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Abstract

In the era of precision medicine, understanding the intricate biological mechanisms
underlying diseases requires a comprehensive analysis of multi-omics data, including ge-
nomics, transcriptomics, proteomics and metabolomics. The sheer volume and complexity
of these datasets present significant challenges in deciphering the interactions and regu-
latory networks that govern cellular functions. This paper will explore how cutting-edge
artificial intelligence (AI) and statistical methodologies, including deep learning approaches
like Variational Autoencoder (VAE) and Graph Neural Networks (GNNs), are transforming
the integration of multi-omics data, enabling new insights into biological complexity. We
will discuss advanced statistical models, such as Bayesian Networks, Canonical Correlation
Analysis (CCA) and Multi-Omics Factor Analysis (MOFA), that facilitate the integration of
diverse data types, revealing deeper layers of biological information that are often obscured
in traditional analyses. From identifying biomarkers for early disease detection to uncovering
therapeutic targets, the combination of AI, deep learning and statistical approaches holds
great promise in advancing our understanding of health and disease.
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1. Introduction

The central dogma of molecular biology, which describes the flow of genetic infor-
mation from DNA to RNA to protein, has long served as a cornerstone of biological un-
derstanding. However, a comprehensive understanding of biological systems requires the
integration of data from multiple ’omics’ layers. Genomics, transcriptomics, proteomics and
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metabolomics each offer a unique perspective, capturing different aspects of cellular func-
tion and regulation. The advent of high-throughput technologies, such as next-generation
sequencing and mass spectrometry, has led to an explosion of omics data, creating both
opportunities and challenges for systems biology, see Misra (2018).

While each omics layer provides valuable information, studying them in isolation offers
an incomplete and potentially misleading picture. For instance, changes in mRNA transcript
levels do not always directly correlate with corresponding protein abundances due to post-
transcriptional regulation, protein turnover and other factors. Multi-omics integration seeks
to address these limitations by combining data from multiple sources to provide a more
holistic and accurate representation of biological systems, see Subramanian et al. (2020).

In this paper, we explore a range of statistical and AI-based methods for multi-
omics data integration, with a focus on Canonical correlation analysis, Network modeling,
Bayesian inference and Deep learning strategies like Variational autoencoders. We review
existing tools such as mixOmics, RGCCA, and PINSPlus, which leverage these methods for
practical applications in agricultural and biomedical research.

2. Statistical approaches to multi-omics data integration

Statistical methods play a crucial role in managing the high-dimensional, heteroge-
neous nature of multi-omics data. Several widely used methods for integrating multi-omics
data are given below, see Naserkheil et al. (2022).

2.1. Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis is a statistical method designed to identify and quan-
tify the linear relationships between two multidimensional datasets. In the context of multi-
omics data integration, CCA helps in discovering correlated patterns across different omics
layers—such as transcriptomics and proteomics—thus uncovering shared biological signals,
see Wróbel et al. (2024).

Let X ∈ Rn×p and Y ∈ Rn×q be two centered datasets representing two omics layers,
where n is the number of samples, and p and q are the number of variables in each omics
type. CCA seeks linear combinations of the variables in each dataset such that the correlation
between these combinations is maximized. We aim to find vectors a ∈ Rp and b ∈ Rq such
that the correlation between the canonical variates Xa and Y b is maximized:

max
a,b

ρ=
aTCXYb√

aTCXXa
√

bTCYYb
(1)

where:

• CXX= 1
n−1XT X is the covariance matrix of X.

• CY Y = 1
n−1Y T Y is the covariance matrix of Y.

• CXY = 1
n−1XT Y is the cross covariance matrix of XY.
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This leads to the generalized eigenvalue problem:

CXY C−1
Y Y CY X a=λ CXX a

CY XC−1
XXCXY b=λCY Y b

The first pair (a1, b1) gives the directions of maximal correlation. Subsequent canon-
ical directions are obtained by enforcing orthogonality constraints with previous variates.

In high-dimensional multi-omics data (where p or q is much larger than n), classical
CCA may become ill-posed. In such cases, regularized or sparse variants are used.

2.1.1. Regularized CCA

Regularized CCA adds penalties to the denominator to stabilize the solution, see
Parkhomenko et al. (2009).

max
a,b

ρ=
aT CXY b√

aT (CXX + κxI)a
√

bT (CY Y + κyI)b
(2)

where κx and κy are regularization parameters.

2.1.2. Sparse CCA (sCCA)

Sparse CCA (sCCA) imposes sparsity constraints on a and b, leading to feature
selection and interpretability:

max
a,b

aT CXY b (3)

subject to ∥a∥2 ≤ 1, ∥b∥2 ≤ 1
∥a∥1 ≤ c1, ∥b∥1 ≤ c2

These constraints ∥ · ∥1 enforce sparsity, making sCCA particularly useful in the
context of omics data where many variables are irrelevant or noisy, see Witten and Tibshirani
(2009).

2.1.3. Advantages and limitations

CCA is a powerful tool for identifying relationships between multi-omics datasets.
It can handle high-dimensional data and identify complex dependencies. However, CCA is
sensitive to outliers and assumes a linear relationship between the variables. In cases where
the relationship is non-linear, other methods, such as kernel CCA, may be more appropriate.

2.1.4. Tools implementing CCA for multi-omics data integration

a. mixOmics R package with multivariate methods (including CCA) for exploring
and integrating omics datasets, see Rohart et al. (2017).
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b. RGCCA R package offering generalized CCA for integrating multiple datasets.

c. BLOCCS R package for Block Sparse CCA, estimating multiple canonical directions for
enhanced interpretability.

2.2. Similarity-based approaches

Similarity-based approaches represent a powerful class of methods in multi-omics
data integration. These methods focus on quantifying the similarity or distance between
samples within each omics layer and then combining these relationships to gain a unified
understanding of biological patterns, such as disease subtypes, cellular states, or treatment
responses.

Unlike direct feature-level integration, which merges raw data matrices, similarity-
based methods operate by first computing sample-sample similarity matrices independently
for each omics type (e.g., transcriptomics, proteomics, metabolomics). These matrices reflect
the relationship between samples based on their respective omics profiles.

Let us consider K different omics datasets {X(1), X(2), . . . , X(K)}, each with n samples
and their respective similarity matrices {S(1), S(2), . . . , S(K)}, where each S(k) ∈ Rn×n.

The key idea is to integrate these K similarity matrices into a single consensus matrix
Sintegrated, which captures the shared structure across all data types.

2.2.1. Similarity Network Fusion (SNF)

One of the most popular similarity-based methods is Similarity Network Fusion, which
iteratively updates each similarity matrix using neighborhood information from other omics
layers, see Wang et al. (2014).

The SNF algorithm involves the following steps:

1. Compute sample similarity matrices S(k) for each omics data type using a distance
metric (e.g., Euclidean distance or Gaussian kernel similarity)

2. Normalize the matrices to maintain comparability.

3. Iteratively update each matrix by combining it with others through a message-
passing mechanism:

W(k)
t+1=αP(k).

 1
K − 1

∑
l ̸=k

W(l)
t

 P(k)T + (1 − α)W(k)
t (4)

where P(k) is the transition probability matrix of S(k), and α is a regularization pa-
rameter (typically 0.5).

4. Fuse the final networks after convergence:

Sintegrated = 1
K

K∑
k=1

W(k)
T (5)



2025] MULTI-OMICS DATA INTEGRATION 139

The resulting integrated similarity matrix is then used for downstream tasks such as
spectral clustering, dimensionality reduction, or classification.

2.2.2. Other tools and methods

a. PINSPlus An extension of perturbation clustering that performs multiple clus-
tering runs on each omics dataset and integrates the results using co-clustering frequencies.

b. NEMO (Neighborhood-based multi-omics clustering) Designed for partial
datasets with missing omics layers, it builds local sample neighborhoods and combines them
across modalities.

c. iClusterPlus Although fundamentally a latent variable model, it also aligns
sample similarities and can be categorized under similarity-based frameworks.

2.2.3. Advantages and limitations

Similarity based integration methods offer several advantages and challenges. Among
the advantages, they are robust to missing data, as similarity matrices can still be com-
puted even when some features are absent. They also allow flexible integration, effectively
handling heterogeneous omics types without requiring normalization across different data
scales. Additionally, these methods enhance interpretability by providing integrated similar-
ity networks that visually and intuitively represent relationships among samples. However,
there are notable challenges as well. The choice of similarity metric is critical, as different
distance measures can produce significantly different outcomes. Computational complexity
is another concern, especially with large datasets, as calculating pairwise similarities can be
both memory and time-intensive. Lastly, parameter tuning is essential for algorithms like
Similarity Network Fusion, which rely on parameters such as the number of neighbors and
kernel width, requiring careful adjustment to ensure reliable results.

2.3. Bayesian models

Bayesian models offer a powerful and principled framework for multi-omics data in-
tegration by treating uncertainty explicitly and allowing incorporation of prior biological
knowledge. These models are particularly useful in handling heterogeneous, high-dimensional
and often noisy datasets typical in multi-omics studies, such as genomics, transcriptomics,
epigenomics and proteomics, see Kirk et al. (2012).

2.3.1. Bayesian clustering models

These models assign samples to latent clusters using probability distributions, rather
than hard assignments. A popular non parametric Bayesian clustering method is the Dirich-
let Process Mixture Model (DPMM).

In multi-omics integration, each omics dataset contributes to the clustering through
its own likelihood component. For instance, assuming omics data X(1), X(2), . . . , X(K) share
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a common clustering structure Z:

P
(
Z, θ(1), . . . , θ(K) | X(1), . . . , X(K)

)
∝ P (Z)

K∏
k=1

P
(
X(k) | Z, θ(k)

)
P

(
θ(k)

)
(6)

where: θk is cluster specific parameter.

Tools and methods include:

a. MDI (Multiple Dataset Integration) A joint Bayesian model that performs clus-
tering on multiple omics layers and identifies consensus clusters.

b. BCC (Bayesian Consensus Clustering) Estimates shared cluster structure while
allowing for data-specific variations.

c. LRAcluster (Low-Rank Approximation Clustering) Incorporates low-rank ap-
proximations to simplify the Bayesian model for high-dimensional omics data.

2.3.2. Bayesian networks

Bayesian networks are graphical models that represent conditional dependencies among
random variables. In multi-omics integration, they are used to model causal relationships
between genes, proteins, and metabolites.

A Bayesian network is a directed acyclic graph (DAG), where nodes represent vari-
ables (e.g., gene expression, protein levels), and edges encode conditional dependencies. The
joint distribution is factorized as:

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi | Parents(Xi)) (7)

This formulation enables modeling of regulatory pathways or signaling cascades across omics
layers. Examples:

a. PARADIGM (Pathway Recognition Algorithm using Data Integration on
Genomic Models) Integrates copy number and gene expression data to infer pathway ac-
tivity, see Vaske et al. (2021).

b. CONEXIC (COpy Number and EXpression In Cancer) Uses Bayesian networks
to identify driver genes by integrating copy number alterations and expression profiles, see
Akavia et al. (2010).

2.3.3. Advantages and limitations

Bayesian models offer several compelling advantages and face notable challenges. On
the positive side, they excel at uncertainty modeling by providing full posterior distributions,
which yield credible intervals and enhance confidence in predictions. They also allow the
incorporation of prior knowledge, such as known biological pathways or disease associations,



2025] MULTI-OMICS DATA INTEGRATION 141

directly into the model. Thanks to modern techniques like variational inference and Markov
Chain Monte Carlo (MCMC) sampling, Bayesian methods have become scalable to large
datasets. Additionally, they handle missing data naturally as part of the inference process,
eliminating the need for imputation. However, these benefits come with challenges. Bayesian
inference can be computationally expensive, particularly when dealing with multiple omics
layers or a high number of variables. The complexity of designing and validating hierar-
chical models or directed acyclic graphs (DAGs) demands significant expertise and domain
knowledge. Moreover, the results can be sensitive to the choice of priors—poorly chosen or
inadequate priors may bias outcomes or impede model convergence.

2.4. Multivariate methods

Multivariate methods are essential tools in multi-omics data integration, offering the
capability to jointly analyze multiple variables from different omics layers. Unlike univariate
methods that treat each variable independently, multivariate approaches capture correla-
tions, co-variations, and shared structures across datasets, making them ideal for discovering
hidden biological relationships and reducing dimensionality in high-throughput omics data.
These methods are particularly valuable when integrating datasets from genomics, transcrip-
tomics, proteomics, metabolomics, and other omics types, where the number of variables far
exceeds the number of observations, and variables often interact in complex, non-linear ways.

2.4.1. Principal Component Analysis (PCA)

PCA is one of the most widely used unsupervised multivariate techniques for dimen-
sionality reduction. It identifies orthogonal directions (principal components) that capture
the maximum variance in the data. When applied to multi-omics datasets either jointly
or separately, PCA can reveal dominant variation patterns, batch effects, and clustering
structures, see Jolliffe and Cadima (2016).

Given a centered data matrix X ∈ Rn×p, PCA solves the eigenvalue problem:

XT Xv = λv (8)

where v is the eigenvector corresponding to the principal component, and λ is its associated
eigenvalue.

2.4.2. Partial Least Squares (PLS)

PLS is a supervised multivariate method that models relationships between predictor
and response datasets, see Tenenhaus (1998). In multi-omics, PLS is useful for integrating
two or more omics layers (e.g., gene expression and metabolite levels) and relating them to
phenotypic outcomes, see Lê C. et al. (2008).

PLS finds weight vectors wX and wY such that the covariance between the projections
XwX and YwY is maximized:

max
wX ,wY

Cov(XwX , YwY ) (9)

Variants like sparse PLS introduce regularization to enable feature selection.
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2.4.3. Multi-Omics Factor Analysis (MOFA)

MOFA is a latent variable model specifically developed for the integration of multi-
omics data. It decomposes each omics dataset into shared and data-specific factors, which
correspond to biological or technical sources of variation, see Argelaguet et al. (2018).

Given K omics matrices {X(1), X(2), . . . , X(K)}, MOFA models each as:

X(k) = ZW(k) + E(k) (10)

where:

• Z ∈ Rn×d is a matrix of latent factors shared across datasets,

• W(k) ∈ Rd×pk are weights for dataset k,

• E(k) is residual noise.

MOFA is probabilistic and handles missing data naturally. It enables unsupervised clus-
tering, dimensionality reduction, and exploration of latent drivers in biological systems, see
Vahabi and Michailidis (2022).

2.4.4. Sparse Multi-Block PLS (sMBPLS)

sMBPLS extends PLS to more than two data blocks and incorporates sparsity to
identify the most informative features across all omics layers, see Li et al. (2012). It is
especially suited for studies where multiple omics are related to a common response (e.g.,
disease status or treatment outcome).

This method builds a global latent structure and optimizes for interpretability, making
it useful in complex systems biology studies.

2.4.5. Gene-wise weights and feature selection

In some multivariate frameworks, gene-wise weights are assigned to different omics
variables to evaluate their contribution to observed variance or phenotype association. These
weights help rank and select biologically relevant features from high-dimensional data.

One example is the CNAmet model, which integrates copy number, methylation, and
expression data using correlation structures and statistical weighting.

2.4.6. Advantages and limitations

Multivariate methods offer a range of advantages and face several challenges in the
analysis of complex datasets. They enable joint analysis by accounting for co-variation and
correlations among variables, which enhances the understanding of interdependencies in the
data. These methods also facilitate dimensionality reduction, making high-dimensional omics
data more tractable and interpretable. Additionally, they are powerful tools for discovering
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latent factors that may represent hidden biological drivers of variation. Their flexibility
allows them to be applied in both supervised and unsupervised learning contexts. However,
multivariate methods can be computationally intensive, especially when applied to large-scale
omics datasets, necessitating efficient algorithmic implementations. They are also prone
to overfitting, particularly in scenarios with small sample sizes, which requires the use of
regularization techniques. Furthermore, while these methods can uncover latent components,
interpreting these components in terms of clear biological processes can be challenging.

3. AI and machine learning approaches

3.1. Variational Autoencoders (VAEs) in multi-omics data integration

Variational Autoencoders are a class of generative models that have gained popularity
in multi-omics data integration due to their ability to model complex, non-linear relation-
ships and uncover latent representations of high-dimensional biological data, see Kingma
and Welling (2013). VAEs are especially well-suited for handling the noise, sparsity, and
heterogeneity commonly found in multi-omics datasets, see Simidjievski et al. (2019).

3.1.1. Theoretical foundations of VAEs

VAEs belong to the family of probabilistic generative models and extend classical
autoencoders by introducing a probabilistic framework. Instead of encoding an input x into
a deterministic latent vector, VAEs encode it into a distribution over latent variable z. The
goal is to learn the parameters of the generative model pθ(x | z), and the inference model
qϕ(z | x), typically with neural networks.

The VAE objective is to maximize the evidence lower bound (ELBO):

log p(x) ≥ Eqϕ(z|x) [log pθ(x | z)] − DKL (qϕ(z | x) ∥ p(z)) (11)

where:

• E[log pθ(x | z)] is the reconstruction loss,

• DKL is the Kullback–Leibler divergence between the approximate posterior and the
prior p(z), typically N (0, I).

This formulation ensures that the latent space z is both continuous and regularized, which
enables smooth sampling and interpolation—useful for capturing underlying biological vari-
ation.

3.1.2. Application in multi-omics integration

In multi-omics studies, VAEs can be used to learn shared or modality-specific la-
tent representations that capture the biological signal common across omics layers while
accounting for layer-specific variation.
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3.1.2.1. Integration strategies

a. Early integration (Full Fusion) Concatenate all omics datasets as input to a sin-
gle VAE model.

b. Intermediate integration Each omics layer has a separate encoder, but a shared
latent space is learned.

c. Late integration Separate VAEs are trained for each omics dataset, and their latent
embeddings are later combined for downstream tasks (e.g., clustering, classification).

These approaches support modularity, scalability, and flexibility in integrating omics with
different feature spaces and distributions.

3.1.3. Tools

a. scVI A VAE model for single-cell RNA-seq data, modeling gene expression while cor-
recting batch effects.

b. Multi-omics VAE Custom-built frameworks where omics-specific encoders feed into a
joint decoder, enabling integrative modeling of transcriptomics, proteomics, and epigenomics,
see Xin et al. (2024)

3.1.4. Advantages and limitations

Variational Autoencoders offer several benefits in biological research, particularly in
the analysis of complex omics data. They enable dimensionality reduction by compressing
high-dimensional data into low-dimensional latent factors that capture key biological varia-
tion. Their probabilistic framework enhances robustness to noise and batch effects, making
them well-suited for real-world biological datasets. VAEs also handle missing data naturally
by modeling the underlying data distribution, allowing for effective imputation. The la-
tent space learned by VAEs often reveals meaningful clusters that correspond to phenotypes
or disease subtypes, aiding in visualization and interpretation. Furthermore, VAEs support
biomarker discovery by identifying important features that contribute to latent factors, which
can be biologically interpreted. However, VAEs also come with challenges. The interpretabil-
ity of latent dimensions can be limited, as they may not directly map to known biological
processes. Training complexity is another issue, requiring careful tuning of the model ar-
chitecture and learning parameters. Additionally, data scaling is crucial, as different omics
types must be normalized to prevent bias in the latent space. Lastly, over-regularization
due to the KL divergence term can overly constrain the latent space, potentially leading to
underfitting and loss of important biological signals.

3.2. Graph-based learning in multi-omics data integration

Graph-based learning has emerged as a powerful strategy for integrating multi-omics
data, particularly because biological systems are naturally structured as networks—whether
they be gene regulatory networks, protein–protein interaction (PPI) networks, metabolic
pathways, or cell–cell communication maps. Graph-based methods model the relationships
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between entities (e.g., genes, proteins, samples) as edges in a graph, enabling the analysis of
topological structure, dependency, and contextual interactions across multiple omics layers.

In traditional machine learning, samples are often treated as independent and iden-
tically distributed. However, in multi-omics analysis, samples or features often exhibit non-
linear dependencies and interconnected behaviors that are better captured by graphs. For
example: 1. Genes may co-express or be co-regulated, 2. Proteins interact physically or
functionally, 3. Samples (patients) may be similar based on integrated omics profiles. Graph-
based learning encodes this structure using nodes (e.g., genes, proteins, samples) and edges
(e.g., co-expression, similarity, interaction), and applies machine learning techniques tailored
for graphs, see Bengio et al. (2013).

3.2.1. Types of graph-based approaches

a. Similarity networks In this approach, each omics dataset is used to construct a similar-
ity matrix between samples, which is then converted into a graph. These graphs are fused to
form a unified network using methods such as Similarity Network Fusion. The final network
can be analyzed using spectral clustering or community detection to identify subgroups (
e.g., disease subtypes).

b. Graph Neural Networks (GNNs) GNNs are deep learning models designed to op-
erate on graph-structured data. They aggregate information from neighboring nodes and
learn node embeddings that capture structural and feature information, see Kipf and Welling
(2017). For multi-omics, nodes may represent genes with features from multiple omics. Edges
may encode gene–gene relationships or pathway links. The GNN learns to predict pheno-
types or latent node properties using neighborhood context, see Velickovic et al. (2017).

A common formulation in a GNN layer is:

h(l+1)
v = σ

 ∑
u∈N (v)

1
cvu

W(lh(l)
u

 (12)

where:

• h(l)
v is the representation of node v at layer l,

• N (v) is the set of neighbors of node v,

• cvu is a normalization constant,

• W(l) is the learnable weight matrix, and

• σ is a non-linear activation function.

c. Network propagation and diffusion These algorithms propagate information (e.g.,
expression signals, mutation scores) over a network to prioritize relevant nodes, see Köhler
et al. (2008). Examples include:
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• Random Walk with Restart (RWR) A random walker starts at a node and prob-
abilistically explores the network, returning to the start with probability r. This helps
rank nodes based on their proximity to known disease genes.

pt+1 = (1 − r)Wpt + rp0 (13)

where: pt is the probability vector at time t, W is the transition matrix, p0 is the initial
distribution.

• NetICS, TieDIE Used for integrating mutation data with expression or pathway data
using directed propagation, see Paull et al. (2013).

d. Probabilistic graphic models These include Bayesian Networks and Markov Random
Fields (MRFs) that model conditional dependencies among variables (genes, proteins, etc.).
For example, PARADIGM infers pathway activities by combining multiple omics layers
within a Bayesian graphical model framework.

3.2.2. Advantages and limitations

Graph-based learning has emerged as a powerful approach in multi-omics analysis
due to its ability to model complex, structured biological relationships. It has been applied
in various domains such as cancer subtype classification, where methods like Graph Neural
Networks and Similarity Network Fusion cluster patients based on integrated omics profiles;
biomarker discovery, where network diffusion identifies genes or proteins functionally related
to known disease markers; pathway activity inference, with tools like PARADIGM integrat-
ing gene expression and copy number data to predict pathway status; and feature selection,
where GNN attention mechanisms highlight informative nodes for downstream analysis. The
advantages of graph-based methods include their natural representation of biological systems
using existing knowledge like gene networks, flexibility in handling non-Euclidean and struc-
tured data, context-aware learning through neighborhood-informed node embeddings, and
scalability enabled by recent computational advances. However, challenges remain, such as
the need for careful data preprocessing to construct reliable graphs, limited interpretability
of deep graph models, complexity in integrating heterogeneous omics layers without intro-
ducing bias or losing specificity, and the high computational demands of training large-scale
graph models.

4. Conclusion

Multi-omics data integration is at the forefront of systems biology, enabling a holistic
view of cellular function by combining genomic, transcriptomic, proteomic, metabolomic, and
other omics data types. Each method explored—statistical, machine learning, and network-
based—offers unique strengths in addressing the challenges of high-dimensionality, hetero-
geneity, and noise inherent in biological data. Statistical approaches, particularly Canonical
Correlation Analysis and its variants (sparse and regularized CCA), provide interpretable
linear models for discovering cross-domain correlations between omics layers. These models
are well-suited for moderate-dimensional data and are often used as a first step in integrative
analysis. Similarity-based methods, such as Similarity Network Fusion, excel in clustering
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Figure 1: Workflow diagram of AI and statistical methods of multi-omics data
integration

Table 1: Multi-omics public datasets and compatible methods

Dataset / Resource Multi-omics layers Compatible methods
TCGA (via GDC portal) mRNA, miRNA,

methylation, CNV,
proteomics

PCA, PLS, SNF, BCC,
PARADIGM, MOFA, etc.

ICGC Genomics, transcriptomics,
epigenomics

Same as TCGA, broader
diversity

CMOB benchmark
(TCGA-based)

Processed multi-cancer data All listed ML/stat methods

MixOmics example sets mRNA, proteome,
metabolome

PCA, PLS, sMBPLS, CCA

BioGRID interactions +
TCGA

Network
/expression/proteomics

GNN, RWR

and patient stratification by leveraging sample-level relationships across different datasets.
These methods are robust to missing features and offer flexible data-type integration through
graph-based fusion strategies. Bayesian models introduce a probabilistic framework that ex-
plicitly handles uncertainty and allows for the incorporation of prior biological knowledge.
They are particularly effective in unsupervised clustering, causal inference, and modeling
hidden structures in multi-omics data, though often computationally demanding. Multivari-
ate methods, including PCA, PLS, MOFA, and sMBPLS, help in reducing dimensionality
and uncovering latent variables that drive shared or specific biological variation across omics
layers. These techniques are scalable and interpretable, making them widely adopted in both
research and clinical settings.
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Variational Autoencoders represent a more recent advancement, leveraging deep learn-
ing to capture complex, non-linear patterns and generate latent representations. Their flex-
ibility in integration strategies (early, intermediate, late) and natural handling of missing
data make them highly promising for large, noisy, and heterogeneous datasets. Graph-based
learning, including Graph Neural Networks and network propagation methods, allows inte-
gration of biological interaction networks with omics data. These methods encode structural
dependencies, enhance biological interpretability, and enable feature prioritization based on
contextual relevance within the network. However, no single method is universally supe-
rior; instead, the choice depends on the specific research question, data type, sample size,
and computational resources. As computational methods advance and multi-omics datasets
expand, integrative approaches will continue to unlock new insights into complex diseases,
biological pathways, and precision medicine.
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Table 2: Multi-omics data integration methods

Method Function Advantages Limitations
Canonical Correlation
Analysis (CCA)

Finds linear combina-
tions of features in two
datasets that are maxi-
mally correlated.

Simple and inter-
pretable; suitable for
moderate-dimensional
data.

Assumes linearity; un-
stable when number of
variables exceeds sam-
ples; sensitive to noise.

Sparse/Regularized
CCA

Extends CCA with
sparsity (L1) or regu-
larization to improve
feature selection or
stability.

Feature selection;
better suited for high-
dimensional omics data.

Parameter tuning re-
quired; interpretability
can decrease with com-
plexity.

Similarity Network Fu-
sion (SNF)

Constructs sample-
sample similarity
networks from each
omics and fuses them
iteratively.

Handles heterogeneous
data; robust to missing
features; good for clus-
tering.

Sensitive to similarity
metric choice; requires
careful normalization
and parameter tuning.

Bayesian Clustering
(MDI, BCC)

Uses probabilistic mod-
els to assign samples
to latent clusters across
datasets.

Models uncertainty; in-
corporates prior knowl-
edge; captures hidden
structure.

Computationally inten-
sive; may require strong
assumptions or priors.

Bayesian Networks
(e.g., PARADIGM)

Models conditional de-
pendencies among omics
variables via DAGs.

Captures causal rela-
tionships; integrates
multiple data types
with biological priors.

Complex to construct;
inference can be slow
and sensitive to data
quality.

Principal Component
Analysis (PCA)

Reduces dimensionality
by capturing directions
of maximum variance.

Simple, fast, and unsu-
pervised; good for vi-
sualization and variance
exploration.

Assumes linearity; may
overlook class-specific
patterns; not tailored to
response variables.

Partial Least Squares
(PLS)

Projects data onto la-
tent variables that cor-
relate with outcomes.

Supervised; identifies
correlated features
across data types.

May overfit with small
sample sizes; assumes
linear relationships.

Multi-Omics Factor
Analysis (MOFA)

Learns shared and spe-
cific latent factors across
omics layers.

Probabilistic; han-
dles missing data;
interpretable latent
structure.

Assumes Gaussian dis-
tributions; requires tun-
ing of latent dimension-
ality.

sMBPLS (Sparse Multi-
Block PLS)

Integrates multiple
omics datasets with
sparsity constraints.

Simultaneous inte-
gration and feature
selection; interpretable
loadings.

Computationally de-
manding; sensitive to
sparsity level selection.

Variational Autoen-
coders

Learns probabilistic
latent representations;
used for denoising,
imputation, clustering.

Captures nonlinear pat-
terns; handles missing
data; flexible integra-
tion strategies.

Requires deep learning
expertise; difficult to in-
terpret latent variables
biologically.

Graph Neural Networks
(GNNs)

Learns on graph-
structured data to
capture node-level and
graph-level representa-
tions.

Exploits interaction net-
works; context-aware;
scalable with recent ad-
vances.

Graph construction can
be noisy; hard to inter-
pret; requires large la-
beled datasets.

Network Propagation
(e.g., RWR)

Spreads signals across
biological networks to
prioritize genes or fea-
tures.

Integrates prior knowl-
edge; useful for rank-
ing and feature prioriti-
zation

Performance depends
on quality of network;
propagation may dilute
weak but important
signals.
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Table 3: Comparison of multi-omics integration methods

Method Description Software /
Package

Platform Link / Notes

CCA
(Canonical
Correlation
Analysis)

Identifies linear
relationships
between two
data matrices

mixOmics::rcc
/ PMA::CCA

R mixOmics,
PMA

SNF (Similarity
Network
Fusion)

Constructs
sample

similarity
networks and

fuses them

SNFtool /
SNFpy

R / Python SNFtool (R)

BCC (Bayesian
Consensus
Clustering)

Unsupervised
clustering

across multiple
data types

BayesCC R GitHub -
BayesCC

PARADIGM Integrates
multi-omics

using pathway
information

Java tool, also
in UCSC
Cancer

Genomics
Browser

Java / Web PARADIGM
GitHub, UCSC

site

PCA (Principal
Component
Analysis)

Linear
dimensionality

reduction

Base
R/prcomp,
sklearn

.decomposition.
PCA

R / Python scikit-learn
PCA

PLS (Partial
Least Squares)

Projects
predictor and

response
variables to a

new space

mixOmics::pls
/ sklearn.cross
decomposition.
PLSRegression

R / Python mixOmics,
scikit-learn

PLS

MOFA
(Multi-Omics

Factor
Analysis)

Probabilistic
latent variable

model for
multiple omics

MOFA2 R / Python MOFA2
GitHub,

Documentation

sMBPLS
(Sparse

Multi-block
PLS)

PLS extension
for multi-block

data, sparse
variant

mixOmics::block
.spls

R mixOmics -
block.spls

VAE
(Variational

Autoencoder)

Deep learning
model to learn

latent
representations

TensorFlow,
PyTorch, scVI

Python scVI, PyTorch
VAE example

GNN (Graph
Neural

Networks)

Deep models on
graph-

structured
omics data

PyTorch
Geometric,

DGL, Spektral

Python PyTorch
Geometric,

DGL, Spektral

RWR (Random
Walk with
Restart)

Graph-based
propagation for

gene
prioritization

Custom or
igraph,

NetWalker

R / Python /
Java

NetWalker,
igraph

https://www.bioconductor.org/packages/release/bioc/html/mixOmics.html
https://cran.r-project.org/web/packages/PMA/
https://cran.r-project.org/web/packages/SNFtool/
https://github.com/BayesCC
https://github.com/BayesCC
https://github.com/compbio/paradigm
https://github.com/compbio/paradigm
https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://www.bioconductor.org/packages/release/bioc/html/mixOmics.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://github.com/bioFAM/MOFA2
https://github.com/bioFAM/MOFA2
https://mofa.readthedocs.io/en/latest/
https://www.bioconductor.org/packages/release/bioc/html/mixOmics.html
https://www.bioconductor.org/packages/release/bioc/html/mixOmics.html
https://scvi-tools.org/
https://github.com/pytorch/examples/tree/main/vae
https://github.com/pytorch/examples/tree/main/vae
https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
https://www.dgl.ai/
https://graphneural.network/
http://bioinfo.vanderbilt.edu/NetWalker/
https://igraph.org/
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