A new class of orthogonal Latin hypercubes

Nam-Ky Nguyen International School, Vietnam National University, Hanoi, Vietnam.

Abstract

In this paper, we develop a new class of orthogonal Latin hypercubes (OLHs) based on Latin squares. These OLHs have $n=2^{r+1}+1$ rows and $k=2^{r}$ columns $(r=1,2, \ldots)$. For a given number of runs, our OLH vastly increases the numbers of orthogonal columns of OLHs in Ye (1998) and Cioppa \& Lucas (2007).

Key words: Computer experiments; Latin squares.

1 Introduction

Latin hypercubes (LHs) were introduced by McKay, Beckman and Conover (1979) for computer experiments. An $n \times k$ LH can be represented by a design matrix $D_{n \times k}$ with n rows (runs) and k columns (factors), each of which includes n uniformly spaced levels. An LH is called an orthogonal LH (OLH) if each pair of columns of this LH has zero correlation. Ye (1998) introduced a class of OLHs for $n=2^{r+1}+1$ rows and $k=2 r$ columns $(r=1,2, \ldots)$ using permutation matrices. Cioppa \& Lucas (2007) extended Ye's method by introducing new orthogonal columns to Ye's OLHs. For a given r, the number of columns in Cioppa \& Lucas's OLHs is $1+r+\binom{r}{2}$. In this paper we show how to construct OLHs with $n=2^{r+1}+1$ rows and $k=2^{r}$ columns $(r=1,2, \ldots)$. This vastly increases the number of columns of OLHs in Ye (1998) and Cioppa \& Lucas (2007).

2 Constructing OLHs by permutation matrices

Both methods of Ye (1998) and Cioppa \& Lucas (2007) require three $q \times k(k<q)$ matrices M, S, and T with $q=2^{r}$. The first column of M is $e=(1,2, \ldots, q)^{\prime}$. This column and permutation matrices are used to generate the remaining $k-1$ columns of $M . S$ is a ± 1 matrix. T is the element-wise product of M and S. The corresponding $n \times k$ OLH is $\left[\begin{array}{ll}T^{\prime} & 0^{\prime}\end{array}-T^{\prime}\right]^{\prime}$ where $0_{1 \times k}$ is a row vector of 0 's.

The $q \times q$ permutation matrix $A_{i}(i=1,2, \ldots, r)$ is constructed as:

$$
\begin{equation*}
A_{i}=I \otimes \ldots \otimes I \otimes R \otimes \ldots \otimes R \tag{1}
\end{equation*}
$$

where I is the 2×2 identity matrix , $R=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and \otimes is the Kronecker product. There are $r-i I$'s and $i R$'s in (1).

The matrix M in Ye (1998) contains $k=2 r$ column vectors: $e, A_{i} e$ $(i=1,2, \ldots, r)$, and $A_{i} A_{r} e(i=1,2, \ldots, r-1)$. The matrix M in Cioppa \& Lucas (2007), however, contains $k=1+r+\binom{r}{2}$ column vectors: $e, A_{i} e(i=1,2, \ldots, r)$, and $A_{i} A_{j} e(i=1,2, \ldots, r-1 ; j=$ $i+1, \ldots, r)$. The matrix S in the work of these authors corresponds to columns used to estimate the mean, main effects and 2 -factor interactions of a 2^{r} factorial.

3 Constructing OLHs by latin squares

Our method requires three $q \times q$ matrices M_{r}, S_{r} and T_{r} with $q=2^{r}$. M_{r} is a Latin square of order 2^{r}. Define M_{1} as $\left[\begin{array}{cc}1 & 2 \\ 2 & 1\end{array}\right], S_{1}$ as $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and thus T_{1} will become $\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.

To construct M_{r} we replace symbols $1,2, \ldots$ of M_{r-1} with matrices $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right],\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$, etc. M_{2} will thus be:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

To construct the ± 1 matrix S_{r}, we partition matrix S_{r-1} as $\left[\begin{array}{l}P \\ Q\end{array}\right]$ where P and Q are two matrices of the same size. S_{r} is computed as
$\left[\begin{array}{cc}S_{r-1} & R \\ S_{r-1} & -R\end{array}\right]$ where $R=\left[\begin{array}{c}P \\ -Q\end{array}\right]$. It can easily be shown that $S_{r}^{\prime} S_{r}=S_{r} S_{r}^{\prime}=$ $2^{r} I . S_{2}$ constructed this way is:

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right)
$$

and T_{2} becomes:

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
2 & -1 & -4 & 3 \\
3 & 4 & -1 & -2 \\
4 & -3 & 2 & -1
\end{array}\right)
$$

It can be verified that T_{3} is:

$$
\left(\begin{array}{rrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & -1 & -4 & 3 & 6 & -5 & -8 & 7 \\
3 & 4 & -1 & -2 & -7 & -8 & 5 & 6 \\
4 & -3 & 2 & -1 & -8 & 7 & -6 & 5 \\
5 & 6 & 7 & 8 & -1 & -2 & -3 & -4 \\
6 & -5 & -8 & 7 & -2 & 1 & 4 & -3 \\
7 & 8 & -5 & -6 & 3 & 4 & -1 & -2 \\
8 & -7 & 6 & -5 & 4 & -3 & 2 & -1
\end{array}\right)
$$

The $\left(2^{r+1}+1\right) \times 2^{r}$ OLH can be constructed from T_{r} in the same way that the OLH is constructed from T (cf. Section 2). The Appendix displays the 33×16 OLH constructed by the method in this Section. Larger OLHs are available at http://designcomputing.net/olh/.

Notes:

1. It can be seen that the seven columns of the matrix T used to construct the 17×7 OLH in Cioppa \& Lucas (2007) are a subset of columns of our T_{3} (some columns are with reverse signs).
2. Partition M_{r} as $\left[\begin{array}{cc}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right]$ where M_{11}, M_{12}, M_{21} and M_{22} are four $2^{r-1} \times 2^{r-1}$ matrices. It can be seen that $M_{11}=M_{22}=M_{r-1}$ and $M_{12}=M_{21}=M_{11}+2^{r-1} J$ where J is the $2^{r-1} \times 2^{r-1}$ matrix of 1 's.
3. Let T_{11} be the matrix formed by the first 2^{r-1} rows and 2^{r-1} columns of T_{r}. It can be seen that $T_{11}=T_{r-1}$.

4 Concluding remarks

In this paper, we show a time and space saving method of constructing OLHs. For given numbers of runs $n=17,33,65,129,257,513$ and 1025 (which corresponds to $r=3, \ldots, 9$), the maximum numbers of columns of OLHs in Ye (1998) are 6, $8,10,12,14,16$ and 18 respectively. These numbers in Cioppa \& Lucas (2007) are 7, 11, 16, 22, 29, 37 and 46 respectively (cf. Table 1 of Cioppa \& Lucas (2007)). These numbers in our work are $8,16,32,64,128,256$ and 512 . Thus our method greatly increases the numbers of columns in the constructed OLHs.

Acknowledgments : The author would like to thank Min-Qian Liu for valuable comments.

References

Cioppa, T. M. and Lucas, T.W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics 49, 45-55.

McKay, M. D., Beckman, R.J., and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239-245.

Ye, K. Q. (1998). Orthogonal Latin hypercubes and their application in computer experiments. J. Amer. Statist. Asso. 93, 14301439.

Nam-Ky Nguyen
International School
Vietnam National University
Building C, Hacinco Student Village
Nhan Chinh, Thanh Xuan
Hanoi, Vietnam.
E-mail: namnk@isvnu.vn

APPENDIX
 33×16 Latin square based-OLH

