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Abstract 

 

The growth trajectory of the mobile telephone subscribers is highly nonlinear. The 

piecewise nonlinear growth model, comprising the well-known Gompertz and Bass 

models, was shown to be adequately describing the underlying data generating process of 

mobile telephone subscribers. This study used monthly time series data from March 1997 

to December 2018 of telecom Circle A, representing the industrially advanced states like 

Maharashtra, Gujarat, Andhra Pradesh, Karnataka, and Tamil Nadu, was applied to 

develop the model.  We partition the monthly data into the analysis sample (March 1997 

to December 2017) and the test sample (January 2018 to December 2018). The parameters 

of the piecewise nonlinear model were estimated using Levenberg-Marquardt and 

sequential quadratic programming algorithms. The piecewise nonlinear model comprising 

Gompertz and Bass growth models was suitable for describing the monthly mobile 

subscribers’ data in Circle A. The developed model was statistically validated using an 

appropriate coefficient of determination for the nonlinear models and Root Mean Squared 

Error (RMSE). We found the RMSE to be comparable for both training and the test sets. 

The forecasting capabilities of the piecewise nonlinear model, under mild violation of 

residual diagnostics, are compared to exponential smoothing (Holt’s) and Gompertz 

models. We compared the performance of the model to the best fit Gompertz and Holt’s 

models. In the test sample, we found the RMSE to be lower in the piecewise nonlinear 

model comprising Gompertz and Bass compared to the Holt’s as well as the Gompertz 

model. We computed the forecast values of the subscribers during April-December 2020 

using the developed model. As evident from the test sample and the published data of the 

Telecom Regulatory Authority of India (TRAI), the prediction from the developed model 

is lower than the actual values. The maximum potential number of subscribers in Circle A 

was 421.545 million, likely to be achieved in 2027. However, as the model predicted 

values are marginally smaller than the actual values, the maximum potential is expected 

to be completed before 2027.  
 

Key words: Piecewise nonlinear regression model; Gompertz model; Bass growth model; 

Sequential quadratic programming algorithm; Holt’s model; Root mean squared error. 
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1.  Introduction 

Indian telecommunication market is the second-largest in the world. The telecom sector 

showed remarkable growth and contributed substantially to creating new jobs and providing 

revenue to the Government. The industry will contribute ₹14.5 lakh crore to the economy and 

support 3 million direct jobs and 2 million indirect jobs by 2020 (GSMA, 2019). In 2015, the 

telecom sector accounted for 6.5% of India's Gross Domestic Product (GDP). With the leveraging 

of 5G technology, in 2020, it is estimated to reach 8.2% of India's GDP (ET, 2019, Wikipedia, 

2020), if not getting delayed due to the COVID-19 pandemic. The bidding decision of the 5G 

spectrum and the telecom service providers' price in different circles would be based on the demand 

in that circle, among other parameters. All the stakeholders would be interested to know the future 

potential of the telecom markets in terms of subscriber base in the years to come. We can estimate 

the demand of a circle by predicting the number of mobile subscribers. There are four telecom 

circles in India, namely, metro, A, B, and C. In this study, we develop a model to forecast the total 

mobile subscribers of Circle A, which is comprising of industrially advanced states viz., 

Maharashtra, Gujarat, Andhra Pradesh, Karnataka, and Tamil Nadu. The number of subscribers 

(henceforth by subscribers, we would refer to customers subscribed to GSM services only) attained 

from 9698 in March 1997 to 3505.27 lakhs in December 2018 in Circle A – an impressive growth 

in subscriber base (COAI, 2018, TRAI, 2018).  

In this study, our objectives are: (i) to develop an appropriate model to forecast the 

numbers of mobile subscribers in Circle A; (ii) to apply the developed model to forecast the 

numbers of mobile subscribers in Circle A. The modeling approach employed is that of piecewise 

nonlinear growth models. The results so obtained are compared to the exponential smoothing 

(Holt’s) and Gompertz models. We compared the piecewise model's performance to the Holt’s and 

Gompertz models using the test set. We divide the paper into five sections. Section 2 reviews the 

existing literature on piecewise nonlinear regression and exponential smoothing models and their 

applications. We discussed models, parameter estimation, fit statistics, and model selection metrics 

in Section 3. We discussed the results and salient findings in Section 4. Finally, in Section 5, we 

present the conclusion and the way forward.   

2.  Literature Review 

The piecewise regression models are also known as segmented regression or broken stick 

regression models. In Econometrics, it is known as interrupted time series regression (Linden 

and Arbor, 2015). In this method, we partition the outcome (or the study) variable into regions, 

and a separate model is fit to each part. The piecewise regression is employed when the data is 

hypothesized to have been generated by more than one model (McZgee and Carleton, 1970). 

The piecewise linear regression models are pragmatic in the bio-physical (Vieth, 1989, Malash 

and El-Khaiary, 2010) and socio-economic domains (Birgit, 2006). The piecewise nonlinear 

regression models are also applied to biological and socio-economic studies (Oh and Kim, 

2002, Maceina, 2007, Morrell et al., 1995, Vanli and Kozat, 2014).  

The application of the growth models is the most popular approach to study the growth 

trajectory of mobile subscribers in different markets, namely, Central and Eastern Europe 

(Gruber, 2001), Asia Pacific region (Wenrong et al., 2006), Greece (Michalakelis et al., 2008) 

and Taiwan (Wu and Chu, 2010). Several researchers (Sridhar, 2010; Hedau and Soni, 2016) 

also studied India's mobile telephone market. The effect of different techno-economic 

variables, among other things, on the growth of mobile services in different regions in India 

using panel data, was studied by Sridhar (2010). It was found that competition and network 
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were the two crucial variables to impact mobile services' growth. Though it provided 

significant insight into the impact of variables on mobile services' growth, it failed to make a 

time series forecast. The major lacuna in Hedau and Soni (2016) were in the model 

development and parameter estimation. The linearized model parameters were estimated; 

however, the original model was recommended as a forecast model. We can overcome this 

shortcoming by employing nonlinear estimation procedures. Though several studies were 

conducted to track the growth trajectory with limited success, no attempt has been made to 

engage piecewise nonlinear growth models to understand mobile subscribers' growth path. As 

growth models are mechanistic, they have advantages in understanding the data generating 

process and its future potential. We discuss the nonlinear growth models, piecewise nonlinear 

growth models, and related issues in the next section.   

3.  Models and Methodology 

3.1. Nonlinear growth models 

Let n ( t ) and N ( t ) denote the number of subscribers and the cumulative number of 

subscribers, respectively, to mobile service at time t in Circle A. If t0 denotes the time at 

starting, i.e., t = 0, then at time t, the cumulative number of subscribers can be expressed as: 

𝑁 ( 𝑡 ) =  ∫ 𝑛 ( 𝑡 )𝑑𝑡

t

t0

 

where n ( t ) is the non-cumulative number of adopters at time t. Further, let, 

dN ( t )

dt
 = rate of growth at time t, and  

1

N ( t )

dN ( t )

dt
= relative rate of growth at time t. 

Let K denote the total number of potential subscribers in Circle A. It is also known as 

the carrying capacity or maximum potential of the system, i.e., the markets of Circle A. Let 

us assume that: 

(i) the rate of growth is proportional to the interaction of adopters and non-adopters. 

This can be expressed as: 

 

In differential equation form, it becomes: 

  dN ( t )

dt
 = rN ( t )[ 1 - N ( t )/K ].  (2)  

Here, r is the intrinsic growth rate. The solution to this equation yields the following model: 

 
N ( t ) = 

K

1 + 
( K - N0 )

N0
 exp( -rt )

, 
(3)  

where N0 is the number of subscribers at t = 0.     

Reparametrizing, the model can be written as:  

where B = ( K - N0 )/N0. 

 dN ( t )

dt
 ∞ N ( t ) [1 - 

N ( t )

K
] . (1)  
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This model is known as the logistic growth model. The inflection point of this model is at 

K/2. The model described in Eq. (3) or the reparametrized model in Eq. (4) appeared 

deterministically as if data never deviates from the model. It is unrealistic. To make the model 

realistic, independently, identically, and normally distributed error term is added to the right-hand 

side (RHS) of the mathematical model. The resulting nonlinear regression model is: 

 
N ( t ) = 

K

1 + B * exp ( -rt)
+ εt (5) 

 

(ii) The relative rate of growth is proportional to the logarithm of the ratio of carrying 

capacity to subscribers' number at time t. Hence, this can be represented as: 

 1

N ( t )

dN ( t )

dt
 ∞  ln (

K

N ( t )
). (6)  

Therefore, the model in differential equation form can be expressed as: 

 𝑑𝑁 ( 𝑡 )

𝑑𝑡
= 𝑟𝑁 ( 𝑡 ) ln (

𝐾

𝑁 ( 𝑡 )
) (7)  

with the boundary condition N (t = t0) = N0  = cumulative number of adopters at time t0. 

 

The parameter r is known as the intrinsic rate of growth. The solution to the above 

differential equation results in the following model: 

 N ( t ) = K* exp ( -B* exp ( -rt )) (8)  

where B = ln( N0 / K ). 

 

This model is known as the Gompertz model. By adding an error term to the RHS, we 

obtain the following statistical model: 

 N ( t ) = K* exp ( -B* exp ( -rt)) + εt .  (9)  

The model is asymmetric, and the point of inflection is at K/e.  

(iii) the rate of growth is proportional to the number of non-adopters, which can be 

expressed as: 

 dN ( t )

dt
 ∞ [ K - N ( t ) ]. (10)  

In the differential equation form, it becomes: 

 dN ( t )

dt
 = r [ K - N ( t ) ]. (11)  

The solution to this equation yields the following model: 

 N ( t ) = K - (K - B ) * exp ( −𝑟𝑡 ), (12)  

where r > 0 and K > B > 0.  Here, K is the maximum potential, and B is the number of 

subscribers at t = 0. The statistical model can be written as: 

 

 

 

N ( t ) = 
K

1 + B * exp ( -rt)
 , (4)  
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 𝑁( t ) = K - ( K - B )*exp( -rt ) + εt (13)  

The model in Equation 13 is known as monomolecular (MM). The models in Equations 5, 

9, and 13 are S-shaped growth models. These are nonlinear models in the statistical regression 

sense because at least one parameter of these models appears nonlinearly. The three parameters 

viz., K, B, and r of the models in Equations 5, 9, and 13, are estimated. For further details on S-

shaped nonlinear growth models and the Richards model, readers can refer to Seber and Wild 

(2003).  

 

(iv) The rate of growth is influenced by two types of subscribers, namely, innovators and 

imitators. We present the differential equation below:  

 

 dN ( t )

dt
 = p [ m - N ( t ) ] + ( 

q

m
 ) N ( t )[ m - N ( t ) ] (14)  

 

Here, m is the market potential, p and q are the coefficients of innovation and imitation. The 

solution of the above differential equation results in the following model: 

 

 
N ( t ) = m

1 - 𝑒𝑥𝑝 − ( 𝑝+𝑞 ) 𝑡

1+ ( 
𝑞
𝑝  ) * exp

- ( p + q ) t
 (15)  

By adding an error term to the RHS, we obtain the following statistical model: 

 N (t ) = m
1 -  exp- ( p + q ) t

1 + ( 
𝑞

𝑝
 ) * 𝑒𝑥𝑝−( 𝑝+𝑞 ) 𝑡

 + εt (16)  

In this model, m > 0, p > 0, and q > 0. It is also a nonlinear model in the regression sense. 

The parameters of the model viz., m, p, and q are to be estimated. For further details on the Bass 

model, the readers can refer to Bass (1969) and Rogers (2003). 
 

3.2.  Piecewise nonlinear growth models 

The piecewise nonlinear model of the following type is considered in this study: 

 ( t  <  𝑇∗) * N1 ( t ) + ( t  >=  𝑇∗) * N2 ( t ). (17)  

In Equation (17), 𝑇∗ is the value of t at which the growth trajectory is found to be changing 

from one model to another model. It is also known as the knot, breaking point, change point, or 

joining point. The two nonlinear functions are denoted by N1 ( t ) and N2 ( t ). If ( t  <  𝑇 ∗) is true, 

it returns one else zero. Similarly, if ( t > = 𝑇∗ ) is true, it returns 1 else zero. Here, N1 ( t ) can be 

any growth model viz., logistic, Gompertz, monomolecular, Bass, Richards, or any other growth 

model. The function, N2 ( t ), can also be any growth model viz., logistic, Gompertz, 

monomolecular, Bass, Richards, or any other growth model. As an example, let us consider the 

following combination: 

 

 𝑁 ( 𝑡 ) = ( 𝑡 <  𝑇∗ ) ∗ ( 𝐾 ∗ 𝑒𝑥𝑝 ( −𝐵 ∗ 𝑒𝑥𝑝( −𝑟𝑡 )))  (18) 
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+ ( 𝑡 ≥  𝑇∗) ∗ 𝑚 

1 − 𝑒𝑥𝑝− ( 𝑝 + 𝑞) 𝑡

1 + (
𝑞
𝑝) ∗ 𝑒𝑥𝑝− ( 𝑝+𝑞 ) 𝑡

 + 𝜀𝑡 

 

In this segmented (piecewise) study, the first segment of the sample data is hypothesized to 

have been generated by a Gompertz model. The second segment of the sample data is hypothesized 

to have been caused by a Bass model. In general, when we consider ‘n’ number of models for 

modeling a data set having two segments, there can be n2 number of piecewise models.  

 

3.3.    Estimation of parameters 

The nonlinear model differs in their estimation properties from linear regression models. 

Under the assumption of an independently and identically distributed normal error term, the linear 

model gives rise to unbiased, normally distributed minimum variance estimators. Nonlinear 

regression models tend to do so as the sample size becomes very large (asymptotically) 

(Ratkowsky, 1990, Ross, 1990, Intriligator, 1996). Like linear regression, in nonlinear regression 

also normal equations are obtained. However, these normal equations are nonlinear, and no explicit 

solutions can be obtained. Different algorithms are available in the literature to solve nonlinear 

normal equations. Three main algorithms are (i) Gauss-Newton, (ii) Sequential Quadratic 

Programming, and (iii) Levenberg-Marquardt. The sequential quadratic programming algorithm is 

appropriate for nonlinear constraint models. It is a combination of Lagrangian relaxation, active set 

strategy, and Newton-Raphson methods. The algorithm yields stable solutions in the majority of 

situations. The details of these methods and their merits and demerits are available in the 

literature (Draper and Smith,1998; Nocidal and Wright, 2006). These algorithms are iterative 

and require starting values of the parameters. A good starting value can ensure global 

convergence and can obtain a minimum value of the loss function. The sum of squared residuals 

can be considered a loss function in estimating piecewise nonlinear regression models' 

parameters. The choice of good starting values can influence the convergence of the algorithm 

in locating the fitted value or between rapid and slow convergence to the solution. However, 

there is no standard procedure for computing the starting values of the parameters. Sometimes 

a combination of two or three methods results in good starting values. In this study, a combination 

of techniques is used to obtain the starting values of the parameters. IBM SPSS Statistics version 

26 software package is used to estimate the models' parameters and computation of goodness of 

fit measures (IBM, 2019). The goodness of fit of the nonlinear model is assessed by the 

coefficient of determination (R2). 

 

However, as Kvalseth (1985) pointed out, eight different expressions for R2 appear in the 

literature. One of the most frequent mistakes occurs when the fits of a linear and a 

nonlinear model are compared by using the same R2 expression. Thus, a logistic or a 

Gompertz model may first be linearized by using a logarithmic transformation and then 

fitted to data by using the ordinary least squares method. The R2-value is then often 

calculated using the log of observed and log of predicted data points. The R2 is, erroneously, 

interpreted as a measure of goodness of fit of even the original nonlinear model. Scott and Wild 

(1991) have given an example where two models are identical for all practical purposes 

and yet have very different values of R2 calculated on the transformed scales. Kvalseth (1985) 

has emphasized that the following R2 

 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
, (19)  
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where RSS is the residual sum of squares, and TSS is the total sum of squares, which is entirely 

appropriate even for nonlinear models. We present below the other necessary summary measures 

for nonlinear models: 

 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
∑ ( 𝑁 ( 𝑡 ) −  𝑁 ( 𝑡 ))2̂𝑇

𝑡=1

𝑇
 . (20) 

 

 

Here, T is the total number of observed values. N ( t ), and 𝑁(𝑡)̂ are the number of actual 

and the predicted subscribers.  
 

Mean Absolute Percentage Error (MAPE) is defined as: 

 

 
MAPE =

1

𝑇
∑ |

𝑁(𝑡)−𝑁(𝑡)̂

𝑁(𝑡)
| ∗ 100𝑇

𝑡=1  (21)  

N ( t ), and 𝑁(𝑡)̂ are the number of actual and the predicted subscribers, respectively.  

4.  Results  

Monthly data on mobile subscribers in the Circle A, from March 1997 to December 2018, 

was collated from the Cellular Operators Association of India (COAI) (www.coai.in). Currently, 

in the COAI repository, monthly data is available from January 2005 - December 2018. The data 

before 2005 was collated from the same repository in 2013 when it was available in the database. 

Data is currently available on the TRAI website; however, there is a difference in the subscribers’ 

numbers reported by COAI and TRAI. For example, in January 2018, COAI reported 340.41 

million subscribers, whereas TRAI reported 402.81 million subscribers in Circle A. To avoid 

mixing data from two sources, only data from COAI, which is available until December 2018, has 

been analyzed. Moreover, cumulative data is required for the estimation of parameters of the 

growth models. The cumulative data is essentially increasing or equal to the previous observation 

where N ( t+1 ) >= N ( t ). However, in the reported data in some months, this essential criterion 

has been violated.  Wherever N ( t+1 ) was reported to be smaller than the N ( t ), it has been 

imputed by the N ( t ). With this simple and essential imputation, the monthly data were pre-

processed to estimate the model's parameters.  Further, the complete data set was partitioned into 

an analysis sample and the test sample. The monthly data from March 1997 to December 2017 

were used as the analysis sample, and January 2018 to December 2018 was retained as the test 

sample. The line plot of the data is presented in Figure 1. The line plots of Figure 1 and Figure 2 

are generated in R studio (R Core Team, 2016, RStudio Team, 2015). Figure 1 depicts the growth 

trajectory of the corrected level data. The growth trajectory appears to be S-shaped until 2016 and 

follows a different path (Figure 1).  
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Figure 1: Partitioning of the data into Segment 1 and Segment 2 by the vertical line 

It is hypothesized that the underlying data generating process follows an S-shaped model. 

The traditional growth models, namely, logistic, Gompertz, monomolecular, Bass, and Richards, 

were fitted to the data using a nonlinear estimation method.  The results are presented in Table 1. 

Table 1: Results of fitting nonlinear growth models to subscribers’ data of Circle A 

Fit Statistics/Model Logistic Gompertz MM Bass 

R 2 0.98 0.99 0.952 0.98 

RMSE 15.89 13.85 26.64 15.84 

MAPE 1.38 0.36 49.94 0.55 

K (millions) 318.79 359.29 IE  

m (millions)    319.74 

IE: Inadmissible estimate 

The Gompertz model appears superior to other models in R2, RMSE, and MAPE. The next 

appropriate model is the Bass model. The Richards model resulted in the non-convergence of the 

iterative algorithm. The maximum potential of the market is estimated using the parameter K. The 

actual maximum number of subscribers in the sample is 357.378 million. The monomolecular 

model resulted in an inadmissible estimate. The logistic and Bass models resulted in an estimate 

lower than the actual maximum value. The estimate of K given by the Gompertz model is only 

marginally higher than the actual maximum value. The Gompertz model is appropriate for 

describing the subscribers' data of Circle A based on the fit statistics.  The estimated parameter 

value of K in the Gompertz model is admissible. We found that the results did not support the 

assumption of the normality of residuals in the Gompertz model using the Anderson-Darling test. 

Moreover, the RMSE of 13.85, though minimum among all the models, is not small in an 

absolute sense. Hence, we look for alternative models for describing the sample data. To this end, 

we employ piecewise nonlinear growth models. The change point was identified visually by 

examining the graph (Figure 1) and scanning the values of the data during 2016 and found to be in 
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August 2016 ( t < 235 ); t is the index of the time series representing month and year of the series. 

The change point divides the series into two segments, namely, segment one and segment two. We 

present this in Figure 1. 

We hypothesize that the two segments can be modeled using one model applied to two 

segments separately or by two models. To evaluate this hypothesis, we fitted all 25 model 

combinations. To validate the piecewise nonlinear growth models' performance, we have 

partitioned the sample data to the training set (March 1997 to December 2017) and the test set 

(January 2018 to December 2018). Considering that the valuable information is present in the 

recent observations, we have retained only 12 observations (i.e., one year’s data) in the test set.  

 The piecewise nonlinear growth models are fitted to the training set, and the performance of 

the model was evaluated on the test set. Out of all 25 combinations, not all combinations converged 

or resulted in admissible parameter estimates. The combinations which converged and resulted in 

admissible parameter estimates are presented here. Two combinations, namely the Gompertz 

model for both the segments (let us name it Gompertz-Gompertz (G-G)), and the Gompertz model 

for Segment 1 and Bass model for Segment 2 (let us name it Gompertz-Bass (G-B)) were found to 

be comparable. We present here two sets of initial values, namely, K = 200, B = 2, r = 0.05, m = 

400, p = 0.00005, and q = 0.05; and K = 300, B = 2, and r = 0.05, m = 400,   p = 0.00005, q = 0.05. 

The first three parameters pertain to the Gompertz model, and the following three parameters 

pertain to the Bass model. These are obtained by combining linearization, intelligent guesses, and 

property of the model. We present the results in Table 2. 

Table 2: Results of fitting piecewise nonlinear growth model to the analysis sample 

Fit Statistics/Model G-G G-B 

R2 0.99 0.99 

RMSE 6.94 7.14 

MAPE 0.46 0.43 

Parameter estimate (only maximum potential) 

K (millions) 384.07  

m (millions)  421.54 

 

The results of the G-G model presented above are that of a local minimum. The algorithm 

failed to converge to a global minimum even when widely separated initial values were used. 

Therefore, it is prudent not to compare the results of G-G to that of G-B, which resulted in global 

convergence. However, for the sake of completeness, we presented the results here. The 

performance of the models (G-G and G-B) is compared using the test sample. The RMSE of the G-

G model in the test sample was found to be 71.78, whereas the same value of the G-B model was 

13.12. In the test sample, the value of the RMSE of the G-B model is much better than the G-G 

model. Furthermore, in the test sample, the value of the RMSE of the G-B model is marginally 

better than the only Gompertz model. Let us compare the test series results to that of the exponential 

smoothing model to decide the final model.    

We describe below the exponential smoothing model (also known as Holt’s model) 

(Gardner, 1985, Hanke and Wichern, 2013): 

y
t+1

= αxt + (1 - α)(y
t + Tt)     (22)  
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Tt+1= γ(y
t+1

 - y
t
) + (1 - γ) Tt (23)  

Ht+h= y
t+1

 + hTt+1, (24)  

where, yt+1 = smoothed value for period t+1, α = smoothing constant for the level (0 < α < 1), xt = 

observed value in period t, Tt+1 = trend estimate, γ = Smoothing constant for the trend estimate (0< 

γ<1), h = number of periods ahead to be forecast, and Ht+h = Holt’s forecast value for period t+h. 

The estimated values of alpha and gamma parameters of Holt's model were 0.933 and 0.134, 

respectively. The RMSE of Holt's model was found to be 2.883 and 14.97 for the training and the 

test samples, respectively. Therefore, the RMSE of the piecewise nonlinear growth model 

comprising Gompertz and Bass models was found to be superior to Holt's model. The residual 

diagnostics of the piecewise nonlinear model was found to deviate from the assumptions of 

normality and independence. However, both these deviations are mild and ignored because of the 

superior comparative performance of the model. Given the above, it can be concluded that the data 

generating process of the mobile subscribers' data of the Circle A was piecewise nonlinear, which 

can be modeled by Gompertz and the Bass models. We present the parameters of the final model 

in Table 3.  

Table 3: Parameter estimates of piecewise nonlinear model 

Parameters K B r 

Estimates 291.965 86.168 .031 

Parameters m p q 

Estimates 421.545 
7.328x10-

9 
.07 

In the final model, the estimated value of the parameter 'p' is minimal. Such a small value, 

which is not exactly equal to zero but near zero, can occur and be meaningful in the present context 

as the data on which the models have been fitted are in millions. We present the final fitted model 

below: 

𝑁( 𝑡 ) = ( 𝑡 <  𝑇∗) ∗ ( 291.965 ∗ 𝑒𝑥𝑝−86.168∗ 𝑒𝑥𝑝−.031∗𝑡
 ) 

+ ( 𝑡 > =  𝑇∗) ∗ 421.545 
1 −  𝑒𝑥𝑝−( 7.328 x 10−9 + .07) 𝑡

1 + ( 
. 07

7.328 x 10−9) ∗ 𝑒𝑥𝑝− ( 7.328 x 10−9 + .07 ) 𝑡
 

The actual (dotted line) and the predicted (solid line) trajectory of the mobile subscribers are 

depicted in Figure 2. We present the forecasted number of subscribers using the piecewise 

nonlinear growth model (Gompertz-Bass) for the last three quarters of 2020 in Table 4. 
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Figure 2: Actual (dotted) and predicted (solid line) mobile subscribers (in millions) in 

Circle A 

 

  Table 4: The forecasted subscribers (in millions) of Circle A in 2020 

 

 

 

 

 

 

 

 

 

 

It is evident from the predicted values and the graph (Figure 2) that the circle's 

maximum potential, which is 421.545 million, is predicted to be achieved in November 

2027. However, it has been found earlier that the predictions from the growth models are 

conservative, and the maximum potential usually is attaining much before the model-

predicted date (Das, 2013). Moreover, the data reported by TRAI is much higher than the 

data reported by COAI. As this study is based on COAI data, actual values are likely to 

be higher than the forecast provided in this paper. 

5.  Conclusions 

We found the piecewise nonlinear growth model comprising Gompertz and Bass to 

be appropriate for describing the subscribers' data in Circle A. It confirms our assertion 

that the underlying data generating process can be divided into two segments, which 

shows strong evidence of ushering a new growth phase. Despite several issues in the 

telecom sector, Circle A comprises industrially advanced states like Maharashtra, Gujarat, 

Andhra Pradesh, Karnataka, and Tamil Nadu, which has entered into a new growth cycle. 

If this new cycle continues, it is likely to impact the Government in terms of revenue 

collection and the first- and second-degree stakeholders. As the post-COVID-19 

economic scenario is different from the pre-COVID-19 economic scenario, the data 

Month Forecast  

 

Month Forecast 

April 407.62 September 411.62 

May 408.53 October 412.27 

June 409.38 November 412.88 

July 410.18 December 413.45 

August 410.92   
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policy and pricing of the 5G spectrum are required to be such that it encourages more 

usages so that the current growth momentum continues.  
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