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Abstract 
 

In this paper, we propose to examine sensitivity of the Bayes estimate of normal 
coefficient of variation to a moderately non-gamma prior distribution of the unknown 
precision. Non-negativity and unimodality region of the considered K-prior distributions are 
computed for illustration purpose. Kullback-Leibler Divergence measure is employed to study 
the effect as the K-prior becomes much different from the conjugate gamma prior. 
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1. Introduction 

 
The concept of coefficient of variation (CV) has been intriguing researchers for many 

years because of its use in assessing the variability of a series since it is independent of the 
unit of measurement. It has applications in various areas ranging from medical sciences to 
finance. Here, we study Bayesian estimation of CV for Normal distribution, with mean and 
precision both unknown, using Zellner’s Minimum Posterior Expected Loss (MELO) 
approach. Zellner (1978) addressed the problem of estimating the reciprocals and the ratios of 
the population mean and the regression coefficients. He pointed out the situations in which 
maximum likelihood and other estimators of these problems do not possess finite moments 
and have infinite risk relative to quadratic and other loss functions, whereas MELO 
estimators using relative squared error loss function (RSELF) have finite moments and risk, 
and are hence, admissible.  

 
In Bayes estimation for normal distribution with unknown precision, a conjugate 

gamma prior is used to obtain the posterior distribution. However, subjectivity involved in 
choosing a single prior distribution, as observed by Berger (1984), has drawn severe criticism 
of Bayesian methodology. A reasonable approach is to consider a family of plausible priors 
that are in the neighbourhood of a specific assessed approximation to the ‘true’ prior. Not 
much attention has been paid by the investigators to study the problem of sensitivity to a 
possible misspecification of the gamma distribution as the conjugate prior distribution in 
Bayesian analysis. In this paper, we follow Bansal and Singh (1999) and Aggarwal and 
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Bansal (2017) to use Khamis’ class (K-class) of moderately non-gamma prior distributions 
for the unknown precision of the normal distribution and study the robustness of the Bayes 
estimate with respect to the prior. 

 
Many researchers including Barton and Dennis (1952), and Draper and Tierney (1972) 

exhibited the importance of deriving the conditions under which Gram-Charlier and 
Edgeworth curves are positive definite and unimodal. Spiring (2011) determined the regions 
where Edgeworth expansion and Gram-Charlier series upto the 4th moment is positive and 
unimodal. Till now, no attempt has been made in this direction for K-class of moderately 
non-gamma densities. In this paper, the boundaries of positive and unimodal regions are 
obtained for K-class of moderately non-gamma densities. The corresponding plot of the 
region is also displayed.  

 
In Section 2, Bayes estimate of the CV of the normal distribution using MELO 

approach is derived. In Section 3, we discuss the positive definite and unimodal region for K-
class of non-gamma densities. In Section 4, the distance between gamma density and some 
non-gamma densities are computed using KLD for arbitrarily chosen values of parameters. 
The derived results are further illustrated using hypothetical data in Section 5.  
  
2. Bayes Estimate of Coefficient of Variation of the Normal Distribution 
 

In this Section, the Bayes estimate of Coefficient of Variation (CV) using MELO 
approach is obtained for Normal distribution with mean and precision both unknown. The 
conditional normal prior for unknown mean and K-prior for the unknown precision of the 
normal distribution are used. The posterior distribution is derived below which shall be 
further used to obtain Bayes estimate of CV. 
 
2.1. Likelihood function 

 
Let us suppose that 𝐗	 = 	 (𝑋!, 𝑋", … , 𝑋#) is a random sample from 𝑁(q, 𝑟) with mean q	 

and precision 𝑟, both unknown. The likelihood function of q	and 𝑟, given observed sample 
𝐗	 = 	𝐱, is 

ℓ(𝜃, 𝑟|𝐱) = *
𝑟
2𝜋
-
!
" 𝑒𝑥𝑝1−

𝑟
2
3(𝑥# − 𝜃)"
!

#$%

4 

= * &
"'
-
!
" 𝑒𝑥𝑝 *− &

"
∑ (𝑥# − 𝑥̅)"!
#$% − !&

"
(𝑥̅ − 𝜃)"- ; 𝜃	 ∈ (−∞,∞), 𝑟 > 0.                                          (1) 

 
2.2. Prior distributions 

 
2.2.1. Conditional normal prior for unknown mean 

 
The prior distribution of unknown mean 𝜃, given 𝑟, is 𝑁(𝜇, 𝜏𝑟), both 𝜇 and 𝜏 known, 

given by 

𝑔(𝜃|𝑟) = ?
𝜏𝑟
2𝜋

𝑒𝑥𝑝 *−
𝜏𝑟
2
(𝜃 − 𝜇)"- ;−∞ < (𝜃, 𝜇) < ∞, (𝑟, 𝜏) > 0. 
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2.2.2. Khamis’ class of moderately non-gamma distributions as a prior for unknown 
precision (K-prior) 
 
To study the sensitivity of Bayes estimator with respect to the prior when the ‘true’ 

prior is not the conventional natural conjugate gamma prior, we consider a class of K-prior 
for the unknown precision of the normal distribution. Khamis (1960), in his pioneering work, 
obtained a class of non-gamma densities using Laguerre expansion with Gamma function as 
the weight function. The application of such series expansion was discussed in Tiku and Tan 
(1999). Recently, Aggarwal and Bansal (2017) used K-class of moderately non-gamma 
distributions as a prior (K-prior) for the unknown mean of the Poisson regression super 
population model. 
 

Consider density ℎ(𝑟) (may be unknown) with first k moments about origin known for 
𝑟	 ∈ (0,∞) and the Laguerre expansion 

ℎ$(𝑟) = ∑ 𝐶%𝐿%(𝑟)𝑝(𝑟|𝛼, 𝛽)$
%&'  with 𝑚 ≤ 𝑘 

where 𝑝(𝑟|𝛼, 𝛽) = 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), and 
𝐿%(𝑟) = 	∑ (−1)( A𝑗𝑖D

)(+,%)
)(+,%.()

(𝛽𝑟)%.( 			%
(&' , 𝐿'(𝑟) = 1, 𝑗 = 1,2, … ,𝑚 

is the Laguerre polynomial of degree 𝑗 and 𝐶% are arbitrary constants. Using Khamis (1960)’s 

expression for 𝐶% =
∫ 0!(1)2(1)31
"
#

∫ 40!(1)5
$"

# 2(1)31
,	𝑗 = 0,1, … ,𝑚, the expansion ℎ$(𝑟) can be used to 

approximate ℎ(𝑟) for appropriate values of 𝛼. Bansal and Singh (1999) considered a 
particular case of Khamis’ class of non-gamma distributions wherein only the first four 
moments (𝑚 = 4) were used. This particular case was referred to as K-class of moderately 
non-gamma densities, given by 
																										ℎ6(𝑟) ≈ 𝑔(𝑟) = 𝐾(𝑟)𝑝(𝑟|𝛼, 𝛽), 	𝑟, 𝛼, 𝛽 > 0                                                  (2) 
with  

𝐾(𝑟) = D1 +
𝛿(√𝛼

6(𝛼 + 1)(𝛼 + 2)
K𝐿((𝑟) −

3
𝛼 + 3

𝐿)(𝑟)N +
𝛿)𝛼

24(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)
𝐿)(𝑟)P. 

The excess of skewness and kurtosis of K-class of non-gamma densities 𝑔(𝑟) over 
gamma density 𝑝(𝑟|𝛼, 𝛽) are measured by the parameters 𝛿7 and 𝛿6, respectively.  
 
Remark 1: In particular, if we take 𝛼 = 4, 𝛽 = 1, 𝛿7 = 0.15, 𝛿6 = 2,	then skewness of 
gamma 𝑝(𝑟|𝛼, 𝛽) = 6

8(+)
= 2 and kurtosis of gamma 𝑝(𝑟|𝛼, 𝛽) = 3 + 9

+
= 4.5. Hence, 

skewness and kurtosis of K-prior 𝑔(𝑟) are 2.15 and 6.5, respectively. 
 

2.3. Posterior distribution 
 

The joint prior for q and 𝑟 is  
𝑔(𝜃, 𝑟) = 𝑔(𝜃|𝑟)𝑔(𝑟) 

where 𝑔(𝜃|𝑟) is 𝑁(𝜇, 𝜏𝑟), and 𝑔(𝑟) is K-prior given in (2). 
 

Using Bayes Theorem, the posterior distribution of q and r, given observed sample X = 
x, is 

𝑔(𝜃, 𝑟|𝐱) = 𝑔(𝜃|𝑟, 𝐱)𝑔(𝑟|𝐱)
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where  

													𝑔(𝜃|𝑟, 𝐱) = A(#,:)1
";

D
#/"

𝑒𝑥𝑝 A− 1
"
(𝑛 + 𝜏)(𝜃 − 𝜇∗)"D ≡ 𝑁(𝜇∗, (𝑛 + 𝜏)𝑟),            (3) 

and           𝑔(𝑟|𝐱) = T>(1)?@𝑟A𝛼
∗, 𝛽∗, 𝐱B

C(D%,D&)
U,                                                                            (4) 

with 

															𝛼∗ = 𝛼 +
𝑛
2 , 𝛽

∗ = 𝛽 +
1
2V

(𝑥( − 𝑥̅)" +
#

(&!

1
2

𝑛𝜏
𝑛 + 𝜏

(𝜇 − 𝑥̅)", 𝜇∗ =
𝑛𝑥̅ + 𝜏𝜇
𝑛 + 𝜏 , 

															𝐺(𝛿7, 𝛿6) = 1 − 𝛿7
𝛼
7
"

6 𝐶!(𝛼∗) + 𝛿6
𝛼"

24𝐶"
(𝛼∗), 

																				𝐶!(𝛼∗) = 3𝑅6 − 13𝑅7 + 21𝑅" − 15𝑅! + 4𝑅', 
															𝐶"(𝛼∗) = 𝑅6 − 4𝑅7 + 6𝑅" − 4𝑅! + 𝑅', 
and  
              𝑅% = A)(+

∗,%)
)(+∗)F∗!

D A)(+,%)
)(+)F!

DZ , 𝑗 = 0,1, … ,4. 
(See Appendix A.1 for the details of derivation) 
 
2.4.   Bayes estimate using Zellner’s MELO approach 
 

Zellner (1978) pointed out that the usual Bayes estimate of the reciprocal of normal 
mean often fails to exist. He recommended MELO estimate as a solution to overcome the 
problem of non-existence. Following him, consider 𝑎[ as the estimate of CV 𝑎 =
𝜎/𝜃		, A𝜎" = !

1
D. Upon minimizing posterior expected loss 𝐸((𝑎[𝜃 − 𝜎)"|𝐱) =

𝐸(𝜃"(𝑎[ − 𝑎)"|𝐱), the MELO estimate is given by  

                      𝑎[GH0I =
H4𝜃"𝑎J𝐱5
H4𝜃"J𝐱5 =

HK
L
√1
N𝐱O

H4𝜃"J𝐱5                                                                           (5) 

where the expectations are with respect to posterior distribution and are given by 
												𝐸(𝜃"|𝐱) = 𝜇∗" + F∗

(+∗.!)(:,#)
C((D%,D&)
C(D%,D&)

,                                                                      (6) 

											𝐸 A L
√1
_𝐱D = 𝜇∗

8F∗)4+∗.($5

)(+∗)
C$(D%,D&)
C(D%,D&)

,                                                                            (7) 
with 

												𝐺!(𝛿7, 𝛿6) = 1 − 𝛿7
+
%
$

9
𝐶!(𝛼∗ − 1) + 𝛿6

+$

"6
𝐶"(𝛼∗ − 1),  

and 

												𝐺"(𝛿7, 𝛿6) = 1 − 𝛿7
+
%
$

9
𝐶! A𝛼∗ −

!
"
D + 𝛿6

+$

"6
𝐶" A𝛼∗ −

!
"
D.  

(See Appendix A.2 for the details of derivation of the posterior expectations (6) and (7)) 
 

Remark 2: The value of 𝑎[GH0I in (5) depends on the observed sample values. 
 
Remark 3: If we consider gamma prior for 𝑟, that is 𝛿7 =	𝛿6 = 0, then the MELO estimate 

reduces to 𝜇∗
8F∗)4+∗.($5

)(+∗)
A𝜇∗" + F∗

(+∗.!)(:,#)
D` 		.     

                                                             
Remark 4: For non-informative prior, that is 𝑔(𝜃, 𝑟) ∝ !

1
, the MELO estimate can be 

obtained by letting 𝛼 → − !
"
, 𝛽 → 0, 𝜏 → 0 (See De Groot (1970), page 195) and is given by 
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$

$212-($ -(3

= cd#
"

)42$.!5
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!
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D
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	,                         (8) 

where 𝜎[" = ∑(P,.P̅)$

#
. This conforms with the result obtained by Bansal (2007).  

 
Remark 5: If we further use the result lim

$→W
𝑚X.Y )($,Y)

)($,X)
= 1, (see Abramowitz and Stegun 

(1964), formula 6.1.46, page 257), then on taking 𝑚 = #
"
, 𝑎 = −1 and 𝑏 = − !

"
, the first 

factor on the right-hand side of (8) tends to one for large samples. Hence, it is seen that the 
MELO Bayes estimate of CV reduces to the product of the usual estimate, 𝜎[/𝑥̅, of CV and 

the shrinkage factor A1 + ST$

P̅$
!

#.7
D
.!

 which has a value between zero and one. Thus, we may 
expect that the MELO Bayes estimate of CV to be smaller than the corresponding classical 
estimate for large samples and moderately non-gamma prior densities of the precision. 
 

In the next Section, we obtain the regions in which 𝑔(𝑟) is non-negative and 
unimodal so that the above obtained results can be illustrated numerically using hypothetical 
data. 
 
3.  Positive Definite and Unimodal Region for Khamis’ Class of Non-gamma 

Distributions  
 

Figure 1 below exhibits the graphs of 𝑔(𝑟) for various combinations of 𝛿7	and 𝛿6 with 
a	 = 	4, b	 = 	1. The Graph 1 of Figure 1 represents Gamma Distribution. Graphs 2, 3 and 4 
of Figure 1 shows that the graphs change in shape and peakedness with change in 𝛿7	and 𝛿6. 
It may be noticed that there are combinations of 𝛿7	and 𝛿6 for which 𝑔(𝑟) is negative and 
multimodal. For example, for (𝛿7, 𝛿6) = (3, 4) and (𝛿7, 𝛿6) = (0.1, 15), 𝑔(𝑟) is negative and 
multimodal respectively as shown in Graph 5 and 6 of Figure 1 below. Thus, there is a need 
to obtain the regions in which 𝑔(𝑟) is non-negative and unimodal.  

  

  
Figure 1: Graphs of 𝒈(𝒓) for various combinations of 𝜹𝟑	and 𝜹𝟒 with a	 = 	𝟒, b	 = 	𝟏	 
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We now determine the region where 𝑔(𝑟) is non-negative for a specific range of 𝑟. We 
have tabulated the combinations of (𝛿7, 𝛿6) where 𝑔(𝑟) is non-negative for 𝛼 = 4, 𝛽 = 1 and 
the boundaries of the positive regions are provided in Table 1. Figure 2 exhibits the plot of 
the boundary points in Table 1. This positive region is then checked for unimodality using 
second derivative test. It is found that the unimodality exists throughout in this positive 
region. For the region beyond the boundary values given in Table 1, 𝑔(𝑟) may be unimodal 
but not positive. Thus, such regions are not considered. It may be noted that we are providing 
regions only for 𝛼 = 4, 𝛽 = 1. The entire work is done using Mathematica. The same 
procedure may be employed as discussed above, to obtain positive and unimodal regions for 
other choices of 𝛼 and 𝛽.  

 
Table 1:  Positive and unimodal boundary points (𝛿4, L < 𝛿3< U) for 𝒈(𝒓|𝟒, 𝟏) 

 
d4 L U 
0 0 0.18 

0.1 0 0.2 
0.2 0 0.21 
0.3 0 0.22 
0.4 0 0.23 
0.5 0 0.25 
0.6 0 0.26 
0.7 0 0.27 
0.8 0 0.28 
0.9 0 0.3 
1 0 0.31 

1.1 0 0.32 
1.2 0 0.33 
1.3 0 0.35 
1.4 0 0.36 
1.5 0 0.37 
1.6 0 0.38 
1.7 0 0.4 
1.8 0 0.41 
1.9 0 0.42 
2 0 0.43 

2.1 0.01 0.45 
2.2 0.02 0.46 
2.3 0.03 0.47 
2.4 0.04 0.48 
2.5 0.06 0.5 
2.6 0.07 0.51 
2.7 0.08 0.52 
2.8 0.1 0.53 
2.9 0.11 0.55 
3 0.12 0.56 

3.1 0.14 0.57 
3.2 0.15 0.58 
3.3 0.16 0.6 

3.4 0.18 0.61 
3.5 0.19 0.62 
3.6 0.2 0.63 
3.7 0.22 0.65 
3.8 0.23 0.66 
3.9 0.25 0.67 
4 0.26 0.68 

4.1 0.27 0.7 
4.2 0.29 0.71 
4.3 0.3 0.72 
4.4 0.32 0.73 
4.5 0.33 0.75 
4.6 0.35 0.76 
4.7 0.36 0.77 
4.8 0.38 0.78 
4.9 0.39 0.8 
5 0.41 0.81 

5.1 0.42 0.82 
5.2 0.44 0.83 
5.3 0.45 0.85 
5.4 0.47 0.86 
5.5 0.48 0.87 
5.6 0.5 0.88 
5.7 0.5 0.9 
5.8 0.53 0.91 
5.9 0.54 0.92 
6 0.56 0.93 

6.1 0.57 0.95 
6.2 0.59 0.96 
6.3 0.61 0.97 
6.4 0.62 0.98 
6.5 0.64 1 
6.6 0.65 1.01 
6.7 0.67 1.02 
6.8 0.69 1.03 

6.9 0.7 1.05 
7 0.72 1.06 

7.1 0.74 1.07 
7.2 0.75 1.08 
7.3 0.77 1.1 
7.4 0.78 1.11 
7.5 0.8 1.12 
7.6 0.82 1.13 
7.7 0.84 1.15 
7.8 0.85 1.16 
7.9 0.87 1.17 
8 0.89 1.18 

8.1 0.9 1.2 
8.2 0.92 1.21 
8.3 0.94 1.22 
8.4 0.96 1.23 
8.5 0.97 1.25 
8.6 0.99 1.26 
8.7 1.01 1.27 
8.8 1.03 1.28 
8.9 1.04 1.3 
9 1.06 1.31 

9.1 1.08 1.32 
9.2 1.1 1.33 
9.3 1.12 1.35 
9.4 1.14 1.36 
9.5 1.15 1.37 
9.6 1.17 1.38 
9.7 1.19 1.4 
9.8 1.21 1.41 
9.9 1.23 1.42 
10 1.25 1.43 

10.1 1.27 1.45 
10.2 1.29 1.46 
10.3 1.31 1.47 
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10.4 1.33 1.48 
10.5 1.35 1.5 
10.6 1.37 1.51 
10.7 1.39 1.52 
10.8 1.41 1.53 
10.9 1.43 1.55 

11 1.45 1.56 
11.1 1.47 1.57 
11.2 1.49 1.58 
11.3 1.52 1.6 
11.4 1.54 1.61 
11.5 1.56 1.62 

11.6 1.58 1.63 
11.7 1.61 1.65 
11.8 1.63 1.66 
11.9 1.65 1.67 
12 1.68 1.68 

12.1 1.7 1.7 
 

 
 

Figure 2: Plot of Positive and unimodal region for 𝒈(𝒓)	𝒘𝒊𝒕𝒉	𝜶 = 𝟒, 𝜷 = 𝟏 
 

4. Quantitative Robustness using Kullback-Leibler Divergence (KLD) Measure 
 

By virtue of the significance of Gamma distribution in problem of statistical estimation, 
it is deemed necessary to study the sensitivity of the estimates to its possible 
misspecification. In this direction, we make an effort to study the quantitative robustness 
employing Kullback-Leibler divergence (KLD) measure. 

 
To examine quantitative robustness with respect to the K-class of moderately non-

gamma densities 𝑔(𝑟), we compute its distance from gamma 𝑝(𝑟|𝛼, 𝛽) using KLD as 

															𝐼(𝑝, 𝑔) = ∫ log T\@𝑟A𝛼, 𝛽B
?(1)

U 𝑝(𝑟|𝛼, 𝛽)𝑑𝑟 =W
'

𝐸 Tlog T\@𝑟A𝛼, 𝛽B
?(1)

U	U	 .																									(9) 

The expectation is taken with respect to 𝑝(𝑟|𝛼, 𝛽). Observe that 𝐼(𝑝, 𝑔) is not a 
symmetric distance. 

 
Aggarwal and Bansal (2010) used KLD to evaluate the distance between Normal and 

Edgeworth distributions for some selected values of 𝜆7	(= 𝛿7)	and 𝜆6	(= 𝛿6) lying in 
region given by Barton and Dennis (1952). Aggarwal and Bansal (2017) computed 
𝐼(𝑝, 𝑔)	and it is found that there is an error in its computation. Thus, we extend the study on 
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quantitative robustness using corrected 𝐼(𝑝, 𝑔) while considering 𝐾𝐿$(# =
min{𝐼(𝑝, 𝑔), 𝐼(𝑔, 𝑝)}	as a measure to find distance between 𝑝(𝑟|𝛼, 𝛽) and 𝑔(𝑟). It may be 
observed that the distance 𝐾𝐿$(# is a symmetric distance as specified in Bernardo and 
Rueda (2002). 

 
Table 2 provides computed values of 𝐾𝐿$(# for arbitrarily chosen a	 = 	4, b	 = 	1 and 

some selected values of 𝛿7	and 𝛿6. The chosen values of 𝛿7	and 𝛿6 are those in which 𝑔(𝑟) 
is unimodal and non-negative. 

 
Table 2: Values of 𝑲𝑳𝒎𝒊𝒏	for a	 = 	𝟒, b	 = 	𝟏 and some selected values of 𝜹𝟑	and 𝜹𝟒 

 
d3 d4 𝑲𝑳𝒎𝒊𝒏 d3 d4 𝑲𝑳𝒎𝒊𝒏 d3 d4 𝑲𝑳𝒎𝒊𝒏 

0 
0 0 

0.4 
2 0.0061 

0.9 
6 0.016 

2 0.0144 4 0.005 8 0.0209 

0.15 
0 0.0049 

0.6 
4 0.0064 

1.05 
7 0.0226 

2 0.0023 6 0.0139 8 0.0192 

0.3 
2 0.0011 

0.75 
5 0.0107 

1.35 
9.5 0.0358 

4 0.0118 7 0.0167 10.3 0.0354 

 
 From Table 2, it may be observed that  

(1)  Out of the chosen combinations of (d3, d4), 𝐾𝐿$(# is minimum for (0, 0) as it 
corresponds to Gamma distribution, and is maximum for (1.35, 9.5). 

(2) 𝐾𝐿$(# could be approximately same for different choices for (d3, d4). In particular, 
for the combinations (0, 2) and (0.6, 6),  𝐾𝐿$(# is approximately 0.014. However, 
the graphs of 𝑔(𝑟) for these values of (d3, d4) are different as shown in Figure 3.   

(3) For (0.6, 4), 𝐾𝐿$(# = 0.0064, and for (0.15, 2), 𝐾𝐿$(# = 0.0023. So, 𝑔(𝑟) 
corresponding to (0.6, 4) is more non-gamma than gamma distribution as compared 
to the 𝑔(𝑟) corresponding to (0.15, 2). 
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Figure 3: Graph of 𝒈(𝒓) 
In the next section, Bayes estimates of CV, obtained in Section (2.4), will now be 

calculated for hypothetical data using some values of 𝛿7	and 𝛿6 selected based on 𝐾𝐿$(# 
discussed in this section. 

 
5. Numerical Illustration 

 
To study the effect of non-gamma prior, we generate a hypothetical data of size 𝑛 = 10 

from 𝑁(4,4) distribution given by 0.0660, 5.2140, 3.7548, 5.4743, 6.2490, 2.0363, 4.8134, 
9.4950, 6.6342, 4.4920. It is clear that the true CV is 0.5 whereas the classical estimate of 
CV, the ratio of observed standard deviation and observed mean, is 0.505187. The MELO 
estimate under non-informative prior is 0.5622. 

 
The Bayes estimates of CV, with 𝛼 = 4, 𝛽 = 1, 𝜇 = 0, 𝜏 = 1, and various values of 

𝛿7	and 𝛿6 selected using Table 2, are tabulated in Table 3. 
 

Table 3: Bayes estimate of CV for various values of 𝜹𝟑	and 𝜹𝟒 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Table 3, one may observe that the Bayes estimates 𝑎[GH0I	of CV are close to the 

Bayes estimate of CV under gamma prior for all chosen combination of 𝛿7	and 𝛿6. The 
difference in the maximum and minimum value of		𝑎[GH0I is 0.013 which is insignificant 
and hence, we may say that the moderate deviation from gamma prior may not significantly 
affect Bayes estimate of coefficient of variation under MELO. We may, therefore, conclude 
that the Bayes estimate is robust with respect to misspecification of the prior distribution for 
precision in our illustration.  

 
6. Conclusion 

 
In this paper, Bayes estimate of coefficient of variation is derived for normal model 

with both mean and variance unknown. The normal conditional prior for unknown mean 
and K-prior for the unknown precision of the normal distribution are considered. The 
positive and unimodal regions for K-class of non-gamma densities are obtained for 𝛼 = 4 
and 𝛽 = 1. The boundary values of 𝛿7 and 𝛿6 where the pdf of non-gamma distribution 
changes from the positive definite to non-positive definite are provided. It is seen that in the 
region bounded by the above values, pdf is unimodal as well. For other values of 𝛼 and 𝛽, 
one may find region where pdf is positive and unimodal using the same procedure. It is 
found that for two or more members of K-class of non-gamma distributions, 𝐾𝐿$(#	could 

𝛿𝟑 𝛿𝟒 𝑲𝑳𝒎𝒊𝒏 𝒂�𝑴𝑬𝑳𝑶 

0 0 0 0.4978 

0.15 2 0.0023 0.4998 

0.40 4 0.0050 0.5001 

0.75 5 0.0107 0.4924 

1.05 8 0.0192 0.4980 

1.35 9.5 0.0358 0.4871 
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be approximately same which means that these members are equally non-gamma as 
compared to the gamma distribution. A numerical illustration is also discussed and therein, 
it is observed that Bayes estimate of coefficient of variation under K-prior distributions are 
very close to that based on gamma prior distribution for all chosen combinations of 𝛿7 and 
𝛿6. We may also conclude that the Bayes estimate of CV under MELO is reasonably 
insensitive to moderate deviation from generally assumed gamma prior distribution. 
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Appendix 

 
A.1. (Derivation of posterior distribution given in Section 4.1) 
 

It is known that  

																				𝑔(𝜃, 𝑟|𝐱) =
ℓ(𝜃, 𝑟│𝐱)𝑔(𝜃, 𝑟)

∫ ∫ ℓ(𝜃, 𝑟|𝐱)𝑔(𝜃, 𝑟)𝑑𝜃𝑑𝑟W
'

W
.W  
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															ℓ(𝜃, 𝑟|𝐱) = A
𝑟
2𝜋D

#/"
𝑒𝑥𝑝 �−

𝑟
2V

(𝑥( − 𝑥̅)"
#

(&!

−
𝑛𝑟
2
(𝑥̅ − 𝜃)"�, 

and																				 

																											𝑔(𝜃, 𝑟) = 𝑔(𝜃|𝑟)𝑔(𝑟) 	= 1?
𝑟
2𝜋

𝑒𝑥𝑝 *−
𝜏𝑟
2
(𝜃 − 𝜇)"-4 (𝐾(𝑟)

𝛽*

Γ(𝛼)
exp(−𝛽𝑟) 𝑟*+%, 

we get 

𝑔(𝜃, 𝑟|𝐱) =
𝑟
#
$%

&
$%'(&𝐾(𝑟) exp .−𝑟 0𝛽 + 12∑ (𝑥) − 𝑥̅)$#

)*& 89exp :− 𝑟2 (𝑛(𝜃 − 𝑥̅)
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Using a result that 

𝐴(𝑧 − 𝑎)" + 𝐵(𝑧 − 𝑏)" = (𝐴 + 𝐵)(𝑧 − 𝑐)" +
𝐴𝐵
𝐴 + 𝐵
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𝑛(𝜃 − 𝑥̅)" + 𝜏(𝜃 − 𝜇)" = (𝑛 + 𝜏)(𝜃 − 𝜇∗)" +
𝑛𝜏
𝑛 + 𝜏
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Thus,  
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𝑟
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, 𝛽∗ = 𝛽 + !
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#:
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𝑔(𝜃, 𝑟|𝐱) = D[
(𝑛 + 𝜏)𝑟
2𝜋

expK−
𝑟
2
\(𝑛 + 𝜏)(𝜃 − 𝜇∗)"]NP

\𝑟*∗+%𝐾(𝑟) exp(−𝑟𝛽∗)]		
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/

 

                = K?(!,1)&
"'

exp W− &
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\(𝑛 + 𝜏)(𝜃 − 𝜇∗)"]XN 3(&)4(&|*
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where  

𝐺(𝛿7, 𝛿6) = 1 + 𝐴!
Γ(𝛼 + 3)
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																															= 1 − 𝛿7
𝛼
7
"

6 𝐶!(𝛼∗) + 𝛿6
𝛼"

24𝐶"
(𝛼∗), 

																𝐶!(𝛼∗) = 3𝑅6 − 13𝑅7 + 21𝑅" − 15𝑅! + 4𝑅', 
          					𝐶"(𝛼∗) = 𝑅6 − 4𝑅7 + 6𝑅" − 4𝑅! + 𝑅', 
and   

𝑅% = c
Γ(𝛼∗ + 𝑗)
Γ(𝛼∗)𝛽∗%e c

Γ(𝛼 + 𝑗)
Γ(𝛼)𝛽% e` . 

n% and µ% are the moments about origin of order 𝑗 of gamma prior and posterior gamma, 
respectively. 

 
A.2. (Derivation of the posterior expectations given in Section 4.2) 
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