
Statistics and Applications {ISSN 2454-7395 (online)}
Volume 19, No. 1, 2021 (New Series), pp 141–148

Constant Block-Sum Two-Associate Class Group Divisible
Designs

Sudhir Gupta
Department of Statistics

Northern Illinois University, DeKalb, Illinois, USA

Received: 19 September 2020; Revised: 07 December 2020; Accepted: 11 December 2020

Abstract
It is shown that classes of semi-regular and regular group divisible designs do not lead

to constant block-sum designs. Construction of constant block-sum designs using singular
group divisible designs is discussed in general. For a given singular group divisible design,
the construction method is shown to provide a large number of distinct constant block-sum
designs. Construction of constant block-sum designs for equispaced treatment levels is also
discussed.
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1. Introduction

Recently Khattree (2018a,b) discussed the concept of constant block-sum designs for
quantitative treatment levels. In these designs, the sum of the treatment levels in each
block is constant. Non-existence of constant block-sum balanced incomplete designs was
established by Khattree (2018a, 2020). Several methods of construction have been presented
by Khattree (2019). A general approach to determine whether or not a design can be
transformed into a constant block-sum design and its construction if it exists has been
developed in Khattree (2020). Bansal and Garg (2020) derived some conditions for existence
of partially balanced constant block-sum designs and gave further combinatorial methods of
construction. Khattree (2020) discussed some individual examples, including two-associate
class group divisible (GD) designs. The purpose of this note is to present results with respect
to the property of constant block-sum that apply to the whole class of GD designs. Non-
existence of constant block-sum designs is established for classes of semi-regular and regular
GD designs. Construction of constant block-sum singular GD designs is discussed in general.
Existence of a large number of distinct constant block-sum solutions for a given singular GD
design is illustrated with the help of an example. Singular GD constant block-sum designs
for equispaced treatment levels are discussed in Section 3.

2. Group Divisible Designs

In two-associate class GD designs, v = m1m2 treatments are arranged in m1 groups of
m2 treatments each. Let the treatments be coded as 1, 2, · · · ,m1m2. Then it is convenient
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to form the groups as:

Table 1

1 2 . . . m2
m1 + 1 m1 + 2 . . . 2m2

.

.

.
m2(m1 − 1) + 1 m2(m1 − 1) + 2 . . . m1m2

The treatments are first associates if they belong to the same group and second asso-
ciates otherwise. The parameters of a GD design are v = m1m2, b, r, k, λ1, λ2, m1, m2,
where the symbols have their standard meaning, see Raghavarao (1971) or Dey (1986) for
details. Let

A = NN ′ − rk

v
Jv

where N is the v × b incidence matrix and J t denotes a square matrix of one’s of size t.
Note that 1v, a vector of ones of size v × 1, is an eigenvector of A corresponding to a zero
eigenvalue.

For an equireplicate partially balanced design, Khattree (2020) showed that a necessary
condition for existence of a constant block-sum design is that

Aw = 0

where w 6= 1v is an eigenvector of A corresponding to a zero eigenvalue. Note that this is
not a sufficient condition, as it is possible that a vector w satisfying the necessary condition
does not have all of its elements different from each other. If the v elements of w are all
different from each other, they are taken as v treatment levels to yield a constant block-sum
design.

As A and NN ′ are symmetric matrices, they both admit their spectral decompositions.
Also, NN ′1v = rk1v, so it can be easily seen that if w 6= 1v is an eigenvector of A
corresponding to a zero eigenvalue then it is also an eigenvector of NN ′ corresponding to a
zero eigenvalue and vice versa. Thus, equivalently, we have the following theorem.

Theorem 1: A necessary condition for the existence of a constant block-sum design is that
NN ′ is singular.

Remark 1: Singularity of NN ′ in turn implies that the rows of N are not linearly inde-
pendent.

Remark 2: Statement of Remark 1 is automatically satisfied if v > b, since Rank(N ) ≤
min(v, b) < v.

The structure of NN ′ for GD designs as given below and its eigenvectors and eigen-
values given in Lemma 1 are well known, see e.g. Nigam, Puri and Gupta (1988).
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NN ′ =



(r − λ1)Im2 + λ1Jm2 λ2Jm2 λ2Jm2 · · · λ2Jm2

λ2Jm2 (r − λ1)Im2 + λ1Jm2 λ2Jm2 · · · λ2Jm2
... ... ... ...
... ... ... ...

λ2Jm2 λ2Jm2 λ2Jm2 · · · (r − λ1)Im2 + λ1Jm2



= (r − λ1)Im1 ⊗ Im2 + (λ1 − λ2)Im1 ⊗ Jm2 + λ2Jm1 ⊗ Jm2

where Iq and J q denote respectively an identity matrix and a square matrix of one’s, both
of order q, and ⊗ is the (right) kronecker product. Let u1i, i = 1, 2, · · · , (m1 − 1) be
orthonormal column vectors of size m1 each, such that u′1i1m1 = 0, u′1iu1i = 1, and u′1iu1i1 =
0, i 6= i1 = 1, 2, · · · , (m1 − 1). Similarly, let u2j, j = 1, 2, · · · , (m2 − 1) be orthonormal
column vectors of size m2 each, such that u′2j1m2 = 0, u′2ju2j = 1, and u′2ju2j1 = 0,
j 6= j1 = 1, 2, · · · , (m2 − 1). Without loss of generality, we take normalized orthogonal
polynomial contrasts as u1i and u2j, i = 1, 2, · · · , (m1 − 1),j = 1, 2, · · · , (m2 − 1).

Lemma 1:

(a) w1i = u1i ⊗ 1m2 , i = 1, 2, · · · , (m1 − 1) constitute a set of (m1 − 1) eigenvectors of
NN ′ corresponding to the constant eigenvalue of θ1 = (rk − vλ2),

(b) w2j = 1m1 ⊗ u2j, w12ij = u1i ⊗ u2j, i = 1, 2, · · · , (m1 − 1); j = 1, 2, · · · , (m2 − 1)
constitute a set of m1(m2 − 1) eigenvectors of NN ′ corresponding to the constant
eigenvalue of θ2 = (r − λ1),

(c) 1m1 ⊗ 1m2 is an eigenvector of NN ′ corresponding to the eigenvalue of θ0 = rk, and
(d) the m1m2 eigenvectors of NN ′ in (a), (b), and (c) are mutually orthogonal.

GD designs are called singular if r = λ1, semi-regular if r > λ1 and rk = vλ2, and
regular if r > λ1 and rk > vλ2. Let us first consider the class of semi-regular GD (SRGD)
designs. It can be seen that θ1 = 0 and θ2 > 0 for SRGD designs. From Lemma 1, the
following (m1 − 1) eigenvectors of NN ′ correspond to an eigenvalue of zero as required in
Theorem 1.

w1i = u1i ⊗ 1m2 , i = 1, 2, · · · ,m1 − 1 .

However, it is easily seen that none of these eigenvectors on its own satisfies the require-
ment that all of its v elements be different from each other. Note that a linear combination of
these m1−1 eigenvectors is also an eigenvector of NN ′ corresponding to zero eigenvalue. So,
let us consider the following general linear combination t1w, where ci, i = 1, 2, · · · , (m1− 1)
are some constants.

t′1w =
m1−1∑
i=1

ci

(
u′1i ⊗ 1′m2

)

=
[(

m1−1∑
i=1

ciu1i1

)
1′m2

(
m1−1∑
i=1

ciu1i2

)
1′m2 · · ·

(
m1−1∑
i=1

ciu1im1

)
1′m2

]
(1)
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where u′1i = (u1i1 u1i2 · · · u1im1) , i = 1, 2, · · · , (m1−1). It is clear from equation (1) that
there does not exist a linear combination t1w such that all of its v = m1m2 elements are
different from each other. Thus we can state the following result.

Theorem 2: There does not exist a constant block-sum semi-regular GD design.

Next, turning attention to the class of regular GD designs, note that both of the
eigenvalues θ1 and θ2 of NN ′ for these designs are greater than zero. So, an eigenvector w
per the necessary condition of Theorem 1 does not exist for the class of regular GD designs.
Thus we have the following.

Theorem 3: There does not exist a regular GD constant block-sum design.

Finally, we now consider singular GD (SGD) designs for which the eigenvalue θ2 =
r − λ1 = 0. From Lemma 1, the following m1(m2 − 1) eigenvectors satisfy the necessary
condition of Theorem 1 for existence of constant block-sum designs.

w2j = 1m1 ⊗ u2j, j = 1, 2, · · · (m2 − 1) ,
w12ij = u1i ⊗ u2j, i = 1, 2, · · · , (m1 − 1) ; j = 1, 2, · · · , (m2 − 1)

None of these m1(m2 − 1) eigenvectors on its own satisfies the requirement that all of
its m1m2 elements be different from each other. So, we explore a linear combination t2w of
the m1(m2 − 1) eigenvectors, that is also an eigenvector of NN ′ with zero eigenvalue, such
that its m1m2 elements are different from each other.

t2w =
m2−1∑
j=1

c2jw2j +
m1−1∑
i=1

m2−1∑
j=1

c12ijw12ij (2)

where c1j, c12ij, i = 1, 2, · · · , (m1 − 1) ; j = 1, 2, · · · , (m2 − 1) are some constants. For
illustration, we consider the following example.

Example 1: Consider the SGD design S21 in Clatworthy (1973) tables with parameters
v = 9, b = 3, r = 2, k = 6, λ1 = 2, λ2 = 1, m1 = m2 = 3 :

Block No. Block contents
1 1 2 3 4 5 6
2 1 2 3 7 8 9
3 4 5 6 7 8 9

Here, m1(m2 − 1) = 6 orthonormal eigenvectors of NN ′ corresponding to zero eigenvalue
are as follows.

w′21
w′22
w′1211
w′1212
w′1221
w′1222

 =



(−1 0 +1 −1 0 +1 −1 0 +1) /
√

6
(+1 −2 +1 +1 −2 +1 +1 −2 +1) /3

√
2

(+1 0 −1 0 0 0 −1 0 +1) /2
(−1 +2 −1 0 0 0 +1 −2 +1) /2

√
3

(−1 0 +1 +2 0 −2 −1 0 +1) /2
√

3
(+1 −2 +1 −2 +4 −2 +1 −2 +1) /6


(3)
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By taking c21 = −0.03, c22 = 0.50, c1211 = −0.42, c1212 = 0.61, c1221 = −0.90, and
c1222 = −0.43, in equation (2) and using (3) we get:

t′2w = (−0.0679 0.2598 − 0.1920 − 0.2462 − 0.5224 0.7686 0.7043 − 0.4446 − 0.2598 )

Adding a same constant value to all the elements of t2w does not break the constant block-
sum property. The elements of t∗2w given below, obtained by adding c0 = 0.70 to the elements
of t2w, can be taken as treatment levels for constant block-sum property.

t∗′2w = ( 0.6321 0.9598 0.5080 0.4538 0.1776 1.4686 1.4043 0.2554 0.4402 ) .

As a matter of fact, a very large number of solutions for t∗2w can be found by varying the
values of the six coefficients c21, c22, c1211, c1212, c1221, c1222 of the linear combination t2w. Any
set of six values of these coefficients that results in all the elements of t2w to be different from
each other would satisfy the constant block-sum property. Table 2 lists 5 other solutions for
the treatment levels vector t∗2w obtained by trial and error. The corresponding values of the
six coefficients are listed in Table 3, where c0 is the constant value added to the elements of
t2w to obtain t∗2w. Many more solutions can be found simply by taking other values for the
coefficients such that all the elements of t2w are different from each other.

Table 2: Further solutions for Example 1

t∗′2w No. t∗′2w

1 0.7980 0.3685 1.8336 0.8232 1.1953 0.9815 0.8612 0.0221 2.1168
2 0.7480 0.4685 1.7836 0.9232 0.9953 1.0815 0.8112 0.1221 2.0668
3 0.6980 0.5685 1.7336 1.0232 0.7953 1.1815 0.7612 0.2221 2.0168
4 0.8771 0.6185 1.5044 1.2773 0.6953 1.0274 0.9403 0.2721 1.7876
5 1.5412 1.1447 0.9140 1.5833 1.9138 0.1029 0.7722 0.6829 2.1450

Table 3: Coefficient values for t∗′2w listed in Table 2

t∗′2w No. c21 c22 c1211 c1212 c1221 c1222 c0
1 1.00 1.00 0.11 0.30 0.57 1.00 1.00
2 1.00 1.00 0.11 0.30 0.57 0.70 1.00
3 1.00 1.00 0.11 0.30 0.57 0.40 1.00
4 0.50 1.00 0.11 0.30 0.57 0.25 1.00
5 -0.30 -0.10 1.00 0.40 1.07 1.00 1.20

Remark 3: For comparing treatments with respect to their effects, it is natural that treat-
ment levels will be determined by subject matter specialists based on the objectives of their
study. Example 1 illustrates the conundrum the experimenter is confronted with. What if
none of the solutions illustrated in the example is a good choice of treatment levels for the
study objectives? Note that for a t∗2w of Table 2, f1t

∗
2w + f219 also satisfies the property

of constant block-sum, where f1 > 0 is a constant and f2 is another constant such that all
the treatment levels are greater than zero. Of course, we can also include more solutions
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in Table 2 and hope that one of the solutions meets the study objectives. However, a sys-
tematic, perhaps algebraic, method of deriving possible solutions for unequally spaced and
equispaced treatment levels in general deserves further research. Khattree (2019) has pro-
vided a detailed discussion on optimizing constant block-sum and nearly constant block-sum
designs.

Sometimes a choice of u1i’s and u2i’s other than the orthogonal polynomial contrasts
may yield a analytical solution directly without the need of forming linear combinations of
eigenvectors. For instance, suppose in Example 1 we take u′11 = (1, 2, −3)/

√
14,

u′12 = (1, −1.25, −0.5)/
√

2.8125, u′21 = (−5, 4, 1)/
√

42, u′22 = (1, 2, −3)/
√

14. Then,
using Lemma 1,

w′1211 = u11 ⊗ u21 = (−5 4 1 − 10 8 2 15 − 12 − 3) /
√

588 (4)

is an eigenvector of NN ′ with zero eigenvalue having all of its elements different from each
other. Thus,

t∗′2w = f1 (−5 4 1 − 10 8 2 15 − 12 − 3) + c01′9 ,

where f1 > 0 and c0 > 12 are some constants, satisfies the property of constant block-sum.
The constants f1 and c0 can be chosen appropriately to suit experimenter’s requirements
with respect to the magnitude of treatment levels.

3. Equispaced Treatment Levels

The general approach illustrated in the previous section shows many possibilities for
constant block-sum designs with unequally spaced treatment levels. However, if equispaced
treatment levels are desired, SGD designs based on BIB designs in particular afford a solution
directly without making use of the eigenvectors of NN ′. Consider a BIB design D with
parameters v0 = m1, b0, r0, k0, λ0, with treatments coded as 1, 2, · · · , m1. Let DSGD denote
the design obtained by replacing treatment i in the BIB design by m2 treatments (i−1)m2 +
1, (i−1)m2 +1, · · · , im2, i = 1, 2, · · · , m1. Then DSGD is a SGD design (Bose and Connor,
(1952)) with parameters v = m1m2, b = b0, r = r0, k = m2k0, λ1 = r, λ2 = λ0, m1, m2, with
m1 groups of treatments as given in Table 1. Let T be the vector of treatments given by,

T = (1, 2, · · · , m2, m2 + 1, m2 + 2, · · · , 2m2, · · · , m1m2)′ . (5)

Now suppose it is desired to transform SGD design DSGD into a constant block-sum
design for m1m2 equispaced treatment levels `i, i = 1, 2, · · · , m1m2, where `i = `1 +(i−1)d,
d = `i−`i−1, i = 2, 3, · · · , m1m2., `1 being the lowest dose or treatment level. Let the vector
of equispaced treatment levels can be written as,

T ` = `11v + d {0, 1, 2, · · · , (m1m2 − 1)}′ . (6)

In fact we only need to work with T `0 as defined below, since T ` = `11v + dT `0,

T `0 = {0, 1, 2, · · · , (m1m2 − 1)}′ . (7)



2021] CONSTANT BLOCK SUM DESIGNS 147

The sum of the m1m2 elements of T `0, say `SUM , is then given by

`SUM = T ′`01v = {m1m2 (m1m2 − 1)} /2 .

Further suppose that it is possible to partition the v = m1m2 elements of T `0 into m1 groups
of size m2 each such that the sum of the m2 elements within all the m1 groups is equal to
each other. Clearly, then the sum of m2 elements in each group is equal to `SUM/m1. Let
the ith group, say Gi be denoted by,

Gi =
{
`∗{(i−1)m2+1}, `

∗
{(i−1)m2+2}, · · · , `∗im2

}
,

m2∑
j=1

`∗{(i−1)m2+j} = `SUM

m1
= m2 (m1m2 − 1)

2 , i = 1, 2, · · · , m1 ,

{
`∗{(i−1)m2+1}, `

∗
{(i−1)m2+2}, · · · , `∗im2

}
∈ {0, 1, 2, · · · , (m1m2 − 1)} ,

G1 ∪G2 · · · ∪Gm1 ≡ T `0 = {0, 1, 2, · · · , (m1m2 − 1)} .

Then a constant block-sum design equispaced treatment levels vector t∗2w is given by,

t∗2w = `11v + d
(
`∗1, `

∗
2, · · · , `∗m2 , `

∗
m2+1, `

∗
m2+2, · · · , `∗m1m2

)′
. (8)

An equispaced constant block-sum design D∗SGD is obtained by replacing the ith element of
T of (5) in design DSGD by the ithe element of t∗2w of (8). The block size being m2k0, the
treatment levels (8) imply that the constant block-sum equals k0`SUM/m1. Alternatively,
D∗SGD can be obtained by replacing treatment i in the BIB design D by the m2 elements of
`11m2 + dGi, i = 1, 2, · · · , m1. For illustration let us consider Example 1 again.

Example 1 continued: Let D be the BIB design with parameters v0 = b0 = 3, r0 = k0 = 2,
λ0 = 1, with blocks given by [1 2], [1 3], [2 3]. Then the SGD design S21 of Clatworthy
(1973) is obtain by replacing treatment i in D by m2 = 3 treatments as described above.
Thus, replace treatments 1, 2, 3 in D by the treatment groups (1, 2, 3), (4, 5, 6) and (7, 8,
9) respectively to obtain the SGD design S21 or DSGD. From (3.3) we have

T `0 = (0, 1, 2, 3, 4, 5, 6, 7, 8)′ ,

with `SUM = 36. Taking G1 = (0, 4, 8), G2 = (1, 5, 6) and G3 = (2, 3, 7), gives the sum of
elements in each group to be `SUM/m1 = 12. Suppose ` = 1.5 and d = 0.3. Then the requisite
equispaced constant block-sum design DSGD is obtained by replacing treatment i in the BIB
design D by m2 = 3 elements of 1.513 + dGi, i = 1, 2, 3. The designs S22, S23, S24, and
S25 in Clatworthy (1973) are obtained by taking replications of design S21. Corresponding
constant block-sum designs can then be obtained by taking replications of DSGD

Most of the SGD designs listed in Clatworthy (1973) are constructed using irreducible
BIB designs. Let Dm1

k0 denote the irreducible BIB design for v0 = m1 treatments in blocks
of size k0. Then, the groups Gi for m2 = 2 are as below, where the subscript 2 indicates the
value of m2,

G2i = {(i− 1) , (2m1 − i)} , i = 1, 2, · · · , m1 .
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TheDSGD designs corresponding to S1 to S20 can thus be obtained using G2i, i = 1, 2, · · · , m1 .
Constant block-sum designs for some other values of m2 can also be similarly developed. The
reader is also referred to Khattree (2019) for constructions of some equispaced SGD constant
block-sum designs.
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