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Abstract
In modelling ROC curves, there are several bi-distributional ROC models available in

the literature. These are developed in the context of normal and non-normal data patterns
and in the framework of binary classification. However, in most of the practical data at
hand may exhibit multi-model patterns or it may be of multi-class, then the existing bi-
distributional ROC forms are not viable to apply and fit the curve. So, in this paper,
we made an attempt to address the above mentioned situations using finite mixtures. We
proposed a mixture Exponential ROC model and its measures like AUC, FPR, TPR and
optimal cut-offs are derived. The methodology is supported with simulated and real data
sets.
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1. Introduction

The Receiver Operating Characteristic (ROC) curve is a classification tool that is
widely used in the field of diagnostic medicine. Classification of individuals into one of the
predefined groups/populations will be based on a cut-off. For a given value of cut-off, one can
define the pair of true-positive rates (TPRs) and false-positive rates (FPRs), using these the
ROC curve is constructed. The summary measure of ROC, which assesses the performance
of a particular diagnostic test, is the area under the curve (AUC) whose value lies between
0 and 1. Higher the AUC value, the better the diagnostic test’s performance.

The initial work on the distributional approach to model the ROC curve was by Green
et al. (1966) where data is assumed to follow the gaussian distribution. In later years,
Dorfman and Alf (1968) gave the maximum likelihood estimates for the binormal ROC
curve. Metz (1978) gave a detailed explanation about the basic principles of ROC curve
and its measures. Estimation of the parameters of the binormal model was of prime focus
by many researchers. Goddard and Hindberg (1990) proposed a ROC model that meets
the criterion of non-normal data, namely the Bi-logistic ROC model. Farraggi and Reiser
(2002) provided the parametric and non-parametric approach of estimating the AUC of the
ROC curve. Over the years, many researchers have attempted to develop Bi-distributional
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ROC curves; a few to mention are the Bi-Generalized Exponential ROC model by Hussain
(2011), Vardhan et al. (2012) on Bi-Exponential and Bi-Weibull ROC model, Bi-Gamma
ROC model by Hussain (2012). A detailed review of several bi-distributional ROC models
was made by Balaswamy and Vishnu (2016).

In classification, one of the main issues is that in most of the data sets, we do not have
the information about the group membership; there, we need to use appropriate statistical
methods to figure out the homogeneous subsets. We can make the graphical depiction of
unsupervised data, and it may exhibit unimodal or multi-model patterns that exist in the
data. One of the most widely used methodologies that helps to sum up the multi-model
patterns accompanied by their respective weights in the form of convex combination is the
Finite Mixture Models (FMM). The general expression of the finite mixture distribution is
given in equation (1).

g(x) =
k∑

i=1
πifi(x) (1)

where, πi’s are the mixture proportions or mixture weights such that πi > 0 ; ∑k
i=1 πi = 1

and fi’s are component distributions ; i = 1, 2, ..k.

The seminal work on mixture models using crabs data was by Pearson (1894) and a
detailed study on mixture models was given by Lindsay (1995). Over the years, the practi-
cal applicability of FMM branched out to various fields like remote sensing, environmental
studies, diagnostic medicine, survival analysis, social and psychological science (Peel and
MacLahlan, 2000). But, most of the works reported in the literature were based on the
normal distribution. However, there are several practical instances where data may not
follow the normal distribution. In such situations, the existing normal mixture models do
not support, hence there is a need to have mixture models for non-normal data. Here a
brief review on Mixture Exponential is presented. Mendenhall and Hader (1958) estimated
the parameters of mixed exponentially distributed failure time distribution. Jewell (1982)
gives a detailed explanation of the mixture of exponential distributions and gives a practical
algorithm for the maximum likelihood estimate. Wang and Wang (2014) proposed an EM
Algorithm for the finite mixture of exponential distribution models. Literature has many
applications with the use of mixture exponential distributions, recently, Polymenis (2020)
used mixture of exponential distributions for assessing hazard rates from COVID-19.

This paper provides an approach to classify the non-normal data with hidden popula-
tions. Here it is assumed that the population follows a mixture of exponential distribution
and derived the Mixture Exponential ROC and its measures. The rest of the paper is or-
ganized as follows. Section 2 discusses the proposed Mixture Exponential ROC. Section
3 provides numerical illustrations of the proposed methodology with simulated as well as
real-life data sets. Section 4 concludes the paper with the summary.

2. Mixture exponential ROC

Let us assume that healthy population, H ∼ exp(θ0) and diseased population has
two sub populations/mixture of populations of D1 and D2 such that, D1 ∼ exp(θ1) and
D2 ∼ exp(θ2). Then the expressions for intrinsic measures of Mixture Exponential ROC
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(mixExp ROC) are defined as FPR of mixExp ROC (mixFPR) is given as

mixFPR = π1FPR1 + π2FPR2 (2)

where
FPR1 = P (S > t1 | H) ; FPR2 = P (S > t2 | D1)
FPR1 = x(t1) = e−θ0t1 ; FPR2 = x(t2) = e−θ1t2 (3)

where πi’s are mixing proportions/weights, t1 and t2 are the respective cut-off values for the
classification of (H, D1) and (D1, D2) respectively. Here FPR1, FPR2 are the false positive
rate values of H and D1 populations & D1 and D2 populations respectively. From equation
(3) we can write t1 and t2 as

t1 = − log(x(t1))
θ0

; t2 = − log(x(t2))
θ1

(4)

TPR of mixExp ROC (mixTPR) is given as

mixTPR = π1TPR1 + π2TPR2 (5)

where
TPR1 = P (S > t1 | D1) ; TPR2 = P (S > t2 | D2)
TPR1 = y(t1) = e−θ1t1 ; TPR2 = y(t2) = e−θ2t2 (6)

Here, TPR1, TPR2 are the true positive rate values of H and D1 populations & D1 and D2
populations respectively. Substituting equation (4) in (6) we will get the mixture exponential
ROC curve which be written as

mixROC = π1ROC1 + π2ROC2 (7)

ROC1 = x(t1)
θ1
θ0 ; ROC2 = x(t2)

θ2
θ1 (8)

By equating the pdf’s of the distributions, the optimal cut-off can be obtained as

t1 = logθ1 − logθ0

θ1 − θ0
; t2 = logθ2 − logθ1

θ2 − θ1
(9)

accuracy can be expressed notationally as

mixAUC =
� 1

0
mixROC(t)dt = π1

θ0

θ0 + θ1
+ π2

θ1

θ1 + θ2
(10)

Youden’s J index (Youden, 1950) is another way of summarising the performance of a
diagnostic test.

Youden’s J index is defined as

J = (TPR − FPR) (11)
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then maximum Youden’s index is reported as

J = max(t) (TPR(t) − FPR(t)) (12)

where t denotes the classification threshold for which J is maximal. From the above equation,
the optimal threshold can be estimated at the maximum Youden’s Index value, since, the
maximum distance between the curve and the chance line can be used to identify the optimal
threshold and will be unique in nature. This optimal threshold classifies the individuals
with a better accuracy and further it can be used to assign the status of the unspecified
subjects/individuals. A value of J=1 sures that there are no false positives or false negatives,
i.e. the test is perfect.

3. Numerical illustrations

3.1. Simulated data

Simulation studies are carried out at various parameter combinations by considering
equal mixture weights. Using the parameters values given in Table 1, random samples are
generated for n = (25, 50, 100, 200).

Table 1: Initial parameters

Case π1 π2 θ0 θ1 θ2

I 0.5 0.5 0.4 0.1 0.01
II 0.5 0.5 0.4 0.2 0.05
III 0.5 0.5 0.4 0.25 0.1
IV 0.5 0.5 0.4 0.4 0.4

The results pertaining to each case at every sample size in Table 2 and respective ROC
curves are depicted in Figure 1. The parameter values are chosen in such a way that they
exhibit worst and moderate classification scenarios. The estimation of parameters of the
mixture distribution is carried out using EM algorithm in R software. It is a known fact
that as higher the AUC, minimum will be the overlapping region, in turn giving out better
percentage of correct classification. The estimated values of t1 and t2 are the optimal one,
which are derived using the Youden’s J. The interpretation of t1 and t2 goes like this:

Let S be the values/samples generated using each parameter combination

The individual will be classified as =


H, if S ≤ t1
D1, if t1 < S ≤ t2
D2, if S > t2

To have a better understanding of t1 and t2, FPR and TPR, let us consider an instance
under case I from Table 2. For n=100, the t̂1 = 4.60711; t̂2 = 25.43069; ̂mixFPR = 0.12541;
̂mixTPR = 0.70705 and Ĵ = 0.58164 results ̂mixAUC = 0.85340. This means to that an
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individual will be classified in the following manner

The individual will be classified as =


H, if S ≤ 4.60711
D1, if 4.60711 < S ≤ 25.43069
D2, if S > 25.43069

Table 2: ROC curve estimates for simulated data

Case n π̂1 π̂2 t̂1 t̂2 Ĵ ̂mixFPR ̂mixTPR ̂mixAUC

F̂PR1 F̂PR2 T̂PR1 T̂PR2 ÂUC1 ÂUC2

25 0.50213 0.49787 4.56913 25.23253 0.57538 0.13001 0.70539 0.85036
0.16142 0.08043 0.62848 0.77137 0.79547 0.90595

I 50 0.49731 0.50269 4.59730 25.44494 0.58133 0.12534 0.70667 0.85318
0.15910 0.07838 0.62913 0.77283 0.79784 0.90766

100 0.49938 0.50062 4.60711 25.43069 0.58164 0.12541 0.70705 0.85340
0.15871 0.07795 0.62899 0.77323 0.79837 0.90821

200 0.49976 0.50024 4.61104 25.45291 0.58233 0.12478 0.70710 0.85378
0.15800 0.07801 0.62933 0.77331 0.79917 0.90832

25 0.53123 0.46877 3.42247 9.14696 0.34870 0.21594 0.56464 0.72485
0.25757 0.15880 0.50218 0.63186 0.66176 0.79887

II 50 0.50817 0.49183 3.41111 9.14908 0.35861 0.20937 0.56798 0.73139
0.24995 0.15892 0.50140 0.63015 0.66688 0.79854

100 0.50680 0.49320 3.46106 9.23796 0.35864 0.20821 0.56685 0.73169
0.25005 0.15837 0.50063 0.62916 0.66671 0.79866

200 0.49881 0.50119 3.46938 9.24755 0.36089 0.20754 0.56843 0.73312
0.24999 0.15823 0.50041 0.62900 0.66676 0.79885

25 0.53521 0.46479 3.08832 6.03442 0.23997 0.26023 0.50021 0.65824
0.31259 0.21777 0.48196 0.54426 0.61200 0.71325

III 50 0.52410 0.47590 3.11203 6.04253 0.24393 0.25670 0.50063 0.66124
0.29402 0.21777 0.46093 0.54316 0.61165 0.71320

100 0.51487 0.48513 3.13166 6.11228 0.24513 0.25448 0.49960 0.66246
0.28625 0.21780 0.45799 0.54262 0.61539 0.71332

200 0.51262 0.48738 3.12554 6.10010 0.24725 0.25349 0.50073 0.66390
0.28586 0.21708 0.45705 0.54311 0.61515 0.71427

25 0.56482 0.43518 2.47823 2.48022 0.02424 0.56973 0.59397 0.49789
0.58665 0.59789 0.62503 0.63822 0.49900 0.50069

IV 50 0.54976 0.45024 2.47846 2.48475 0.01853 0.55706 0.57559 0.49997
0.61440 0.58862 0.64271 0.61674 0.49925 0.49956

100 0.53953 0.46047 2.47643 2.48859 0.01319 0.57909 0.59228 0.49943
0.62699 0.61702 0.64770 0.63862 0.49972 0.50064

200 0.55491 0.44509 2.48864 2.49903 0.01036 0.57716 0.58752 0.50036
0.63807 0.62109 0.65242 0.63512 0.49983 0.50025

The cut-offs t̂1 and t̂2, are able to provide an F̂PR of 12.54% and T̂PR of 70.70%.
So, if there are 100 samples in the data, these two cut-offs will be able to detect the true
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positives upto 70% and with a wrong classification of around 12%. In total, the accuracy of
t̂1 and t̂2 is around 85%. In similar lines, the other combinations can be interpreted. From
Figure 1, it is clear that the area under the curve is decreasing from case I to case IV, which
is indicating that the accuracy of the classification is decreasing from case I to case IV. The
curve of case IV is close to the diagonal line, results the worst classification.
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Figure 1: mixExp ROC curves of simulated data sets

3.2. Real data

The real data set represent the survival times of 121 patients with breast cancer ob-
tained from a large hospital in a period from 1929 to 1938 (Lee and Wang, 2003). This data
set has recently been studied by Yang et al. (2021). The p-value for K-S test for exponential
distribution for this data is 0.06024 (Test statistic, D = 0.12031), which indicates that the
data follows exponential distribution. We have θ0 = 0.4, θ1 = 0.0280 and θ2 = 0.0202. The
estimated measures of mixExp ROC curve is given in Table 3 and respective ROC curve is
depicted in Figure 2. As the curve is observed between the chance line and the left top corner
and also connecting to the AUC= 0.7355, this indicates a moderate amount of classification
with cut-offs t̂1 and t̂2.

From Table 3, t̂1 = 20.24715; t̂2 = 46.32893; ̂mixFPR = 0.24871; ̂mixTPR = 0.6628
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Table 3: mixExp ROC curve estimates of breast cancer data

π̂1 π̂2 t̂1 t̂2 Ĵ ̂mixFPR ̂mixTPR ̂mixAUC

F̂PR1 F̂PR2 T̂PR1 T̂PR2 ÂUC1 ÂUC2

0.49918 0.50018 20.24715 46.32893 0.24908 0.24871 0.6628 0.7355
0.04951 0.3493 0.8418 0.3865 0.9458 0.5253

and results ̂mixAUC = 0.7355. This means that an individual will be classified as follows.

The individual will be classified as =


low survival rate, if S ≤ 20.24715
moderate survival rate, if 20.24715 < S ≤ 46.32893
high survival rate, if S > 46.32893

The cut-offs t̂1 and t̂2, are able to provide false positive rate of 24.87% and true positive
rate of 66.28%. In total, the accuracy is around 73.55%, which indicates of a moderate
classification. Further, 100 bootstrap samples are generated from the breast cancer data.
The bootstrap estimates of important measures and their confidence intervals are reported
in Table 4. The mixROC curves are also drawn for all the bootstrap samples and is shown in
Figure 3. The curves clearly depict a moderate classification. From Table 4, it is observed
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Figure 2: mixExp ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

mixROC curves for Bootstrap samples

FPR

T
P

R

Figure 3: mixExp ROC Curves for 100 bootstrap samples
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Table 4: Bootstrap estimates of breast cancer data

Bootstrap ̂mixFPRboot
̂mixTPRboot Ĵboot

̂mixAUCboot

Estimates 0.248375 0.647383 0.399009 0.7230622
Variance 0.000271 0.000207 0.000309 0.000160269

95% Lower limit 0.2375 0.635805 0.388395 0.7164525
95% Upper limit 0.257676 0.658599 0.41017 0.730174

that the cut-offs provide reasonably low FPR = 0.248375 (0.2375, 0.257676) and a good
level of TPR = 0.647383 (0.635805, 0.658599). This means that if there are 100 subjects
then the cut-offs will be able to detect the class/status of around 65 subjects correctly,
providing an accuracy of 0.7230 (0.7164525, 0.730174). Upon conducting 100 bootstraps
and constructing the 95% confidence interval the outcomes revealed an observation that the
width of the confidence interval is shorter indicating consistent estimates. Further the results
of the bootstrap matches closely to the results in Table 3.

4. Summary

In this paper, we proposed an ROC model that follows exponential distribution with
multi-class classification. Here we considered situation like (i) if we come across multi-model
patterns in the diseased population and (ii) if there are more than two categories in the
data. The proposed model addresses the above two situations and is dealt using the concept
of finite mixtures. The model so constructed is named as Mixture Exponential ROC Curve.
The measures such as mixAUC, mixFPR, mixTPR and optimal cut-offs are derived and
supported with numerical illustrations. With respect to simulations, we tried to present
the behaviour of the proposed ROC model by constructing the worst and moderate cases.
Further the numerical illustrations is extended with breast cancer dataset. It is noticed that
there were two sub populations in the diseased population. The overall AUC is observed to
be 73.5 and optimal thresholds are 20.24 and 46.32. To summarize the work, and mixture
exponential ROC model is proposed, and for the non-normal and multi-class data this model
can be applied.
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