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Abstract
Adaptive Cluster Sampling (ACS) due to Thompson’s (1990) is a useful tool to survey

rare and clustered population. Salehi and Seber (1997) described a two-stage ACS design
that used simple random sampling without replacement (SRSWOR) of primary units and
then the ACS of secondary units within each of the selected primary unit. Two variations on
this design were proposed in their paper depending on whether networks in secondary units
are allowed to cross primary unit boundaries or not.

In executing the adaptive sampling design, it is observed that the collection of infor-
mation from all neighbouring rare units becomes challenging due to various hazards. Pal and
Patra (2021) duly addressed the issue and proposed predictors of the population total con-
sidering appropriate superpopulation models with suitable assumptions in single stage ACS.
The current work is an attempt to find predictors for two-stage ACS under same situation.
To illustrate the findings, a numerical example has been carried out.

Key words: Adaptive cluster sampling; Horvitz-Thompson estimator; Prediction approach;
Superpopulation; Two-stage designs; Unequal probability sampling.
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1. Introduction

Let U = (1, 2, . . . , N) be a finite population and y = (y1, y2, . . . , yN) be the variable
of interest bearing rarity and clustered characteristics. It is challenging to survey such popu-
lation through any traditional sampling methods due to the absence of such units in sample
with enough number. Thus, the estimation procedures related to the traditional sampling
methods such as simple random sampling, stratified sampling may underestimate the popu-
lation parameters. Thompson’s (1990) adaptive cluster sampling reduces the effort to adapt
enough number of rare units in the sample and increases the precision. This design has been
recently gaining attention because of its greater efficiency. Thompson (1991a) introduced
the idea of primary units and secondary units in ACS. The design was further extended by
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Thompson (1991b, 1992). Chaudhuri (2000), Pal and Patra (2021, 2023); Patra and Pal
(2023) developed this design under unequal probability sampling designs. A monograph of
Seber and Salehi (2013) covers many advents of this design.

In estimating τ = ∑n
i=1 yi by ACS design, an initial sample s of size n is drawn by

a probability sampling design and the y-values are observed. Wherever the observed unit
satisfies the pre-considered condition of rarity say, yi > c, the uniquely defined neighbouring
units (for example - South, North, East, and West) are observed for further detection of
rarity. Now, if some of them are found to meet the rarity condition, their neighbouring units
are also observed and such procedure continues until a unit is detected with no rarity. It
is worth noting that the neighbourhood relation is symmetric. Now, to proceed further in
details, one need to know few related terminologies like cluster, edge units, network etc. All
neighbouring units corresponding to an initial sampling unit form a cluster. Edge unit is the
neighbouring unit that does not satisfy the rarity condition. Thus, each cluster is bounded
by edge units. Eliminating all edge units from a cluster, the remaining units that meet the
pre-considered rarity condition belong to the network of that particular initial sampling unit.
It is also noteworthy, if a unit in s does not satisfy the rarity condition, its network consists
of that unit only.

Salehi and Seber (1997), Rocco (2008) and many others, strengthened the literature
of Two-stage ACS design. In their proposal, a sample of primary units (PSU) is selected
first by simple random sampling without replacement (SRSWOR). Then, an initial sample
is taken from secondary units within each selected primary unit, to carry out the ACS
design. Surveyors then have two possibilities to stop the adaptively adding procedure of
secondary units. Either they can stop at the boundary of PSU (non-overlapping scheme)
or allow overlapping into neighbouring PSUs (overlapping scheme). However, in execution
stage, surveyors may be unable to observe all the neighbouring secondary units due to
hazardous conditions. This deficiency was highlighted in Pal and Patra (2021) for single
stage ACS design under unequal probability sampling. Appropriate superpopulation models
were adopted there to employ Royall (1970) prediction approach. Implementation of Pal and
Patra (2021) approach in two-stage ACS design becomes critical for overlapping scheme.
Thus, some modifications are needed following Royall (1976), Valliant et al. (2000). In
this paper, the main contribution is to develop prediction approach for two-stage ACS-
overlapping scheme.

Section 2 elaborately describes the estimation procedure of two-stage ACS design.
The next section describes how a superpopulation approach can be used in two-stage ACS
to predict the population total or mean in presence of various hazards. Suitable predictors
and mean square errors (MSEs) are derived in Section 4. Section 5 illustrates our contribution
with a numerical example. Finally, it is concluded in Section 6.

2. Two-stage ACS

Suppose the population U of size N can be partitioned into M primary units of sizes
Ni, i = 1, 2, . . . , M and yij denotes the y-value of the jth (j = 1, 2, . . . , Ni) secondary unit
of the ith primary unit. Also let τ = ∑Ni

j=1 yij be the sum of the y-value in the ith primary
unit and τ = ∑M

i=1 τi be the population total. A rarity condition is defined as yij > c and
neighbouring units might be observed only if this rarity condition is satisfied for a given unit.
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According to Salehi and Seber (1997)s two stage ACS design, at first, simple random
sample (SRS) of size m is drawn from a M primary stage units (PSU). Next, an initial sample
si of size ni (i = 1, 2, . . . , m) is drawn from secondary stage units (SSU) of ith selected PSUs
by SRS, such that n = ∑n

i=1 ni - total initial sample size. Then, the neighbourhoods may be
added adaptively to build up a cluster as well as network.

Now in two-stage ACS, two design-based situations arise. In the first-design, the clus-
ters are truncated at selected PSU’s boundaries so that each PSU can be treated separately
and it is termed as Non-overlapping scheme. The other one, called overlapping scheme,
ignores the PSU boundary so that total population units N can be partitioned into distinct
networks. We narrate these two schemes below in details, in the subsections 2.1 - 2.2, with
Horvitz-Thompson estimation procedure only. However, Salehi and Seber (1997) described
the estimation procedures for Hansen and Hurwitz (1943) and Horvitz and Thompson (1952)
both.

2.1. Non-overlapping scheme

In the non-overlapping scheme, the modified Horvitz-Thompson estimator for the
population mean (µ = τ

N
) is

µ̂N
HT = 1

N
(M

m∑
i=1

τ̂i

m
)

where τ̂i = ∑Ki
k=1 y∗

ik( Iik

αik
) is the unbiased estimate of ith primary units total having variance

var (τ̂i) = ∑Ki
r=1

∑Ki
s=1 y∗

iry
∗
is(αirs−αirαis

αirαis
).

To the above equations, Ki denotes the number of networks of the ith primary unit
and αik = 1 − (Ni−mik

ni
)

(Ni
ni

) is the probability that the initial sample of unit in ith primary unit

intersect the network k. Also, αikkT = αik + αikT −
(

1 − (Ni−mik−mikT
ni

)
(Ni

ni
)

)
is the probability

that the initial sample of unit in ith primary unit intersect both the networks k and kT . The
sum of y-value associate with the network k is denoted here by y∗

ik.

The variance estimator of µ̂N
HT is

V (µ̂N
HT ) = 1

N2 M(M − m)σ2
M

m
+ 1

N2
M

m

M∑
i=1

var(τ̂i)

taking σ2
M = 1

M−1
∑M

i=1 (τi − τ)2 and τ = 1
M

∑M
i=1 τi.

An unbiased estimate of V (µ̂N
HT ) is

v(µ̂N
HT ) = 1

N2 M(M − m)s2
M

m
+ 1

N2
M

m

m∑
i=1

v̂ar(τ̂i)

where v̂ar(τ̂i) = ∑χi
r=1

∑χi
s=1 y∗

iry
∗
is(αirs−αirαis

αirsαirαis
).
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Here, χi denotes the number of distinct networks intersected in the ith primary unit.

2.2. Overlapping scheme

Here, all population units can be partitioned into K number of distinct networks,
ignoring the PSU boundaries.

Thus, the modified Horvitz-Thompson estimator is

µ̂O
HT = 1

N

(
K∑

k=1

y∗
kJk

αk

)
.

In the above equation, Jk is the indicator function with the value 1 or 0 if the initial
sample of size n = ∑m

i=1 ni intersects network k or not and y∗
k is the sum of y−values for the

network k. Salehi and Seber (1997) derived the variance of µ̂O
HT (V

(
µ̂O

HT

)
) and an unbiased

variance estimate
(
v
(
µ̂O

HT

))
as follows,

V
(
µ̂O

HT

)
= 1

N2

K∑
k=1

K∑
kT =1

y∗
ky∗

kT (αkkT − αkαkT )
αkαkT

v
(
µ̂O

HT

)
= 1

N2

χ∑
k=1

χ∑
kT =1

y∗
ky∗

kT (αkkT − αkαkT )
αkkT αkαkT

.

Here, χ denotes the number of distinct networks in the sample and αk is the inclusion
probability for the network k and αkkT is the probability that the initial sample intersects
both networks k and kT . In order to evaluate V

(
µ̂O

HT

)
and v

(
µ̂O

HT

)
, one needs to know the

expressions for αkkT and αk which are derived in the Appendix of Salehi and Seber (1997).
Here, we have just written the formulas.
αk = P [Jk = 1]

=
∑

i∈Bk

m

M

1 −

(
Ni−mik

ni

)
(

Ni

ni

)
−

∑
i

∑
iT <i

m(m − 1)
M(M − 1)

1 −

(
Ni−mik

ni

)
(

Ni

ni

)

1 −

(
N

iT −m
iT k

ni

)
(

N
iT

n
iT

)
+ . . .

+ (−1)gk+1 m(m − 1) . . . (m − gk + 1)
M(M − 1) . . . (M − gk + 1)

∏
i∈Bk

1 −

(
Ni−mik

ni

)
(

Ni

ni

)


and
αkkT = P

[
Jk = 1, Jk

T = 1
]

where Bk is the set of PSUs intersected by the network k having gk number of elements and
mik is the number of units of network k located in ith PSU.

3. Prediction approach in two stage sampling scheme

A finite population problem can be formulated as prediction problem and can be
solved using Bayesian approach. A more classical superpopulation approach is also possible
using Royall (1976)s theorem of best linear unbiased estimator.
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Suppose, the objective is to estimate the population total

τ =
M∑

i=1

Ni∑
j=1

yij =
M∑

i=1
τi

by two-stage design which can be expressed as

τ =
∑
i∈s

∑
j∈si

yij +
∑
i∈s

∑
j∈sc

i

yij +
∑
i∈sc

Ni∑
j=1

yij. (1)

Here, s is the PSU sample of size m and sc is the set of PSU units not in s. Similarly, si is
the SSU sample of ith(i ∈ s) PSU and sc

i is the complementary of si.

In the above expression, it is obvious that the first term is known from the sample.
However the second and third terms are unknown and it should be estimated.

The prediction approach of finite population theory considers the total τ is a realiza-
tion of a random vector T. For a given sample,

T =
∑
i∈s

∑
j∈si

yij + Z (2)

with Z = ∑
i∈s

∑
j∈sc

i
yij +∑

i∈sc

∑Ni
j=1 yij.

Now, expressing T as (2), the problem of estimating T is equivalent to the prediction of Z.

Mathematically,
T̂ =

∑
i∈s

∑
j∈si

yij + Ẑ (3)

clarifies the matter.

The following probability model is adopted here to establish the relationship among
N random variable Yij ; i = 1, 2 . . . .M j = 1, 2 . . . Ni:

E (Yij) = θ
Cov (Yij, Ylm) = σ2

i , i = l, j = m
= ρiσ

2
i , i = l, j ̸= m

= 0, i ̸= l

(4)

It is assumed here that the random variables within cluster i have common mean θi and
variance σT 2

i and covariance ρT
i σT 2

i and the {θT
i } are the realizations of uncorrelated random

variables with common mean θ and variance φ2. Then the model (4) applies with σ2
i =

φ2 + σT 2
i and ρi = φ2+ρT

i σ
T 2
i

φ2+σT 2
i

.

Royall (1976) suggested an optimal (BLU) estimator in such case and this can be expressed
as

T̂ ∗ =
∑
i∈s

∑
j∈si

yij +
∑
i∈s

(Ni − ni)
[
ωiysi + (1 − ωi) θ̂

]
+
∑
i/∈s

Niθ̂ (5)
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where ωi = ρini

(1−ρi+niρi
) and θ̂ = ∑

i∈s θiysi is the weighted average of sample means with

weights θi =
[

niσ
2
i

(1−ρi+niρi)

]
/[∑i∈s

niσ
2
i

(1−ρi+niρi)] .

Here, in T̂ ∗, non-sampled units in sample cluster i can be estimated by ωiysi +
(1 − ωi) θ̂ and all the units in non-sampled clusters are estimated by θ̂.

This T̂ ∗ further can be written as T̂ ∗ = ∑
i∈s (1 + gi)niysi taking∑i∈U Ni = N and∑i∈s ni = n,

and gi = [ωi
(Ni−ni)

ni
+ {N − n −∑

i∈s ωi (Ni − ni)} θi

ni
].

The error variance of T̂ ∗ can be written as

V ar
(
T̂ ∗ − T

)
= V ar

∑
i∈s

giniysi −
∑
i∈s

∑
j∈sc

i

yij −
∑
i/∈s

Ni∑
j=1

yij


= V ar

∑
i∈s

∑
j∈sc

i

yij

+ V ar

∑
i/∈s

Ni∑
j=1

yij

+ V ar

(∑
i∈s

giniysi

)
+ 2cov

∑
i∈s

∑
j∈sc

i

yij,
∑
i/∈s

Ni∑
j=1

yij


− 2cov

∑
i∈s

giniysi,
∑
i/∈s

Ni∑
j=1

yij

− 2cov

∑
i∈s

giniysi,
∑
i∈s

∑
j∈sc

i

yij


= V ar

∑
i∈s

∑
j∈sc

i

yij

+ V ar

∑
i/∈s

Ni∑
j=1

yij

+ V ar

(∑
i∈s

giniysi

)
− 2cov

∑
i∈s

giniysi,
∑
i∈s

∑
j∈sc

i

yij


= v + V ar

(∑
i∈s

giniysi

)
− 2cov

∑
i∈s

giniysi,
∑
i∈s

∑
j∈sc

i

yij


= v +

(∑
i∈s

ρiσ
2
i n

2
i g

2
i +

∑
i∈s

(1 − ρi) σ2
i nig

2
i

)
− 2

∑
i∈s

ρiσ
2
i gini(Ni − ni)

= v −
∑
i∈s

ρiσ
2
i (Ni − ni)2 +

∑
i∈s

ρiσ
2
i [nigi − (Ni − ni)]2 +

∑
i∈s

(1 − ρi)σ2
i nig

2
i

where

v = V ar

∑
i∈s

∑
j∈sc

i

yij

+ V ar

∑
i/∈s

Ni∑
j=1

yij


=
∑
i∈s

(Ni − ni) σ2
i [1 − ρi + (Ni − ni) ρi] +

∑
i/∈s

Niσ
2
i [1 − ρi + Niρi].

4. Proposed predictors for two-stage ACS

Simple random sampling without replacement scheme is frequently used in ACS de-
sign to draw an initial sample. Chaudhuri (2000) clarified that any sampling method ad-
mitting an unbiased estimator for a population total may be extended to adaptive sampling
design yielding unbiased estimator. This work insisted us to select PSUs adapting an un-
equal probability sampling, say PPSWOR instead of SRSWOR in case of Two-stage ACS
design, as discussed in Section 2.
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4.1. Non-overlapping scheme

Therefore, an unbiased estimator of population total τ = ∑M
i=1 τi = ∑M

i=1
∑Ni

j=1 yij is

e =
m∑

i=1

τ̂i

πi

(6)

taking τ̂i as the estimate of ith PSU total. This

τ̂i =
χi∑

k=1

y∗
ik

αik

, (7)

if networks are truncated at selected PSU (Non-overlapping scheme). Here, y∗
ik = ∑

j∈A(i,k) yij

is the sum of the y−values present in A(i, k), the kth network of ith PSU. This network A(i, k)
can be partitioned into two parts captured Ac(i, k) and uncaptured Auc(i, k). Obviously,
A(i, k) = Ac(i, k) ∪ Auc(i, k).

It is obvious that E(e) = E1E2(e) = E1
(∑m

i=1
τi

πi

)
= ∑M

i=1 τi = τ . E1 denotes here the
expectation due to first stage unit selection and E2 , the expectation due to second stage.

The variance of e can be written as,

V (e) = E1V2(e) + V1E2(e)

where E1(V 2(e)) = E1(V 2

(∑m
i=1

1
πi

∑χi
k=1

y∗
ik

αik

)
) = E1(

∑m
i=1

1
π2

i
V2
(∑χi

k=1
y∗

ik

αik

)
)

= E1

 m∑
i=1

1
π2

i

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)

=
M∑

i=1

1
πi

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)

and V1(E2(e)) = V1
(∑m

i=1
τi

πi

)
= ∑

i<j

∑M
=1 (πiπj − πij)( τi

πi
− τj

πj
)2.

To compute unbiased estimate of V (e), let assume

v1(e) =
m∑

i=1

1
π2

i

 χi∑
k=1

χi∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikkT αikαikT

)+
∑
i<j

m∑
=1

(
πiπj − πij

πij

)
( τ̂i

πi

− τ̂j

πj

)2
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Therefore, E (v1(e)) = E1E2 (v1(e))

= E1

 m∑
i=1

1
π2

i

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)
+ E1

∑
i<j

m∑
=1

(
πiπj − πij

πij

)((
τi

πi

− τj

πj

)2 + V2 (τ̂i)
π2

i

+ V2 (τ̂j)
π2

j

))
=

m∑
i=1

1
πi

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)+
∑
i<j

M∑
=1

(πiπj − πij)(
τi

πi

− τj

πj

)2

+
∑
i<j

M∑
=1

(πiπj − πij)(
V2 (τ̂i)

π2
i

+ V2 (τ̂j)
π2

j

)

= V (e) +
∑
i<j

M∑
=1

(πiπj − πij)(
V2 (τ̂i)

π2
i

+ V2 (τ̂j)
π2

j

)

where V2 (τ̂i) = ∑Ki
k=1

∑Ki

kT =1 y∗
iky∗

ikT

(
α

ikkT −αikα
ikT

αikα
ikT

)
.

Thus,

v(e) = v1(e) −
∑
i<j

m∑
=1

(πiπj − πij)
πij

 V̂2 (τ̂i)
π2

i

+ V̂2 (τ̂j)
π2

j

 (8)

is an unbiased estimator of V (e) where V̂2 (τ̂i) = ∑χi
k=1

∑χi

kT =1 y∗
iky∗

ikT

(
α

ikkT −αikα
ikT

α
ikkT α

ik
α

ikT

)
.

Now, in case surveyors are unable to gather information from all units belonging to a network,
then mathematically it can be express as

y∗
ik =

∑
j∈A(i,k)

yij =
∑

j∈Ac(i,k)
yij +

∑
j∈Auc(i,k)

yij.

Undoubtedly, second term of this expression is unknown and can be predicted easily following
Section 3.1 and 3.2 of Pal and Patra (2021). We avoid here the unnecessary repetition.

However, the complication arises if the surveyor decided to ignore PSU boundaries for net-
work construction. Below we describe prediction steps in this case, in details.

4.2. Overlapping scheme

In this case, we need to consider the distinct networks included in two-stage. Thus,
an unbiased estimator of the population total τ may be written as

e∗ =
χ∑

k=1

y∗
k

α∗
k

(9)

where α∗
k = ∑

i∈Bk
πi

(
1 − (Ni−mik

ni
)

(Ni
ni

)

)
−∑

i

∑
iT <i πiiT

(
1 − (Ni−mik

ni
)

(Ni
ni

)

)(
1 − (N

iT −m
iT k

ni
)

(N
iT

n
iT

)

)
+ . . . +

(−1)gk+1πiiT .....l

∏
i∈Bk

(
1 − (Ni−mik

ni
)

(Ni
ni

)

)
and α∗

kkT = P [Jk = 1, JkT = 1]. Here Bk, with gk

number of elements, is the set of those primary units intersected by kth network.
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The variance is V (e∗) =
(∑χ

k=1
∑χ

kT =1 y∗
ky∗

kT

(
α∗

kkT −α∗
kα∗

kT

α∗
k

α∗
kT

))
and an unbiased estimate of

variance is v (e∗) =
(∑χ

k=1
∑χ

kT =1 y∗
ky∗

kT

(
α∗

kkT −α∗
kα∗

kT

α∗
kkT α∗

k
α∗

kT

))
. However, the computation of α∗

k

and α∗
kkT are not an easy task. Thus, a modification is needed.

We take Chaudhuri (2000)s approach here to propose an unbiased estimator of τ as

eT ∗ =
m∑

i=1

τ̂i

πi

=
m∑

i=1

1
πi

Ni

ni

ni∑
j=1

tij

 (10)

where tij = 1
dij

∑M
i=1

∑
j∈A(i,j) yij is the average of y−values of the units belong to the network

A(i, j), ignoring the PSU boundaries. It is much easier to compute than the previous one
(equation 9).

Taking expectation, we get

E
(
eT ∗

)
= E2E1

 m∑
i=1

1
πi

Ni

ni

ni∑
j=1

tij

 = E2(
M∑

i=1

1
πi

(Ni

ni

ni∑
j=1

tij)πi)

= E2

 M∑
i=1

Ni

ni

ni∑
j=1

tij


=

M∑
i=1

Ni∑
j=1

tij =
M∑

i=1

Ni∑
j=1

yij (see Thompson’s (1990) and Chaudhuri (2000))

= τ, the population total.

Table 1: Two-stage ACS structure for population

PSU SSU Networks of SSU Cardinality of Statistic
Networks based on SSU

1 y11, y12, . . . , y1N1 A(1; 1), A(1; 2) . . . A(1, N1) d11, d12, . . . ., d1N1 t11, t12, . . . ., t1N1

2 y21, y22, . . . ., y2N2 A(2; 1), A(2; 2) . . . A(2, N2) d21, d22, . . . ., d2N2 t21, t22, . . . ., t2N2

. . . . . . . . . . . . . . .
yi1, yi2, . . . , yiNi

A(i; 1), A(i; 2) . . . , A(i, Ni) di1, di2, . . . , diNi
ti1, ti2, . . . , tiNi

M yM1, yM2, . . . ., yMNM
A(M ; 1), A(M ; 2) . . . , A(M, NM) dM1, dM2, . . . , dMNM

tM1, tM2, . . . , tMNM

The variance can be written as

V
(
eT ∗

)
= E2V1

(
eT ∗

)
+ V2E1

(
eT ∗

)
= ∑

i<j

∑M
=1 (πiπj − πij)( τi

πi
− τj

πj
)2 +∑M

i=1
N2

i

ni
(1 − fi)S2

i

where S2
i = 1

Ni−1
∑Ni

j=1 (tij−ti)2 and ti = 1
Ni

∑Ni
j=1 tij

An unbiased estimator of V
(
eT ∗

)
is

v
(
eT ∗

)
=
∑
i<j

m∑
=1

(πiπj − πij

πij

)( τ̂i

πi

− τ̂j

πj

)2 +
m∑

i=1

N2
i

ni

(1 − fi) s2
i (11)
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where s2
i is an unbiased estimator of S2

i .

Let A(i; j) can be written as Ac(i; j) ∪ Auc(i; j) where Ac(i; j) is the observed units
and Auc(i; j) is a set of unobserved units of the network of jth unit of ith PSU. Also, let
the cardinality of each set is known and it is possible due to satellite imagery or previous
records.

Then, tij = 1
dij

∑M
i=1

∑
j∈A(i,j) yij may be treated as

tij = 1
dij

∑
i∈s

∑
j∈Ac(i;j)

yij +
∑
i/∈s

∑
j∈Ac(i;j)

yij

+
∑

i∈s

∑
j∈Auc(i;j)

yij

+
∑

i/∈s

∑
j∈Auc(i;j)

yij

 (12)

= 1
dij

[(
∑
i∈s

sum of observed units from ith PSU +
∑
i/∈s

sum of observed units from ith PSU)

+
∑
i∈s

sum of unobserved from ith PSU +
∑
i/∈s

sum of unobserved from ith PSU]

for a network A(i; j)

Similarly, dij− cardinality of the network A(i; j) can be partitioned as

dij =
∑

i∈s

di1(ij) +
∑
i/∈s

di2(ij)
+

∑
i∈s

di3(ij) +
∑
i/∈s

di4(ij) (13)

= (d1(ij) + d2(ij)) + d3(ij) + d4(ij) (14)

where di1(ij) is the number of observed units belongs to ith(i ∈ s) PSU from A(i; j) network
and di2(ij) is the number of observed units belongs to ith(i /∈ s) PSU but from the network
A(i; j). Similarly, di3(ij) and di4(ij) are the numbers of unobserved units belongs to sampled
and non-sampled PSU from A(i; j) network, respectively.

Thus to estimate tij, we need to predict the terms ∑i∈s

∑
j∈Auc(i;j) yij and ∑i/∈s

∑
j∈Auc(i;j) yij.

Now, following Royall (1976)s prediction approach and adopting the model (4) with
restrictions ρi = ρ and σ2

i = σ2, we get
E (Yij) = δ

Cov (Yij, Ylm) = σ2, i = l, j = m
= ρσ2, i = l, j ̸= m
= 0, i ̸= l

(15)

With the model (15), we may get

est

∑
i∈s

∑
j∈Auc(i;j)

yij

 =
∑
i∈s

di3(ij)
[
wiysi + (1 − wi) δ̂

]
. . . using (5)

where wi = ρdi1(ij)
1−ρ−ρdi1(ij) and δ̂ = ∑

i∈s δiysi with δi =
[ di1(ij)

(1−ρ−ρdi1(ij)) ]

[
∑

i∈s

di1(ij)
(1−ρ−ρdi1(ij)) ]

.
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Here, ysi = 1
di1(ij)

∑
j∈Ac(i;j) yij ∀i ∈ s is the average of those observed units from a sampled

PSU i, belongs to the network Ac(i; j).

It is noteworthy that ρ is generally unknown to us. It can be estimated by analysis of
variance (ANOVA) technique (see Valliant et al. (2000) chapter 8), if prior information is
not given.

With the assumption y∗ =
∑

i∈s
di1(ij)ysi∑

i∈s
di1(ij) =

∑
i∈s

di1(ij)ysi

d1(ij) , sum of squares of the ANOVA is
derived based on the following relation:

∑
i∈s

∑
j∈Ac(i;j)

(yij − y∗)2=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi + ysi − y∗)2

=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi)2 +
∑
i∈s

∑
j∈Ac(i;j)

(ysi − y∗)2 + 2
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi) (ysi−y∗)

=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi)2 +
∑
i∈s

∑
j∈Ac(i;j)

(ysi − y∗)2

=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi)2 +
∑
i∈s

di1(ij)(ysi − y∗)2

Table 2: ANOVA table for a sample taken by two-stage adaptive cluster sampling

Source Sum of squares Degrees of
freedom

Expected mean
squares

Between Clus-
ters

∑
i∈s di1(ij)(ysi − y∗)2 m∗ − 1 σ2(1−ρ)+ ρσ2

m∗−1{d1(ij)−∑
i∈s

d2
i1(ij)

d1(ij) }
Within Clusters ∑

i∈s

∑
j∈Ac(i;j) (yij − ysi)2 d1(ij) − m∗ σ2(1 − ρ)

m∗ =Number of sampled PSUs in the cluster

Now, for the term ∑
i/∈s

∑
j∈Auc(i;j) yij,

est

∑
i/∈s

∑
j∈Auc(i;j)

yij

 =
∑
i/∈s

di4(i; j)δ̂ . . . using (5)

Thus, our suggested optimal (BLU) predictor is

t̂ij = 1
dij

∑
i∈s

∑
j∈Ac(i;j)

yij +
∑
i/∈s

∑
j∈Ac(i;j)

yij

+
∑
i∈s

di3(ij)
[
wiysi + (1 − wi) δ̂

]
+
∑
i/∈s

di4(ij)δ̂


(16)
and the above can be written as

t̂ij =
 1

dij

∑
i∈s

∑
j∈Ac(i;j)

yij

+ 1
dij

∑
i∈s

(1 + g∗
i )di1(ij)ysi (17)
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where
g∗

i =
{

di3(ij)
di1(ij)wi + δi

di1(ij)
∑
i∈s

di3(ij) (1 − wi) + δi

di1(ij)d4(ij)
}

.

Now, the error variance of t̂ij can be derived as below.

MSE
(
t̂ij

)
= V ar

(
t̂ij − tij

)
(18)

= V ar

 1
dij

∑
i∈s

g∗
i di1(ij)ysi − 1

dij

∑
i∈s

∑
j∈Auc(i;j)

yij − 1
dij

∑
i/∈s

∑
j∈Auc(i;j)

yij


= 1

d2
ij

V ar

∑
i∈s

∑
j∈Auc(i;j)

yij

+ V ar

∑
i/∈s

∑
j∈Auc(i;j)

yij

+ V ar

(∑
i∈s

g∗
i di1(ij)ysi

)
− 1

d2
ij

2 cov

∑
i∈s

g∗
i di1(ij)ysi ,

∑
i∈s

∑
j∈Auc(i;j)

yij


= 1

d2
ij

[
v∗ +

(∑
i∈s

ρσ2d2
i1(ij)g∗2

i +
∑
i∈s

(1 − ρ)σ2di1(ij)g∗2
i

)
− 2

∑
i∈s

ρσ2g∗
i di1(ij)di3(ij)

]

= 1
d2

ij

[
v∗ − ρσ2∑

i∈s

d2
i3(ij) + ρσ2∑

i∈s

(di1(ij)g∗
i − di3(ij))2 +

∑
i∈s

(1 − ρ)σ2di1(ij)g∗2
i

]

where v∗ = V ar
(∑

i∈s

∑
j∈Auc(i;j) yij

)
+ V ar

(∑
i/∈s

∑
j∈Auc(i;j) yij

)
= ∑

i∈s di3(ij)σ2 (1 − ρ + di3(ij)ρ) +∑
i/∈s di4(ij)σ2 (1 − ρ + di4(ij)ρ).

Thus,

êT ∗ =
m∑

i=1

τ̂ ∗
i

πi

=
m∑

i=1

1
πi

Ni

ni

ni∑
j=1

t̂ij

 (19)

becomes our final estimator of population total with variance estimator

v
(
êT ∗

)
=
∑
i<j

m∑
=1

(πiπj − πij

πij

)( τ̂ ∗
i

πi

−
τ̂ ∗

j

πj

)2 +
m∑

i=1

N2
i

ni

(1 − fi) s∗2
i +

m∑
i=1

ni∑
j=1

MSE(t̂ij) (20)

where s∗2
i = 1

ni−1
∑ni

j=1 (t̂ij−t̂i)2 and t̂i = 1
ni

∑ni
j=1 t̂ij.

Note that t̂ij = tij if values of all units in the network A(i, j)is known.

5. Numerical Example

To illustrate our proposed methodology in prediction approach for Two-stage ACS-
overlapping scheme numerically, we consider here Population 1 - the point-objects population
of Thompson’s (1990) which is further reproduced in Rocco (2008)-page-319 as Figure 1. The
population contains N = 400 units and it is partitioned into M = 20 primary units each of
Ni = 20 (∀i = 1, 2, . . . , M) secondary units. From Population 1, it can be seen that very few
units having y− values greater than 0 and the population total is τ = ∑20

i=1
∑20

j=1 yij = 190.
Now, we assume the rarity condition for ACS design is y > 0.
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Figure 1: Two-stage ACS data

Table 3 represents the information gathered from a sample with six PSUs each with
five SSUs. This sample is selected by Lahiri (1951)-Midzuno (1952)-Sen (1953) sampling
scheme for first stage units and SRSWOR for second stage units. With this sampled data,
we mainly illustrate the proposed methodology numerically for overlapping scheme, step-
by-step. Here, m = 6 and ni = 5 ∀ i = 1, 2, . . . , m. The 1st column of Table 3 shows
the selected PSUs. Inclusion probabilities of the selected PSUs are computed for Lahiri-
Midzuno-Sen scheme and mentioned in 2nd column. Also, y − values of selected SSUs are
shown in the table (4th column) along with the network size (5th column), if two-stage ACS-
overlapping scheme is performed. It can be seen that in this case there are only 2 SSUs
having non-zero y −value and based on these SSUs, we can capture more rare units through
ACS design. In this way, we found a network of 11 units ignoring the PSU boundaries, of
which some are unobserved. Here the unobserved units are marked by red circle.

Table 3: Sampled data

Selected
PSU

Inclusion Prob-
ability (πi)

Selected SSU(j) for
a particular PSU(i)

y-values
(yij)

Cardinality of
Network(dij)

1 0.323 11,17,14, 07,10 0,5,0,0,0 01,06,01,01,01
5 0.309 05,09,01,13,18 0,0,0,0,0 01,01,01,01,01
9 0.325 04,11,17,20,03 0,0,0,13,0 01,01,01,11,01
10 0.270 02,11,10,18,12 0,0,0,0,0 01,01,01,01,01
12 0.268 19,16,08,05,10 0,0,0,0,0 01,01,01,01,01
17 0.276 05,03,18,10,15 0,0,0,0,0 01,01,01,01,01

Now, let us consider the network of 20th SSU of 9th PSUs (A(9; 20)-orange shaded
area) which can be treated as Ac(9; 20) ∪ Auc(9; 20). The set of observed units, Ac(9; 20)
contains 15th, 16th, 19th, 20th units from 9th PSU and 9th, 13th units from 10th PSU and



194 SANGHAMITRA PAL AND DIPIKA PATRA [SPL. PROC.

also 2nd , 3rd units from 14th PSU. The set of unobserved units, Auc(9; 20) contains 18th

unit from 9th PSU, 17th unit from 10th PSU and 4th unit from 14th PSU.

Thus, the cardinality of the network A(9; 20) can be partitioned as 11 = (4 + 2) +
(1 + 1) + (1 + 1) + 1, according to equations (13) and (14).

Now from equation (12) we get,∑
i∈s

∑
j∈Ac(i,j) yij = (5 + 5 + 39 + 13) + (2 + 22 ) = 62 + 24 = 86 and∑

i/∈s

∑
j∈Ac(i,j) yij = (1 + 10) = 11.

However, ∑i∈s

∑
j∈Auc(i,j) yij and ∑i/∈s

∑
j∈Auc(i,j) yij are unknown to us and can be predicted

through equation (4.2.7) and ANOVA with ρ and σ2 , two unknown again.

Now, to predict ρ and σ2, let us first compute sum of squares for between cluster (SSB) and
within cluster (SSW).

Here, SSB = ∑
i∈s di1(ij)(ysi − y∗)2 = 4(62

4 − 86
6 )2 + 2(24

2 − 86
6 )2 = 16.33 and SSW =∑

i∈s

∑
j∈Ac(i;j) (yij − ysi)2 = 979 and ρ = −0.538, σ2 = 159.103.

It is noteworthy that under model (16), ρ can be negative however there is a lower bound.
In this case the lower bound is −0.599. To get better idea of this, readers may consider
Valliant et al. (2000, page 261). The above mentioned two unknown sums can be predicted
by ∑

i∈s di3(ij)
[
wiysi + (1 − wi) δ̂

]
, ∑i/∈s di4(ij)δ̂ respectively and the predicted values are

28.103, 14.051. The values of wi and δ̂ are computed as per given formulas in Section 4.
Thus, t̂ij = 1

11(86 + 11 + 28.103 + 14.051) = 12.65. Note that, the actual tij is 9.727 if all
units of this network (A(9; 20)) are observed.

Therefore, based on the sampled data (see Table 3) the final estimate of population
total is 229.9957 ≈ 230 (using equation 19) and the estimated variance is 16074.43 (using
equation 20). It is worth noting that if all units from the sampled networks are observed,
then the estimated population total and estimated variance are 194.0203 and 10722.75 re-
spectively. In other words, if all units from a sampled network are observed, one may get
better result. It is obvious condition. However, these two situations are incomparable.

6. Conclusion

Two-stage sampling has several advantages over ordinary single stage (one-stage)
sampling. In application of two-stage sampling in ACS, we add many units stopping at the
PSU boundary or crossing across the PSU boundary. It is quite obvious that the surveyors
may be unable to gather information from one or more rare units. Under such a situation,
prediction approach under linear regression model considering correlation structure within
network in two-stage ACS is satisfactory. Thus, to achieve a practical solution in two-stage
ACS, we have employed Royalls prediction approach. In practice, it brings a novelty in
prediction of the population total involving rare units under two stage sampling.
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