Special Proceedings: ISBN #: 978-81-950383-0-5
23rd Annual Conference, 24-28 February 2021; pp 113-123

Inferential Procedures to Compare Parallel, Superior and
Crossover Multivariate ROC Curves

Vishnu Vardhan Rudravaram
Department of Statistics, Ramanujan School of Mathematical Sciences
Pondicherry University, Puducherry

Received: 13 June 2021; Revised: 22 July 2021; Accepted: 24 July 2021

Abstract

Receiver Operating Characteristic (ROC) curve is widely used and accepted tool to
assess the performance of a classifier or procedure. Along with this, comparing the diagnostic
test procedures or ROC curves is also of major concern and interest. A multivariate extension
of ROC (MROC) curve considers a linear combination of several markers for classification. In
this work, some inferential procedures are given to compare MROC curves that are parallel,
superior and crossover using the scores of MROC curve and also using mean vectors and
dispersion matrices. Further, a modified version of AUC (mAUC) under MROC setup is
proposed to address the case of crossover MROC curves. It is also shown that mAUC
performs better than AUC. The performance of mAUC in the aspect of crossover curves is
supported by a real dataset and simulation studies at different sample sizes.
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1. Introduction

In theory of Statistics, there are several tools and techniques available and being de-
veloped to address various practical issues in diversified areas. One such prominent area
is Classification Scenario. The term “Classification” indicates the method of allocating or
assigning a group of objects/individuals into one of the predefined classes or populations.
The prominent fields of research where the logical thinking and analytical processing of
classification techniques can flourish are Diagnostic Medicine, Life Sciences, FExperimental
Psychology etcetera.

In general, there are two major objectives in classification problems: the first one is to
define a classifier rule and the second is to determine an optimal cutoff. These two objec-
tives are to be met in such a way that it should minimize the rate of misclassification. The
classifier rule will help in generating a decision matrix (usually referred as confusion matriz)
with probabilities of correct and incorrect classifications. The techniques available to han-
dle such classification problems are Logistic Regression, Discriminant Analysis and Receiver
Operating Characteristic (ROC) curve analysis. All these techniques are branched from the
hub of Statistical Decision Theory (SDT). The first two techniques meet the above men-
tioned criteria of obtaining a classifier rule and optimal cutoff. In addition to the mentioned
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objectives, ROC curve has yet another feature of providing the accuracy of a classifier.

ROC curve took its origin during World War II and was first used in Signal Detection
Theory for analyzing radar images. This technique has its applications in wide variety
of fields such as Medicine, Experimental Psychology, Banking, Finance and many more.
However, the promising area for the theoretical development of ROC curve is Diagnostic
Medicine. Apart from providing a classifier rule and optimal threshold another important
advantage of ROC curve is in assessing the performance of diagnostic test and in choosing a
better one when there are two tests for a particular scenario. Over the years, application of
ROC curve analysis has been observed in many fields and a few to mention are Experimental
Psychology, Diagnostic Medicine and Radiology (Krzanowski and Hand, 2009), Machine
learning (Provost et al., 1998).

Let there exist two populations denoted by ‘0’ (normal or healthy) and ‘1’ (abnormal
or diseased) where ‘¢’ be the cutoff. The individual/object is said to belong to population
‘17 if the score ‘S’ is greater than ¢ otherwise belongs to population ‘0’. Four probabilities
and their associated classification rates can be defined as

The probability that an individual/object from ‘1’ is correctly classified as ‘1’

i.e, True Positive Rate TPR = P(S > ¢|1)

o The probability that an individual/object from ‘0’ is misclassified as ‘1’

i.e., False Positive Rate FPR = P(S > ¢|0)

The probability that an individual/object from ‘0’ is correctly classified as ‘0’

i.e., True Negative Rate TNR = P(S < ¢|0)

The probability that an individual/object from ‘1’ is misclassified as ‘0’

i.e., False Negative Rate FNR = P(S < ¢[1)

The ROC curve underpins an unknown monotonic transformation and it can be defined
as the tradeoff between two intrinsic measures namely 1- specificity (FPR) and sensitivity
(TPR). It is a unit square plot ranging from (0, 0) to (1, 1) and a line connecting these
points is called the chance diagonal. Sensitivity is the probability that the test result is
positive when the condition is present and Specificity is the probability that the test result
is negative when the condition is absent.

Sensitivity(S,) = P(S > ¢|1); Specificity(S,) = P(S < ¢|0) (1)

The typical forms of ROC curve are depicted in Figure 1. The figure constitutes of three
cases of ROC curves: best, moderate and worst case. Each case indicates the extent of
classification that can be performed using the marker. The curve for best case reaches the
top left corner of the graph, the moderate case lies between the top left corner and chance
diagonal and the worst case runs parallel to the chance diagonal.
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A widely used summary measure of the ROC curve is the Area under the Curve (AUC)
which is the probability that a randomly chosen individual/object from population ‘1’ has
a higher score than a randomly chosen individual/object from population ‘0’. It depicts the
amount of correct classification that can be achieved using the cutoff of a marker under
study. Probabilistically,

AUC = P(S, > Sp) (2)

where Sy and S; € S are the test scores of populations ‘0’ and ‘1’ respectively. A prac-
tical lower bound for AUC is 0.5 and any test with AUC = 0.5 is said to have random
classification. As the value of AUC gets closer to 1, better the performance of a test. The
mathematical formulation of Binormal ROC model is given in detail in the next section.

ROC Curves for three different cases
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Figure 1: Typical forms of ROC curve

2. Binormal ROC Curve and its Ramifications

Let Sy and S; be two random variables which denote scores from populations ‘0’ and
‘1’ respectively. These are assumed to follow normal distribution with means py and pu; and
standard deviations o and o, respectively (Green and Swets, 1966). i.e., So ~ N(uo,07)
and S ~ N(uy,0?). It is assumed that the mean of population ‘1’ is greater than population
‘0" (u1 > po) but no restrictions are posed on standard deviations. The intrinsic measures
of ROC curve, TPR and FPR at a cutoff ‘¢’ are defined as

FPR = 2(c) :@(“0_C>; TPR = y(c) :cp(’“ _C> (3)

0o 01
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using FPR, we obtain ¢ = pg — 0o® ! [z(c)], then TPR can be written as

TPR = y(c) = & (’“‘“0 + "ch—l[x(c)]) (4)

01 01

The expression for Binormal ROC curve becomes
y(c) = @(a+b @ [z(c)]) (5)
where a = %, b= 2% and ®(.) is the standard normal deviate.

The AUC of the ROC curve can also be defined as the average true positive rate over
all possible false positive rates in the range (0, 1).

AUC :/o y(c) dz(c) (6)

The expression for the AUC of Binormal ROC model is given as
AUC =& ([ ——— (7)
B 1+ 02

3. ROC Models with Multiple Markers

One of the problems in Obstetrics and Gynecology is to identify a better procedure
which helps in studying the blood flow from womb of the mother to baby for identifying
the baby’s growth. The study has multiple markers that need to be considered to identify
whether there is a sufficient blood flow which in turn helps in classifying the subjects into one
of the two groups: with adequate and inadequate blood flow. Another situation pertaining
to Ecology is also observed where there is a need to identify the species type of a bug as well
as to distinguish the gender of a particular species based on the features/characteristics of
that particular bug. Hence, one cannot always depend on a single marker to judge the indi-
vidual’s/object’s status. This scenario creates a necessity to develop a model that considers
more than one marker for classification.

Su and Liu (1993) proposed best linear combinations where both healthy and diseased
populations follow multivariate normal distribution by considering two cases, one with pro-
portional covariance matrices and the other with no restriction on covariance matrices. In the
first case with proportional covariance matrices the linear combination, is said to maximize
sensitivity over a range of specificities. In the case of populations with unequal covariance
matrices, the linear combination is the one that maximizes AUC among all possible com-
binations. Further confidence intervals were developed for AUC of the Su and Liu model
by Reiser and Faraggi (1997) and named it as Generalized ROC model. Schisterman et.al.
(2004) discussed covariates effects on the generalized ROC model and provided approximate
confidence intervals for the measure AUC.

Liu et al. (2005) proposed methods to estimate the best linear combinations by max-
imizing sensitivity at a fixed specificity for Su and Liu model. They proved that the linear
combinations proposed outperform Su and Liu model when there exists heterogeneity among
covariance structures.
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Countable articles were found in literature for the above multivariate classification
in the context of ROC curves. The model proposed by Su and Liu (1993) was used as
a base model for a considerable number of these articles. However, Su and Liu model has
mathematical complexity when dealing with non-proportional covariance structures. Several
authors provided improvisations on the model but none of them suggested a single linear
combination that can accommodate both equal and unequal covariance structures. This
motivated to the development of a new ROC model that can accommodate equal and unequal
covariance structures by linearly combining multiple markers at hand (Sameera et al., 2016).

4. The Multivariate Receiver Operating Characteristic (MROC) Curve

Let X = (z1,29,...,x) be the ‘6’ markers involved in the study. Let my and m be
two independent populations (groups) assumed to follow multivariate normal distribution
with mean vectors g, p11; covariance matrices Yo, >; and sample sizes ng,n; respectively
and n = ng + n;. Then the probability density function for 7;,2 = 0,1 is given by

1 1 Ty—1
F( X, i) = Wexp{_z()( — i) B (X — Mz)}

where ¥ is positive definite.

Let z(c) denote the false positive rate (FPR) and y(c) denote the true positive rate
(TPR) where ‘¢’ is the cutoff. The expressions for FPR, ¢ and TPR are defined as

c—b"po
VOTY0b

where b(# 0) be a kX1 vector and ‘U’ is the test score. Using (8), the expression for ‘c’ is
given as

FPR:w(c):P(U>c\7r0):1—<I>< (8)

e = b g+ /bTS0b ®71(1 — z(c)) (9)

where ¢~!(.) is the inverse function of ®(.)

TPR =y(c) = P(U > c|m) = ® (%) (10)

substituting (9) in (10) we get

ROC(c) =9

bT(:ul - ﬂO) Vv bTEOb ! (1 — FPR)] (11)

VT, b
The expression in (11) is the form of MROC curve.

The linear combination is defined as U = b" X = byx; + boxs + ... + byxi, where the
vector ‘b’ is obtained using Minimax procedure (Anderson and Bahadur ,1962) as

b= [t31 + (1 — )% ' (11 — po) (12)

here ‘t’ is a constant which lies in the interval (0, 1) and its value is determined by trial
and error method. The cutoff ‘¢’ at each ‘t’ can be obtained through Minimax procedure by
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equating TPR and FPR. On solving, we obtain
lel,l vV bTZOb + bT[L()\/ bTElb
CcC =
VOTYb + V/bTEob

The AUC of MROC curve can be obtained by integrating (11) over [0, 1]. However, the
expression of AUC can also be derived using probabilistic notations. Let Uy and U; be the
test scores randomly taken from m and 7; populations respectively, (U; > Uy).

(13)

LAUC = P(Uy > Uy)
AUC = P(U, — U, > 0)
The test scores Uy and U; are independent and follow normal distribution
i.e., Uy ~ N(b" o, b" $ob) and Uy ~ N(b” py, b 21b), then
Uy — Uy ~ Ny — 0" 1o, 67 S0b + b7'10).

Hence, if ‘7z’ denotes standard normal variable then,

bT(Zl + Zoﬂ)

Higher the AUC lower the overlapping area of two populations and vice versa.

The two intrinsic measures of ROC curve that are used in plotting the curve, Sensitivity
(S,) and Specificity (S,) defined as abilities of correct identification of the two groups 1’
and '0’ respectively and are given as follows

S, = P(U > c|m) = ® i —c) g P(U < ¢|m) = ® ¢ b (15)
! VIS ) ’ N

5. Introduction to Crossover Curves

In classification, attention is required for those reference values (cutoff) of markers
which provide at least a moderate amount of correct classification with a greater suscepti-
bility. In usual context of assessing the performance of a test, scores which are nearer to
reference value are given same amount of weightage as that of the scores farther from refer-
ence value. The AUC so computed will be contaminated and the true accuracy or the actual
performance will be masked. This misleads the interpretation of the measures of ROC as
well as the optimal cutoff and leads to high amount of misclassification. Let us consider two
tests A and B for better identification of a particular abnormality in individuals. Suppose
that the curves of tests A and B cross each other and have at most similar accuracies. Un-
der these circumstances, it is very difficult to notify a better test which has more ability to
distinguish individuals.

To fix this issue, a solution to compare two crossover curves by means of a modified
version of AUC (mAUC) of MROC curve by eliciting the importance of mAUC over AUC.

Numerical illustrations are given using real data sets.
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5.1. Modified Area under the Curve (mAUC)

AUC is the probability that an individual/object from group ‘1’ has a score greater
than individual /object from group ‘0’ One small drawback with this definition is that, it
does not take into account the amount by which the scores of group ‘1’ and group ‘0’ differ.
To overcome this, a small weight is assigned to those scores where the difference between
scores is comparatively small (Figure 2).

Figure 2: Hypothetical distribution of scores of two populations

mAUC was defined probabilistically by Yu et al. (2014) under univariate setup as
weighted sum of two AUC’s.

i.e., mAUC = P(X, — Xo > 6) + (1 = \)P(0 < X1 — Xy < 0)

mAUC = (1 - N)P(X; > Xo) + \P(X) > X, +6) (16)

The first part of this mAUC represents the conventional AUC with (1 — \) as its weight and
the second part constitutes an additional parameter ‘9’ with ‘N’ as its weight. The main role
of ‘4’ is to magnify the true status of scores of the individuals that are nearer to the reference
value. Once the ‘0’ value is imposed, a clear identification can be made about those scores
that can be treated as true positives, which is the criterion of interest. This supports in
giving out an accuracy which can be considered to be better than the conventional AUC.
Using the above probabilistic notations, mAUC is derived for MROC model and is given as

1 bT(,Ul — lo) (bT(Ml — fip) — 0)
mave == e(gotey) oo (G ramt)

In equation (17), the values of parameters ‘A’ and ‘§’ are to be chosen in such a way that
the true accuracy of a test can be extracted by minimizing the effect of nearby points of the
threshold. If ‘A’ value is taken to be 0, mAUC reduces to AUC and if it is taken as 1, the
probability P(X; > Xy+0) is only taken into account. Any value of ‘A’ greater than 1 would
result in making the probability P(0 < X; — Xy < J) value a penalty. Hence, a reasonable
choice for ‘A’ lies in the range (0, 1), larger the ‘A’ value lower the importance on AUC. In
order to choose a ‘¢’ that is meaningful and reasonable the following result is used.
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Result: The confidence interval for mean vector of multivariate normal distribution is

- k(n—1) - k(n—1)
(bTX — \l T]{j) Fk’(n_k)(C() bTSb, bTX + \l ﬁ Fk,(n—k) (CY) bTSb

=

where n is the number of samples; k is the number of markers and b7Sb is the quadratic
form. (Result 5.3, Johnson and Wichern (2007), p.225)

Using the above result, the upper bound of population ‘0’ can be written as

S k’(’l’Lo — 1)
b' Xy — | ——— F (no— b7 Spb

and parameter ‘0’ can be chosen as

k(no — ].)
— % Fi (no—r) () bTSpb
\l no(no — k) I, (no—) (@) 0

. The main reason for this choice of ‘9’ is that it is part of the upper bound for the mean
vector of population ‘0. If an observed score is larger than this upper bound, then individual’s
status can be affirmatively called as true positive. The variance of mAUC expression cannot
be derived explicitly and hence the concept of bootstrapping is used. If ‘B’ bootstraps are
generated from the dataset, then the estimate and variance of mAUC is given as

b

B
5 S (mAUC, — mAUC,,)*  (18)

b=1

N 1B .
mAUC,s = B ZmAUCb ; Var(mAUC)s) =
b—1

5.2. Comparing two Crossover MROC curves

Two crossover curves can be compared using their mAUC values. The testing procedure
proposed to test the hypothesis

HO . mAUC(l) = mAUC(g) ~ H1 . mAUC(l) 7é mAUC'(g)

for identifying the difference between two cross over MROC curves is defined as

. mfoC’bs(l) — mAAUCbs(2)
va'r(mfoC’bs(l)) — var(mfoCbs(z))

(19)

where m/fUC’bs(i) and var(mfoC’bS(i)); i = 1,2 can be estimated using equation (18). The Z
statistic follows standard normal distribution asymptotically. The bootstrapped confidence
interval for mAUC can be obtained using

mAUC,, + Z(l_%) var(mAAUCbs)
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6. Results and Discussions

The proposed methodology is supported using real datasets namely, [UGRFDS and ILP
datasets. For illustration purposes, all computations of mAUC and its confidence intervals
under real datasets are given at A = 0.3,0.5,0.8.

JUGRFDS dataset

The dataset IUGRFDS contains data collected from two independent diagnostic proce-
dures CPR and MCA which exhibit a moderate amount of classification. Here, comparison is
to be made between CPR and MCA procedures in order to find out which procedure is better
in identifying the sufficient blood flow from the mother to baby. The AUC’s and mAUC’s of
CPR and MCA along with their corresponding 7 statistic value are computed and reported
in Table 1. The crossover MROC curves for CPR and MCA procedures are shown in Figure 3.

Table 1: Comparison between CPR and MCA using mAUC

Measure CPR (LL, UL) MCA (LL, UL) Z value (p-value)
mAUCy3 0.6551 (0.5196, 0.7815) 0.5902 (0.5034, 0.7254) 0.8008 (0.21279)
mAUCy5 0.6369 (0.5106, 0.7631) 0.5774 (0.4453, 0.7090) 0.7070 (0.239V9)
mAUCys  0.6095 (0.4817, 0.7577) 0.5581 (0.4558, 0.7032) 0.5777 (0.282N5)

AUC 0.6824 (0.5702, 0.7906) 0.6095 (0.5329, 0.7139) 0.9536 (0.170™)
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Figure 3: Crossover MROC curves for IUGRFDS dataset
Here NS = Not Significant, L. = Lower Limit, UL = Upper Limit.

For three values of A, mAUC values are lower than that of AUC values. This is due
to the fact that mAUC expression takes value of A\ into account which results in assigning
an appropriate weight to those scores that are closer to the threshold for extracting the true
accuracy of a diagnostic procedure. However, the choice of A should be in such a way that the
accuracy is not too low. The results portrayed in Table 1 depict that both the procedures;
CPR and MCA are equally effective in identifying the blood flow from mother to baby.
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ILP dataset

The ILP dataset is divided into two sets based on gender as males and females to check
whether disease identification is identical in both the genders. MROC curves of males and
females are then compared to check if classification is better in one gender compared to the
other. The mAUC and AUC values are calculated for both datasets and placed in Table
2 along with their Z values and significance. The MROC curves obtained for males and
females can be seen in Figure 4.

Table 2: Comparison between Males and Females using mAUC

Measure Males (LL, UL) Females (LL, UL) Z value (p-value)
mAUCy3 0.6989 (0.6721, 0.7241) 0.6116 (0.5252, 0.7025) 1.8327 (0.033"%)
mAUCy5s 0.6908 (0.6597, 0.7230) 0.5912 (0.5118, 0.6697)  2.0605 (0.019%)
mAUCyg 0.6788 (0.6571, 0.7124) 0.5606 (0.4512, 0.6598)  2.3824 (0.009%*)

AUC  0.7109 (0.6759, 0.7297) 0.6422 (0.5591, 0.7203) 1.4726 (0.070N5)

Here NS = Not significant, * = significant, LL. = Lower Limit, UL = Upper Limit.
Figure 4: Crossover MROC curves for ILP dataset
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A better classification is seen in males than females when mAUC’s obtained at A = 0.5
and A = 0.8. However, the Z value obtained for AUC’s shows no difference between the
curves indicating that the influence of scores close to the threshold is high and masking the
true information. The result obtained at A = 0.3 depicts an insignificant value stating that
the weight assigned is not sufficient to extract true information from the scores of markers
that are nearer to cutoff.

Observations

In this work, detailed discussion is made on a new summary measure for the MROC
curve namely modified AUC is proposed. Inferential procedure is developed for this modified
AUC in order to identify the true difference between MROC curves that cross each other.
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