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Abstract 

The purpose of this paper is to unify constructions of group divisible designs by making 
use of certain balanced incomplete block designs, skew-Hadamard matrices, regular Hadamard 
matrices, balanced generalized Weighing matrices, Conference matrices and generalized 
Conference matrices. The constructions unify the results of Dey (1977), Dey and Nigam 
(1985), Parihar and Shrivastava (1988), De and Roy (1990) and generalize some results of 
Bhagwandas et al. (1985), Sinha (1991b) and Kadowaki and Kageyama (2009). In the process 
of investigations, some group divisible designs in the range of r, k ≤ 10 are found and 
catalogued. These designs are obtained from the works of other authors but are not reported in 
Clatworthy (1973) and Sinha (1991a). 

 
Keywords: Balanced incomplete block designs; Group divisible designs; Generalized 
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0. Prologue 

Dr. Kishore Sinha had the opportunity of working with Professor Aloke Dey, at IASRI, 
New Delhi as a Post- doctoral research fellow of CSIR, New Delhi during 1977- 1979. It was 
during this period that he got fascinated with the research work of Professor Aloke Dey 
especially in the area of Partially Balanced Incomplete Block (PBIB) Designs. His association 
with Professor Aloke Dey continued growing in strength even after he left IASRI in 1979. His 
untimely demise has been a personal loss to Kishore in particular and to statistician’s fraternity 
in general.  

Various methods of constructions and trial and error solutions of group divisible designs 
are available and scattered over the literature. To the best of our knowledge, Dey (1977) for 
the first-time used matrix approach for the constructions of group divisible designs. His works 
motivated us to take up unification and generalization of constructions of group divisible 
designs.  It is my proud privilege to pay my most respectful homage by dedicating this research 
paper to his memory.  
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1.  Introduction 

Some relevant definitions in the context of the paper are as follows: 

1.1. Group divisible designs 

A Group divisible (GD) design is an arrangement of v (= mn; m, n ≥ 2) treatments into b 
blocks such that each block contains k (<v) distinct treatments, each treatment occurs r times 
and any pair of distinct treatments which are first associates occur together in λ1 blocks and in 
λ2 blocks if they are second associates. Furthermore, if r–λ1 = 0 then the GD design is singular; 
if r–λ1 > 0 and rk–vλ2 = 0 then it is semi-regular (SR); and if r–λ1 > 0 and rk–vλ2 > 0, the design 
is regular (R). Semi- regular and regular GD designs are denoted by SRGD and RGD 
respectively. Following Cheng (1995), GD designs with parameters satisfying b = 4(r–λ2) are 
called family (A) GD designs. 

1.2. α- Resolvable design 

A block design D (v, b, r, k) whose b blocks can be divided into 𝑡 = 𝑟 𝛼⁄  classes, each of 
size 𝛽 = 𝑣𝛼 𝑘⁄  and such that in each class of 𝛽 blocks every treatment of D is replicated α 
times, is called an α- resolvable design. When α=1 the design is said to be resolvable. 

1.3. Hadamard matrices 

An n×n matrix H = (Hij) with entries Hij as ±1 is called a Hadamard matrix if 
H𝐇!=𝐇!H=nIn, where 𝐇! is the transpose of H and In is the identity matrix of order n. A 
Hadamard matrix is in normalized form if its first row and first column contain only +1’s. A 
Hadamard matrix H is said to be of skew type or skew- Hadamard if its main diagonal entries 
are +1 and H–In is skew- symmetric. In other words, a Hadamard matrix is called skew-
symmetric if Hij = –Hji	∀i≠ 𝑗 and Hii = 1 ∀i. 
 

Example 1: 𝐇 = 11 1
1 −13 and 𝐇 = 4

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

5 are Hadamard matrices of order 2 

and 4 respectively. 

Example 2: 𝐇 = 11 −1
1 1 3 and 𝐇 = 4

1 1 1 1
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1

5 are skew- Hadamard matrices of 

order 2 and 4 respectively. 
 
1.4.  Conference matrices 

 
A Conference matrix of order n is an n×n matrix C with diagonal entries 0 and off- 

diagonal entries ±1 such that 𝐂𝐂! = (𝑛 − 1)𝐈". A Conference matrix C is symmetric if 𝐂 = 𝐂! 
and skew- symmetric if 𝐂 = −𝐂!. A Conference matrix of order n is denoted as CM (n). 
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Example 3: 𝐂 = 	

⎝

⎜⎜
⎛

0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0 ⎠

⎟⎟
⎞

 is a symmetric Conference matrix and           

                

                     𝐂 = 4

0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0

5 is a skew – symmetric Conference matrix.  

 
1.5. Regular Hadamard matrices 
 

A Hadamard matrix is regular if sum of the elements in any row of the matrix is constant. 
It is known that the order of a regular Hadamard matrix is a perfect square 4t2, t a positive 
integer. The number of entries +1 in any row is a constant, either 2t2–t or 2t2+t. In the first case, 
any two rows will have t2 –t positions wherein both have entry +1; the second case has t2 + t 
positions wherein both have entry +1. For methods of construction, see Crnkovic (2006).  

 

Example 4: 𝐇 = 4

−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
1 −1 −1 −1

5 is a regular Hadamard matarix of order 4. 

 

1.6. Generalized weighing matrix 

Let n ≥ w ≥ 1. A Weighing matrix W(n, w) of order n and weight w is an n×n (0, ±1) – 
matrix such that 𝐖𝐖! = 𝑤In. 
 

A generalized Weighing matrix is a v×b matrix M= (mij) with entries 0 and elements of 
a multiplicative group G of order g such that the inner product of any pair of distinct rows 
contains every element of G same number of times.  

 
A generalized Weighing matrix v×b with the additional property that every row contains 

precisely r nonzero entries, each column contains exactly k nonzero entries and the inner 
product of any pair of distinct rows contains every group element exactly 𝜆 𝑔⁄  times, is known 
as a generalized Bhaskar Rao design GBRD (v, b, r, k, λ; G). By replacing its nonzero entries 
by unity, produces the incidence matrix of a BIB design (v, b, r, k, λ).  

A Bhaskar Rao design BRD (v, b, r, k, λ) is a v×b (0, ±1) – matrix such that the inner 
product of any pair of distinct rows is zero and replacing –1 by unity, produces the incidence 
matrix of a BIB design (v, b, r, k, λ). 

 
A GBRD (v, b, r, k, λ; G) with r = k and v = b is also known as a balanced generalized 

Weighing matrix BGWM (v, k, λ; G). 

If the diagonal entries of BGWM (v, k, λ; G) are zero and the inner product of any pair 
of distinct rows contains each element of G exactly λ times, then it is known as generalized 
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Conference matrix, GCM (G; λ). The order of GCM (G; λ) is λg+2. If G = {±1}, then GCM 
(G; λ) is a Conference matrix of order 2(λ+1). For details, see Colbourn and Dinitz (2007) and 
Tonchev (2009). 
 

Example 5: A GBRD (4, 12, 9, 3, 6; C6) over a cyclic group 𝐶# = {1, 𝛼, 𝛼$, 𝛼%, 𝛼&, 𝛼'} is 

                      4

1 1 1 1 1 1 1 1 1 0 0 0
1 𝛼& 𝛼$ 𝛼% 𝛼 𝛼' 0 0 0 1 1 1
1 𝛼$ 𝛼& 0 0 0 𝛼% 𝛼 𝛼' 𝛼% 𝛼 𝛼'
0 0 0 1 𝛼$ 𝛼& 𝛼% 𝛼' 𝛼 1 𝛼$ 𝛼&

5. 

 

Example 6: BRD (6, 6, 5, 5, 4) = 

⎝

⎜⎜
⎛

0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0 ⎠

⎟⎟
⎞

. 

 
Example 7: A 5 x 5 BGWM (5, 4, 3; C3) over a cyclic group 𝐶% = {1, 𝛼, 𝛼$} is     

  

⎝

⎜
⎛
0 𝛼$ 𝛼 𝛼$ 𝛼$
1 0 𝛼$ 𝛼 𝛼$
1 1 0 𝛼$ 𝛼
𝛼$ 1 1 0 𝛼$
1 𝛼$ 1 1 0 ⎠

⎟
⎞

. 

 

Example 8: A GCM (C3; 2) of order 8 over a cyclic group 𝐶% = {1, 𝛼, 𝛼$} is 

                         

⎝

⎜
⎜
⎜
⎜
⎛

0 1 1 1 1 1 1 1
1 0 1 𝛼$ 𝛼 𝛼 𝛼$ 1
1 1 0 1 𝛼$ 𝛼 𝛼 𝛼$
1 𝛼$ 1 0 1 𝛼$ 𝛼 𝛼
1 𝛼 𝛼$ 1 0 1 𝛼$ 𝛼
1 𝛼 𝛼 𝛼$ 1 0 1 𝛼$
1 𝛼$ 𝛼 𝛼 𝛼$ 1 0 1
1 1 𝛼$ 𝛼 𝛼 𝛼$ 1 0 ⎠

⎟
⎟
⎟
⎟
⎞

. 

1.7. Generalized Hadamard matrix and Difference matrix 

A generalized Hadamard matrix GHM (λ, g) over a group G of order g is a balanced 
generalized weighing matrix with v = b = k = λ. For GHM we require that the matrix should be 
square, but if we relax this condition and allow v×b (v ≤ b) matrices, along with the conditions 
imposed on GHM, we obtain difference matrices. For details see Lampio (2015). 
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Example 9: GHM	(6,3) =

⎝

⎜⎜
⎛

1 𝛼 𝛼 1 𝛼$ 𝛼$
𝛼$ 𝛼$ 𝛼 1 1 𝛼
𝛼$ 𝛼 𝛼$ 1 𝛼 1
1 1 1 1 1 1
𝛼 𝛼$ 1 1 𝛼 𝛼$
𝛼 1 𝛼$ 1 𝛼$ 𝛼 ⎠

⎟⎟
⎞

 is a generalized Hadamard  

 
 matrix with elements from the cyclic group C3 = {1, α, α2}. 
 

Example 10: A 3×8 difference matrix over a cyclic group C4 = {1, α, α2, α4} is          

                                             O
1 1 1 1 1 1 1 1
1 1 𝛼 𝛼 𝛼$ 𝛼$ 𝛼% 𝛼%
1 1 𝛼$ 𝛼% 𝛼 𝛼% 𝛼 𝛼$

P. 

 

1.8. Kronecker sum of two matrices 
 

Let A= (aij) and B= (bij) be two matrices of orders m×n and p×q respectively over a field. 
Then the Kronecker sum	𝐀 ⊕ 𝐁 is an mp×nq matrix given by 

 

𝐀⊕𝐁 = 𝐀⊗ 𝐉(,* + 𝐉+," ⊗𝐁 =

⎝

⎛

𝑎,,𝐉(,* + 𝐁 𝑎,$𝐉(,* + 𝐁 ⋯ 𝑎,"𝐉(,* + 𝐁
𝑎$,𝐉(,* + 𝐁 𝑎$$𝐉(,* + 𝐁 ⋯ 𝑎$"𝐉(,* + 𝐁

⋮ ⋮ ⋮ ⋮
𝑎+,𝐉(,* + 𝐁 𝑎+$𝐉(,* + 𝐁 ⋯ 𝑎+"𝐉(,* + 𝐁⎠

⎞. 

where 𝐉-×/ is the 𝑣 × 𝑏 matrix all of whose entries are 1, A⊗B is the Kronecker (or tensor) 

product of two matrices A and B. 

 
Here, several methods of constructions of series of GD designs from certain BIB designs, 

skew Hadamard matrices, regular Hadamard matrices, balanced generalized Weighing 
matrices, Conference matrices and generalized Conference matrices are described. The 
constructions unify the results of Dey (1977), Dey and Nigam (1985), Parihar and Shrivastava 
(1988), De and Roy (1990) and generalize several results of Bhagwandas et al. (1985), Sinha 
(1991b) and Kadowaki and Kageyama (2009). A comprehensive coverage of constructions of 
GD designs may also be found in Arasu et al. (1991), Dey and Balasubramanian (1991), Dey 
(1986, 2010), Raghavarao (1971), Raghavarao and Padgett (2005). In the process of 
investigations, some group divisible designs in the range of r, k ≤ 10 are found and catalogued. 
These designs are obtained from the works of other authors but are not reported in Clatworthy 
(1973) and Sinha (1991a). 
 

The following notations are used: 𝐈" is the identity matrix of order n, 𝐉-×/ is the 𝑣 × 𝑏 
matrix all of whose entries are 1 and 𝐉-×- = 𝐉-, A⊗B is the Kronecker product of two matrices 
A and B,	𝐀! is the transpose of matrix A and On is null matrix of order n. SRX and RX numbers 
are from Clatworthy (1973). The design numbers SRXa and RXa, b, c, d are not found in 
Clatworthy (1973); and these designs are supposed to be located between SRX and SR(X+1) 
and RX and R(X+1) respectively. 
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2.  The Constructions 
 
2.1. From BIB designs  

Theorem 1: There exists a GD design with parameters  

𝑣∗ = 𝑣𝑠, 𝑏∗ = 𝑠𝑡𝑣, 𝑟∗ = 𝑡(𝑘 + 𝑠 − 1), 𝑘∗ = 𝑘 + 𝑠 − 1, 𝜆, = (𝑠 − 2)𝑡, 𝜆$ = 𝜆,𝑚 = 𝑣, 

	𝑛 = 𝑠;𝑚, 𝑠 ≥ 2; 𝑡 = 𝑟 𝛼⁄                      (1) 

where v, k, λ are the parameters of an α- resolvable BIB design with 𝜆 =
	𝑡[(𝑘 + 𝑠 − 1)(𝑘 + 𝑠 − 2) − (𝑠 − 1)(𝑠 − 2)] 𝑠(𝑣 − 1).⁄  

Proof: Let Ni (1 ≤ i ≤ t) represent the incidence matrices corresponding to resolution classes 
of an α- resolvable balanced incomplete block (BIB) design with parameters v, b = tv, r, k and 
𝜆 = 	 𝑡[(𝑘 + 𝑠 − 1)(𝑘 + 𝑠 − 2) − (𝑠 − 1)(𝑠 − 2)] 𝑠(𝑣 − 1)⁄  and also satisfying the condition 
∑ (𝐍𝒊 + 𝐍𝒊!) = 𝜆(𝐉 − 𝐈)𝒗3
45, . 

Then the incidence pattern  

𝐌 = 𝐈𝒔⊗𝐍𝒗	×𝒕𝒗 + (𝐉𝒔 − 𝐈𝒔) ⊗ (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) 

                                          = g

(𝐍𝟏|𝐍𝟐|⋯ |𝐍𝒕) (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) ⋯ (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗)
(𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) (𝐍𝟏|𝐍𝟐|⋯ |𝐍𝒕) ⋯ (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗)

⋮ ⋮ ⋱ ⋮
(𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) ⋯ (𝐍𝟏|𝐍𝟐|⋯ |𝐍𝒕)

i 

represents a GD design with parameters (1). 

For t = s = 2 in Theorem 1 we obtain: 

Corollary 1: There exists a GD design with parameters 

𝑣∗ = 2𝑣, 𝑏∗ = 4𝑣, 𝑟∗ = 2(𝑘 + 1), 𝑘∗ = 𝑘 + 1, 𝜆, = 0, 𝜆$ = 𝜆 = 𝑘(𝑘 + 1) (𝑣 − 1)⁄ ,	 

      𝑚 = 𝑣, 𝑛 = 2. 

For t = 2, s = 3 in Theorem 1 we obtain: 

Corollary 2: There exists a GD design with parameters 

𝑣∗ = 3𝑣, 𝑏∗ = 6𝑣, 𝑟∗ = 2(𝑘 + 2), 𝑘∗ = 𝑘 + 2, 𝜆, = 2, 𝜆$ = 𝜆 = 2𝑘(𝑘 + 3) 3(𝑣 − 1)⁄ ,	  

𝑚 = 𝑣, 𝑛 = 3. 

Table 1 lists GD designs constructed using Corollaries 1 and 2: 

 

‘ 
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Table 1: RGD from BIB designs 
 

No. GD: (v, r, k, b, λ1, λ2, m, n) Source: 3- resolvable BIB design  
(v, r, k, b, λ) 

1  R106: (10, 8, 4, 20, 0, 3, 5, 2) (5, 6, 3, 10, 3), Corollary 1 

2  R128: (26, 8, 4, 52, 0, 1, 13, 2) (13, 6, 3, 26, 1), Corollary 1 

3  R150: (15, 10, 5, 30, 2, 3, 5, 3) (5, 6, 3, 10, 3), Corollary 2 

4 R160: (39, 10, 5, 78, 2, 1, 13, 3) (13, 6, 3, 26, 1), Corollary 2 

The incidence matrix of a 3- resolvable BIB design with parameters (5, 6, 3, 10, 3) used 
for constructions of R106 and R150 in Table 1 can be partitioned as: 

𝐍𝟓×𝟏𝟎 = (𝐍𝟏|𝐍𝟐) =

⎝

⎜
⎛
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
1 0 1 1 0

k
k

0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0⎠

⎟
⎞

 

i. e. N1= circ (0 1 0 1 1) and N2= circ (0 1 1 1 0). 

Example 11: The blocks of R106 using Corollary 1 are given as:  
[(2, 3, 5, 6), (1, 3, 4, 7), (2, 4, 5, 8), (1, 3, 5, 9), (1, 2, 4, 10), (3, 4, 5, 6), (1, 4, 5, 7),  
(1, 2, 5, 8), (1, 2, 3, 9), (2, 3, 4, 10), (1, 7, 8, 10), (2, 6, 8, 9), (3, 7, 9, 10), (4, 6, 8, 10),  
(5, 6, 7, 9), (1, 8, 9, 10), (2, 6, 9, 10), (3, 6, 7, 10), (4, 6, 7, 8), (5, 7, 8, 9)]. 

The GD scheme is given as the 5 x 2 array:  l1 2 3 4 5
6 7 8 9 10q

!
. 

Example 12: The blocks of R150 using Corollary 2 are given as:  
[(2, 3, 5, 6, 11), (1, 3, 4, 7, 12), (2, 4, 5, 8, 13), (1, 3, 5, 9, 14), (1, 2, 4, 10, 15), (3, 4, 5, 6, 11),  
(1, 4, 5, 7, 12), (1, 2, 5, 8, 13), (1, 2, 3, 9, 14), (2, 3, 4, 10, 15), (1, 7, 8, 10, 11),  
(2, 6, 8, 9, 12), (3, 7, 9, 10, 13), (4, 6, 8, 10, 14), (5, 6, 7, 9, 15), (1, 8, 9, 10, 11),  
(2, 6, 9, 10, 12), (3, 6, 7, 10, 13), (4, 6, 7, 8, 14), (5, 7, 8, 9, 15), (1, 6, 12, 13, 15), 
(2, 7, 11, 13, 14), (3, 8, 12, 14, 15), (4, 9, 11, 13, 15), (5, 10, 11, 12, 14), (1, 6, 13, 14, 15),  
(2, 7, 11, 14, 15), (3, 8, 11, 12, 15), (4, 9, 11, 12, 13), (5, 10, 12, 13, 14)]. 

The GD scheme is given as the 5 x 3 array:  r
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

s
!

. 

A 3- resolvable solution of BIB design with parameters (13, 6, 3, 26, 1) may be found in 
Kageyama and Mohan (1983). This solution for the construction of R128 and R160 in Table 1 
can be partitioned as: 

𝐍𝟏𝟑×𝟐𝟔 = (𝐍𝟏|𝐍𝟐) where N1= circ (0 0 0 0 1 0 0 0 0 0 1 0 1) and 

 N2 = circ (0 0 0 0 0 0 0 1 1 0 0 1 0). 
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Remark 1: The Corollary 1 gives patterned construction for R106 whereas an individual 
solution is given in Dey (1977). 
 

2.2. From skew- Hadamard matrices 

Skew- Hadamard matrices are known to exist for the order 2n, where n>0 is an integer; 
order 4t, where 4t-1 is a prime or prime power. For details on existence of skew- Hadamard 
matrices see Koukouvinos and Stylianou (2008). 

Lemma 1: Let N be the incidence matrix of a BIB design obtained from the core of a 
normalized skew- Hadamard matrix of order 4t. Then 

(i) 𝐍 + 𝐍! = (𝐉 − 𝐈)𝟒𝒕@𝟏 (ii) 𝐍𝟐 + 𝐍 = 𝑡(𝐉 − 𝐈)𝟒𝒕@𝟏. 

Proof: Let C be the core of a normalized skew- Hadamard matrix of order 4t obtained by 
deleting first row and first column. Then the diagonal entries of C are -1 and  

(a) C+I4t-1 is a skew- symmetric matrix i.e. 𝐂 +	𝐈𝟒𝒕@𝟏 = −(𝐂 +	𝐈𝟒𝒕@𝟏)! 

⟹ 𝐂+ 𝐂! = −2𝐈𝟒𝒕@𝟏. 

(b) 𝐂𝐂! = 4𝑡𝐈𝟒𝒕@𝟏 − 𝐉𝟒𝒕@𝟏. 

Clearly 𝐍 = (𝐂 + 𝐉𝟒𝒕@𝟏) 2⁄  represents a symmetric (4t–1, 2t–1, t–1) – design and N, 𝐍! have 
zeros in diagonals. Then 

𝐍 + 𝐍! = (𝐂 + 𝐂! + 2𝐉𝟒𝒕@𝟏) 2⁄ = (𝐉 − 𝐈)𝟒𝒕@𝟏 

𝐍𝟐 + 𝐍 = (𝐂𝟐 + 2𝐂𝐉𝟒𝒕@𝟏 + 𝐉𝟒𝒕@𝟏𝟐 + 2𝐂 + 2𝐉𝟒𝒕@𝟏) 4⁄
= [𝐂(𝐂 + 2𝐈𝟒𝒕@𝟏) − 2𝐉𝟒𝒕@𝟏 + (4𝑡 − 1)𝐉𝟒𝒕@𝟏 + 2𝐉𝟒𝒕@𝟏] 4⁄
= (−𝐂𝐂! + (4𝑡 − 1)𝐉𝟒𝒕@𝟏) 4⁄ 	= (−(4𝑡𝐈𝟒𝒕@𝟏 − 𝐉𝟒𝒕@𝟏) + (4𝑡 − 1)𝐉𝟒𝒕@𝟏) 4⁄
= 𝑡(𝐉 − 𝐈)𝟒𝒕@𝟏. 

Theorem 2: The existence of a skew- Hadamard matrix of order 4t implies the existence of a 
GD design with parameters  

v=b=6(4t–1), r=k=2(5t–2), λ1=5(t–1), λ2=2(2t–1), m=6, n=4t–1.          (2)  

Proof: Let N be the incidence matrix of a BIB design obtained from the core of a normalized 
skew-Hadamard matrix of order 4t and C be a conference matrix of order 6. Then replacing 0 
by 𝐈𝟒𝒕@𝟏, 1 by N and –1 by 𝐍! in C we obtain a (0, 1) - matrix 

𝐌 =

⎝

⎜
⎜
⎛

𝐈𝟒𝒕@𝟏 𝐍 𝐍 𝐍 𝐍 𝐍
𝐍! 𝐈𝟒𝒕@𝟏 𝐍! 𝐍! 𝐍 𝐍
𝐍! 𝐍! 𝐈𝟒𝒕@𝟏 𝐍 𝐍 𝐍!
𝐍! 𝐍! 𝐍 𝐈𝟒𝒕@𝟏 𝐍! 𝐍
𝐍! 𝐍 𝐍 𝐍! 𝐈𝟒𝒕@𝟏 𝐍!
𝐍! 𝐍 𝐍! 𝐍 𝐍! 𝐈𝟒𝒕@𝟏⎠

⎟
⎟
⎞

. 
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Using the relations 𝐍𝐍! = 𝐍!𝐍 = t𝐈𝟒𝒕@𝟏 + (𝑡 − 1)𝐉𝟒𝒕@𝟏and 𝐍𝟐 + 𝐍 = (𝐍!)$ + 𝐍! = 𝑡(𝐉 −
𝐈)𝟒𝒕@𝟏 one can see that M represents the incidence matrix of a GD design with the parameters 
(2).  

Remark 2: For t=3 in Theorem 2 we obtain a BIB design with parameters v=b=66, r=k=26, 
λ=10, reported in Hall (1998) as design number 214. 

Remark 3: For 𝐍 =	O
0 1 0
0 0 1
1 0 0

P and t=1 in the incidence matrix M of the Theorem 2 we 

obtain SR72. 

Following Dey and Balasubramanian (1991), series 25 (rephrased), p. no. 288:  

If there exists a symmetric BIB design with parameters 𝑣! = 4𝑡 − 1, 𝑘! = 2𝑡 − 1, 𝜆! = 𝑡 −
1(𝑡 ≥ 1) such that the incidence matrix N of the BIB design satisfies 𝐍 + 𝐍! = (𝐉 − 𝐈)𝒗!, then 
there exists a GD design with parameters: 𝑣 = 𝑏 = 𝑝𝑣!, 𝑟 = 𝑘 = 𝑝𝑘! + 1, 𝜆, = 𝑝𝑘!, 𝜆$ =
𝑝𝜆! + 1,𝑚 = 𝑣!, 𝑛 = 𝑝(≥ 2). 

It is known that the incidence matrix N of a BIB design obtained from the core of a normalized 
skew- Hadamard matrix of order 4t satisfies 𝐍 + 𝐍! = (𝐉 − 𝐈)𝟒𝒕@𝟏, see Lemma 4 above.  

Theorem 3: The existence of a skew- Hadamard matrix of order 4t implies the existence of a 
2- parameter GD design with parameters  

 𝑣 = 𝑏 = 𝑝(4𝑡 − 1), 𝑟 = 𝑘 = 𝑝(2𝑡 − 1) + 1, 𝜆, = 𝑝(2𝑡 − 1), 𝜆$ = 𝑝(𝑡 − 1) + 1, 

	𝑚 = 4𝑡 − 1, 𝑛 = 𝑝, 𝑡 ≥ 1.          (3) 

Proof: Let N be the incidence matrix of a BIB design obtained from the core of a normalized 
skew-Hadamard matrix of order 4t. Then using the relations 𝐍𝐍! = 𝐍!𝐍 = 𝑡𝐈𝟒𝒕@𝟏 + (𝑡 −
1)𝐉𝟒𝒕@𝟏and 𝐍 + 𝐍! = (𝐉 − 𝐈)𝟒𝒕@𝟏 it can be verified that 	𝐌 = 	 𝐈𝒑⊗ (𝐈𝟒𝒕@𝟏 + 𝐍) +	(𝐉 −
𝐈)𝒑⊗N is the incidence matrix of a GD design with parameters (3). 

The following Table lists regular GD designs constructed using Theorem 3: 

Table 2: RGD from skew- Hadamard matrices 
 

No.  GD: (v, r, k, b, λ1, λ2, m, n) p, t Reference 

1  R177: (14, 7, 7, 14, 6, 3,7, 2) p = t = 2 Clatworthy (1973) 
2  R206a: (21, 10, 10, 21, 9, 4, 7, 3) p = 3, t = 2 Freeman (1976) 

Remark 4: Following Theorem 7 of Bush (1979) and Corollary 4.1.1 of Kageyama and Tanaka 
(1981) we get: 
  
A GD design with parameters  
 

v=b=3(4t–1), r=k=2t+1, λ1=t–1, λ2=1, m=3, n=4t–1.                (4)               

is obtained from the core of a normalized skew- Hadamard matrix.  
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2.3. From Conference matrices 

Symmetric conference matrices are known to exist for orders 2, 4, 6, 10, … and skew- 
symmetric conference matrices are known to exist for 2, 4, 8, 12,….  

Theorem 4: The existence of a conference matrix of order t (≥4) implies the existence of family 
(A) regular GD designs with parameters  

(i) v =b=2t, r=k=t–1, λ1=0, λ2 = (t–2)/2, m=t, n=2.              (5) 

            (ii) v =b=2t, r=k=t+1, λ1=2, λ2 = (t+2)/2, m=t, n=2.     (6) 

Proof: Let C be a conference matric of order t (≥4) and 𝐍𝟏 = (𝐉𝒕 − 𝐈𝒕 + 𝐂) 2⁄ , 𝐍𝟐 =

(𝐉𝒕 − 𝐈𝒕 − 𝐂) 2⁄  then we claim that 𝐍 = w𝐍𝟏 𝐍𝟐
𝐍𝟐 𝐍𝟏

x is the incidence matrix of the GD design 

with parameters (5). We have 

 𝐍𝟏𝐍𝟏! + 𝐍𝟐𝐍𝟐! = [(𝐉𝒕 − 𝐈𝒕 + 𝐂) 2⁄ ] [(𝐉𝒕 − 𝐈𝒕 + 𝐂) 2⁄ ]! + [(𝐉𝒕 − 𝐈𝒕 − 𝐂) 2⁄ ] [(𝐉𝒕 − 𝐈𝒕 − 𝐂) 2⁄ ]! 

                         = (𝑡 − 1)𝐈𝒕 + [(𝑡 − 2) 2⁄ ](𝐉𝒕 − 𝐈𝒕). 

𝐍𝟏 + 𝐍𝟐 = 𝐉𝒕 − 𝐈𝒕 ⟹ (𝐍𝟏 + 𝐍𝟐)(𝐍𝟏 + 𝐍𝟐)! = (𝐉𝒕 − 𝐈𝒕)$ = (t − 1)	𝐈𝒕 + (t − 2)	(𝐉𝒕 − 𝐈3) 

                                 ⟹𝐍𝟏𝐍𝟐! + 𝐍𝟐𝐍𝟏! = [(t − 1)𝐈𝒕 + (t − 2)(𝐉𝒕 − 𝐈𝒕)] − [𝐍𝟏𝐍𝟏! + 𝐍𝟐𝐍𝟐! ] 

                     ⟹𝐍𝟏𝐍𝟐! + 𝐍𝟐𝐍𝟏! = [(𝑡 − 2) 2⁄ ](𝐉𝒕 − 𝐈𝒕) . 

Thus N1 and N2 satisfy the conditions given in Dey (1977). Hence N is the incidence matrix of 
the GD design with parameters (5). The GD design with parameters (6) is complementary of 
the design with parameters (5). 

 The following Table lists GD designs obtained using Theorem 4: 

                Table 3: RGD from Conference Matrices 
 

No. GD: (v, r, k, b, λ1, λ2, m, n) Source Reference 

1 R54: (8, 3, 3, 8, 0, 1, 4, 2) CM (4)   Clatworthy (1973) 

2 R144: (12, 5, 5, 12, 0, 2, 6, 2) CM (6) Dey (1977) 

3 R117a: (16, 7, 7, 16, 0, 3, 8, 2) CM (8) Dey (1977) 

4 R197a: (20, 9, 9, 20, 0, 4, 10, 2) CM (10) Dey (1977) 

Theorem 5: The existence of a Conference matrix of order t (≥4) and a BIB design with  

 𝑣= 2k, b, r, k, λ implies the existence of a GD design with parameters  

 𝑣∗ = 𝑡𝑣, 𝑏∗ = 𝑡𝑏, 𝑟∗ = 𝑟(𝑡 − 1), 𝑘∗ = 𝑘(𝑡 − 1), 𝜆,∗ = (𝑡 − 1)𝜆, 𝜆$∗ = 𝑟(𝑡 − 2) 2⁄ ,	 
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𝑚 = 𝑡, 𝑛 = 𝑣.           (7) 

Proof: Let N be the incidence matrix of a BIB design with v = 2k, b, r, k, λ. Then replacing 0 
by Ot, 1 by N and –1 by 𝐍y = 𝐉𝒗×𝒃 − 𝐍  in a Conference matrix of order t we obtain a GD 
design with parameters (7). 

For (𝑡 − 1)𝜆 = 𝑟(𝑡 − 2) 2⁄  in Theorem 5, we obtain: 

Corollary 3: The existence of a conference matrix of order 𝑡 = 2(𝑟 − 𝜆) (𝑟 − 2𝜆)⁄ ;	(t ≥4) and 
a BIB design with v=2k, b, r, k, λ implies the existence of a BIB design with parameters 

𝑣∗ = 𝑡𝑣, 𝑏∗ = 𝑡𝑏, 𝑟∗ = 𝑟(𝑡 − 1), 𝑘∗ = 𝑘(𝑡 − 1), 𝜆∗ = (𝑡 − 1)𝜆.     

Using BIB design (4, 6, 3, 2, 1) and t = 4 in Corollary 3 produces MR35; and a BIB 
design (6, 10, 5, 3, 2) and t = 6 produces MR427. MRX denotes design number X in Mathon 
and Rosa (2007). It is not known if these solutions are isomorphic to theirs. 

Remark 5: For N = I2 in Theorem 5 we obtain Theorem 4 (i). 
 

2.4.  From balanced generalized Weighing matrices and generalized Conference      
matrices 

Let 𝐶" = {1, 𝛼, 𝛼$, ⋯ , 𝛼"@,}	denote a cyclic group of order n and β = circ (0 1 0…0) 
denote a circulant matrix of order n. 

Replacing 1 by In and αi by βi (1 ≤ i ≤ n–1) in BGWM (v, k, λ; Cn) we obtain: 

Theorem 6: The existence of a BGWM (v, k, λ; Cn) implies the existence of a GD with 
parameters 

𝑣∗ = 𝑏∗ = 𝑣𝑛, 𝑟∗ =	𝑘∗ = 𝑘, 𝜆, = 0, 𝜆$ = 𝜆 𝑛⁄ ,𝑚 = 𝑣, 𝑛.    (8) 

Further replacing 0 by On, 1 by In and αi by βi (1 ≤ i ≤ n–1) in GCM (Cn; λ) of order v we 
obtain: 

Theorem 7: The existence of a GCM (Cn; λ) of order v = nλ+2 implies the existence of a GD 
design with parameters 

𝑣∗ = 𝑏∗ = 𝑣𝑛, 𝑟∗ =	𝑘∗ = 𝑘, 𝜆, = 0, 𝜆$ = 𝜆,𝑚 = 𝑣, 𝑛        (9) 

where k is the number of nonzero entries in each column of GCM (Cn; λ). 

The following Table lists GD designs obtained using Theorems 6 and 7: 
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Table 4: RGD from balanced generalized Weighing matrices and generalized 
Conference matrices 

 

No. GD: (v, r, k, b, λ1, λ2, m, n) Source Reference 

1 R112: (14, 4, 4, 14, 0, 1, 7, 2) BGWM (7, 4, 2; C2) Clatworthy (1973) 
2 R114: (15, 4, 4, 15, 0, 1, 5, 3) BGWM (5, 4, 3; C3) Clatworthy (1973) 

3 R180b: (24, 7, 7, 24, 0, 2, 8, 3) GCM (C3; 2), Order = 8 F (1976) 
4 R182b: (45, 7, 7, 45, 0, 1, 15, 3) BGWM (15, 7, 3; C3) DR (1990) 

5 R191: (63, 8, 8, 63, 0, 1, 9, 7) GCM (C7; 1), Order = 9 Clatworthy (1973) 
6 R200a: (38, 9, 9, 38, 0, 2, 19, 2) BGWM (19, 9, 4; C2) DR (1990) 

7 R200c: (40, 9, 9, 40, 0, 2, 10, 4) BGWM (10, 9, 8; C4) DN (1985) 

F (1976), DN (1985) and DR (1990) stand for Freeman (1976), Dey and Nigam (1985) and De 
and Roy (1990) respectively. The balanced generalized Weighing matrices and generalized 
Conference matrices used in Table 3 may be found in Colbourn and Dinitz (2007). 
 
2.5. From Kronecker Sum of Hadamard matrices and incidence matrices of BIB designs 

Theorem 8 given below gives an algebraic representation of Theorem 1.6 of Parihar and 
Shrivastava (1988). 

Theorem 8: The existence of a Hadamard matrix of order 4t and a BIB design with 𝑣 = 2k, b, 
r, k, λ implies the existence of a SRGD design with parameters 

𝑣∗ = (4𝑡 − 1)𝑣, 𝑏∗ = 4𝑡𝑏, 𝑟∗ = 4𝑡𝑟, 𝑘∗ = (4𝑡 − 1)𝑘, 𝜆,∗ = 4𝑡𝜆, 𝜆$∗ = 2𝑡𝑟,𝑚 = 4𝑡 − 1,	 

 𝑛 = 𝑣.                   (10) 

Proof: Let H* be a (4t–1) x 4t matrix obtained by deleting the first row of a normalized 
Hadamard matrix and N be the incidence matrix of a BIB design with v = 2k, b, r, k, λ. 
Considering Kronecker sum	𝐌 = 𝐇∗⊕𝐍 of H* and N. Then under the transformation: –1 → 
1 in −𝐍y = −(𝐉𝒗×𝒃 − 𝐍) and 1→ 0, 2 → 1 in 𝐉𝒗×𝒃 + 𝐍, it is easy to see that M represents 
incidence matrix of a SRGD with parameters (10). 

Removing α (1≤ α≤ 4t–3) rows of blocks of the incidence matrix of the design with parameters 
(10) we obtain: 

Corollary 4: There exists a SRGD design with parameters  

𝑣∗ = (4𝑡 − 𝛼 − 1)𝑣, 𝑏∗ = 4𝑡𝑏, 𝑟∗ = 4𝑡𝑟, 𝑘∗ = (4𝑡 − 𝛼 − 1)𝑘, 𝜆,∗ = 4𝑡𝜆, 𝜆$∗ = 2𝑡𝑟,	 

       𝑚 = 4𝑡 − 𝛼 − 1, 𝑛 = 𝑣.                   (11) 

Remark 6: The Corollary 4 unifies the Theorems 1.2, 1.3, 1.4 and 1.5 of Parihar and 
Shrivastava (1988). 
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Theorem 9: The existence of a regular Hadamard matrix of order 4t2 and a BIB design with 
v=2k, b, r, k, λ implies the existence of a SRGD design with parameters  

𝑣∗ = 4𝑡$𝑣, 𝑏∗ = 4𝑡$𝑏, 𝑟∗ = 4𝑡$𝑟, 𝑘∗ = 4𝑡$𝑘, 𝜆,∗ = 4𝑡$𝜆, 𝜆$∗ = 2𝑡$𝑟,𝑚 = 4𝑡$, 𝑛 = 𝑣. 
           (12) 

Proof: Let H be a regular Hadamard matrix of order 4𝑡$ and N be the incidence matrix of a 
BIB design with v = 2k, b, r, k, λ. Considering Kronecker sum	𝐌 = 𝐇⊕𝐍 of H and N. Then 
under the transformation: –1 → 1 in −𝐍y = (𝐉𝒗×𝒃 − 𝐍) and 1→ 0, 2 → 1 in  𝐉C×/ + 𝐍 , it is 
easy to see that M represents incidence matrix of a SRGD with parameters (12). 

For N = I2 in Theorem 9 we obtain: 

Corollary 5: There exists a resolvable SRGD design with parameters  

𝑣∗ =	𝑏∗ = 8𝑡$, 𝑟∗ =	𝑘∗ = 4𝑡$, 𝜆,∗ = 0, 𝜆$∗ = 2𝑡$, 𝑚 = 4𝑡$, 𝑛 = 2. (13) 

Removing α (1≤ α≤ 4t2-2) rows of blocks of the incidence matrix of design with parameters 
(12) we obtain: 

Corollary 6: There exists a SRGD design with parameters  

𝑣∗ = (4𝑡$ − 𝛼)𝑣, 𝑏∗ = 4𝑡$𝑏, 𝑟∗ = 4𝑡$𝑟, 𝑘∗ = (4𝑡$ − 𝛼)𝑘, 𝜆,∗ = 4𝑡$𝜆, 𝜆$∗ = 2𝑡$𝑟,	 

𝑚 = 4𝑡$ − 𝛼, 𝑛 = 𝑣.            (14) 

Remark 7: This theorem is generalization and algebraic representation of the Theorem 2.2 of 
Bhagwandas et al. (1985). For t = 1 in Theorem 9 we obtain Theorem 2.2 of Bhagwandas et 
al. (1985). 

Theorem 10: The existence of a Hadamard matrix of order 2t implies the existence of a 
resolvable SRGD design with parameters  

𝐷D:	𝑣∗ = 𝑏∗ = 2DE$𝑡, 𝑟 = 𝑘 = 	2DE,𝑡, 𝜆, = 0, 𝜆$ = 2D𝑡,𝑚 = 2DE,𝑡, 𝑛 = 2	(𝑖 ≥ 0).      (15) 

Proof: Kadowaki and Kageyama (2009, Theorem 3.3.4) constructed a resolvable SRGD design 
with parameters  

D0: v = b = 4t, r = k = 2t, λ1 = 0, λ2 = t, m = 2t, n = 2.         (16)  

Let N0 be incidence matrix of a SRGD design D0 with parameters (16). Considering Kronecker 
sum 𝐍𝒊 = 𝐇𝟐⊕𝐍𝒊@,(𝑖 ≥ 1) of H2 and 𝐍𝒊@,, where 𝐇𝟐 is a Hadamard matrix of order 2 and 
𝐍𝒊@, represents the incidence matrix of a SRGD design with parameters 

 				𝑣! = 𝑏! = 2DE,𝑡, 𝑟! = 𝑘! =	2D𝑡, 𝜆, = 0, 𝜆$ = 2D@,𝑡,𝑚 = 2D𝑡, 𝑛 = 2	(𝑖 ≥ 1).  

Then under the transformation: –1 → 1 in −(𝐉𝒗!×𝒃! − 𝐍D@,) and 1→ 0, 2 → 1 in 𝐉𝒗!×𝒃! + 𝐍𝒊@,, 
it is easy to see that 𝐍𝒊	represents incidence matrix of a SRGD with parameters (15). 

Remark 8: This Theorem generalizes the Theorem 3.3.4 of Kadowaki and Kageyama (2009) 
and Theorem 2.1 of Sinha (1991b). For i = 0 we obtain Theorem 3.3.4 of Kadowaki and 
Kageyama (2009) and for i = 1 and 2 we obtain series 2.1 and 2.2 respectively of Sinha (1991b). 
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3.  A Catalogue of Group Divisible Designs 

In the process of present investigation, some GD designs scattered in literature are found; 
and those not found in Clatworthy (1973) and Sinha (1991a) are catalogued below, to make 
them available at one place for the convenience of researchers, looking for GD designs in the 
practical range of 𝑟, 𝑘	 ≤ 10.  

Table 5: A Catalogue of GD designs 

 

 

 
 
 
 
 
 
 
 
 
 

S (1991), DK (1993), MD (1995), GD (1995) and SS (2021) stand for Sastry (1991), Duan and 
Kageyama (1993), Midha and Dey (1995), Ghosh and Divecha (1995) and Saurabh and Sinha 
(2020) respectively. The design numbers 1, 7, 8 and 9 were later on also reported by Kadowaki 
and Kageyama (2009). 

*Design No. 7 of Table 5 is obtained by deleting the set of treatments 46, 47, 48, 49, 50 from 
design No. 1; design No. 8 is obtained by deleting the set of treatments 41, 42, 43, 44, 45 from 
design No. 7; and design No. 9 is obtained by deleting the set of treatments 36, 37, 38, 39, 40 
from design No. 8.  

As a special case having t=4, in Remark 4, we get a regular group divisible design with 
parameters: 𝑣 = 𝑏 = 45, 𝑟 = 𝑘 = 9, 𝜆, = 3, 𝜆$ = 1,𝑚 = 3, 𝑛 = 15 and the average 
efficiency E = 0.90. The solution given below is not found elsewhere: 

(4 6 7 9 12 14 15 16 31), (1 5 7 9 10 13 15 17 32), (1 2 6 9 10 11 14 18 33), 
(2 3 7 10 11 12 15 19 34), (1 3 4 9 11 12 13 20 35), (2 4 5 10 12 13 14 21 36), 
(3 5 6 11 13 14 15 22 37), (4 6 7 8 10 11 13 24 39), (1 5 7 8 11 12 14 25 40), 
(1 2 6 8 12 13 15 26 41), (1 2 3 4 5 6 7 23 38), (2 3 7 8 9 13 14 27 42), 
(1 3 4 8 10 14 15 28 43), (2 4 5 8 9 11 15 29 44), (3 5 6 8 9 10 12 30 45), 
(1 19 21 22 24 27 29 30 31), (2 16 20 22 24 25 28 30 32), (3 16 17 21 24 25 26 29 33),  
(4 17 18 22 25 26 27 30 34), (5 16 18 19 24 26 27 28 35), (6 17 19 20 25 27 28 29 36),  
(7 18 20 21 26 28 29 30 37), (8 16 17 18 19 20 21 22 38), (9 19 21 22 23 25 26 28 39),  
(10 16 20 22 23 26 27 29 40), (11 16 17 21 23 27 28 30 41), (12 17 18 22 23 24 28 29 42),  
(13 16 18 19 23 25 29 30 43), (14 17 19 20 23 24 26 30 44), (15 18 20 21 23 24 25 27 45), 
(1 16 34 36 37 39 42 44 45), (2 17 31 35 37 39 40 43 45), (3 18 31 32 36 39 40 41 44),  
(4 19 32 33 37 40 41 42 45), (5 20 31 33 34 39 41 42 43), (6 21 32 34 35 40 42 43 44), 

No.  GD: (v, r, k, b, λ1, λ2, m, n)   Reference 

1 SR109a: (50, 10, 10, 50, 0, 2, 10, 5)   GD (1995) 
2 R208b: (49, 10, 10, 49, 1, 2, 7, 7)   S (1991) 

3 R206b: (21, 10, 10, 21, 8, 3, 3, 7)   MD (1995) 
4 R200b: (39, 9, 9, 39, 0, 2, 13, 3)   SS (2021) 

5 R198a: (24, 9, 9, 24, 6, 3, 12, 2)   DK (1993) 
6 R200d: (45, 9, 9, 45, 3, 1, 3, 15)   t = 4 in (4), Bush (1979) 

7* SR103a: (45, 10, 9, 50, 0, 2, 9, 5)   GD (1995) 
8* SR95a: (40, 10, 8, 50, 0, 2, 8, 5)   GD (1995) 
9* SR86a: (35, 10, 7, 50, 0, 2, 7, 5)   GD (1995) 
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 (7 22 33 35 36 41 43 44 45), (8 23 31 32 33 34 35 36 37), (9 24 34 36 37 38 40 41 43),  
(10 25 31 35 37 38 41 42 44), (11 26 31 32 36 38 42 43 45), (12 27 32 33 37 38 39 43 44),  
(13 28 31 33 34 38 40 44 45), (14 29 32 34 35 38 39 41 45), (15 30 33 35 36 38 39 40 42). 
 
 
The GD scheme is defined by the array: 1   2   3   4  … 15 
          16 17 18 19… 30 
          31 32 33 34 …45. 
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