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Abstract
The paper obtains posterior Cramer-Rao bounds for arbitrary parameter vector in the

spirit of van Trees. The relationship with the classical Cramer-Rao bound is also discussed.
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1. Introduction

The present short article is a humble tribute to the late Professor C. R. Rao, one of the
legendary heroes in the world of statistics. In his professional life, which spanned for nearly
eight decades, Professor Rao made a number of pioneering contributions virtually in every
single area of statistics, impacting the academic life of several generations of statisticians. It
is needless to say that the legacy left behind by Professor Rao will continue its impact on
future generations of statisticians as well.

Two major contributions of Professor Rao for which he is most well known in the
general scientific community, crossing the boundaries of statisics, are the Cramer-Rao in-
equality and the Rao-Blackwell Theorem. What is indeed more remarkable is that these
results constituted part of the Masters Thesis of Professor Rao. These two fundamental
results, accessible even to beginning undrgraduate students in statistics, have far reaching
implications, well beyond what possibly was envisaged by their authors. For example, the
Rao-Blackwell Theorem, discovered independently by Rao and Blackwell, involves an im-
plicit idea of projection from a certain space of random variables to a second space, spanned
by sufficient statistics, resulting thereby in loss reduction under convexity.

The other work, namely the Cramer-Rao inequality, discovered independently by
Cramer and Rao, is being used repeatedly by scientists even outside statistics, notably by
those working in Quantum Physics, Electrical Engineering and Computer Science.

Early extensions of the Cramer-Rao inequality appear in the articles of Bhattacharyya
(1946), Hammersley (1950) and Chapman and Robbins (1951). More recently, there has
been a surge of extensions of this inequality, primarily for solving problems in science and
engineering, as mentioned in the preceding paragraph.
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One very useful extension of the Cramer-Rao inequality appears in the book of
Van Trees (2004) who provided a lower bound for the Bayes risk of estimators of one di-
mensional parameters of interest. This was followed later in a series of articles of Bobrovsky
et al. (1987), Borovkov and Sakhanenko (1980), Brown and Gajek (1990) and many others.
Very important consequences of these results leading to local asymptotic minimaxity in the
spirit of Hajek and LeCam are proved in Gill and Levit (1995) and Gassiat et al. (2013).

In contrast to the above, Ghosh (1993), obtained Cramer-Rao type bounds for poste-
rior variances. Whereas the original Cramer-Rao inequality is based on the Fisher Informa-
tion number based on the likelihood and the Bayes risk results involve Fisher information
number of both the likelihood and the prior, the lower bound obtained by Ghosh involves
the posterior analog of the classical Fisher information number.

The present work extends the work of Ghosh (1993) to the multiparameter case, quite
in the spirit of Van Trees (2004) as well as Gill and Levit (1995). In particular, for a vector
valued parameter, a lower bound is provided for posterior expected weighted squared norms
of the difference of parameter vectors and their posterior means. The technical details are
given in the following section.

2. The main results

We begin with the posterior lower bound for the variance-covariance matrix of a
vector-valued parameter. Indeed, the same lower bound can be provided for the posterior
mean squared error matrix for an arbitrary estimator of a parameter of interest. But the
sharpest bound is one for the posterior variance-covariance matrix, since for an arbitrary
estimator e(X) of a parameter vector ψ(θ),

E[(ψ(θ) − e(X))(ψ(θ) − e(X))T |X]
= V [ψ(θ)|X] + [E(ψ(θ)|X) − e(X))(E(ψ(θ)|X) − e(X))T ]
≥ V [ψ(θ)|X].

Throughout this section, we will consider the following set up. Let X be a real or vector-
valued random variable with pdf f(x|θ), where θ = (θ1, . . . , θp)T . We denote by r1 and
r2 the lower and upper end points of θ. Consider an arbitrary prior π(θ) of θ. We will
denote the posterior of θ given X by π(θ|x). Consider an s(≤ p)-dimensional function
ψ(θ) = (ψ1(θ), . . . , ψs(θ))T of θ. We begin with the following lemma.

Lemma 1: Let (i) π(θ|x) → 0 as θ → r1 or r2 and (ii) ψi(θ)π(θ|x) → 0 as θ → r1 or r2
for all i = 1, . . . , s. Then

E[ψ(θ){∇ log π(θ|x)}T |x] = −E(∂ψ
∂θ

|x),

where ∇ denotes the gradient operator.

Proof: In view of assumptions (i) and (ii), for all 1 ≤ i ≤ s and 1 ≤ j ≤ p, integration by
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parts yields

E[ψi(θ) ∂

∂θj

∇ log π(θ|x)|x] =
� r2

r1

ψi(θ)[( ∂

∂θj

π(θ|x))/π(θ|x)]π(θ|x)dθ

= −
� r2

r1

∂ψi(θ)
∂θj

π(θ|x)dθ = −E[∂ψi(θ)
∂θj

|x].

This proves the result.

We now prove the first main result of this section. The result provides a multiparam-
eter posterior Cramer-Rao type lower bound for a vector-valued function of parameters.

Theorem 1: Assume the conditions of Lemma 1, and assume in addition that V [∇ log π(θ|x)]
is positive definite. Then

V [ψ(θ)|x] ≥ E(∂ψ
∂θ

|x)[V (∇ log π(θ|x))]−1E[(∂ψ
∂θ

)T |x].

Proof: Let u = ψ(θ) − E(ψ(θ)|x) and v = ∇ log π(θ|x). Consider the matrix

E[( u
v

)(uTvT )|x] = E

[(
uuTuvT

vuTvvT

)
|x
]
,

which by construction is non negative definite. This immediately leads to

E(uuT |x) ≥ [E(uvT |x)][E(vvT |x)]−1[E(vuT |x)].

In view of Assumption (i), E(vT |x) = 0. Also, E(vvT |x) = V [∇ log π(θ|x))|x]. The conclu-
sion follows now by applying Lemma 1.

Remark 1: In the particular case when ψ(θ) = θ so that ∂ψ
∂θ = Ip, one gets the in-

equality V (θ|x) ≥ [V (∇ log π(θ|x))|x]−1. The classical Cramer-Rao inequality says that
for unbiased estimators T (X) of a parameter vector θ, V [T (X)|θ] ≥ I−1(θ), where I(θ)
denotes the Fisher Information matrix. V (∇ log π(θ|x)) is the posterior analog of the clas-
sical Fisher Information matrix. It may be noted that while I(θ) = V [(∂ log f(X|θ)

∂θ )|θ],
V [∇ log π(θ|x)|x] = V [(∂ log π(θ|x

∂θ )|x].

Remark 2: Equality holds in Theorem 1 when ψ(θ) − E[ψ(θ)|x] and ∇ log π(θ|x) are
linearly related. As a simple example, consider X1, . . . ,Xn|θ are iid N(θ,Σ) with Σ known,
and the prior π(θ) is N(µ,Λ). Then the posterior π(θ|x) is N((I−B)x+Bµ, (I−B)Σ/n),
where B = n−1Σ(n−1Σ + Λ)−1. Then

∇ log π(θ|x) = [(I −B)Σ/n)−1(θ − ((I −B)x+Bµ)).

Then ∇ log π(θ|x) is linearly related to θ and accordingly V (θ|x) = [V (∇ log π(θ|x))|x]−1.

Remark 3: It is important to point out that while the classical Cramer-Rao inequality is
based on ∇ log f(x|θ), the van Tress inequality is based on ∇ log(f(x|θ)π(θ)). Ours is based
on ∇ log π(θ|x) instead.
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Our next result provides a lower bound for E[||ψ(θ) −E(ψ(θ)|x)||2|x] = E[tr(V (ψ(θ)|x))].

Theorem 2: E[tr(V (ψ(θ)|x)] ≥ E[{tr(∂ψ(θ)
∂θ )}2|x]/E[||∇ log π(θ)|x||2|x].

Proof: In view of Lemma 1, it follows that

trE[{ψ(θ) − E(ψ(θ)|x)}{∇ log π(θ|x)}T |x] = −trE[(∂ψ(θ)
∂θ

)|x] = −E[tr(∂ψ(θ)
∂θ

)|x].

The above is equivalent to

−E[tr(∂ψ(θ)
∂θ

)|x] = E[{(∇ log π(θ|x)T (ψ(θ) − E(ψ(θ)|x))}|x].

Now an application of the Cauchy-Schwarz inequality yields

[Etr(∂ψ(θ)
∂θ

)|x]2 ≤ E[||∇ log π(θ|x)||2|x]E{(||ψ(θ) − E(ψ(θ)|x)||2)|x}.

This yields the result. Remark 4. The above result can be generalized easily. Note that for
an arbitrary positive definite matrix B, and two random vectors Z1 and Z2,

E(ZT
1Z2) = E(ZT

1B
−1/2B1/2Z2) ≤ E(ZT

1B
−1Z1)E(ZT

2BZ2).
Writing Z1 = ψ(θ)−E(ψ(θ)|x) and Z2 = ∇ log π(θ|x), one gets the weighted squared error
posterior risk
E[(ψ(θ) − E(ψ(θ)|x))TB−1(ψ(θ)−E(ψ(θ)|xa))]

≥ [Etr(∂ψ(θ)
∂θ

)|x]2/E[(∇ log π(θ|x))TB∇ log π(θ|x)|x].

References

Bhattacharyya, A. (1946). On some analogues of the amount of information and their use
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