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Abstract
This paper introduces a new lifetime distribution called the Bimodal Extension of Suja

(BES) distribution using the Quadratic Rank Transmutation Map. The proposed distribu-
tion has Suja distribution as a special case. Some statistical and reliability properties of
the new distribution were derived and the method of maximum likelihood was employed for
estimating the model parameters. The usefulness and flexibility of the BES distribution were
illustrated with two real lifetime data sets. Results based on the log-likelihood and goodness
of fit statistics values showed that the BES provides a better fir to the data than the other
competing (lifetime) distributions considered in this study. Also, the consistency of the pa-
rameters of the new distribution was demonstrated through a simulation study. The BES
distribution is therefore recommended foe effective modelling of the unimodal or bimodal
continuous lifetime data with a non decreasing or bathtub shaped hazard rate function . . .

Key words: Bimodal data; Hazard rate function; Maximum likelihood method; Quadratic
rank transformation map; Suja distribution; BES distribution.

AMS Subject Classifications: 62B15, 60E05

1. Introduction

One of the activities of statisticians is to make informed decisions about a population
on the basis of a sample drawn from that population. Obviously, several phenomena upon
which decisions are taken often occur by chance and the best way to account for uncertainties
surrounding them is to adopt probabilistic models. Probability models serve as mathematical
structures for describing physical phenomena. A necessary step in the use of probabilistic
models for modelling real-life problems is to ensure that the observed sample data follow
certain probability distribution(s). Standard probability distributions commonly used for
modelling several real-life problems include exponential, Weibull, gamma, two-parameter
Odoma (Enogwe et al., 2020) and so on. Unfortunately, so many datasets do not come
from the existing probability distributions and this has engendered a demand for alternative
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distributions, especially for the extension of the existing distributions which can be moore
appropriate for fitting real-life data.

Recently, Shanker (2017) introduced and studied a new distribution, called the Suja distri-
bution with probability density function (PDF) and cumulative distribution function (CDF)
given, respectively, by

g(x; η) = η5

η4 + 24(1 + x4)e−ηx; x > 0, η > 0 (1)

and

G(x; η) = 1 −

1 + ηx(η3x3 + 4n2x2 + 12ηx + 24)
η4 + 24

e−ηx; x > 0, η > 0 (2)

An application of the Suja distribution to lifetime analysis of engineering data was presented
by Shanker (2017) which showed that the Suja distribution outperforms the Akash (Shanker,
2015a), Shanker (Shanker, 2015b), Amarendra (Shanker, 2016a), Aradhana (Shanker, 2016b),
Devya (Shanker, 2016c), Sujatha (Shanker, 2016d), Lindley (Ghitany, et al., 2008) and ex-
ponential distributions in modelling lifetime data.

In spite of the utility of the Suja distribution, it cannot be used for statistical modelling
of datasets with varieties of tails due its dependency on only one parameter. This limitation
of Suja distribution can be overcome by obtaining some of its generalization so as to provide
greater flexibility in modelling observed data. The work of Al-Omari and Alsmairan (2019)
introduced a length-biased Suja distributionn. Also, a power lenght-biased Suja distribtion
was developed by Al-Omari et al. (2019). Further, Alsmairan and Al-Omari (2020) used the
weighted method to extend the Suja distribution, which was applied to ball bearing data to
show that the weighted Suja distribution is better than the Suja distribution. It is evident
that these extensions of Suja distribution cannot be used to model data with bimodal shape.
To obtain an extension of Suja distribution that can model bimodal data, the quadratic rank
transformatio map (QRTM) proposed by Shaw and Buckey (2007) is utilized.

According to Shaw and Buckley (2007), the QRTM provides distributions that are more
flexible than baseline distributions in modelling real-life datasets with complex structure.
The cumulative distribution function (CDF) and probability density function (PDF) of the
quadratic transmuted family of distributions may be written as

F (x) = (1 + λ)G(x) − λG2(x) (3)

and
f(x) = g(x)((1 + λ) − 2λG(x)) (4)

respectively, where |λ| ≤ 1, G(x) is the baseline CDF of X and g(x) = dG(x)/dx, the base-
line PDF of X. Observe from (3) and (4) that if λ = 0, the quadratic transmuted family of
distributions reduces to the baseline distribution.

Apart from the work of Shaw and Buckley (2007), other researchers have explored some mem-
bers of the quadratic transmuted family of distributions. The members of the family of distri-
butions include transmuted extreme value distribution (Aryal and Tsokos, 2009), transmuted
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Weibull distribution (Aryal and Tsokos, 2011) transmuted log-logistic distribution (Aryal,
2013), transmuted Lindley distribution (Merovci, 2013a) and transmuted Rayleigh distri-
bution by Merovci (2013b), transmuted Lomax distribution (Ashour and Eltehiwy, 2013),
transmuted Pareto distribution (Merovci and Puka, 2014), transmuted two-parameter Lind-
ley distribution due to Al-khazaleh et al. (2016), transmuted Dagum distribution (Shahzad
and Asghar, 2016), transmuted Janardan distribution by Al-Omari et al. (2016), transmuted
Burr XII distribution (Maurya et al., 2017), transmuted Mukherjee-Islam (Rather and Sub-
ramanian, 2018), transmuted ArcSine distribution (Bleed and Abdelali, 2018), transmuted
Ishita distribution (Gharaibeh and Al-Omari, 2019), transmuted Pranav distribution (Odom
et al., 2019), transmuted Garima distribution (Mohiuddin et al., 2020), transmuted Arad-
hana (Gharaibeh, 2020), among others.

The aim of this article is to propose a new distribution, called a BES distribution, which
is more flexible than the Suja distribution and some other competing lifetime distributions
for modelling complex lifetime datasets. Specifically, this study reveals that the QRTM
can be used to generalize a one-parameter continuous distribution to obtain a bimodal two-
parameter distribution that has a monotone or non-monotone hazard rate function, especially
the bathtub shape. As expected in the proposed distribution, the QRTM has been adopted
in previous researches to generate new distributions that are more flexible than the baseline
distributions. In Section 2, we define the expressions for the PDF and CDF of the BES
distribution. The statistical and reliability properties of the BES distribution are discussed in
Section 3. The quantile function and entropies of the BES distribution are given in Section 4.
Section 5 provides the distribution of order statistics. In Section 6, the parameters of the BES
distribution are estimated through the method of maximum likelihood estimation. Section
7 discusses the asymptotic confidence intervals of the parameters of the BES distribution.
A simulation study is conducted in Section 8. In Section 9, two real datasets, methods of
model selection, applications of the BES distribution to the data sets and the results are
presented. In Section 10, we give the concluding remarks.

2. Definition of BES distribution

Inserting (2) into (3), we get the CDF of the new distribution. Also, inserting (1) and
(2) into (4), we obtain the PDF of the new distribution. Consequently, a random variable
X is said to have the BES distribution if its CDF and PDF are defined as

FBES(x; η.λ) = (1 + λ)
1 −

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

eηx


− λ

1 −

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

eηx

2

(5)

and

fBES(x; η, λ) = η5

η4 + 24(1+x4)e−ηx

1−λ+2λ

1+ ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

eηx

 (6)

respectively, for x > 0, η > 0 and | λ |≤ 1. The BES distribution reduces to the Suja
distribution when λ = 0 . Figure 1 shows the plots of the PDF of the BES variable based
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on several sets of values of the parameters of the distribution. Figure 1 indicates that the
PDF of the BES distribution has unimodal shape if λ = 0.1, η = 0.6, λ = 0.3, η = 0.7. The
biomodal shape of the BES distribution is observed when λ = −0.9, η = 2.0, λ = 0.4, η = 1.6,
among others. Again, the shape of the BES is nondecreasing if λ = 0.9, η = 0.1.

Figure 1: Various shapes of the PDF of BES

The graphs depicted as Figure 2 show that the Cumulative Distribution of BES is nonde-
creasing.

Figure 2: Various shapes of CDF of BES
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3. Statistical and reliability properties of BES distribution

3.1. Statistical properties

The moment generating function of X ∼ BES(η, λ) is given by

MX(t) =
� ∞

0
etxfBES(x; η, λ)dx

= η5

η4 + 24

� ∞

0
etx(1 + x4)e−ηx

1 − λ + 2λ

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

e−ηx

dx

= η5

η4 + 24

� ∞

0

2λ(1 + x4)
1 + 24

η4 + 24

4∑
r=1

(ηx)r

r!

e−(2η−t)x + (1 − λ)(1 + x4)e−(η−t)x

dx

= 2λη5

η4 + 24

� ∞

0
e−(2η−t)x + 24

η4 + 24

4∑
r=1

ηr

r!

 � ∞

0
xre−(2η−t)x +

� ∞

0
xr+4e−(2η−t)x


+
� ∞

0
x4e−(2η−t)x

dx + (1 − λ)η5

η4 + 24

� ∞

0
e−(2η−t)x +

� ∞

0
x4e−(2η−t)x

dx

= 2λη5

η4 + 24

 1
(2η − t) + 24

η4 + 24

4∑
r=1

ηr

r!

 Γ(r + 1)
(2η − t)r+1 + Γ(r + 5)

(2η − t)r+5

+ 24
(2η − t)5


+ (1 − λ)η5

n4 + 24

 1
(η − t) + 24

(η − t)5

 (7)

The rth non-central moment of X ∼ BES(η, λ) is given by

µ′
r = E(Xr) =

� ∞

0
xrfBES(x; η, λ)dx

= η5

(η4 + 24)2

� ∞

0
xr(1 + x4)e−ηx

1 − λ + 2λ

1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)
η4 + 24

e−ηx

dx

= η5

(η4 + 24)2

� ∞

0


(1 − λ)(η4 + 24)xre−ηx + (1 − λ)(η4 + 24)xr+4e−ηx

+ 2λ(η4 + 24)xre−2ηx + 2λ(η4 + 24)xr+4e−2ηx + 8λη3xr+3e−2ηx

+ 24λη2xr+2e−2ηx + 48ληxr+1e−2ηx + 2λη4xr+8e−2ηx + 8λη3xr+7e−2ηx

+ 24λη2xr+6e−2ηx + 48ληxr+5e−2ηx

 dx

= η5

(η4 + 24)2


(1 − λ)(η4 + 24)

(
Γ(r+1)
ηr+1

)
+ (1 − λ)(η4 + 24)

(
Γ(r+5)
ηr+5

)
+ 2λ(η4 + 24)

(
Γ(r+1)
(2η)r+1

)
+ 2λ(η4 + 24)

(
Γ(r+5)
(2η)r+5

)
+ 8λη3

(
Γ(r+4)
(2η)r+4

)
+ 24λη2

(
Γ(r+3)
(2η)r+3

)
+ 48λη

(
Γ(r+2)
(2η)r+2

)
2λη4 +

(
Γ(r+9)
(2η)r+9

)
+ 8λη3

(
Γ(r+8)
(2η)r+8

)
+ 24λη2

(
Γ(r+7)
(2η)r+7

)
+ 48λη

(
Γ(r+6)
(2η)r+6

)
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∴ µ′
r = η5

(η4 + 24)2


(1 − λ)(η4 + 24)

(
Γ(r+1)
ηr+1 + Γ(r+5)

ηr+5

)
+ λ(η4+24)Γ(r+1)

2rηr+1

+ λ(η4+24)Γ(r+5)
2r+4ηr+5 + λΓ(r+4)

2r+1ηr+1 + 3λΓ(r+3)
2rηr+1 + 12λΓ(r+2)

2rηr+1

+ λΓ(r+9)
2r+8ηr+4 + λΓ(r+8)

2r+5ηr+5 + 3λΓ(r+7)
2r+4ηr+5 + λΓ(r+6)

2r+2ηr+5

 (8)

Substituting r = 1, 2, 3, 4 in (8), yields the first four crude moments of the BES distribution
as

µ′
1 = (θ4 + 24)[(θ4 + 120) − λ(θ4 + 103)] + λ(4725θ + 3600) + 108θ2(θ4 + 24)2

4θ(θ4 + 24)2 (9)

µ′
2 = (θ4 + 24)(8θ4 − 6λθ4 − 2835λ + 2880) − 408θ4λ + 263655λ

4θ2(θ4 + 24)2 (10)

µ′
3 = 2(θ4 + 24)(54θ4 + 48λθ4 − 40005λ + 40320) − 2106θ4 + 2835θλ + 423360λ

1603(θ4 + 24) (11)

µ′
4 = 16(θ4 + 24)(48θ4 − 45λθ4 − 80325λ + 80640) + 12240θ4λ + 3742200Θλ + 4399920λ

32Θ4(θ4 + 24)2

(12)
The rth central moment of X ∼ BES(η, λ) can be obtained from the relation

µr =
r∑

j=0
(−1)j

(
r

j

)
µ′

j(µ)r−1 (13)

where µ′
j is deduced from (8) by replacing r with j and µ is defined in (9). The following

central moments are obtained by letting r = 2, 3, 4 in (13):

µ2 =
2∑

j=0
(−1)j

(
2
j

)
µ′

j(µ)2−1 (14)

µ3 =
3∑

j=0
(−1)j

(
3
j

)
µ′

j(µ)3−1 (15)

µ4 =
4∑

j=0
(−1)j

(
4
j

)
µj(µ)4−1 (16)

The coefficient of variation (γ0), skewness (γ1) and kurtosis (γ2) of the BES distribution
could be obtained by evaluating

γ0 = (µ2)
1
2

µ
(17)

γ1 = µ3

(µ2)
3
2

(18)

γ2 = µ4

(µ2)2 (19)
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3.2. Reliability properties

Suppose X ∼ BES(x; η, λ), then the reliability function may be written as

RBES(x; η, λ) = 1 − FBES(x; η, λ)

= (λ − 1)
η4 + 24(ηx(η3x3 + 4η2x2 + 12ηx + 24) + η4 + 24)e−ηx (20)

+ λ

(η4 + 24)2 (ηx(η3x3 + 4η2x2 + 12ηx + 24) + η4 + 24)2e−2ηx

Taking the ratio of (6) to (20), we obtain the hazard rate function for X ∼ BES(η, λ) as

hBES(x; η, λ) = fBES(x; η, λ)
RBES(x; η, λ)

hBES(x; η, λ) =

η5


(1 − λ)(η4 + 24)e−ηx + (1 − λ)(η4 + 24)x4e−ηx

+ 2λ(η4 + 24)e−2ηx + 2λ(η4 + 24)x4e−2ηx + 8λη3x3e−2ηx

+ 24λη2x2e−2ηx + 48ληxe−2ηx + 2λη4x8e−2ηx + 8λη3x7e−2ηx

+ 24λη2x6e−2ηx + 48ληx5e−2ηx


[
(λ − 1)(η4 + 24)(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx

+ λ(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)2e−2ηx

] (21)

The graphical representation of the hazard rate function of the BES distribution is presented
as Figure 3. In accordance with Figure 3, the distribution is quite flexible as its hazard rate
function is capable of possessing different shapes depending on the values of the associated
parameters. Specifically, the figure reveals that the hazard rate function can be nondecreasing
or bathtub shaped. It can also have an s-shaped curve or be a bimodal function.

The cumulative hazard function of X ∼ BES(η, λ) can be written as

ChBES(x; η, λ) = − ln (1 − FBES(x; η, λ)) = − ln(RBES(x; η, λ)) (22)
= − ln[(λ − 1)(η4 + 24) + λ(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx]
+ 2 ln(η4 + 24) − ln(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24) + ηx

The reverse hazard function of X ∼ BES(η, λ) is given by

RhBES(x; η, λ) = fBES(x; η, λ)
FBES(x; η, λ)

hBES(x; η, λ) =

η5


(1 − λ)(η4 + 24)e−ηx + (1 − λ)(η4 + 24)x4e−ηx

+ 2λ(η4 + 24)x4e−2ηx + 2λ(η4 + 24)x4e−2ηx + 8λη3x3e−2ηx

+ 24λη2x2e−2ηx + 48ληxe−2ηx + 2λη4x8e−2ηx + 8λη3x7e−2ηx

+ 24λη2x6e−2ηx + 48ληx5e−2ηx


[
(η4 + 24) − λ(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)2e−2ηx

− (1 − λ)(η4 + 24)(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx

](23)
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Figure 3: Various shapes of the hazard function of the BES distribution

The odds function of X ∼ BES(η, λ) is given by

OBES(x; η, λ) = FBES(x; η, λ)
1 − FBES(x; η, λ)

OBES(x; η, λ) =
[
(1 − λ)(η4 + 24)−1(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)e−ηx

+ λ(η4 + 24)−2(η4x4 + 4η3x3 + 12η2x2 + 24ηx + η4 + 24)2e−2ηx

]−1

− 1

(24)

4. Quantile function and entropy measures of BES distribution

4.1. Quantile function of BES distribution

The xth
ω quantile function of BES distribution satisfies the equation

FBES(x; η, λ) = ω, 0 < ω < 1 (25)
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Plugging (5) into (25), we have

(1 + λ)
[
1 −

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]2

− λ

[
1 −

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]2

= ω (26)

Let
z = 1 −

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx (27)

Then

(1 + λ)z − λz2 = ω

λz2 − (1 + λ)z + ω = 0 (28)

Applying the quadratic formula on (28), we obtain

z =
1 + λ ±

√
(1 + λ)2 − 4λω

2λ
(29)

Substituting (29) into (27), one obtains

1 + λ ±
√

(1 + λ)2 − 4λω

2λ
= 1 −

(
1 + ηxω(η3x3

ω + 4η2x2
ω + 12ηxω + 24)

η4 + 24

)
e−ηxω

Thus, the quantile is obtained by solving the equations:

1 + λ ±
√

(1 − λ)2 − 4λω

2λ
=
1 + 24

n4 + 24

4∑
r=1

(ηxω)r

r!

e−ηxω (30)

Therefore, the ωth quantile, denoted by xω, for BES distribution, is a positive solution of
(30), which can be found by numerical method.

4.2. Entropy measures of the BES distribution

The Renyi entropy may be defined for the BES as

ER = 1
1 − β

log
( � ∞

0
fβ

BES(x; η, λ)dx

)
, β ̸= 1, β > 0

= 1
1 − β

log



(
η5

η4+24

)β � ∞
0 (1 + x4)βe−βηx

×
(

(1 − λ) + 2λ

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)
eηx

)β

dx

 (31)
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Applying binomial expansion to the terms in (31) and simplifying, one gets

ER = 1
1 − β

log


(

η5

η4+24

)β ∑∞
i=0

∑β
j=0

∑j
k=0

∑k
l=0

∑l
m=0

∑m
n=0

(
β
i

)(
β
j

)(
j
k

)(
k
l

)(
l

m

)(
m
n

)
ηk+l+m+n

(24)k−l(12)l−m(4)m−n(1−λ)j(2λ)β−j

(η4+24)k

� ∞
0 xk+l+m+ne−η(β+j)xdx



= 1
1 − β

log


(

η5

η4+24

)β ∑∞
i=0

∑β
j=0

∑j
k=0

∑k
l=0

∑l
m=0

∑m
n=0

(
β
i

)(
β
j

)(
j
k

)(
k
l

)(
l

m

)(
m
n

)
(24)k−l(12)l−m(4)m−n(1−λ)j(2λ)β−jηk+l+m+n−1Γ(k+l+m++1)

(η4+24)k(β+j)k+l+m+n+1

 (32)

The Tsallis entropy for the BES distribution may be defined as

ES = 1
β − 1

(
1 −

� ∞

0
fβ

BES(x; η, λ)dx

)
, β ̸= 1, β > 0

= 1
β − 1

1 −


(

η5

η4+24

)β ∑∞
i=0

∑β
j=0

∑j
k=0

∑k
l=0

∑l
m=0

∑m
n=0

(
β
i

)(
β
j

)(
j
k

)(
k
l

)(
l

m

)(
m
n

)
(24)k−l(12)l−m(4)m−n(1−λ)j(2λ)β−jηk+l+m+n−1Γ(k+l+m++1)

(η4+24)k(β+j)k+l+m+n+1


 (33)

5. Distributions of order statistics of BES distribution

The PDF of the rth order statistic for X ∼ BES(η, λ) is given by

fX(r)(x) = n!
(r − 1)!(n − r)! [F (x)]r−1[1 − F (x)]n−rf(x)

=
r
(

n
r

)
η5(1 + x4)e−(n−r+1)x

η4 + 24

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)η−r

×
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]

×


1 − (1 − λ)

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)
e−ηx

− λ

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)2

e−2ηx


r−1

×
[
(1 − λ) + λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]n−r

(34)
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Putting r = 1 in (34), we get the PDF of the first order statistic X(1) as

fX(1)(x) = η5(1 + x4)ne−ηnx

η4 + 24

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)n−1

×
[
(1 − λ) + λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]n−1

(35)

×
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]

Putting n = r in (34), we get the PDF of the largest order statistic X(n) as

fX(n)(x) = η5(1 + x4)ne(−η−r+1)x

η4 + 24

(
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

))n−1

×


1 − (1 − λ)

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)
e−ηx

− λ

(
1 + ηx(η3x3+4η2x2+12ηx+24)

η4+24

)2

e−2ηx


n−1

(36)

6. Maximum likelihood estimates of parameters of BES distribution

Consider a random sample of a sample size, n, X1, X2, ..., Xn drawn from the BES
distribution. Obviously, the likelihood function of the random sample is

L(η, λ) =
n∏

i=1
fBES(xi; η, λ)

=
(

η5

η4 + 24

)n

e−n
∑n

i=1 xi

n∏
i=1

(1 + x4
i )
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηxi

]
(37)

The log-likelihood function is

ln L(η, λ) =
n∑

i=1
ln
[
(1 − λ) + 2λ

(
1 + ηx(η3x3 + 4η2x2 + 12ηx + 24)

η4 + 24

)
e−ηx

]
(38)

+
n∑

i=1
ln(1 + x4

i ) + n[5 ln(η) − ln(η4 + 24)] − η
n∑

i=1
xi

Taking the partial derivatives of (38) with respect to η and λ, and equating the results to
zero, yields

∂ ln L(η, λ)
∂η

=
n∑

i=1

2λ((η3x3
i + 4η2x2

i + 12ηxi + 24) + η(3η2x2
i + 8ηx2

i + 12xi))xie
−ηxi

2λ(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24) + η4 + 24)e−ηxi + (1 − λ)(η4 + 24)
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−
n∑

i=1

8λη4xi((η3x3
i + 4η2x2

i + 12ηxi + 24)e−ηxi

(η4 + 24)[2λ(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24)η4 + 24)e−ηxi + (1 − λ)(η4 + 24)] (39)

−
n∑

i=1

2λxi(4η4xi(η3x3
i + 4η2x2

i + 12ηxi + 24) + (η4 + 24))e−ηxi

2λ(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24) + η4 + 24)e−ηxi + (1 − λ)(η4 + 24)] + 2(η4 + 120)
η(η4 + 24)

−
n∑

i=1
xi = 0

∂ ln L(η, λ)
∂λ

=
n∑

i=1

2(ηx(η3x3
i + 4η2x2

i + 12ηxi + 24) + η4 + 24)e−ηxi − (η4 + 24)
(1 − λ)(η4 + 24) + 2λ(ηx(η3x3

i + 4η2x2
i + 12ηxi + 24) + η4 + 24)e−ηxi

= 0

(40)
Due to the complex nature of (39) and (40), an iterative method such as Newton-Raphson
method is adopted for finding its solution.

7. Asymptotic confidence intervals of the parameters of BES distribution

Let Θ̂ = (η̂, λ̂)T be the MLE of Θ = (η, λ)T for the BES distribution. To construct the
confidence intervals, the Fisher information, denoted by I (Θ) is required. Consequently

I (Θ) =

Iη̂η̂ Iη̂λ̂

Iλ̂η̂ Iλ̂λ̂

 (41)

The elements of (41) are the second derivatives of (38) with respect to the parameters of the
BES distribution. Notice that the asymptotic distribution of

√
n(N2(1, I −1(Θ)), under cer-

tain regularity conditions. Consequently, the approximate 100(1 − ω)% two sided confidence
intervals for η and λ are given, respectively, by

η̂ ± Zω/2

√
I −1

ηη (Θ̂) and λ̂ ± Zω/2

√
I −1

λλ (Θ̂) (42)

where I −1
ηη (Θ̂) and I −1

λλ (Θ̂) are diagonal elements of the matrix I −1
n (Θ̂) and Zr/2 is the upper

(ω/2)th percentile of a standard normal distribution.

8. Monte-Carlo simulation study of the BES distribution

To investigate the effect of sample size on the maximum likelihood estimates of pa-
rameters of the BES distribution and assess the stability of the parameter estimates, it is
essential to conduct a Monte-Carlo simulation on the BES distribution.
The simulation procedure as outlined below was performed using R package:

Step 1: Simulate a random sample of size n from the BES distribution with parameters
λ = 0.8 and η = 1.4 using the inversion of the CDF method with Equation (30)

Step 2: Set intial values for the parameters of the BES distribution.

Step 3: Compute the MLE of the parameters of the BES distribution.
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Step 4: Repeat steps 1-3 N = 10, 000 times.

Step 5: Compute the mean, standard error, average bias and average mean square error
(MSE) of the 10,000 maximum likelihood estimates of each parameter λ and η. The mean
estimate of the maximum likelihood estimator τ̂ of the parameter τ = (λ, η) is given by

¯̂τ = 1
N

N∑
i=1

τ̂i (43)

The standard error of ¯̂τ is given by

SE¯̂τ =

√√√√ 1
N

N∑
i=1

(τ̂i − ¯̂τ)2 (44)

The Bias of ¯̂τ is given by
Bias(¯̂τ) = ¯̂τi − τ, i = 1, 2, ..., n (45)

The average bias of the MLE τ̂ of the parameter τ = (λ, η) is given by

Ave.Bias(τ̂) = 1
N

N∑
i=1

(τ̂i − τ) (46)

The average mean square error (MSE) of the MLE τ̂ of the parameter τ = (λ, η) is given by

Ave.MSE(τ̂) = 1
N

N∑
i=1

(τ̂i − τ)2 (47)

Step 6: Repeat Steps 1-5 with different sample sizes (n = 20, 30, 50, 100, 500, 1000).

Table 1: Simulation results of the estimates, bias and mean square error of the
BES distribution parameters for different sample sizes

As shown in Table 1, the parameter estimates tend toward the actual parameter values
as the sample size increases. Also, average bias and mean squared error tend to zero with
increasing sample size.
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9. Applications

In this section, we illustrate the flexibility of the BES distribution with two real
datasets. The first dataset comprises the failure times of mechanical components as re-
ported in Javed et al. (2018).

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911,
2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,
1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089,
2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278,
1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224,
3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663

The second dataset depicts the fatigue life of some aluminium coupons cut in specific manner
reported in Birnbaum and Saunders (1969). The dataset (after subtracting 65) is:

5, 25, 31, 32 ,34 ,35 ,38, 39, 39, 40, 42, 43, 43, 43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55,
55, 56, 56, 56, 58, 59, 59, 59, 59, 59, 63, 63, 64, 64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67,
68, 69, 69, 69, 69, 71, 71, 72, 73, 73, 73, 74, 74, 76, 76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81,
83, 83, 84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97, 98, 98, 99, 101, 103, 105, 109, 136, 147

Consequently, we fit the BES distribution (BESD) as well as the competing distributions,
such as gamma distribution (GD) and each of the following distributions (in each case g(x)
is the PDF while G(x) is the CDF of the concerned distribution) to each of the two data
sets listed above. The reason for choosing these distributions is because they all belong to
the same family of the proposed distribution; so we chose them for comparison to illustrate
the flexibility achieved as a result of the generalization. (1) Transmuted Lindley distribution
(TLD) (Merovci, 2013a)

g(x) = η2

η + 1(1 + x)e−ηx

1 − λ + 2λ

(
η + 1 + ηx

η + 1

)
e−ηx

 (48)

and

G(x) =
(

1 − η + 1 + ηx

η + 1 e−ηx

)(
1 + λ

(
η + 1 + ηx

η + 1

)
e−ηx

)
(49)

(2) Transmuted Exponential distribution (TED) (Owoloko, et al., 2015)

g(x) = 1
η

e−ηx(1 − λ + 2λe−nx) (50)

and
G(x) = (1 − e−ηx)(1 + λe−ηx), x > 0, η > 0, |λ| ≤ 1 (51)

(3) Transmuted Aradhana distribution (TAD) (Gharaibeh, 2020)

g(x) = η3

η2 + 2η + 2(1 + x)2e−ηx

(
1 − λ + 2λ

(
ηx(ηx + 2η + 2)

η2 + 2η + 2

)
e−ηx

)
(52)
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and

G(x) = (1+λ)
(

1−
(

1+ ηx(ηx + 2η + 2)
η2 + 2η + 2

)
e−ηx

)
−λ

(
1−

(
1+ ηx(ηx + 2η + 2)

η2 + 2η + 2

)
e−ηx

)2

(53)

(4) Transmuted Ishita distribution (TID) (Sharaibeh and Al-Omari, 2019)

g(x) = η3

η3 + 2(η + x2)e−ηx

(
1 − λ + 2λ

(
1 + ηx(ηx + 2)

η3 + 2

)
e−ηx

)
(54)

and

G(x) = (1 + λ)
(

1 −
(

1 + ηx(ηx + 2)
η2 + 2η + 2

)
e−ηx

)
− λ

(
1 −

(
1 + ηx(ηx + λ)

η3 + 2

)
e−ηx

)2

(55)

(5) Transmuted Pranav distribution (TPD) (Odom et al., 2019)

g(x) = η4

η4 + 6(η + x3)e−ηx

(
1 − λ + 2λ

(
1 + ηx(η2x2 + 3ηx + 6)

η4 + 6

)
e−ηx

)
(56)

and

G(x) = (1+λ)
(

1−
(

1+ ηx(η2x2 + 3ηx + 6)
η4 + 6

)
e−ηx

)
−λ

(
1−

(
1+ ηx(η2x2 + 3ηx + 6)

η4 + 6

)
e−ηx

)2

(57)
Comparison of the fitted models was basd on the following goodness-of-fit measures: the
Akaike Information Criterion (AIC) due to Akaike (1992), given by

AIC = −2l + 2k, (58)

the Bayesian Information Criterion (BIC) due to Schwarz (1978), given by

BIC = k ln(n) − 2l, (59)

and the generalized Carmer-von Mises W* statistics; due to Chen and BAlakrishnan (1995),
given by

CV M = 1
12n

+
∑[

2i − 1
2n

− F̂ (xi)
]

(60)

where k is the number of parameters in the BES distribution, l is the maximized value of
the log-likelihood function of the BES distribution,F̂ (xi) is the value of the CDF of the BES
distribution and n is the sample size. The smaller the criterion statistics the better the
model.

Maximum likelihood estimates of the parameters of the BES distribution and the other
seven distributions fitted to both data and the associated results are given in Table 2 and
Table 3 for the first and second data respectively.

A comparison of AIC and BIC values of the eight lifetime distributions in Tables 2 and
3 shows that the BES distribution gives a better fit for the lifetime datasets as it has smaller
AIC and BIC values than the others. The estimated parameters also satisfy the theoretical
range of the parameters as expected.
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Table 2: Maximum likelihood fit of the failure times of mechanical components
data

10. Conclusion

This paper introduces a new lifetime distribution, named the BES distribution. The
new distribution generalizes the Suja distribution. We have provided explicit mathematical
expressions for some of its basic statistical properties such as the probability density function,
cumulative distribution function, rth crude and central moments, variance, coefficient of
variation, skewness, kurtosis, and quantile function and some reliability characteristics like
the survival, hazard rate, cumulative hazard and reverse hazard functions. Rényi and Tsallis
entropies were discussed. Also, the distributions of rth, first and largest order statistics
were introduced. Estimation of the model parameters was approached through the method
of maximum likelihood estimates. A Monte-Carlo simulation was performed to verify the
stability of the maximum likelihood estimates of the model parameters. The flexibility and
applicability of the new lifetime distribution were illustrated with two real data sets and
the results obtained revealed that the BES distribution provides the best fit among all the
compared related distributions. We recommend the transmuted distribution for modelling
unimodal or bimodal continuous lifetime data with a nondecreasing or bathtub shaped hazard
rate function and hope that it would receive significant applications in the future.
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Table 3: Maximum likelihood fit of the fatigue life of some aluminium coupons
data
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