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Abstract
Experiments that account for sequential order of components are order-of-addition

(OofA) experiments and a full design of such experiments requires m! runs for any m compo-
nents. Current literature focuses on the construction of fractional designs that are optimal
and efficient under the models available to date. This paper provides a systematic con-
struction method of order-of-addition orthogonal arrays (OofA-OA) which were proved as
optimal fractional OofA designs. The number of independent, synergistic and antagonistic
pairs possible for any m components is also determined. An important balance property of
OofA-OA is also explained.
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1. Introduction

The sequence by which ingredients or components are added into a system may have
some definite effect on the response or final output. Experiments that deal with such sequen-
tial order of adding components are termed as order-of-addition (OofA) experiments. In early
research, designs for cross over experiments constructed by Williams (1949) in which each
experimental unit will be given a set of m treatments in a sequential order, were extensively
used for OofA experiments. Order-of-addition experiments have been applied in agriculture
(Wagner, 1995), food science (Jourdain et al., 2009), cell biology (Black et al., 2001), medical
biology (Ding et al., 2015) and many other fields in order to explore the optimal order of
components added into the system. These experiments have shown that qualitative and/or
quantitative outcome may vary depending on the sequence in which ingredients were added.
The foremost reference to an OofA experiment; “the lady tasting tea” wherein only two
ingredients, tea and milk, for which the taste of final product was determined by the order
in which the ingredients were added (Fisher, 1971). Karim et al. (2000) performed an OofA
experiment to study the effect of cocoa flavonoids on the vasodilatory capacity of rabbits.
Also in engineering, Wilson (2018) proposed an approach to compute the expected utility
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when the number of tasks to perform is too large and the sequencing of these tasks has some
importance on the expected utility.

An OofA experiment involving m components yield m! orders among which an optimal
order has to be screened out using appropriate designs. We hereby call the ingredients or
materials in an OofA experiment as components. Each order can be viewed as a permutation
of m components, m ≥ 2. A full design with all the m! orders may not be possible to
accommodate while designing the experiment when m is too large. For example, m = 9
gives 362,880 orders which is impossible to be contained in a single experiment. This makes
us to choose a fraction or subset of the full design so that it may be accommodated in an
experiment. Randomly choosing the orders from all the possible orders is relatively inefficient
(Zhao et al., 2020). There are many models developed so far for the experimentation of OofA
problems. See Peng et al. (2019), Mee (2020) and Yang et al. (2021) for the models and
related optimality proofs therein. An early model, pair-wise ordering (PWO) of effects
proposed by Van Nostrand (1995) assumes that sequential order of components affects the
response through pair-wise order effects or pseudo factor effects. The readers are referred to
Lin and Peng (2019), Voelkel and Gallagher (2019), Tsai (2022), Zhao et al. (2020), Winker
et al. (2020) and Chen et al. (2020) for the construction of PWO designs which satisfy
efficiency, optimality and relatively smaller run size criterion.

Many designs were constructed for the OofA experiments under the PWO model.
Among them, an optimal fractional design, order-of-addition-orthogonal array (OofA-OA)
was introduced by Voelkel (2019). The concept behind orthogonal arrays (OA) were used to
generate OofA-OA as there is a need to keep the balance while framing a design for OofA
experiments. Zhao et al. (2021) proposed a systematic construction method for OofA-OAs
which is regarded as superior among all the fractional PWO designs. Furthermore, Zhao et
al. (2022) investigated the existence of OofA-OA with strength 3 and stated that OofA-OAs
with strength 3 excel more in terms of balance properties than OofA-OAs with strength 2.
In this paper, we propose a systematic method of constructing OofA-OA for any value of m
from an existing OofA-OA with m − 1 components.

2. Preliminaries

Even though many models including component-position model by Yang et al. (2021)
have been developed for OofA experimentation, PWO model is the most promising and
acceptable model as it is simple and easy to understand. We consider PWO model for the
current research. Let us suppose that there are m components which results in m! orders,
each of which is a permutation of these m components and it is denoted by a = (a1, ..., am)T .
Let us write OAf to denote the full OofA design with m! rows and m columns. If we denote
yk as the response due to kth order,

yk = β0 +
m−1∑
i=1

m∑
j=i+1

βijzij + ϵk (1)

where β0 denotes the overall mean, βij is the PWO effects of ith and jth component, ϵk

represents the error term with mean zero and constant variance. To better understand the
PWO factors zij(a) defined by Van Nostrand (1995), we suppose that m = 3 components
and an order 1 → 3 → 2, means 1st component followed by 3rd and 2nd components are
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added in succession, denoted as a = (1, 3, 2). Then, the PWO factors zij become z12 =
1, z13 = 1, z23 = −1. For denoting the PWO factors zij, two components are taken at a time
from m components such that 1 ≤ i < j ≤ m, yielding

(
m
2

)
PWO factors. As there are

m(m − 1)/2 PWO factors and one general mean effect term in the model (1), p =
(

m
2

)
+ 1

parameters have to be estimated from the model. Model (1) can be expressed in matrix form
as

y = Xβ + ϵ (2)

A fractional OofA design d with run size n is said to be ϕ-optimal if its moment
matrix M = 1

n
X′X (where X denotes the model matrix) is equal to the moment matrix of

the full design. Interestingly, Peng et al. (2019) proved the optimality of full OofA design
in terms of several popular optimality criteria. Additionally, Zhao et al. (2021) established
that any ϕ-optimal fractional OofA design is certainly an OofA-OA.

We denote Pf as the full PWO design and Pd as the fractional PWO design where d
denotes the fractional OofA design with run size n. Any pair of PWO factors (zij, zkl) can
be called as

Synergistic pair : if i = k or j = l
Antagonistic pair : if i = l or j = k
Independent pair : if i ̸= k, l or j ̸= k, l (no common component).

In a full PWO design, the frequencies of all t-tuples in any t column subarray for
these different pairs are as follows. We denote n++ as the number of times (+, +) happens
in a pair of PWO factors (zij, zkl). Similarly, n+−, n−−, n−+ are also defined. For

Synergistic pair: n++ = m!/3, n+− = m!/6, n−+ = m!/6, n−− = m!/3
Antagonistic pair: n++ = m!/6, n+− = m!/3, n−+ = m!/3, n−− = m!/6
Independent pair: n++ = m!/4, n+− = m!/4, n−+ = m!/4, n−− = m!/4

If the ratios among the frequencies of all t-tuples in any t column subarray of Pf equal to
the ratios among the frequencies of all t-tuples in any t column subarray of Pd, then d is said
to be the OofA-OA(N, m, t).

3. Construction of OofA-OA from an existing OofA-OA

In this section, a method of construction of OofA-OA with m + 1 components from
an OofA-OA with m components is described. As we know, the run size for an OofA-OA
is a multiple of 12, the resulting design obtained will have a run size 12h(m + 1) where
1 ≤ h ≤ (m!/12) − 1. We denote the existing design d as OofA-OA(12h, m, 2) and the
resultant design d′ as OofA-OA(12h(m + 1), m + 1, 2).

Theorem 1: If there exists an OofA-OA for m components, an OofA-OA for m + 1 compo-
nents can be obtained from it by placing the (m + 1)th component in every possible position
of each run of the existing OofA-OA.
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Table 1: An OofA-OA(12,5,2)

1 5 3 2 4
1 5 4 2 3
2 1 4 3 5
2 3 4 1 5
2 5 1 3 4
2 5 4 3 1
3 1 4 2 5
3 5 1 2 4
3 5 4 2 1
4 1 3 2 5
4 5 1 2 3
4 5 3 2 1

Proof: Adding (m+1)th component in m+1 positions of each run of the existing OofA-OA
results in m + 1 runs per existing run in the new design. Since we add (m + 1)th component
in every possible position of every run of the existing design, the ratio of frequencies among
n++, n+−, n−−, n−+ in any two columns of the new design d′ will be,

n++

n−−
= 1

for any synergistic, antagonistic and independent pairs. Similarly, the ratio of

n++

n+−
= n++

n−+
= n−−

n+−
= n−−

n−+
=


2, for any synergistic pair
1/2, for any antagonistic pair
1, for any independent pair

These ratios are equal to that of full design Pf and hence are OofA-OA. This completes the
proof.

Example 1: Consider an OofA-OA(12,5,2) from which an OofA-OA for 6 components may
be constructed. Table 1 displays the design of OofA-OA(12,5,2) and Table 2 shows the
OofA-OA(72,6,2). Here h = 1 and the resulting design has run size 72. Here, the component
6 is added in every 6 positions of the OofA-OA(12,5,2) to generate OofA-OA(72,6,2).

As we know, an OofA design with m components has
(

m
2

)
PWO factors and these

PWO factors in an OofA-OA can be classified as synergistic pairs, antagonistic pairs and
independent pairs. Theorem 2 states the number of synergistic, antagonistic and independent
pairs possible for an OofA-OA with m components.

Theorem 2: An OofA-OA with m components have
((m

2 )
2

)
− 3

(
m
3

)
independent pairs,

(
m
3

)
antagonistic pairs and 2

(
m
3

)
synergistic pairs.

Proof: For an m component OofA design, there are
(

m
2

)
PWO factors under the PWO

model. Total number of possible pairs of PWO factors are
((m

2 )
2

)
which include all the inde-

pendent, synergistic and antagonistic pairs. Now, we determine the number of antagonistic
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Table 2: An OofA-OA(72,6,2)

6 1 5 3 2 4 6 2 1 4 3 5 6 2 5 1 3 4 6 3 1 4 2 5
1 6 5 3 2 4 2 6 1 4 3 5 2 6 5 1 3 4 3 6 1 4 2 5
1 5 6 3 2 4 2 1 6 4 3 5 2 5 6 1 3 4 3 1 6 4 2 5
1 5 3 6 2 4 2 1 4 6 3 5 2 5 1 6 3 4 3 1 4 6 2 5
1 5 3 2 6 4 2 1 4 3 6 5 2 5 1 3 6 4 3 1 4 2 6 5
1 5 3 2 4 6 2 1 4 3 5 6 2 5 1 3 4 6 3 1 4 2 5 6
6 1 5 4 2 3 6 2 3 4 1 5 6 2 5 4 3 1 6 3 5 1 2 4
1 6 5 4 2 3 2 6 3 4 1 5 2 6 5 4 3 1 3 6 5 1 2 4
1 5 6 4 2 3 2 3 6 4 1 5 2 5 6 4 3 1 3 5 6 1 2 4
1 5 4 6 2 3 2 3 4 6 1 5 2 5 4 6 3 1 3 5 1 6 2 4
1 5 4 2 6 3 2 3 4 1 6 5 2 5 4 3 6 1 3 5 1 2 6 4
1 5 4 2 3 6 2 3 4 1 5 6 2 5 4 3 1 6 3 5 1 2 4 6
6 3 5 4 2 1 6 4 1 3 2 5 6 4 5 1 2 3 6 4 5 3 2 1
3 6 5 4 2 1 4 6 1 3 2 5 4 6 5 1 2 3 4 6 5 3 2 1
3 5 6 4 2 1 4 1 6 3 2 5 4 5 6 1 2 3 4 5 6 3 2 1
3 5 4 6 2 1 4 1 3 6 2 5 4 5 1 6 2 3 4 5 3 6 2 1
3 5 4 2 6 1 4 1 3 2 6 5 4 5 1 2 6 3 4 5 3 2 6 1
3 5 4 2 1 6 4 1 3 2 5 6 4 5 1 2 3 6 4 5 3 2 1 6

pairs. Let (zij zkl) be an antagonistic pair for which i = l or j = k is possible. We generally
write (zij zkl) such that i < j and k < l. Thus, only three distinct components are needed for
forming an antagonistic pair. Now, 3 distinct components can be taken from m components
in

(
m
3

)
ways. Hence, number antagonistic pairs is

(
m
3

)
. For synergistic pair, (zij zkl) , there

are two options: (i) i = k. If so there are only three components, i.e. i, j, l. (ii) j = l. If so
there are only three components, i.e. i, j, k. For both these options,

(
m
3

)
pairs are possible.

So, 2
(

m
3

)
synergistic pairs are possible for m component OofA-OA. Therefore, number of

independent pairs is
((m

2 )
2

)
− 3

(
m
3

)
. This completes the proof.

4. Some results on OofA-OA

An OofA-OA of run size N have the following property as specified in Theorem 3.

Theorem 3: If a fractional OofA design with run size N is an OofA-OA(N, m, 2), then,
n++ = n−− = N/3, n+− = n−+ = N/6 for any synergistic pair
n++ = n−− = N/6, n+− = n−+ = N/3 for any antagonistic pair and
n++ = n−− = N/4, n+− = n−+ = N/4 for any independent pair.

Proof: As there are four two-tuples (++, −−, +−, −+) in an OofA-OA of strength 2, for
any independent pairs of PWO factors, the frequencies of these two-tuples will be same to
satisfy the equality of ratio of frequencies of these two-tuples in an OofA-OA with respect
to the full OofA design. Effortlessly, we can write, n++ = n−− = n+− = n−+ = N/4 for any
independent pair. Obviously, the minimum run size required for an OofA-OA of strength 2
is 12. An OofA-OA(N, m, 2) will always be a multiple of 12 which means N is a multiple of
12. To satisfy the ratio mentioned in the proof of Theorem 1, again we need, n++ = n−− =
N/3, n+− = n−+ = N/6 for any synergistic pair and n++ = n−− = N/6, n+− = n−+ = N/3
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for any antagonistic pair. This confirms Theorem 3.

Theorem 4: For any OofA-OA (N, m, 2), consider any two synergistic pairs (zim zjm) con-
taining the mth component, the corresponding zij has the following symbols with frequency
as given below

Two-tuples (zim zjm) zij Frequency
++ + N/6
++ − N/6
+− + N/6
−+ − N/6
−− + N/6
−− − N/6

Proof: For an OofA-OA(N, m, 2), for any synergistic pair, n++ = n−− = N/3, n+− = n−+ =
N/6 according to Theorem 3. We can see that n++ and n−− for the two-tuples (zim zjm) is
n++ = n−− = 2N

6 = N/3. Now, if zim is +1 and zjm is −1, zij will be +1 and vice versa.
For example, if 1 → 5, z15 = +1 ; 5 → 2, z25 = −1 , then, z12 = +1. This completes the
proof.

Example 2: Consider an OofA-OA (12,5,2) given in Voelkel (2019). The array is given in
transpose form.


1 1 2 2 2 2 3 3 3 4 4 4
5 5 1 3 5 5 1 5 5 1 5 5
3 4 4 4 1 4 4 1 4 3 1 3
2 2 3 1 3 3 2 2 2 2 2 2
4 3 5 5 4 1 5 4 1 5 3 1



′

.

The corresponding PWO matrix is given as

P =



z12 z13 z14 z15 z23 z24 z25 z34 z35 z45

+ + + + − + − + − −
+ + + + + − − − − −
− + + + + + + − + +
− − − + + + + + + +
− + + − + + + + − −
− − − − + + + − − −
+ − + + − − + + + +
+ − + − − + − + + −
− − − − − − − + + −
+ + − + − − + − + +
+ + − − + − − − − +
− − − − − − − − − +


The columns of P matrix are labelled as z12, z13, z14, z15, z23, z24, z25, z34, z35 and z45 in

the respective order. Consider the synergistic pair (z25, z35) and the frequencies of z23 along
with the symbol, it is clear that some balance properties are followed as in Table 3.
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Table 3: The frequencies of two-tuples of an OofA-OA(12,5,2)

Two-tuples (z25, z35) z23 Frequency
++ + 2
++ − 2
+− + 2
−+ − 2
−− + 2
−− − 2

It is very interesting to see that this property exists for any OofA-OA. According to
Zhao et al. (2021), when an OofA-OA is projected onto any s(≥ 4) components, all the s!
orders occur equal number of times. Even though, the OofA-OA given in example 2 does
not obey order balance property as specified in Zhao et al. (2021), balancing of frequency
of two-tuples given in Theorem 2 is satisfied. In other words, this property can be utilized
to check if a given fractional OofA design is OofA-OA even if it does not satisfy the order
balance property.

5. Concluding remarks

Being PWO model as the most promising and acceptable model for OofA problems,
the fractional designs under this model which are optimal with regard to any popular op-
timality criteria has been of considerable interest to the researchers. The OofA-OA is such
a fractional design under this model that satisfies D-, A-, M.S.- and χ2- optimality criteria.
In this scenario, we propose a systematic method of constructing OofA-OA having m + 1
components from an existing OofA-OA with m components. As the resulting design is OofA-
OA, it retains efficiency, optimality and balance property. The proposed method is easy to
understand and lacks complexity for the construction. However, the run size of the proposed
OofA-OA is a fixed number and is not flexible. Hence, we advise future research on system-
atic construction of OofA-OA with flexible run sizes for which OofA-OA exists. We further
introduce a balance property which is applicable to any OofA-OA even if it does not obey
the order balance property.
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