ≥  0 

(ii) 1)(
1

1 
Ss

sp  

(iii)       i

is

sp 


)(1                      (4.3) 

(iv) 0)(
,

1 
 jis

sp  

 (v)      ji

jis

sp 
 ,

1 )( . 

  

 The ordering of the above five constraints is carried out in accordance with their 

necessity and desirability. Constraints (i) and (ii) are necessary for any sampling design. 

Constraint (iii), which requires that the selection probabilities in the old and new schemes 

remain unchanged, is the requirement for IPPS design, which ensures that the resultant design 

will be IPPS. This constraint is strong and it affects the convergence properties of the 

proposed plan. Constraint (iv) is highly desirable because it ensures unbiased estimation of 

variance. Constraint (v) is desirable as it ensures the sufficient condition for non-negativity of 

the Sen-Yates-Grundy estimator of variance.  
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 The solution to the above quadratic programming problem, viz., minimizing the 

objective function (4.2) subject to the constraints (4.3), provides us with the optimal 

controlled IPPS sampling plan that ensures zero probability of selection for the non-preferred 

samples. The proposed plan is as near as possible to the controlled design p0(s) defined in 

(4.1) and at the same time it achieves the same set of first order inclusion probabilities πi, as 

for the original uncontrolled IPPS sampling plan. Due to the constraints (iv) and (v) in (4.3), 

the proposed plan also ensures the conditions πij > 0 and πij ≤ πiπj  for Sen-Yates-Grundy  

estimator of the variance to be stable and non-negative. 

 

5. Balanced sampling plans excluding adjacent units 
 

 As stated earlier, Hedayat et al. (1988) developed controlled sampling plans excluding 

contiguous units. These were termed as balanced sampling plans excluding contiguous units 

(BSEC plans). These plans are useful when population units are arranged in space or time and 

the contiguous units provide similar measurement and hence, it is desirable that contiguous 

units do not appear in a sample. The BSEC plans are sampling plans in which every pair of 

non-contiguous units has constant second order inclusion probabilities and every pair of 

contiguous units has zero second order inclusion probabilities. Stufken (1993) extended this 

idea to balanced sampling plans excluding adjacent units (BSA plans) where every pair of 

adjacent units has zero second order inclusion probabilities and every pair of non-adjacent 

units has constant second order probabilities. Here, two units are said to be adjacent 

whenever they are within a distance of m units with m suitably defined by the investigator. 

However, given N, n and m, BSA plans may not always exist. Existence conditions have been 

studied by Stufken (1993), Stufken et al. (1999) and Wright (2008). A special class of block 

designs called polygonal designs were introduced by Stufken et al. (1999) to obtain BSA 

plans. A polygonal design in v treatments and b blocks with each block of size k is an 

incomplete block design such that (i) no treatment appears more than once in a block, (ii) 

every treatment appears in r blocks in the design, and (iii) each pair of treatments which are 

at a distance of m units or less do not appear together in any block and each pair of treatments 

which are at distance of more than m units, appear together in   blocks. The parameters v, b, 

r, k,   and m satisfy the following necessary conditions (i) vr = bk and (ii) 

)1()12(  krmv . 

 

The design given in Table 2 is a polygonal design with v = 9, b = 9, r = 3, k = 3, 1,1  m . 

 

Table 2: A polygonal design for v = 9, b = 9, r = 3, k = 3, 1  and m = 1 

1 3 6 

2 4 7 

3 5 8 

4 6 9 

5 7 1 

6 8 2 

7 9 3 

8 1 4 

9 2 5 

 

 A polygonal design has one to one correspondence with a BSA plan. With N = v and k 

= n, consider the treatments as sampling units, the blocks as samples, the treatments in a 

block as the units in the sample and then if every block of a polygonal design is given 

probability of selection as 1/b, then the polygonal design is equivalent to a BSA plan for 



2018]                                                  CONTROLLED SAMPLING - A REVIEW                                            153 

population size N, sample size n and m. A result due to Mandal et al. (2008) and Stufken and 

Wright (2008) for constructing polygonal designs is given below. 

 

Theorem 1. Let B1, B2, ..., Bt denote t initial blocks with k distinct treatments from the set {1, 

2, ..., v}. Let Bu= {bu1, bu2, ..., buk}, u = 1, 2, ..., t. Then if in the tk(k − 1) pair wise distances 

of the elements from the t blocks, distances 1, 2, ..., m do not appear and distances m + 1, m + 

2, ...,[v/2] appear times then, a polygonal design is obtained by developing the t initial 

blocks modulo v. The parameters of the design are given by v, b = tv, r = tk, k,   and m. 

 

 Theorem 1 was utilized to develop algorithms to obtain BSA plans by Stufken and 

Wright (2001) for m = 1 and by Mandal et al. (2008) and Stufken and Wright (2008) for 

1m . A catalogue of BSA plans is available in Mandal (2007) for 4,7,40  mnN . 

Theorem 1 always gives polygonal designs which are cyclic in nature. An integer linear 

programming formulation to identify the generator blocks of such cyclic polygonal designs 

was proposed by Mandal et al. (2011). They constructed all the polygonal designs for 

3,100  kv for all permissible m using the approach. 

 

 Mandal et al. (2008) proposed a linear programming approach to obtain BSA plans 

following the idea of Rao and Nigam (1990, 1992). They suggested the following linear 

programming formulation for obtaining a BSA plan:  

Minimize 



2

)(
Ss

sp    

subject to constraints 

i) 
N

n
sp

is



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ii) 0)(
,
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 jis

sp if (i, j) are adjacent                   (5.1) 
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


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nn
if (i, j) are non-adjacent 

iii) s sp  0)(

 

iv) 1)( 
s

sp  

where S2 denotes set of samples containing adjacent pair of units. 

 An optimum solution of the linear programming formulation, if exists, gives the full 

support of the plan along with the probability of selections. One of the limitations of the 

proposed linear programming approach for construction of a BSA plans is that for large N 

and n, the number of possible samples becomes very large and the linear programming 

formulation becomes impractical to adopt. 

 Several authors suggested alternative approaches to obtain BSA plans. Colbourn and 

Ling (1998) used partial triple system to solve the existence problem of BSA plans for k = 3 

with m = 1. Colbourn and Ling (1999) completely solved the problem of existence of BSA 

plans for k  = 4 and m  = 1. Tahir et al. (2010, 2012) used cyclic shift method to construct 

polygonal designs for k = 3 for particular settings of  and m.  
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 The above researches assumed that the population units have a circular ordering. This 

assumption is unrealistic and hence, BSA plans have been obtained considering that units 

have linear ordering and units have two-dimensional ordering. Stufken and Wright (2008) 

presented the results on existence of linear BSA plans. Mandal et al. (2008) presented a linear 

programming approach to obtain linear BSA plans. Very recently, Kumar et al. (2016) 

obtained several new smaller BSA plans through a integer linear programming based 

algorithm and the algorithm can produce designs which may or may not be cyclic which is 

not the case in earlier works.  

 

 For the situations when the size measures of the units may vary greatly and the 

information on the size measures is available for all the N population units and nearer units 

provide similar information, inclusion probability proportional to size sampling plans 

excluding adjacent units (IPPSEA plans) have been introduced by Mandal et al. (2008). 

Under IPPSEA plans, in a sample, no two adjacent units appear together and 

 ,...,2,1  , Ninpii  with  iii xxp / , where ix  is the size measure of the ith sampling 

unit. IPPSEA plans may be obtained by trial and error methods using combinatorial 

properties of block designs. Mandal et al. (2008) also proposed linear programming approach 

to obtain IPPSEA plans for both circular and linear arrangement of the popular units. 

 

6. Distance balanced sampling plans 
 

 One limitation of BSA plans is that they do not permit unbiased estimation of the 

variance of the Narain-Horvitz-Thompson estimator of the population mean. Variance 

approximation approaches were suggested by Wright and Stufken (2011) for BSA plans. 

Mandal et al. (2009) introduced distance balanced sampling plans (DBSP) where unbiased 

variance estimation is possible. In a DBSP, any two units which are at same distance from 

each other have constant second order inclusion probabilities and this inclusion probability is 

greater for a pair of units which are at a greater distance than a pair which are at a lesser 

distance. In other words, if the distance between two distinct units (i, j) is greater than the 

distance between two distinct units (k, l), then klij    and  ij = constant for all ji  at 

same distance under DBSP.  

 

 To understand the properties of a DBSP, assume that the units are arranged in one-

dimensional circular order unless otherwise specified. This assumption is needed for 

algebraic simplicity. Let the distance between two units i and j be denoted as (i, j), i j = 

1,2,...,N. Under circular ordering of units, (i, j) can be written as (i, j) = min{|i j|, N |i 

j|}. For example, if N = 8, then distance between units 4 and 6 is (4,6) = min{|4 6|,8 |4 

6|} = min{2,6} = 2. Under circular ordering, the possible values that (i, j) can take are 

1,2,...,[N/2], where [x] denote the largest value contained in x. 

 

Now, let Njijifij ,...,2,1),,(   , where  is a constant so that 10  ij and ),( jif  is 

a non-decreasing function of (i, j). It is easy to see that 
 


 


N

ij

i
n

jif

1 1

),(
 , Ni ,...,2,1 . If 

we let all the first order inclusion probabilities to be equal then, 
i
= 

n

N
  and hence, it leads to 
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ij
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jifnn 
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where, .),(
1)(





N

ij

i jifF  Note that here ij ’s depend on the choice of ),( jif . It may be seen 

that if for all i and j, fjif ),( , a constant, then DBSP reduces to SRSWOR, if 0),( jif  

for (i, j) m and fjif ),( for  (i, j) > m then these reduce to BSA plans.  

 

An example of a DBSP for N = 5 and n = 3 is given in Table 3. The plan has first order 

inclusion probabilities 5/3i   and the second order inclusion probabilities 

5/11545342312    and 5/22514352413   . 

Table 3: A distance balanced sampling plan for N = 5, n = 3 

s p(s) 

1 2 4 1/5 

2 3 5 1/5 

3 4 1 1/5 

4 5 2 1/5 

5 1 3 1/5 

 Let us now consider the estimation of population mean Ȳ using the Narain-Horvitz-

Thompson estimator which is given by  

 



si i

i
HT

Y

N
Y



1ˆ .               (6.2) 

 The Sen-Yates-Grundy form of variance of Narain-Horvitz-Thompson estimator for 

the DBSP, using (6.1) can be easily obtained as 
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 An unbiased estimator of variance of Narain-Horvitz-Thompson estimator of 

population mean under DBSP is given by 
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 Clearly, with suitable choice of ),( jif , an unbiased estimator of variance of Narain-

Horvitz-Thompson estimator always exists. In simple words ),( jif should be chosen such 

that no p
ij
 is zero for unbiased variance estimation. 

 

 It is evident that a large number of DBSP may be obtained depending on the choice of 

the function f(i, j). Mandal et al. (2009) considered two particular cases namely  

1. two-point DBSP: 1),( fjif   for (i, j) m and )(),( 12 ffjif   for (i, j) > m and  
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2. three-point DBSP: 1),( fjif   for (i, j) m1 and 2),( fjif   for 21 ),( mjim   

and 3),( fjif   for (i, j) m2 with 321 fff  .  

Later on, Mandal et al. (2010) considered w-point (w = 1,2,...,[N/2]), DBSP where 

1),(  tfjif  whenever 1),(  tt mjim  , t = 0,1,2,...,w 1. Here, ]2/[,00 Nmm w  , f
t
’s 

are non-negative integers such that tt ff 1 . 

 

It has been shown by Mandal et al. (2009) that a DBSP always exist for n = 2. In that case, 

the plan is given by {s, p(s)} with ijsp )( , where 
ij
 is obtained from (6.1). For example, 

let N = 8 and f(i, j) = (i, j), i j = 1, 2,..., N. Then the second order inclusion probabilities 

can be easily obtained as 
ij
 = 1/64 for (i, j) = 1, 64/2ij  for (i, j) = 2, 64/3ij  for 

(i, j) = 3 and 64/4ij  for (i, j) = 4. Therefore, the DBSP plan is given as in Table 4. 

Table 4: A DBSP for N = 8, n = 2 

s p(s) s p(s) s p(s) s p(s) 

1 2 1/64 2 3 1/64 3 5 2/64 4 8 4/64 

1 3 2/64 2 4 2/64 3 6 3/64 5 6 1/64 

1 4 3/64 2 5 3/64 3 7 4/64 5 7 2/64 

1 5 4/64 2 6 4/64 3 8 3/64 5 8 3/64 

1 6 3/64 2 7 3/64 4 5 1/64 6 7 1/64 

1 7 2/64 2 8 2/64 4 6 2/64 6 8 2/64 

1 8 1/64 3 4 1/64 4 7 3/64 7 8 1/64 

   

Establishing existence of the plans for n 3 is not trivial. Combinatorial properties of block 

designs may be used to construct such designs. Mandal et al. introduced a parallel block 

design structure called distance balanced incomplete block (DSBIB) designs, which are 

equivalent to DBSP. 

 

Definition 6.1  A distance balanced incomplete block design is an incomplete block design in 

v treatments arranged in b blocks of size k each such that  

1. each block contains k distinct treatments, 

2. a pair of treatments (i, j) with distance (i, j) appear together in 
ij
 blocks and  

3. 
ij
’s are non-decreasing in (i, j).  

 In case of circularly arranged population, this implies that each treatment has same 

number of replications r. The parameters of the design are ijkrbv ,,,, and they satisfy 

following necessary conditions. 

 )1(ii) and )
1)(

 


krbkvri
v

ij

ij                (6.5) 

 The design given in Table 5 is an example of a DSBIB design for v = 7, b = 14, r = 6, 

k = 3 with columns representing blocks. It may be noted that the design has 1ij  if (i, j) = 

1, 2ij  if (i, j) = 2 and 3ij  if (i, j) = 3. In other words, 

,171675645342312   272615746352413    and 

373625147362514   . 
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Table 5: A DSBIB design with v = 7, b = 14, k = 3 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

2 3 4 5 6 7 1 3 4 5 6 7 1 2 

5 6 7 1 2 3 4 5 6 7 1 2 3 4 

 

 Note that DSBIB designs are a broad class of incomplete block designs and contain 

many sub-classes depending on how 
ij
’s are defined. If  ij , a constant irrespective of 

distance between two treatments i, j, i j then they reduce to BIB designs. When  ij  

whenever (i, j) > m and 0ij , whenever (i, j ) m, then they reduce to polygonal designs 

introduced by Stufken et al. (1999). A w-point (w = 1, 2, ..., [v/2]) DSBIB designs may be 

defined analogous to a w-point DBSP. In a w-point DSBIB design, 1 tij   whenever 

1),(  tt mjim  , t = 0, 1, ..., w1 and tt  1 . In other words, in a w-point DSBIB design, 


ij
’s can take w distinct values and they are non-decreasing in distance. Therefore, in a 

DSBIB design, 
ij
’s can take at most [v/2] distinct values. 

 

 It is easy to see that with N = v and k = n, if every block of a DSBIB design is given 

probability of selection 1/b, then the design is equivalent to a DBSP. Thus, obtaining a 

DSBIB design is equivalent to obtaining a DBSP. Mandal et al. (2010) presented a integer 

linear programming formulation to obtain DBSPs. There is a lot of scope for development of 

algebraic methods of construction of DSBIB designs. For a detailed overview of DBSP plans, 

see Mandal et al. (2016). 

 

7. Multi-dimensional controlled plans 
 

 For some populations, there may be two or more stratifying criteria that are desirable 

in the sampling design. Multi-way stratification allows increased precision of estimates of 

each of the variables whose precision is increased by typical univariate estimators 

corresponding to single criteria designs. The sample need not be allocated to every multi-way 

population cell induced by a set of single-criteria designs. 

  

 Multi-dimensional controlled selection is needed when number of strata cells exceeds 

the permissible sample size. In a survey on fish catch, Bryant (1961) used four different types 

of strata, viz., location, times of a day, season of summer and type of day. The study had five 

locations, two times of a day, four seasons, and two types of day. This made a total of 80 

strata cells out of which only 46 cells were to be sampled due to financial considerations. 

Hess and Srikantan (1966) reported a hospital survey with hospital size, region of the state 

and size of community as three stratification variables. The study had 4 sizes, 4 regions and 3 

community sizes leading to a total of 48 strata cells. Two different samples were investigated 

in this study with n = 50 and n = 100. Jessen (1970) reported a survey of households for the 

city of Santa Monica, California. The two stratification variables were area and home value.  

There were 12 geographical areas and 12 income classes, i.e., 144 strata cells. However, the 

funds were available to sample just 24 of the cells. Moore et al. (1974) described the National 

Assessment of Educational Progress (NAEP) study having regions of the country, states 

within country, states within regions, socio-economic levels and size of community levels as 

different strata. There were 4 regions, each region had 12 to 15 states, three socio-economic 

levels and 3 sizes of community levels. In a 12-state region, there was a potential for 12×3× 3 

= 108 strata cells, however, the resources and other considerations permitted samples of 27 

cells only.  
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 It is easily realised that with two or more stratification criteria, there are not enough 

resources to provide each cell with an adequate sample size, particularly if estimates of 

variances are desired. Several procedures have been proposed to overcome these situations. 

Main contributions are from Goodman and Kish (1950) under the name of “controlled 

selection”, and from Bryant et al. (1960) and Jessen (1970, 1973, 1975) under the name of 

“lattice sampling”.  

 

Equal probability methods 

 The equal probability methods are due to Bryant et al. (1960) and Jessen (1975), the 

latter being superior in many ways. We therefore restrict ourselves only to Jessen’s work.  

 

 When two variables are used for stratification and each has the same number of levels, 

say L, there are L
2
 strata cells. The sample size is n = r×L, where r cells are to be selected 

from each row and each column of a square lattice of order L×L. Two methods are proposed 

by Jesssen. These are ‘random lattice’ and ‘Latin lattice’. Both these methods are, however, 

identical to choosing the cells corresponding to any r letters from a randomly selected Latin 

square of order L. Their analytical properties for estimating variance may differ in the sense 

that ‘random lattice’ is proposed to be analyzed by considering r split samples, each sample 

corresponding to a different letter of the Latin square. This results in r – 1 degrees of 

freedom. Similarly, the ‘Latin lattice’ is to be analyzed by taking all the r×r Latin lattices 

separately, there being p such lattices provided L is even and L/p = r.      

 

 Using analysis of variance arguments, Jessen showed that generally such a two-way 

selection procedure is more efficient than both a simple random sample of cells and a one-

way stratification using either rows or columns.  

 

 When two variables used for stratification have unequal number of levels, the square 

lattice concept can be extended to rectangular lattices of say R rows and C columns. Here 

again, the sample selection can be made by choosing, say any r letters from a randomly 

selected incomplete Latin square with R rows and C columns. Similarly, in sampling from 

three dimensions, with each dimension having L levels, there will be L
3
 strata cells and a 

sample of size n = r
2
×L can be selected by using r×r×r Latin cubes. The procedure will again 

be identical with that of choosing r letters from a randomly selected Graeco Latin square. An 

extension of this to multi-dimensional stratification should be obvious using hyper Graeco 

Latin squares. 

 

Unequal probability Methods  

 Sometimes, the cells may contain an unequal number of units. It may then be 

desirable to sample the cells in such a way that this universe is taken care of. Such situations 

may arise when the sampling is done in two stages. 

 

 In this method, first a sample of cells is chosen and then a sample of units is drawn 

from the selected cells. Jessen (1970, 1973, 1975) discussed two methods of ‘probability 

lattices’ for the purpose. We discuss here some details from Jessen (1970). 

  

Let Arc be the relative measure of size (probability) of the rc
th

 element (strata cell), such that 

  1
1 1


 

R

r

C

c

rcA                     (7.1) 

where the two-dimensional sampling frame consists of N elements arranged in R rows and C 

columns. 
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 We wish to draw a sample of size n out of the N elements such that the inclusion 

probability of rc
th

 cell in a sample is  

  πrc = n Arc  ≤ 1,                          (7.2) 

with the constraints, 

  E {nrc} = n Arc,                   (7.3) 

  | nrc – n Arc | < 1 ,                     (7.4) 

  | n.c – n A.c | <  1 ,                   (7.5) 

and   | nr. – n Ar. |  <  1 ,                   (7.6) 

where A.c  and Ar.  denote the marginal column and row totals, respectively. 

  

Linear and quadratic programming approach 

 Sitter and Skinner (1994) applied the ideas of Rao and Nigam (1990) to multi-way 

stratification.  However, they did not consider controls beyond stratification. Tiwari and 

Nigam (1998) suggested a method for two-dimensional controlled selection using simplex 

method in linear programming. They also proposed an alternate variance estimator for 

controlled selection designs, as Narain-Horvitz-Thompson estimator could not be used to 

their plan due to non-fulfillment of the condition πij  πiπj. Lu and Sitter (2002) developed 

some methods to reduce the amount of computation so that very large problems became 

feasible using the linear programming approach.  

 

 Tiwari and Nigam (2010) extended the idea of Tiwari et al. (2007) to propose a two-

dimensional optimal controlled IPPS sampling design that matches the original inclusion 

probabilities (πi’s) of each unit in the population and ensures zero probability to non-preferred 

samples. Proceeding in the similar manner as described in the case of a one-dimensional 

optimal controlled IPPS sampling designs described in Section 4, Tiwari and Nigam (2010) 

obtained the ‘nearest proportional to size sampling design’ p1(s) in the sense that p1(s) 

minimizes the directed distance D(p0, p1) from the sampling design p0(s) to the sampling 

design p1(s), subject to the following constraints: 

 

(i) 0)(1 sp   

(ii)       1)(
1

1 
Ss

sp                                                                                                  (7.7)            

(iii) ,1



iS

inpp  for p1(s) to be an IPPS design, 

where D(p0, p1) and p0(s) are defined in (4.2) and (4.1), respectively.    

   

 The constraints (i) and (ii) in (7.7) are necessary for any sampling design while the 

constraint (iii) ensures that the resultant design p1(s) is an IPPS design.  

 

 The greatest difficulty with the multi-dimensional controlled selection problems is 

that as the magnitude and complexity of the problem increases, the process of enumeration of 

all possible samples becomes quite tedious. The methodological modification in multi-

dimensional approach over the one-dimensional approach is that only a sub-set of the 
N
Cn 

combinations which satisfy the marginal constraints of the given multi-dimensional problem 

are considered as the set of all possible samples. With multi-dimensional controlled selection 

problems, the potential difficulty lies in the fact that the non-negativity condition of the Sen-

Yates-Grundy form of the Narain-Horvitz-Thompson variance estimator is not satisfied. This 

leads to introduction of an alternative variance estimator for multi-dimensional controlled 

selection problems.  
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 The distance measure D(p0, p1) defined in (4.2) is like the 2
 -statistic often employed 

in related problems and is also used by Cassel and Särndal (1972) and Gabler (1987). Some 

other distance measures are also discussed by Takeuchi et al. (1983). Two alternative distance 

measures may be defined as: 

 
s

spspppD )()(),( 1010
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                             (7.8) 

                                                                                            

 These distance measures gave comparable results as obtained through the distance 

measure (4.2).  

 

 While all other two-dimensional optimal controlled selection plans discussed by 

earlier authors attempt to minimize the selection probabilities of the non-preferred samples, 

the proposed plan eliminates the non-preferred samples by assigning zero probabilities to 

them. The proposed plan is superior to the plans of Sitter and Skinner (1994) and Tiwari and 

Nigam (1998) in the sense that it ensures zero probability to non-preferred samples and is 

much nearer to the controlled design (p0(s)), which we wanted to achieve due to practical 

considerations. Moreover, the proposed plan also incorporates the possibility of ‘controls 

beyond stratification’, which was not considered by Sitter and Skinner (1994). 

 

 Tiwari and Sud (2011) suggested minimum variance optimal controlled nearest 

proportional to size sampling scheme using multiple objective functions. Following the 

method suggested by Tiwari et al. (2007), they first obtained an appropriate uncontrolled 

inclusion probability proportional to size (IPPS) design p(s). After obtaining the initial IPPS 

design p(s), we get rid of the non-preferred samples (S1) by restricting ourselves to the set S – 

S1 by introducing the design p0(s), as proposed by Tiwari et al. (2007). 

 

The first objective function )( 1  in this plan is same as in the plan proposed by Tiwari et al. 

(2007). To minimize the true sampling variance of the Narain-Horvitz-Thompson estimator, 

Tiwari and Sud (2011) included one more objective function to the quadratic programming 

problem, given by 
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Thus, the problem becomes 

  

 Minimize ( 21   )  subject to the constraints similar to those suggested by Tiwari et 

al. (2007). 

 

 Tiwari and Chilwal (2013) discussed a simplified approach for minimum variance 

optimal controlled selection. Let y be the characteristic under study, Yi the y-value for the i
th

 

unit in the population (i = 1, ... , N) and yl the y-value for the lth unit in the sample (l = 1, ... , 

n).  Let Sk, k = 1, ... , L, denote the k
th

 possible samples. Also let sik be each internal entry of 

Sk. Then sik equals either [ai] or [ai] + 1, where [ai] is the integer part of ai. We have to 

consider a set of samples with selection probabilities that satisfy the constraints  
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and 

 





SS

k

k

Sp 1)( ,                                                                                   (7.11) 

where S is the set of all possible samples {Sk}, and p(Sk) is the selection probability of each 

sample Sk. 

 

 There can be many sets of probability distributions p(SK) satisfying (7.10) and (7.11), 

although only one set of probabilities can be used to obtain a solution to the controlled 

selection problem. We may consider an algorithm based on an appropriate and objective 

principle to find the solution that reflects the closeness of each sample SK to A. For this 

purpose, Tiwari and Chilwal (2013) considered the following measures of closeness between 

A and Sk. 

 

(i) The ordinary distance, which is often called the Euclidean distance:  
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(ii) The Cosine Distance Function: 
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(iii). The Bray-Curtis Distance Function: 
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 The distance function D2 provides minimum variance.  

 

 Multiple objective linear programming problem considered by Tiwari and Chilwal 

(2013) is described as below: 

 

 Minimize the objective function 21    , where, 
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subject to the following constraints 
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where S* denotes the set of non-preferred samples. 

 

 The solution of above linear programming problem, viz., minimization of sum of 

(7.15) and (7.16) subject to the constraints (7.17), provides optimal controlled IPPS sampling 

plan that ensures zero probability of selection for the non-preferred samples and also 

minimizes the true sampling variance of the HT estimator. This method also provides an 

opportunity to add more objective functions to the controlled selection problem. 

 

 The plan suggested by Tiwari and Chilwal (2013) is superior to the approach of Rao 

and Nigam (1990), Sitter and Skinner (1994) and Tiwari and Nigam (1998) in the sense that 

these plans only attempt to minimize the selection probabilities of the non-preferred samples. 

Whereas the proposed plan ensures zero probability to non-preferred samples through 

constraint (vi) in (7.17). The exclusion of non-preferred samples was also attempted by 

Tiwari et al. (2007) and Tiwari and Sud (2011), using the idea of nearest proportional to size 

design. However, their procedure is quite lengthy and tedious as an uncontrolled IPPS design 

is to be manually constructed and then the required controlled IPPS design is derived using 

the quadratic linear programming approach. The same advantage is achieved in the plan 

suggested by Tiwari and Chilwal (2013) in a very simple manner by just adding one more 

constraint in the linear programming problem that ensures zero probability to non-preferred 

samples. Their plan also minimizes the true sampling variance of HT estimator using the 

second objective function given in (7.16). 

 

 Two-dimensional BSA plans were first introduced by Bryant et al. (2002) when 

population units are arranged in two dimensions. To define adjacency between units in two 

dimensional populations, Wright (2008) introduced the concept of adjacency scheme. They 

also proposed one direct search algorithm for obtaining such plans. Gopinath et al. (2018) 

proposed a linear programming formulation to construct two dimensional BSA plans under 

different adjacency schemes given by Wright (2008).   

 

8.  Some statistical applications of controlled sampling   
 

 Now we discuss some important applications of controlled sampling to various 

statistical problems. These are sample coordination problem and statistical disclosure control. 

As the constraint of space prohibits us to discuss these applications in detail, in what follows 

is a brief description of these applications. 

 

 Sample coordination is combining information from different sources (samples), say, 

about the income of the households from one sample and on literacy from another sample 
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from the same population.  It is usually desirable to select units that can be taken as a sample 

for both characteristics. It can be achieved by minimizing the number of distinct units in the 

union of the samples.   

 

 Causey et al. (1985) proposed an optimum linear programming procedure for 

maximizing the expected number of sampling units common to the two designs, when the 

two sets of sample units were chosen sequentially.  Ernst and Ikeda (1995) also presented a 

linear programming procedure for overlap maximization under very general conditions. Other 

important references include Ernst (1996, 1998), Ernst and Paben (2002), Deville and Tillé 

(2000) and Matei and Tillé (2006).   

 

 Matei and Skinner (2009) constructed optimal sampling designs for given unit 

inclusion probabilities in order to realize maximum coordination.  Tiwari and Sud (2012) 

proposed an improved method for sample coordination problem when sample units are 

selected simultaneously. Their method maximizes (or minimizes) the overlap of sampling 

units between the two designs, with identical stratifications, without putting any restriction on 

the number of sample units in a stratum. The procedure also facilitates variance estimation 

using Sen-Yates-Grundy) form of Narain-Horvitz-Thompson variance estimator.   

 

 Statistical disclosure control is the requirement of statistical offices to protect the 

confidentiality of data it collects. The procedure involves identification of sensitive cells and 

then protecting the confidential information contained in sensitive cells. Statistical disclosure 

control can be achieved through two methods namely, controlled rounding and cell 

suppression. 

 

 Controlled rounding is the problem of optimally rounding real valued entries in a 

tabular array to adjacent integer values in a manner that preserves the tabular structure of the 

array. Rounding methods are used for many purposes, like improving the readability of data 

values, to control statistical disclosure in tables, to solve the problem of iterative proportional 

fitting (or raking) in two-way tables and controlled selection. 

 

 Rounding techniques involve the replacement of the original data by multiples of a 

given rounding base. Controlled rounding problem is the problem of optimally rounding real 

valued entries in a tabular array to adjacent integer values in a manner that preserves the 

tabular structure of the array. Rounding methods are used for many purposes, such as for 

improving the readability of data values, to control statistical disclosure in tables, to solve the 

problem of iterative proportional fitting (or raking) in two-way tables and controlled 

selection. Statistical disclosure control is one of the area in which rounding methods are 

widely used. Fellegi (1975) proposed a technique for random rounding which unbiasedly 

rounds the cell values and also maintains the additivity of the rounded table. Cox and Ernst 

(1982) used the transportation theory in linear programming to obtain an optimal controlled 

rounding of a two way tabular array. 

 

 Causey et al. (1985) summarized the idea of Cox and Ernst (1982) and used the 

transportation theory to solve the controlled rounding problem. They discussed several 

statistical applications in which controlled rounding can be used and applied the concept of 

controlled rounding to solve the controlled selection problem. Cox (1987) presented a 

constructive algorithm for achieving unbiased controlled rounding which is simple to 

implement by hand. Tiwari and Nigam (1993) improved the method of Cox (1987) to 

terminate in fewer steps. Salazar (2005) proposed a technique, termed as cell perturbation, 
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which allows reducing the data loss from controlled rounding. This method is closely related 

to the classical controlled rounding methods and has the advantage that it also ensures the 

protection of sensitive cells to a specified level, while minimizing the loss of information. 

 

 Another method widely used by different researchers for protecting sensitive cells in a 

table is the method of cell suppression in which sensitive cells are not published i.e. they are 

suppressed. These suppressed sensitive cells are called primary suppressions. To make sure 

that the primary suppressions cannot be derived by subtraction from published marginal 

totals, additional cells are selected for suppressions, which are known as complementary 

suppressions or secondary suppressions. Remaining cells in the table are published with their 

original values.  

 

 This problem has been widely discussed by Cox (1980, 1995), Sande (1984), 

Carvalho et al. (1994) and Fischetti and Salazar (2000). In cell suppression, a large amount of 

information is lost as in addition to suppression of sensitive cells, some non-sensitive cells 

are also suppressed. To reduce the loss of information, Fischetti and Salazar (2003) proposed 

an improved methodology, known as partial cell suppression, in which instead of wholly 

suppressing primary and complementary suppressed cells, some intervals obtained with the 

help of a mathematical model, are published for these cell entries. The loss of information in 

partial cell suppression is smaller in comparison to complete cell suppression. Tiwari (2012) 

used the idea of random rounding and quadratic programming to propose an improved 

methodology for disclosure control in an array that perturbs only the sensitive cells and 

adjusts some non-sensitive cells to preserve the marginal values of the array. 

 

9.  Open problems 
 

 A major drawback of all the above-mentioned approaches is that the methods select 

the whole sample of n units instead of sample selection through unit by unit selection. From 

the selected whole sample, the next step is to identify the selected units. This is a very 

cumbersome and time-consuming procedure even with moderately large N and n. 

Development of a controlled sampling plan using unit by unit selection procedure remains an 

open problem. 

 

 It is noted that so far, the controlled sampling is limited to only two disjoint sets, 

preferred and non-preferred. In general, we may have p disjoint sets, S1, ..., Sp with p-order 

preferences. For instance, in example 1 of Avadhani and Sukhatme, samples 1, 3, 7 and 1, 4, 

7 have larger distance than 1, 2, 3 and have higher degree of non-preference. There is a need 

to reframe the linear programming to address to the situations as above. 

 

 Very little work is available for BSA plans when population units are arranged in two 

dimensions. There is a need to look into the problem of existence and construction of BSA 

plans for such scenarios. DBSP plans are very attractive alternative to BSA plans. However, 

they are available only for populations with circular ordering of units and also for very 

limited number of sample sizes. Further work is required for existence and construction of 

DBSP for bigger sample sizes as well as for populations with linear and two-dimensional 

arrangement of units. Connection of DBSP with spatially balanced sampling may also be 

explored. 

 

 It remains to be investigated whether the two or more-dimensional controlled plans 

also lead to new row-column type designs with repeated blocks. In a row-column design 
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there are two types of blocks, rows and columns. Latin square design is the most trivial row-

column design. 

 

 Further attempts may be made to develop methods to reduce the amount of 

computation in single and multi dimensional controlled selection using linear and quadratic 

programming in the lines of Lahiri and Mukerjee (2000) and Lu and Sitter (2002), so that 

even large problems are addressed without much difficulty. Unbiased variance estimation in 

multi dimensional controlled selection problems, when the non-negativity condition of the 

Sen-Yates-Grundy form of Narain-Horvitz-Thompson variance estimator is not satisfied, is 

another open area where further work is needed. 

 

 Controlled selection using ranked set sampling is another area which may be explored 

extensively. One attempt in this direction was made by Al-Saleh and Zheng (2003) by using 

multistage ranked set sampling technique to obtain a controlled preferred sample. If the 

properties of ranked set sampling are exploited to obtain controlled selection designs, this 

may lead to significant changes in the method of sample selection and may also increase the 

efficiency of the estimates.     
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