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Abstract

We analyze binary data, available for a relatively large number (big data) of families
(or households), which are within small areas, from a population-based survey. Inference is
required for the finite population proportion of individuals with a specific character for each
area. To accommodate the binary data and important features of all sampled individuals, we
use a hierarchical Bayesian logistic regression model with each family (not area) having its
own random effect. This modeling helps to correct for overshrinkage so common in small area
estimation. Because there are numerous families, the computational time on the joint posterior
density using standard Markov chain Monte Carlo (MCMC) methods is prohibitive. Therefore,
the joint posterior density of the hyper-parameters is approximated using an integrated nested
normal approximation (INNA) via the multiplication rule. This approach provides a sampling-
based method that permits fast computation, thereby avoiding very time-consuming MCMC
methods. Then, the random effects are obtained from the exact conditional posterior density
using parallel computing. The unknown nonsample features and household sizes are obtained
using a nested Bayesian bootstrap that can be done using parallel computing as well. For rel-
atively small data sets (e.g., 5000 families), we compare our method with a MCMC method
to show that our approach is reasonable. We discuss an example on health severity using the
Nepal Living Standards Survey (NLSS).

Key words: Bayesian bootstrap, Big data, Integrated nested normal approximation, Overshrink-
age, Sampling based method, Survey weights.

1. Introduction

In the second Nepal Living standards Survey (NLSS II), there are data from households.
One question of interest is health status (good versus poor health), a binary variable, and there
are several covariates that can explain the binary outcomes. Our interest is to provide smoothed
estimates of the household proportions of members in good health for both sampled and non-
sampled households. This is a general question. Direct estimation is not reliable for such a
problem (not many members in each household), and there is a need to borrow strength from
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the ensemble, as in small area estimation. This is generally done using Bayesian logistic re-
gression. This problem is exasperated because there are numerous households (small areas). A
hierarchical Bayesian logistic regression model with random effects is used to capture the vari-
ation of members within and across households. Markov chain Monte Carlo (MCMC) methods
require extensive monitoring and the entire procedure to fit the model is time consuming mostly
because there are numerous random effects. Therefore, the joint posterior density of the hyper-
parameters is approximated using an integrated nested normal approximation (INNA) via the
multiplication rule of probability. This approach provides a sampling-based method that per-
mits fast computation, thereby avoiding very time-consuming MCMC methods from the exact
method. In this paper, our main contribution is to obtain an approximate joint posterior den-
sity for the hierarchical Bayesian logistic regression model and to get reasonable estimates and
standard errors of small area parameters (e.g., household proportions).

The estimation of parameters of the binary logistic regression with random effects is not
straight forward due to fact that the likelihood involves multiple integrals. In case of Bayesian
analysis, a natural approach to inference in mixed models was proposed by Paulino, Silva and
Achcar (2005). They estimated the random effects, which are treated as parameters in the pres-
ence of misclassified data. They also showed that if the posterior distribution is not possible to
be obtained analytically, MCMC methods can be used to approximate them. Souza and Migon
(2010) proposed that the inference problem can be solved in an easier way if the random ef-
fects of the mixed models are distributed as Student-t or finite mixture of normal distributions.
Liu and Dey (2008) used prior distributions like skew-normal distribution. Santos, Loschi and
Arellano-Valle (2013) provided different prior and posterior interpretations for the parame-
ters in the logistic regression model with random intercepts when skew normal distribution are
assumed to model random effects. They obtained the prior distributions for the different param-
eters and they discussed odds ratio and median odds ratio using skew-normal distributions for
the random effects. They concluded that the misspecification of the random effects parameters
can give poor estimate. Larsen et al. (2000) gave interpretations of the parameters in the logistic
regression model with random effects. Finally, Chen, Ibrahim and Kim (2008) described im-
portant properties of logistic regression for a single population (no random effects), and showed
how to implement Jeffreys’s prior for binomial regression models.

Our work on logistic regression dates back to Nandram (1989) who discussed discrimina-
tion between the logit and the complementary log-log link functions. Nandram (2000) reviewed
the paper of Ghosh et al. (1998) on generalized linear models, logistic regression and Poisson
regression being two important special cases. Nandram and Erhardt (2005) showed how to ana-
lyze binary data with covariates to maintain conjugacy for both logistic and Poisson regression
model. Nandram and Choi (2010) showed how to analyze binary data with covariates under
nonignorable nonresponse. Different from most researchers, Nandram and Choi (2010) showed
how to use logistic regression to obtain propensity scores, an interesting part of their paper, for
small area estimation. Roberts, Rao and Kumar (1987) discussed logistic regression for sample
survey data (not small area estimation). Nandram and Chen (1996) show how to accelerate the
Gibbs sampler for a model with latent variables introduced earlier by Albert and Chib (1993)
for Bayesian probit analysis.

Albert and Chib (1993) started an innovative stream of research on Bayesian probit analy-
sis, not logistic regression; they agrued that logistic regression is approximately a special case
of their probit analysis. However, we now know that this approximation is poor in the tails and
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their algorithm is a poorly mixing Gibbs sampler (Holmes and Held 2006). For probit analysis,
Holmes and Held (2006) showed how to solve this mixing problem by incoroporating latent
variables and using the block Gibbs sampler (i.e., some variables are drawn simultaneously).
Holmes and Held (2006) extended their approach to logistic regression, albeit for a single sam-
ple, not for small area estimation as in the case of numerous small areas that we are studying
here. Technically, even for a simple sample, their sampling algorithm is very complicated us-
ing rejection sampling, the Kolmogorov-Smirnov distribution, part of a representation of the
standard logistic distribution, and a generalized inverse Gaussian distribution. However, once a
user-friendly program is available, the complexity does not matter. Note that for simple logistic
regression (i.e., a single sample), the Metropolis sampler or rejection sampling can be used in
a straightforward manner, and this is faster and much simpler than the method of Holmes and
Held (2006). However, it will be extremely difficult to apply their computational techniques in
our case simply because the sum of two logistic random variables (we have two error terms,
not one) is not another logistic random variable.

The other side of our application is that there are numerous small areas (households) and
MCMC methods cannot handle them in real time. So our problem can be classified as a “big
data” problem. Scott et al. (2013) defined “big data” as data that are too big to comfortably
process on a single machine, either because of processor, memory, or disk bottlenecks. They
considered consensus Monte Carlo methods which split the data to several machines. Commu-
nication between large numbers of machines is expensive (regardless of the amount of data
being communicated), so there is a need for algorithms that perform distributed approximate
Bayesian analyses with minimal communication. Consensus Monte Carlo operates by running
a separate Monte Carlo algorithm on each machine, and then averaging individual Monte Carlo
draws across machines. One of the examples they gave is on a hierarchical Poisson regression
model (very close to logistic regression). But certainly how to split the data is problematic.
Miroshnikov and Colon (2015) described parallel MCMC methods for non-Gaussian posterior
distributions. Fortunately, in survey sampling the design generally uses stratification which is
not artificial, and in this case, consensus Monte Carlo may not be needed; it will be a good idea
for a large stratum.

The procedure we use to approximate the posterior density of the parameters of the hierar-
chical Bayesian logistic regression model, called the integrated nested normal approximation
(INNA), has a closed resemblance to the integrated nested Laplace approximation (INLA);
see Rue, Martino and Chopin (2009). INNA uses a sampling-based procedure, that is accom-
modated by the multiplication rule of probability; currently INLA is a fairly popular method
for making approximations in complicated hierarchical Bayesian model. INLA is a promis-
ing alternative to MCMC for big data analysis. However, it requires posterior modes and, for
numerous small areas, computation of modes becomes time-consuming and challenging for
logistic regression model or any generalized linear mixed models. Yet INLA has found many
useful applications. See, for example, Fong, Rue and Wakefield (2010) for an application on
Poisson regression, and Illian, Sørbye and Rue (2012) for a realistic application on spatial point
pattern data. We note that INLA can be problematic especially for logistic and Poisson hierar-
chical regression models, even if the modes can be computed. For example, Ferkingstad and
Rue (2015), attempting to improve INLA, used a copula-based correction which adds com-
plexity to INLA. For a comparison of INLA and MCMC, the paper by Held, Schrödle and Rue
(2010) for cross-validatory predictive checks is interesting. Unfortunately, the computational
cost of INLA is exponential in the dimension of the parameter space (or hyperparameter space
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in the case of hierarchical models).

Of course, there are many other approximations in Bayesian statistics some of which can
apply directly to logistic regression. Approximate Bayesian methods (ABC) were introduced
in population genetics (e.g., Beaumont, Zhang and Balding 2002) to deal with intractable like-
lihood functions and it uses summary statistics. An important advance was made by Fearhead
and Prangle (2012), who obtained a more principled approach to the construction of summary
statistics. Jaakkola and Jordan (2000), Faes, Omerod and Wand (2011) and Omerod and Wand
(2010) studied variational Bayes methods. Variation methods are very complicated, even for
the simplest problem, logistic regression without random effects (Jaakkola and Jordan 2000),
the analysis is not simple. Moreover, the approximate posteriors delivered by variational Bayes
give good accuracy for individual marginal distributions, but not for the joint distribution as a
whole.

We will not use any of these approximations. The nearest to our procedure is INLA that
requires posterior modes and it is computationally costly to run the application we have in mind
because of lack of conjugacy, numerical optimization is needed. Variational Bayes methods
are mathematically too complicated and ABC is not accurate enough even though this is also
an active area of research. Instead of finding the posterior modes, INNA finds approximate
modes in closed form, facilitated by the empirical logistic transform (Cox ans Snell 1972).
Here both the gradient vector (gradient vector is not zero though) and the gradient term is kept
in the second order Taylor’s series expansion of the posterior distribution of the regression
coefficients. So our method does not need posterior modes as in INLA; this is an enormous
saving in computing time, even more so for numerous households.

The plan of the rest of the paper is as follows. In Section 2, we describe our main con-
tribution about our approximation to the joint posterior density. In particular, we describe the
integrated nested normal approximation (INNA) and some theoretical results are provided. In
Section 3, we present an illustrative example using the Nepal Living Standards Survey (NLSS
II). We compare the approximate method with the exact method, which is presented in Ap-
pendix A. It is worth noting that the word “exact” refers to MCMC without further approx-
imation. In Section 4, we have discussions and two extensions, both of them can be used to
accommodate the NLSS II data better. Additional technical details are given in the appendices.

2. Approximate Theory and Method

The method we developed here for many small areas can be applied to any generalized lin-
ear model in the same manner. Of course, the specific models will be different. For example,
for the model for Poisson regression is different from the model for logistic regression. How-
ever, note that for logistic regression model, the unit level (binary data, not binomial counts)
are used and for Poisson regression model the count data are collected at an aggregate level.
Our application is on the Nepal Living Standards Survey (NLSS II) and we have binary data
(good health versus poor health) for each individual within a household, and these households
are within wards. Our theory applies to individuals within households or individuals within
wards. We note that the number of members in the ith, i = 1, . . . ,L, household in the population
is Ni and all household members are sampled, but not all households in a ward are sampled.
Our model will hold for all L households but it is convenient to present the model for the `≤ L
sampled households.
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Our logistic regression model applies to all L ≥ ` population households. We know how
many households are in each ward (sampled or nonsampled) but we do not know how many
members are in each nonsampled household. Let yi j and x

˜
i j = (1,xi j1, . . . ,xi jp−1)

T , denote the
responses and the p vector of covariates with an intercept (xi j0 = 1).

A standard hierarchical Bayesian logistic regression model is

yi j|β
˜
,νi

ind∼ Bernoulli

{
ex

˜
′
i jβ

˜
+νi

1+ ex
˜
′
i jβ

˜
+νi

}
, j = 1, . . . ,ni,

νi|δ 2 iid∼ Normal(0,δ 2), i = 1, . . . , `,

π(β
˜
,δ 2) ∝

1
(1+δ 2)2 ,δ

2 > 0.

Here, νi, i = 1, . . . , `, are the random effects and β

˜
= (β0,β1, . . . ,βp)

′ are the regression coeffi-
cients with δ 2, the variance of the random effects.

For our approximation methods, we will use an equivalent model. It is convenient to sep-
arate β

˜
into β0 and β

˜
(0), where β

˜
(0) = (β1,β2, . . . ,βp)

′. Omitting the intercept term from the
covariate x

˜
i j, we have

yi j|µi,β
˜
(0)

ind∼ Bernoulli

{
ex

˜
′
i jβ

˜
(0)+µi

1+ ex
˜
′
i jβ

˜
(0)+µi

}
, j = 1, . . . ,ni,

µi|β0,δ
2 iid∼ Normal(β0,δ

2), i = 1, . . . , `,

π(β
˜
,δ 2) ∝

1
(1+δ 2)2 ,δ

2 > 0, (1)

where essentially we have made the transformation µi = νi +β0, i = 1, . . . , `.

The parameters of interest are the household proportions,

Pi =
1
Ni

Ni

∑
j=1

Ii j, Ii j | νi,β
˜

ind∼ Bernoulli{ ex
˜
′
i jβ

˜
+νi

1+ ex
˜
′
i jβ

˜
+νi
}, i = 1, . . . , `. (2)

The Pi give smoothed estimates at the household level and actually predictions for the non-
sample households. A similar formula can be written down for the wards. Because we are not
linking the census to the NLSS, we do not have the covariates and the number of members in
each nonsampled households, both being obtained using a Bayesian bootstrap (Rubin 1981) of
the original samples.

To develop the approximate methodology, we will work with the no-intercept model. Then,
using Bayes’ theorem, the joint posterior density for the parameters is

π(µ
˜
,β

˜
,δ 2|y

˜
) ∝

{
`

∏
i=1

[
ni

∏
j=1

e(x˜
′
i jβ

˜
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
(0)+µi

][
1√

2πδ 2
e−

(µi−β0)
2

2δ2 ]

}
1

(1+δ 2)2 . (3)
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The posterior density in (3) is a non-standard density, and there are difficulties in fitting it using
Markov chain Monte Carlo methods, more so when ` is large. This motivates our approximate
methods.

We note that given β

˜
,δ 2,y

˜
, the µi are independent with

π(µi | β
˜
,δ 2,y

˜
) ∝ [

ni

∏
j=1

e(x˜
′
i jβ

˜
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
(0)+µi

][
1√

2πδ 2
e−

(µi−β0)
2

2δ2 ], i = 1, . . . , `. (4)

For the nonsampled households, µi | β0,δ
2 iid∼ Normal(β0,δ

2), i = 1, . . . , `. More importantly
with respect to posterior inference about Pi, the conditional posterior densities for the νi can be
written down easily.

2.1. Approximation to the Posterior Density

In this section we discuss the approximation to the joint posterior density in (3).

Let f (τ
˜
) = eh(τ

˜
) denote the density of a vector of parameters τ

˜
. Let g

˜
denote the gradient

vector and H the Hessian matrix at some point τ
˜
∗.

Lemma 2.1. Let h(τ
˜
) be a logconcave density function with the parameter τ

˜
. Then, τ

˜
approx-

imately has a multivariate normal distribution,

τ
˜
∼ Normal(τ

˜
∗−H−1g

˜
,−H−1).

Proof. Simply applying the second-order multivariate Taylor series of h(τ
˜
) at τ

˜
∗, we have

f (τ
˜
)≈ f (τ

˜
∗)+(τ

˜
− τ

˜
∗)′g

˜
+

1
2
(τ
˜
− τ

˜
∗)′H(τ

˜
− τ

˜
∗).

We remark that because of logconcavity, −H is positive definite. Also because we are not
required to find the mode of h(τ

˜
), τ

˜
∗ does not have to be the solution of the gradient vector set

to the zero vector. So that the term involving g
˜

is a correction to τ
˜
∗.

Momentarily, we consider a flat prior β

˜
∗
(0) and the µi (i.e., fiducial inference). That is,

yi j|µi,β
˜
(0)

ind∼ Bernoulli

{
ex

˜
′β
˜
(0)+µi

1+ ex
˜
′β
˜
(0)+µi

}
, j = 1, . . . ,ni, i = 1, . . . , `,

p(µ
˜
,β

˜
(0)) = 1.

The joint posterior density is

π(µ
˜
,β

˜
|y
˜
) ∝

`

∏
i=1

{
ni

∏
j=1

e(x˜
′
i jβ

˜
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
(0)+µi

}
. (5)
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The logarithm of the joint posterior density (or log-likelihood) is

∆ = h(τ
˜
) =

`

∑
i=1

ni

∑
j=1
{(x

˜
′
i jβ

˜
(0)+µi)yi j− log(1+ ex

˜
′
i jβ

˜
(0)+µi)}.

Let τ
˜
′ = (µ

˜
′,β

˜
′
(0)). First, we find a convenient point to expand the log-likelihood in a multi-

variate Taylor’s series expansion. In Appendix B, we show how to obtain quasi-modes for β

˜
(0)

and µi, i = 1, . . . , `, of the log-likelihood function.

First, we use the empirical logistic transform zi to get an estimate of µi, where

zi = log

{
ȳi +

1
2ni

1− ȳi +
1

2ni

}
, i = 1, . . . , `.

See Appendix C.

Second, obtain the first derivative of log-likelihood of β

˜
(0), use a first-order Taylor’s expan-

sion with µi replaced by zi, and set to zero to get

β

˜
∗
(0) = [

`

∑
i=1

ni

∑
j=1

x
˜

i jx
˜
′
i j]
−1[

`

∑
i=1

ni

∑
j=1

x
˜

i j(yi j− zi)].

Third, we obtain quasi-modes for the µi, a refinement of the zi. We use the log-likelihood
of the µi with the regression coefficients replaced by β

˜
∗
(0), and solve its first derivative for zeros

using a first-order Taylor’s series expansion to get

µi
∗ = log[

1
ni

∑
ni
j=1 e−x

˜
′
i jβ

˜
∗
(0)

(1− ȳi +
1

2ni
)
], i = 1, . . . , `.

Let τ
˜
∗′ = (µ

˜
∗′,β

˜
∗′
(0)).

Next, we evaluate g
˜

and H at the quasi-modes τ
˜
= τ

˜
∗,

g
˜
=
(

∂∆

∂ µ1
· · · ∂∆

∂ µ`

∂∆

∂β

˜
(0)

)T

µ

˜
=µ

˜
∗, β

˜
(0)=β

˜
∗
(0)

,

H =



∂ 2∆

∂ µ12 · · · 0 ∂ 2∆

∂ µ1∂β

˜
(0)

: . . . : :
0 · · · ∂ 2∆

∂ µ`
2

∂ 2∆

∂ µ`∂β

˜
(0)

∂ 2∆

∂ µ1∂β

˜
(0)
· · · ∂ 2∆

∂ µ`∂β

˜
(0)

∂ 2∆

∂β

˜
2
(0)


µ

˜
=µ

˜
∗,β

˜
(0)=β

˜
∗
(0)

.
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The partial derivatives can be expressed in terms of response yi j and covariates x
˜

i j as

∂∆

∂β

˜
(0)

=
`

∑
i=1

ni

∑
j=1

(x
˜

i jyi j−
x
˜

i je
x
˜
′
i jβ

˜
(0)+µi

1+ ex
˜
′
i jβ

˜
(0)+µi

)

∂∆

∂ µi
=

ni

∑
j=1

(yi j−
ex

˜
′
i jβ

˜
(0)+µi

1+ ex
˜
′
i jβ

˜
(0)+µi

), i = 1, . . . , `,

∂ 2∆

∂β

˜
2
(0)

=−
`

∑
i=1

ni

∑
j=1

x
˜

i jx
˜
′
i je

x
˜
′
i jβ

˜
(0)+µi

(1+ ex
˜
′
i jβ

˜
(0)+µi)2

,

∂ 2∆

∂ µi2
=−

ni

∑
j=1

ex
˜
′
i jβ

˜
(0)+µi

(1+ ex
˜
′
i jβ

˜
(0)+µi)2

, i = 1, . . . , `,

∂ 2∆

∂ µi∂νi′
= 0, i 6= i′ = 1, . . . , `,

∂ 2∆

∂ µi∂β

˜
(0)

=−
ni

∑
j=1

x
˜

i je
x
˜
′
i jβ

˜
(0)+µi

(1+ ex
˜
′
i jβ

˜
(0)+µi)2

, i = 1, . . . , `.

For the convenience of computation, denote g
˜
=

(
g
˜

1
g
˜

2

)
and H =−

(
D C′

C B

)
, where

g
˜

1 =
(

∂∆

∂ µ1
· · · ∂∆

∂ µ`

)T
,g
˜

2 =
∂∆

∂β

˜
(0)

,

B =− ∂ 2∆

∂β

˜
2
(0)

,C =−
(

∂ 2∆

∂ µ1∂β

˜
(0)
· · · ∂ 2∆

∂ µ`∂β

˜
(0)

)
,D =−


∂ 2∆

∂ µ12 · · · 0

: . . . :
0 · · · ∂ 2∆

∂ µ`
2

 .

Note that D is a diagonal matrix.

Let −H−1 =

(
D C′

C B

)−1

=

(
E F ′

F G

)
, where

E = D−1 +D−1C′(B−CD−1C′)−1CD−1,F =−(B−CD−1C′)−1CD−1,G = (B−CD−1C′)−1.

Lemma 2.2. Assuming that the design matrix is full-rank and 0 < ∑
ni
j=1 yi j < ni, i = 1, . . . , `,

the posterior density, τ
˜
|y
˜

in (5), is logconcave.

Proof. If 0 < ∑
ni
j=1 yi j < ni, i = 1, . . . , `, there are solutions to the gradient vector set to zero.

Let pi j =
e

x
˜
′β

˜
(0)+µi

1+e
x
˜
′β

˜
(0)+µi

, j = 1, . . . ,ni, i = 1, . . . , `. Then, A, B and C of the negative Hessian

matrix can be written as,

B =
∂ 2∆

∂β

˜
2
(0)

=
`

∑
i=1

ni

∑
j=1

pi j(1− pi j)x
˜

i jx
˜
′
i j,
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D = diagonal(di, i = 1, . . . , `),di =
∂ 2∆

∂ µi2
=

ni

∑
j=1

pi j(1− pi j), i = 1, . . . , `

C = (c
˜

i),c
˜

i =
∂ 2∆

∂ µi∂β

˜
(0)

=
ni

∑
j=1

pi j(1− pi j)x
˜

i j, i = 1, . . . , `.

Clearly, D is positive definite. Thus, to show that −H is positive definite, we show that its
Schur complement of D, S =B−CD−1C′, is positive definite (e.g., see Boyd and Vandenberghe
2004). Let ωi j = pi j(1− pi j)/∑

ni
j=1{pi j(1− pi j)}, j = 1, . . . ,ni, i = 1, . . . , `. Then, the Schur

complement is

S =
`

∑
i=1

ni

∑
j=1

pi j(1− pi j)
ni

∑
j=1

ωi jx
˜

i jx
˜
′
i j−

`

∑
i

ni

∑
j=1

pi j(1− pi j)
ni

∑
j=1

ωi jx
˜

i j

ni

∑
j=1

ni

∑
j=1

ωi jx
˜
′
i j.

It is now easy to show that

S =
`

∑
i=1

ni

∑
j=1

ωi j(x
˜

i j−
ni

∑
j=1

ωi jx
˜

i j)(x
˜

i j−
ni

∑
j=1

ωi jx
˜

i j)
′.

Therefore, −H is positive definite, and τ
˜
|y
˜

is logconcave.

We next establish the first key result presented in Theorem 2.1.

Theorem 2.1. Assuming that the design matrix is full-rank and 0 < ∑
ni
j=1 yi j < ni, the posterior

density, τ
˜
|y
˜

in (5) is approximately a multivariate normal density, and

µ

˜
|β
˜
(0),y

˜
∼ Normal{µ

˜
µ −D−1C′(β

˜
(0)−µ

˜
β ),D

−1} and β

˜
(0)|y

˜
∼ Normal{µ

˜
β ,G},

where
µ

˜
µ = µ

˜
∗+Eg

˜
1 +F ′g

˜
2 and µ

˜
β = β

˜
∗
(0)+Fg

˜
1 +Gg

˜
2.

Proof. By Lemma 2.2 the posterior density is logconcave. By Lemma 2.1 the posterior density
is approximately a multivariate normal density. We provide the approximate mean and variance
to completely specify the multivariate normal density.

By Lemma 2.1, evaluating all appropriate quantities at τ
˜
∗, the posterior mean is(

µ

˜
µ

µ

˜
β

)
= τ

˜
∗−H−1g

˜
=

(
µ

˜
∗

β

˜
∗
(0)

)
+

(
E F ′

F G

)(
g
˜

1
g
˜

2

)
=

(
µ

˜
∗+Eg

˜
1 +F ′g

˜
2

β

˜
∗
(0)+Fg

˜
1 +Gg

˜
2

)
.

Also, by Lemma 1, the posterior variance is

−H−1 =

(
D C′

C B

)−1

=

(
E F ′

F G

)
.
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That is, the approximate joint posterior density is(
µ

˜β

˜
(0)

)
|y
˜
∼ Normal

{(
µ

˜
µ

µ

˜
β

)
,

(
E F ′

F G

)}
.

Finally, using a standard property of the multivariate normal density, it follows that approx-
imately,

µ

˜
|β
˜
(0),y

˜
∼ Normal{µ

˜
µ −D−1C′(β

˜
(0)−µ

˜
β ),D

−1} and β

˜
(0)|y

˜
∼ Normal{µ

˜
β ,G}.

2.2. Integrated Nested Normal Approximation

In this section, we obtain the integrated nested normal approximation (INNA). INNA,
which does not require posterior modes, is competitive to the integrated nested Laplace ap-
proximation (INLA) that requires posterior modes.

Next, using the normal priors for the µi and Theorem 1, we have the following approximate
hierarchical Bayesian regression model,

µ

˜
|β
˜
(0),y

˜
∼ Normal{µ

˜
µ −D−1C′(β

˜
(0)−µ

˜
β ),D

−1}

β

˜
(0)|y

˜
∼ Normal{µ

˜
β ,G}

µ

˜
|β0,δ

2 ∼ Normal{β0 j
˜
,δ 2I}

π(β0,β
˜
(0),δ

2) ∝
1

(1+δ 2)2 ,δ
2 > 0, (6)

where j
˜

is a vector of ones.

Then, using Bayes’ theorem again, the approximate joint posterior density for the parame-
ters µ

˜
,β

˜
and δ 2 is

πa(µ
˜
,β

˜
,δ 2|y

˜
)∝ e

− 1
2

{[
µ

˜
−
(

µ

˜
µ−D−1C′(β

˜
(0)−µ

˜
β )
)]′

D
[
µ

˜
−
(

µ

˜
µ−D−1C′(β

˜
(0)−µ

˜
β )
)]

+
[
µ

˜
−β0 j

˜

]′
(δ 2I)−1

[
µ

˜
−β0 j

˜

]}

× |D|1/2

|δ 2I|1/2|G|1/2
× 1

(1+δ 2)2 × e−
1
2

[
β

˜
(0)−µ

˜
β

]′
G−1

[
β

˜
(0)−µ

˜
β

]
. (7)

Next, we state the main result of the paper in Theorem 2.2.

Theorem 2.2. Using the multiplication rule, the joint posterior density, π(µ
˜
,β

˜
,δ 2 | y

˜
) in (7),

can be approximated by

πa(µ
˜
,β

˜
,δ 2 | y

˜
) = πa(µ

˜
| β

˜
,δ 2,y

˜
)πa(β

˜
| δ 2,y

˜
)πa(δ

2 | y
˜
),

where the three densities on the right-hand side are to be determined.
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Proof. First, it can be shown that

µ

˜
|β
˜
,δ 2,y

˜
∼ Normal

{
(D+

1
δ 2 I)−1(Dµ

˜
µ −C′(β

˜
(0)−µ

˜
β )+

1
δ 2 β0 j

˜
),(D+

1
δ 2 I)−1

}
, (8)

which is πa(µ
˜
| β

˜
,δ 2,y

˜
). Because (D+ 1

δ 2 I) is diagonal, given β

˜
,δ 2,y

˜
, the µi are independent.

This is an important result because parallel computation can be done for µi, which accommo-
dates time-consuming and massive storage challenges in big data analysis. This result holds for
the exact conditional posterior density of the µi.

Second, because µ

˜
has a multivariate normal distribution, we can integrate out µ

˜
from the

joint posterior density πa(µ
˜
,β

˜
,δ 2|y

˜
) to get the joint posterior density of β

˜
and δ 2,

πa(β
˜
,δ 2|y

˜
) ∝

|D|1/2

|D+ 1
δ 2 I|1/2|δ 2I|1/2|G|1/2

× 1
(1+δ 2)2×

e
− 1

2

{[
µ

˜
µ−D−1C′(β

˜
(0)−µ

˜
β )−β0 j

˜

]′
(D−1+δ 2I)−1

[
µ

˜
µ−D−1C′(β

˜
(0)−µ

˜
β )−β0 j

˜

]
+
[
β

˜
(0)−µ

˜
β

]′
G−1

[
β

˜
(0)−µ

˜
β

]}
(9)

and
π(β

˜
|δ 2,y

˜
) ∝

e
− 1

2

{[
µ

˜
µ−D−1C′(β

˜
(0)−µ

˜
β )−β0 j

˜

]′
(D−1+δ 2I)−1

[
µ

˜
µ−D−1C′(β

˜
(0)−µ

˜
β )−β0 j

˜

]
+
[
β

˜
(0)−µ

˜
β

]′
G−1

[
β

˜
(0)−µ

˜
β

]}
.
(10)

Let
∆(0) =CD−1(D−1 +δ

2I)−1D−1C′+G−1,

δ
2
0 = j

˜
′(D−1 +δ

2I)−1 j
˜
,

γ

˜
=CD−1(D−1 +δ

2I)−1 j
˜
,(

ω0
ω
˜ (0)

)
=

(
δ 2

0 γ

˜
′

γ

˜
∆(0)

)−1
(

(µ
˜

µ +D−1C′µ
˜

β )
′(D−1 +δ 2I)−1 j

˜(µ
˜

µ +D−1C′µ
˜

β )
′(D−1 +δ 2I)D−1C′+µ

˜
′
β

G−1

)
.

After extensive algebraic manipulation, we can show that β

˜
|δ 2,y

˜
has an approximate multi-

variate normal density,(
β0

β

˜
(0)

)
|δ 2,y

˜
∼ Normal

{(
ω0

ω
˜ (0)

)
,

(
δ 2

0 γ

˜
′

γ

˜
∆(0)

)−1
}
, (11)

which is denoted by πa(β
˜
| δ 2,y

˜
).

Third, because the approximate conditional distribution of β

˜
|δ 2,y

˜
is a multivariate normal

distribution, we can integrate out β

˜
from the joint density of πa(β

˜
,δ 2 | y

˜
) in (9) to get the

posterior density,

πa(δ
2|y

˜
) ∝

1
|δ 2D+ I|1/2

∣∣∣∣( δ 2
0 γ

˜
′

γ

˜
∆(0)

)∣∣∣∣−
1
2

× 1
(1+δ 2)2
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×e
− 1

2

(µ
˜

µ+D−1C′µ
˜

β )
′(D−1+δ 2I)−1(µ

˜
µ+D−1C′µ

˜
β )+µ

˜
′
β

G−1µ

˜
β−w

˜
′

 δ 2
0 γ

˜
′

γ

˜
∆(0)

w
˜


,

where w
˜
′ = (ω0,w˜

′
(0)).

Our INNA method is sampling based and it uses random samples. Samples are obtained by
first drawing from πa(δ

2|y
˜
), then πa(β

˜
| δ 2,y

˜
) and finally πa(µ

˜
| β

˜
,δ 2,y

˜
), the first two densities

use standard draws, but the third is a nonstandard density.

Since 0< δ 2 <∞, we make a transformation to η = 1
1+δ 2 so that 0< η < 1. Then, posterior

density, π(η |y
˜
), is

π(η |y
˜
) ∝

 1
|δ 2D+ I|1/2

∣∣∣∣( δ 2
0 γ

˜
′

γ

˜
∆(0)

)∣∣∣∣−
1
2


δ 2= 1−η

η

×

e
− 1

2

(µ
˜

µ+D−1C′µ
˜

β )
′(D−1+δ 2I)−1(µ

˜
µ+D−1C′µ

˜
β )+µ

˜
′
β

G−1µ

˜
β−w

˜
′

 δ 2
0 γ

˜
′

γ

˜
∆(0)

w
˜


δ 2= 1−η

η

. (12)

The grid method is used to sample η .

INNA simply uses the multiplication rule to get samples from the approximate joint poste-
rior density, which is

πa(µ
˜
,β

˜
,δ 2 | y

˜
) = πa(µ

˜
, | β

˜
,δ 2,y

˜
)πa(β

˜
| δ 2,y

˜
)πa(δ

2 | y
˜
), (13)

where πa(µ
˜
, | β

˜
,δ 2,y

˜
) is given in (4), πa(β

˜
,δ 2 | y

˜
) is given in (11) and πa(δ

2 | y
˜
) is given

in (12) after re-transformation. Equation (13) is the basis of our INNA approximation. This is
simply the multiplication rule of probability; simply draw η from (12) and retransform to δ 2

to get πa(δ
2 | y

˜
), draw β

˜
from πa(β

˜
| δ 2,y

˜
) (multivariate normal and µ

˜
from πa(µ

˜
, | β

˜
,δ 2,y

˜
).

Use a Metropolis algorithm with an approximate normal proposal density to draw samples of
νi independently given β

˜
, δ 2 and data. We run each Metropolis 100 times and picked the last

one. If the Metropolis step fails (jumping rate is not in (.25, .50), we use a grid method instead.
Parallel computing can also be used in this latter step. This is performed in the same manner
for the exact method. For our application with 3912 households, this latter step runs very fast.
Of course, with much larger number of households, the computing time will be substantial, but
now parallel computing is available.

2.3. Comparison of the Two Methods

As a summary, we compare the approximate and exact methods. The exact method is given
in Appendix A.
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First, we note that the exact method actually uses the approximate method. We use a Metropo-
lis step with πa(β

˜
,δ 2|y

˜
), obtained from the approximate method. We fit a multivariate Student’s

t distribution with η degrees of freedom to the iterates, (β
˜
, log(δ 2)) from the approximate

method as the proposal density in the Metropolis step. It is standard to tune the Metropolis step
by varying η .

We present two differences between the two methods. First, both methods are sampling
based; the approximate method implements random samples and the exact method a Markov
chain. Second, πa(β

˜
,δ 2 | y

˜
) is used for the approximate method and a Metropolis step is used

for π(β
˜
,δ 2 | y

˜
). It is this Metropolis step that is time-consuming (20 minutes versus 20 sec-

onds); for a million households, we can prorate this time (80 hours versus 80 minutes), enor-
mous savings.

We present three similarities between the two methods. First, π(νi | β
˜
,δ 2,y

˜
), i= 1, . . . , `, are

drawn the same way using a Metropolis step with proposal density πa(νi | β
˜
,δ 2,y

˜
), i = 1, . . . , `.

Grids are used when the Metropolis step fails. Parallel computing can be done easily in both
cases. Second, for π(νi | β

˜
,δ 2,y

˜
), i = `+1, . . . ,L, are normal densities (`= 3912, L = 60,262).

Third, for prediction two Bayesian bootstraps are used to get the nonsampled household sizes
and the nonsampled covariates (≈ two million people). This is done within wards.

3. Illustrative Example

In Section 3.1, we briefly describe the Nepal Living Standards Survey (NLSS II) and in
Section 3.2, we use the health status data with five covariates to compare our approximate
Bayesian logistic regression method with the exact one.

3.1. Nepal Living Standards Survey

We use data from the Nepal Living Standards Survey (NLSS II, Central Bureau of Statistics,
2003-2004) to illustrate INNA with logistic regression. NLSS is a national household survey in
Nepal, actually population based (i.e., interviews are done for individual household members).
NLSS follows the World Bank’s Living Standards Measurement Survey methodology with a
two-stage stratified sampling scheme, which has been successfully applied in many parts of
the world. It is an integrated survey which covers samples from the whole country and runs
throughout the year. The main objective of the NLSS is to collect data from Nepalese house-
holds and provide information to monitor progress in national living standards. The NLSS gath-
ers information on a variety of areas. It has collected data on demographics, housing, education,
health, fertility, employment, income, agricultural activity, consumption, and various other ar-
eas. NLSS has records for 20,263 individuals from 3,912 households from a 326 wards (or
psus) from a population of 60262 households and about two million Nepalese. We choose the
binary variable, health status, from the health section of the questionnaire. There are hundreds
of variables and we have selected five of the most important ones that can explain health status.
We use health status as the binary variable with a selection of five pertinent covariates.

Health status is covered in Section 8 of the questionnaire. This section collected information
on chronic and acute illnesses, uses of medical facilities, expenditures on them and health
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status. Health status questionnaire is asked for every individual that was covered in the survey.
The health status questionnaire has four options. For our purpose we make it a binary variable,
good health or poor health.

In the NLSS II, Nepal is divided into wards (psu’s) and within each ward there are a number
of households. The sampling design of the NLSS II used two-stage stratified sampling. A sam-
ple of psu’s was selected using PPS sampling and then twelve households were systematically
selected from each ward. Thus, households have equal probability of selection. But while indi-
viduals in a household has equal probability of selection, these probabilities will vary with the
size of the households. That is, over the entire Nepal, each individual has unequal probability
of selection.

We choose five relevant covariates which can influence health status from the same NLSS
survey for the integrated nested normal approximation (INNA) logistic regression method.
They are age, nativity, sex, area and religion. We created binary variables nativity (Indige-
nous = 1, Non-indigenous = 0), religion ((Hindu = 1, Non-Hindu = 0), sex (Male = 1, Female
= 0) and area (Urban = 1, Rural = 0). We standardize age. Older age and child age are more
vulnerable than younger age. Indigenous people can have different health status from migrated
people. Similarly, health status of urban and rural citizens could be different. Interest is on the
smoothed proportion of household members in good health (binary). The NLSS 2003-2004
sample consists 3,912 households (roughly 20 thousand people) from a population from 326
wards with 60,221 households. From Census 2001, the population of Nepal consists of 35,000
wards from 4 million households with roughly 20 million people. We will predict the finite
population proportions of household members in good health based for the 60,221 households,
not the entire Nepal. This can be done using the same methodology because Nepal consists of
six strata.

We use a Bayesian hierarchical logistic regression model to predict all nonsampled house-
holds in the sampled wards. To obtain smoothed estimates for the sampled households, we also
predict these. We use Bayesian bootstraps (Rubin 1981) for unknown household sizes and non-
sampled covariates; the bootstrapping is done within wards. The 2001 Census can potentially
provide these two pieces of information, but there is a mis-match between the households in
the census and the NLSS (a record linkage can be performed). We note, however, that there is
linkage between the wards, but this information is not useful to household estimates.

3.2. Numerical Comparisons

We predict the household proportions of members in good health for 60,221 households.
This analysis is based on 3912 sample households from 326 wards (PSUs). Our primary pur-
pose is to compare the approximate method with the exact method when there are random ef-
fects at the household level. We want to show that one can safely use the approximate method
to save computational time. Our secondary purpose is to compare the exact methods when there
are random effects at the household level only and random effects at the ward level. We note
that there are only 326 wards, considerably less than the number of households. In this case, a
data analyst might try to save computational time by only using the random effects at the ward
level, but this procedure is not sensible.
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First, in Figures 1, 2 and 3, we compare respectively the posterior means (PMs), poste-
rior standard deviations (PSDs) and posterior coefficient of variations (CVs) as our primary
purpose. The PMs are very closed, followed by the PSDs and then the CVs. For the PMs, the
points lie very closely on the 45o straight line through the origin. This is similar for the PSDs
and CVs. However, the plot of the PSD is a bit thicker and the plot for the CVs has larger
CVs more spread out. But overall, these approximations are quite acceptable to data analysts,
scientists and engineers. We also show the posterior densities (PDs) of the hyperparameters. In
Figure 7 we plot the PDs of δ 2 and β0 and in Figure 8 we plot the remaining five β s. We can see
that they are all unimodal, with the modes about the same, but, as expected, the spread is a bit
larger for the exact method. But these differences are not alarming. However, these differences
are much smaller when inference is made about the household proportions.

We also compare the approximate method versus the exact method when random effects are
used only at the ward level. Again, the PMs are very good; see Figure 4. The PSDs are more
spread out (Figure 5) and the plot of the CVs (Figure 6) is a similar to the household random
effects. Again, the approximate method and the exact method are reasonably closed, of course,
not as closed as for the household level random effects.

Finally, we compare the exact method at the ward level to the exact method at the house-
hold level. Figures 9, 10 and 11 show that the comparisons are rather poor; there are no clear
indications of 45o straight line through the origin. We have examined this further in Tables 1, 2
and 3, where we cross-classified the PMs in 0− .2, .2− .4, .4− .8, .8−1, the PSDs in .0− .1,
.1− .2, .2− .3, .3− .4, .4− .5, and the CVs in .02− .05, .05− .10, .10− .25, .25− .50, > .50.
For all three tables a majority of the points fall along the north-west to south-east diagonal, but
there are many points off the diagonals. Thus, one must have random effects at the household
level.

We conclude that the approximation at the household level is reasonable. The approxima-
tion is desirable because one can perform the computations in real time. One should not use
random effects only at the ward level to cut corners. This can be misleading.

4. Concluding Remarks

We make three statistical comments. First, the approximate method is necessary when there
are a large number (millions) of households (clusters or areas). Second, it is difficult to use the
census data effectively but it is desirable (matching problem). Third, it is possible to obtain
similar approximations for spatial priors and Dirichlet process priors (under investigation)

We make four computational comments. First, parallel computing is needed for big data
(numerous small areas). Second, consensus Monte Carlo method, although problematic, is
needed for large data (storage problems). For the NLSS survey, stratification already exists;
Nepal has six strata and our INNA procedure can be applied in each stratum in parallel. Third,
MCMC (not INLA) methods are useful for small datasets; good approximations are needed for
large datasets (big data). Finally, INNA is potentially useful because modes are not required
(INLA needs modes).

We mention two possible extensions. The first extension is about survey weights. The sec-
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ond extension is to a sub-area model.

PPS sampling is used in the first-stage of the survey design. Thus, there are survey weights
(design, not adjusted weights). All households (each member) in a psu has the same weight. So
we can proceed in one of the two ways in our analysis. First, we can use an adjusted logistic
likelihood incorporating the survey weights. We discuss a single area, then we show how to
extend it to small area problems. Let ωi, i = 1, . . . ,n, denote the survey weights for sampling
from a single area. Let

n≥ ne = (
n

∑
i=1

ωi)
2/(

n

∑
i=1

ω
2
i ), ω̃i = ne

ωi

∑
n
i=1 ωi

, i = 1, . . . ,n;

see Potthof, Woodbury and Manton (1992) for pioneering work on equivalent sample sizes.
For (yi, ω̃i,x

˜
i), i = 1, . . . ,n, we have

p(yi | β
˜
) ∝

{
eyix

˜
′
iβ
˜

1+ ex
˜
′
iβ
˜

}ω̃i

,yi = 0,1, i = 1, . . . ,n,

p(yi | β
˜
) =

eyix̃
˜
′
iβ
˜

1+ ex̃
˜
′
iβ
˜

, yi = 0,1,

x̃
˜

i = ω̃ix
˜

i, i = 1, . . . ,n.

For small areas, with (yi j, ω̃i j,x
˜

i j), j = 1, . . . ,ni, i = 1, . . . , `, we have

p(yi j | β
˜
,νi) =

eyi j(x̃
˜
′
i jβ

˜
+νi)

1+ ex̃
˜
′
i jβ

˜
+νi

, yi j = 0,1,

x̃
˜

i j = ω̃i jx
˜

i j, j = 1, . . . ,ni, i = 1, . . . , `.

Our second extension is to sub-area model. One example already discussed in the litera-
ture is that of Torabi and Rao (2014), who extended the Fay-Herriot model (Fay and Herriot
1979), not for logistic regression. For our problem, the areas are the wards and sub-areas are
the households. Let i = 1, . . . , `, denote the areas and j = 1, . . . ,ni, denote the sub-areas. We
assume that

yi jk|β
˜
,νi,µi j

ind∼ Bernoulli

{
ex

˜
′
i jkβ

˜
+νi+µi j

1+ ex
˜
′
i jkβ

˜
+νi+µi j

}
,k = 1, . . . ,mi j,

µi j|σ2 ind∼ Normal(0,σ2), j = 1, . . . ,ni,

νi|δ 2 ind∼ Normal(0,δ 2), i = 1, . . . , `,

π(β
˜
,δ 2,σ2) ∝

1
(1+σ2)2

1
(1+δ 2)2 ,σ

2 > 0,δ 2 > 0.

For logistic regression, this research is currently in progress.
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Appendix A Exact Method for Logistic Regression

Recall the Bayesian logistic model with covariates that we worked on with INNA method

yi j|µi,β
˜
(0)

ind∼ Bernoulli

{
ex

˜
′
i jβ

˜
(0)+µi

1+ ex
˜
′
i jβ

˜
(0)+µi

}
,

µi|β0,δ
2 iid∼ Normal(β0,δ

2),

π(β
˜
,δ 2) ∝

1
(1+δ 2)2 ,δ

2 > 0, i = 1, ..., `, j = 1, ...,ni. (A.1)

According to Bayes’ theorem, the joint posterior density of the parameters (µ
˜
,β

˜
,δ 2|y

˜
) is

π(µ
˜
,β

˜
,δ 2|y

˜
) ∝ π(y

˜
|µ
˜
,β

˜
(0))×π(µ

˜
|β0,δ

2)×π(β
˜
,δ 2)

∝

`

∏
i=1

{[
ni

∏
j=1

e(x˜
′
i jβ

˜
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
(0)+µi

][
1√

2πδ 2
e−

(µi−β0)
2

2δ2

]}
1

(1+δ 2)2 .

Theorem A.1. The joint posterior density, π(µ
˜
,β

˜
,δ 2|y

˜
), is proper provided that the design

matrix is full rank and 0 < ∑
ni
j=1 yi j < ni, i = 1, . . . , `.

Proof. With a flat prior on the µi and β

˜
, the same argument as in Lemma 2.2 gives logconcavity

of the joint posterior density. Putting a logconcave prior on the µi does not change the logconav-
ity of π(β

˜
,µ

˜
| δ 2,y

˜
) because the product of two logconcave densities is another logconcave

density. In addition, logconcave densities have sub-exponential tails and their moment generat-
ing functions exist (see Dharmadhikari and Joag-Dev 1988). That is,

∫
π(µ

˜
,β

˜
| δ 2,y

˜
)dβ

˜
dµ

˜
=

a(δ 2) finite for all δ 2. Therefore,
∫

a(δ 2)π(δ 2)dδ 2 < ∞ as long as π(δ 2) is proper as for
π(δ 2) = 1/(1+δ 2)2. So that, π(µ

˜
,β

˜
,δ 2|y

˜
) is proper.

The standard MCMC logistic regression exact method is complicated to work with and
it takes longer time to get posterior samples. We apply Metropolis Hastings sampler to draw
samples for parameters β

˜
, δ 2 and µ

˜
.

The idea of exact method is to get full conditional posterior distributions for all of the
parameters in the model, and then get a large number of independent samples of each parameter
with its full conditional posterior density.
First, we integrate µ

˜
from the posterior density to get the joint posterior density of β

˜
,δ 2|y

˜
as

π(β
˜
,δ 2|y

˜
) ∝

∫
Ω

`

∏
i=1

{
ni

∏
j=1

e(x˜
′
i jβ

˜
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
(0)+µi

1√
2πδ 2

e−
(µi−β0)

2

2δ2

}
1

(1+δ 2)2 dµ

˜

=
1

(1+δ 2)2

`

∏
i=1


∫

∞

−∞

e

ni
∑

j=1
(x
˜
′
i jβ

˜
(0)+µi)yi j

ni
∏
j=1

[
1+ ex

˜
′
i jβ

˜
(0)+µi

] 1√
2πδ 2

e−
(µi−β0)

2

2δ2 dµi

 .



188 BALGOBIN NANDRAM ET AL. [Vol. 16, No. 1

Notice that this is not a simple distribution function for the integration, so we apply numerical
integration. Divide the integration domain to m equal intervals [tk−1, tk],k = 1, ...,m. Let zi =
µi−β0

δ
with standard normal distribution. We get an approximate density (very accurate though),

π(β
˜
,δ 2|y

˜
) ∝

1
(1+δ 2)2

(
1√
δ 2

)` `

∏
i=1


m

∑
k=1

∫ tk

tk−1

e

ni
∑

j=1
(x
˜
′
i jβ

˜
(0)+µi)yi j

ni
∏
j=1

[
1+ ex

˜
′
i jβ

˜
(0)+µi

] 1√
2π

e−
(µi−β0)

2

2δ2 dµi



=
1

(1+δ 2)2

`

∏
i=1


m

∑
k=1

∫ tk

tk−1

e

ni
∑

j=1
(x
˜
′
i jβ

˜
(0)+β0+ziδ )yi j

ni
∏
j=1

[
1+ ex

˜
′
i jβ

˜
(0)+β0+ziδ

] 1√
2π

e−
z2
i
2 dzi

 .

Take the middle point of each interval [tk−1, tk] to estimate the cumulative density function,
and denote ẑk =

tk+tk−1
2 . We have the following deduction

π(β
˜
,δ 2|y

˜
)≈ 1

(1+δ 2)2

`

∏
i=1


m

∑
k=1

e

ni
∑

j=1
(x
˜
′
i jβ

˜
(0)+β0+ẑkδ )yi j

ni
∏
j=1

[
1+ ex

˜
′
i jβ

˜
(0)+β0+ẑkδ

] ∫ tk

tk−1

1√
2π

e−
z2
2 dz

 .

The integration is now over a standard normal distribution. We consider the interval (-3, 3) for
numerical integration, since this domain (standard normal) covers 99.74% of the distribution
that we are dealing with. We take m=100 grid points. Then the joint posterior density for β

˜
and

δ 2 can be expressed as

π(β
˜
,δ 2|y

˜
)≈ 1

(1+δ 2)2

`

∏
i=1


m

∑
k=1

e

ni
∑

j=1
(x
˜
′
i jβ

˜
(0)+β0+ẑkδ )yi j

ni
∏
j=1

[
1+ ex

˜
′
i jβ

˜
(0)+β0+ẑkδ

] (Φ(tk)−Φ(tk−1))

 . (A.2)

We use the Metropolis sampler to draw samples from the joint posterior density of π(β
˜
,δ 2 |

y
˜
) drawing β

˜
and δ 2 simultaneously. We use the transformation log(δ 2) = βp+1. We obtain

a proposal density for β

˜
using a multivariate Student’s t density as follows. First, when we

run the approximate method, we obtain the approximate mean, β̂

˜
and covariance matrix Σ̂

of β

˜
. So we take β

˜
∼ Normal(β̂

˜
,σ2Σ̂),η/σ2 ∼ Gamma(η/2,1/2). Tuning of the Metropolis

sampler is obtained by varying η (e.g., η = 8 corresponds to approximately a logistic random
vector). We run the Metropolis sampler in a nonstandard manner, as the Markov chain runs, we
reserve those iterates when the algorithm moves. In this way while tuning, is required to get
a reasonable jumping rate, no other diagnostics (autocorrelation, effective sample size, test of
stationarity, thinning) are needed.

The number of nonsampled households in the sampled PSUs are known, but the number of
members of a nonsampled household and their covariates are unknown. For each sampled PSU,
we obtain the empirical distribution of the number of members and their covariates. Then, we
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use two Bayesian bootstraps to sample the number of members and their covariates from the
pool of the PSU. For both bootstraps we use 1000 samples.

Appendix B Quasi-Modes for Logistic Regression

Now we have to specify β

˜
∗
(0), µ

˜
∗, g

˜
and H. Consider the log likelihood function

f (τ
˜
) = logh(τ

˜
) = log

{
`

∏
i=1

ni

∏
j=1

e(x˜
′
i jβ

˜
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
(0)+µi

}

=
`

∑
i=1

ni

∑
j=1

{
(x
˜
′
i jβ

˜
(0)+µi)yi j− log(1+ ex

˜
′
i jβ

˜
(0)+µi)

}
. (B.1)

As an estimate of µi, we use the empirical logistic transform zi,

µ̂
∗
i = zi = log

{
ȳi +

1
2ni

1− ȳi +
1

2ni

}
.

See Appendix C. Plug µ̂∗i in the log likelihood function (B.1) and consider it as a function of
β

˜
(0) only,

g(β
˜
(0)) =

`

∑
i=1

ni

∑
j=1

{
(x
˜
′
i jβ

˜
(0)+ µ̂

∗
i )yi j− log(1+ ex

˜
′
i jβ

˜
(0)+µ̂∗i )

}
.

The first derivative function of g(β
˜
(0)) over β

˜
(0) is

g′(β
˜
(0)) =

`

∑
i=1

ni

∑
j=1

{
x
˜

i jyi j−
x
˜

i je
(x
˜
′
i jβ

˜
(0)+µ̂∗i )

1+ ex
˜
′
i jβ

˜
(0)+µ̂∗i

}

=
`

∑
i=1

ni

∑
j=1

{
x
˜

i jyi j− x
˜

i j(1+ e−(x˜
′β
˜
(0)+µ̂∗i ))−1

}
. (B.2)

Typically, we can solve the equation g′(β
˜
(0)) = 0 for the mode as the maximum likelihood

estimator (MLE), but here it is not easy to solve the equation because g′(β
˜
(0)) is complex. We

use first order Taylor series approximation to simplify the above function. Since the first order
Taylor expansion of (1+ e−(x˜

′
i jβ

˜
(0)+µ̂∗i ))−1 equals (1− e−(x˜

′
i jβ

˜
(0)+µ̂∗i )), (B.2) equals to

`

∑
i=1

ni

∑
j=1

{
x
˜

i jyi j− x
˜

i j(1− e−(x˜
′
i jβ

˜
(0)+µ̂∗i ))

}
. (B.3)

This is still complex. We apply Taylor series again and get expansion of the term e−(x˜
′β
˜
(0)+µ̂∗i )

to the first order as (1− (x
˜
′β
˜
(0)+ µ̂∗i )). Thus (B.3) approximately equals

`

∑
i=1

ni

∑
j=1

{
x
˜

i jyi j− x
˜

i j(1− (1− (x
˜
′
i jβ

˜
(0)+ µ̂

∗
i )))

}
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=
`

∑
i=1

ni

∑
j=1

{
x
˜

i j(yi j− µ̂
∗
i )− x

˜
i j(x

˜
′
i jβ

˜
(0))
}
. (B.4)

(B.4) is easy to solve. Solve for g′(β
˜
(0)) = 0, and we can get the approximate posterior mode

of β

˜
(0)

β

˜
∗
(0) = [

`

∑
i=1

ni

∑
j=1

x
˜

i jx
˜
′
i j]
−1[

`

∑
i=1

ni

∑
j=1

x
˜

i j(yi j− µ̂
∗
i )]. (B.5)

Plug β

˜
∗
(0) in the likelihood function (B.1) and consider it as a function of µ

˜
only,

q(µi) = log
ni

∏
j=1

e(x˜
′
i jβ

˜
∗
(0)+µi)yi j

1+ ex
˜
′
i jβ

˜
∗
(0)+µi

=
ni

∑
j=1

{
(x
˜
′
i jβ

˜
∗
(0)+µi)yi j− log(1+ ex

˜
′
i jβ

˜
∗
(0)+µi)

}
.

The first derivative function of q(µi) over µi is

q′(µi) =
ni

∑
j=1

{
yi j−

e(x˜
′
i jβ

˜
∗
(0)+µi)

1+ ex
˜
′
i jβ

˜
∗
(0)+µi

}
=

ni

∑
j=1

{
yi j− (1+ e−(x˜

′
i jβ

˜
∗
(0)+µi))−1

}
. (B.6)

Similar to above, we apply Taylor series approximation

(1+ e−(x˜
′
i jβ

˜
∗
(0)+µi))−1 ≈ (1− e−µie−x

˜
′
i jβ

˜
∗
(0)).

So (B.6) equals
ni

∑
j=1

{
yi j− (1− e−µie−x

˜
′
i jβ

˜
∗
(0))
}
.

Solve for q′(µi) = 0, then the approximate posterior mode (quasi-mode) of µi can be obtained
as

µi
∗ = log[

∑
ni
j=1 e−x

˜
′
i jβ

˜
∗
(0)

ni(1− ȳi)
].

Notice that the term (1− ȳi) in denominator may cause trouble for this posterior mode, because
the binary response variable could lead to ȳi = 1 for some i, so that (1− ȳi) = 0. We borrow
the idea from the empirical logistic transform (ELT) and make a little adjustment to avoid 0’s
in denominator

µi
∗ ≈ log[

1
ni

∑
ni
j=1 e−x

˜
′
i jβ

˜
∗
(0)

1− ȳi +
1

2ni
)

]. (B.7)

Appendix C Empirical Logistic Transform (ELT)

We consider the empirical logistic transform (ELT) without covariates for binary data. See
Cox and Snell (1972) for the empirical logistic transform (ELT) that accommodates binary data.
Letting y denote a binomial random variable with success probability p, the empirical logistic
transform, Z, is

Z = log(
Y + 1

2

n−Y + 1
2

),
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and the corresponding variance V is

V =
(n+1)(n+2)

n(Y +1)(n−Y +1)
.

Then, using the approximation of Cox and Snell (1972), Z has a normal distribution with mean
θ and variance V, where θ is unknown according to Cox and Snell (1972). Suppose y

˜
is the

variable of length `. Each of the binary response yi(i = 1, ..., `) follows a binomial distribution
with corresponding number of observations ni and probability pi. The goal is to estimate the
Bernoulli probability parameter pi. Here we assume that

yi
ind∼ Binomial{ni, pi}

and for logistic transform we define zi = log( yi+
1
2

ni−yi+
1
2
) as the the empirical logistic transforms,

and Vi =
(ni+1)(ni+2)

ni(yi+1)(ni−yi+1) as the associated variances. Then,

zi | µi
ind∼ Normal(µi,Vi).

We can actually start with this approximation based on the empirical logistic transform. How-
ever, this approximation will not work for binary data with covariates at the unit level, but we
will make use it in our approximation for logistic regression with binary data in a less important
manner.
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Table 1: Categorical tables for 60,221 households by posterior mean of model (2) with ran-
dom effects at the ward level projected to the households and the model (1) at household
level

Model 2
Model 1 .0− .2 .2− .4 .4− .6 .6− .8 .8−1 Total
.0− .2 1 19 586 228 29 863
.2− .4 2 187 1845 139 44 2217
.4− .6 251 1730 29861 9638 664 42144
.6− .8 87 548 9115 3491 253 13494
.8−1 9 24 1022 384 64 1503

Table 2: Categorical tables for 60,221 households by posterior standard deviation of
model (2) with random effects at the ward level projected to the households and the model
(1) at household level

Model 2
Model 1 .0− .1 .1− .2 .2− .3 .3− .4 .4− .5 Total
.0− .1 5 66 626 41 1 739
.1− .2 13 233 2411 105 2 2764
.2− .3 348 2826 46500 3391 37 53102
.3− .4 5 180 2859 553 3 3600
.4− .5 0 0 13 2 1 16

Table 3: Categorical tables for 60,221 households by posterior coefficient of variation of
model (2) with random effects at the ward level projected to the households and the model
(1) at household level

Model 2
Model 1 .02− .05 .05− .10 .10− .25 .25− .50 > .50 Total
.02− .05 0 0 4 20 9 33
.05− .10 0 3 20 188 66 277
.10− .25 1 4 80 856 368 1309
.25− .50 28 128 791 23694 10535 35176
> .50 22 62 399 9996 12947 23426
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Figure 1: Comparison of the posterior means (PM) of the household proportions by the
approximate method and the MCMC method
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Figure 2: Comparison of the posterior standard deviations (PSD) of the household pro-
portions by the approximate method and the MCMC method
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Figure 3: Comparison of the posterior coefficient of variations (CV) of the household pro-
portions by the approximate method and the MCMC method
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Figure 4: Comparison of the posterior means (PM) of the ward proportions by the ap-
proximate method and the MCMC method

���

���

���

���

���

���

��	

��


���

���

���

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ���

��������	

������
��
�����������������	

�������������



��� ���������������������������



2018] Bayesian Logistic Regression for Small Areas with Numerous Households 199

Figure 5: Comparison of the posterior standard deviations (PSD) of the ward proportions
by the approximate method and the MCMC method
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Figure 6: Comparison of the posterior coefficient of variations (CV) of the ward propor-
tions by the approximate method and the MCMC method
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Figure 7: Plots of the empirical posterior densities of δ 2 and β0 for the approximate
method and the MCMC method
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Figure 8: Plots of the empirical posterior densities of regression coefficients for the ap-
proximate method and the MCMC method
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Figure 9: Comparison of the posterior means (PM) of the household proportions by the
two MCMC methods
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Figure 10: Comparison of the posterior standard deviations (PSD) of the household pro-
portions by the two MCMC methods
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Figure 11: Comparison of the posterior coefficient of variations (CV) of the household
proportions by the two MCMC methods
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