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Abstract

We investigate Bayesian predictive inference for finite population quantities when there
are unequal probabilities of selection. Only limited information about the sample design is
available; i.e., only the first-order selection probabilities corresponding to the sample units are
known. Our methodology, unlike that of Chambers, Dorfman and Wang (1998), can be used to
make inference for finite population quantities and provides measures of precision and inter-
vals. Moreover, our methodology, using Markov chain Monte Carlo methods, avoids the neces-
sity of using asymptotic closed form approximations, necessary for the other approaches that
have been proposed. A set of simulated examples shows that the informative model provides
improved precision over a standard ignorable model, and corrects for the selection bias.

Key words: Gibbs sampler, Poisson sampling, Restricted inference, Selection bias, Selection
probabilities, SIR algorithm, Transformation.

1. Introduction

Over the last 20 years there has been considerable research about model based inference for
finite population quantities when there is a selection bias. Most of this research is summarized
in Pfeffermann and Sverchkov (2009). Our work is patterned after that of Chambers, Dorfman
and Wang (1998), hereafter CDW, who assumed that the only information about the survey
design available to the survey analyst is the set of first-order inclusion probabilities for the
sampled units. CDW noted that “it is almost impossible to proceed without fixing ideas on an
example”. The example, which they used, is a generalization of one presented by Krieger and
Pfeffermann (1992) and we modify it further to make it more plausible for applications. Note
that CDW made inference only for superpopulation parameters rather than finite population
quantities as we do.

The purpose of our paper is to demonstrate, by example, the value of using Bayesian meth-
ods in complicated sample survey situations such as this one, i.e., where there is a selection bias
and limited sample information. While completely general solutions to such problems are not
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available because of differences in the assumptions, our specification should be close to those
seen in many surveys. For example, in establishment surveys the selection probability is often
proportional to a measure of size which is linearly related to the variable of interest, Y. Also,
the distribution of Y is positively skewed, thereby motivating a logarithmic transformation of
Y.

For the theoretical development the sample units are assumed to be chosen by Poisson sam-
pling, as CDW did. For the numerical examples, though, the more conventional systematic pps
sampling method is used; see Section 3. Let Ĩ = (I1, ..., IN) denote N independent Bernoulli ran-
dom variables where Ii = 1 if unit i is selected in the sample and Ii = 0, otherwise. Specifically,
CDW assumed

Pr(Ĩ|π1, ...,πN) =

(
∏
i∈s

πi

)(
∏
i/∈s

(1−πi)

)
, (1.1)

where
πi = Pr(Ii = 1) =

nνi

∑
N
j=1 ν j

, (1.2)

Also given β0,β1,σ
2
e and the Yi,

νi = β0 +β1Yi + εi, i = 1, ...,N (1.3)

with, independently, εi|σ2
e ∼ N(0,σ2

e ). In (2), (ν1, ...,νn), corresponding to the sampled units,
are known prior to sampling.

While (3) is a realistic specification for many establishment surveys with νi a measure of
size of unit i, in other surveys a heavy tailed distribution for the εi may be more appropriate.
While CDW assumed that the Yi follow a normal distribution, we take

log(Yi)∼ N(µ,σ2). (1.4)

Following CDW we assume that the data available to the analyst are the vector of sampled
values, ys, the vector of πi corresponding to the sampled units and Ĩ = (I1, ..., IN). From (2) it is
clear that ν1, ...,νN are not identifiable. While many restrictions are possible, taking ∑

N
j=1 ν j =

t, say, is convenient and this population sum is commonly available.

Our objective is a fully Bayesian analysis yielding exact inferences about any finite pop-
ulation quantity of interest, e.g., finite population quantiles. The analysis here is complicated
because, from (2), 0≤ νi≤ t/n, i= n+1, ...,N (i.e., for the non-sampled νi) and we must make
inference for the non-sampled νi subject to the restriction that ∑i/∈s νi = t−∑i∈s νi.

For convenience, we let the units indexed by {1,2, ...,n} denote the sampled units and
the units indexed by {n+1,n+2, ...,N} the non-sampled units. Thus, we have Ii = 1 for
i = 1,2, ...,n and Ii = 0 for i = n+ 1,n+ 2, ...,N. The selection probabilities, {πi : i ∈ s} =
{π1,π2, ...,πn} , and the values, {yi : i ∈ s}= {y1,y2, ...,yn}, for the sampled units are assumed
known and denoted by πs and ỹs. We use πns and ỹns to denote the selection probabilities and
response values for the non-sampled units. The vector{ν1,ν2, ...,νN} is denoted by ν̃ . Also ψ̃

and η̃ denote the parameters (µ,σ2) in (4), and (β0,β1,σ
2
e ) in (3), respectively.
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We transform ν̃ = {ν1,ν2, ...,νN} to Z̃ = {Z1,Z2, ...,ZN} so that the Zi’s are centered at 0,

Z1 = ν1− ν̄ , Z2 = ν2− ν̄ , ..., ZN−1 = νN−1− ν̄ , ZN = ν̄

where ν̄ = 1
N ∑

N
j=1 ν j =

1
N t.

Since {πi : i = 1,2, ...,n} and t are known, it is clear from (2) that ν̃s = (ν1,ν2, ...,νn) is
known. The size measures for the non-sampled units, {νn+1,νn+2, ...,νN}, denoted by ν̃ns, are
not known at the estimation stage. From the transformation from ν̃ to Z̃, (z1,z2, ...,zn,zN) are
known and denoted by z̃s while (zn+1,zn+2, ...,zN−1) are unknown and denoted by z̃ns.

Most of the research in this area is frequentist, well summarized in Pfeffermann and Sver-
chkov (2009), often using approximations, and limited to inferences about finite population
means and totals. There are four relevant papers using Bayesian methods. To incorporate selec-
tion bias, Malec, Davis and Cao (1999) used a hierarchical Bayes method to estimate a finite
population mean when there are binary data. Difficulty in including the selection probabilities
directly in the model forces them to make an ad hoc adjustment to the likelihood function and
use a Bayes, empirical Bayes (i.e., not a full Bayesian) approach. Nandram and Choi (2010) and
Nandram, Bhatta, Bhadra and Shen (2013) extended the Malec, Davis and Cao (1999) model.
Pfeffermann et al. (2006) assumed a more complex design than we do, i.e., two level modeling
with informative probability sampling at each of the two levels. For the most part they used
a conditional likelihood, but presented the methodology (Section 3.2) and an example where
they used the full likelihood, but made inference only for the “super-population” parameters.
Pfeffermann et al. (2006) assumed that the covariates are known for all units in the population,
thus greatly simplifying their analysis. The two differences, i.e., assuming limited information
and making inferences for the non-sampled covariates, provide a challenging computational
problem. However, once solved, as in our paper, the methodology can be applied.

The work in this paper is based on methodology developed in Ma (2010). Recently, Zan-
geneh and Little (2015) provide a different approach to a related problem of inference for the
finite population total of Y when sampling is with probability proportional to size X. They
use a Bayesian bootstrap to make inference for the values of X associated with the nonsampled
units, taking account of the assumed known population total of X. Given X, they model Y using
penalized splines. The use of the bootstrap avoids parametric assumptions, but assumes, per-
haps unreasonably, that only the sampled values of X occur in the population. Their inferential
approach, reversing the usual factorization of the distributions of Ĩ and corresponding X̃ , leads
to a dependence, of unknown importance, between the parameters associated with the selection
effect and the sampling distribution of X̃ . For a similar method based on poststratification, see
Si, Pillai and Gelman (2015).

In Section 2 we describe the Bayesian methodology while in Section 3 we use simulated
examples to compare informative sampling with ignorable sampling and with standard design
based methodology based on the Horvitz-Thompson estimator. There is further discussion in
Section 4.
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2. Methodology for Informative Sampling

We describe the Bayesian model and inference in Section 2.1, and the computational meth-
ods in Section 2.2.

2.1. Model for Informative Sampling and Inference
We have observed Ĩ and ỹs, the vector of sampled Yi. In addition, z̃s is known. The posterior

distribution for ỹns, z̃ns, ψ̃ and η̃ can be written as

π(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ) ∝ π(ỹ, z̃, ψ̃, η̃ , Ĩ),

where π(ỹ, z̃, ψ̃, η̃ , Ĩ) = P(Ĩ|ỹ, z̃, ψ̃, η̃)P(z̃|ỹ, ψ̃, η̃)P(ỹ|ψ̃, η̃)P(ψ̃, η̃), and ỹ and z̃ are the vec-
tors of Yi, and Zi for the N units in the finite population, and z̃ns ∈ R,

R =
{
(zn+1,zn+2, ...,zN−1)|−

t
N
≤ zi ≤

t
n
− t

N
for i = n+1,n+2, ...,N−1;

t
N
− t

n
−

n

∑
j=1

z j ≤
N−1

∑
j=n+1

z j ≤
t
N
−

n

∑
j=1

z j

}

From (4), we have

P(Ĩ|ỹ, z̃, ψ̃, η̃) =
( n

NzN

)n n

∏
i=1

(zi + zN)
N−1

∏
i=n+1

[
1− n

NzN
(zi + zN)

]
×
[
1−
( n

NzN

)(
zN−

N−1

∑
i=1

zi

)]
.

In Appendix A we have shown that the density of z̃ conditional on ỹ, ψ̃, and η̃ is

P(z̃|ỹ, ψ̃, η̃) =
1

C(ỹN , ψ̃, η̃)
N(
√

2πσe)
−N exp

{
− 1

2σ2
e

[
t2

N
−2

t
N

N

∑
i=1

θi

+
(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
,

where θ j = β0 +β1y j, j = 1, ...,N and C(ỹN , ψ̃, η̃) is the normalization constant. The density
of y conditional on ψ̃ and η̃ is straightforward,

P(ỹ|ψ̃, η̃) = (
√

2πσ)−N exp

{
− 1

2σ2

N

∑
i=1

(log(yi)−µ)2

}

and P(ψ̃, η̃) is the prior distribution. For (ψ̃, η̃), we use the non-informative prior distribution,
i.e., P(ψ̃, η̃) ∝ σ−2σ−2

e .

2.2. Computational Methods
For convenience, the posterior distribution can be further rewritten as

π(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ) ∝
1

C(ỹN , ψ̃, η̃)
πa(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ) (2.1)
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with z̃ns ∈ R and

πa(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ) = L(σeσ)−N−2 exp

{
− 1

2σ2

N

∑
i=1

(log(yi)−µ)2

}

exp

{
− 1

2σ2
e

[
t2

N
−2

t
N

N

∑
i=1

θi +
(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
,

where

L =
N−1

∏
i=n+1

[
1− n

NzN
(zi + zN)

][
1−
( n

NzN

)(
zN−

N−1

∑
i=1

zi

)]
,

We use the sampling importance resampling (SIR) algorithm (Smith and Gelfand 1992) and
the Gibbs sampler (Gelfand and Smith 1990) to perform the computation. The Gibbs sampler is
used to draw samples from πa(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ) and the SIR algorithm is used to subsample
the Gibbs sample to get a sample from the posterior distribution, π(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ) . The
Gibbs sampler is described in Appendix B.

Letting Ω(k) = (ỹ(k)ns , z̃
(k)
ns , ψ̃

(k), η̃(k)),k = 1,2, ...,M where M is the number of iterates ob-
tained from the Gibbs sampler for draws made from πa(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ), the weights in
the SIR algorithm are wk = w̃k/∑

M
k′=1 w̃k′,k = 1,2, ...,M, where

w̃k =
π(ỹ(k)ns , z̃

(k)
ns , ψ̃

(k), η̃(k)|ỹs, z̃s, Ĩ)

πa(ỹ
(k)
ns , z̃

(k)
ns , ψ̃(k), η̃(k)|ỹs, z̃s, Ĩ)

.

By (5), w̃ ∝ 1/C(ỹ(k)N , ψ̃(k), η̃(k)),k = 1,2, ...,M. Thus, the SIR algorithm is performed by draw-
ing M0 iterates from (Ω(k),wk),k = 1,2, ...,M without replacement.

When the SIR algorithm is executed, the normalization constant C(ỹN , ψ̃, η̃) needs to be
evaluated. One can compute C(ỹN , ψ̃, η̃) by drawing samples from the multivariate normal
density, and counting how many samples fall in a region R0, defined in Appendix A. This
procedure performs poorly because when a single value of (z1,z2, ...,zN−1) is drawn from the
multivariate normal density, at least one restriction for R0 is not satisfied. Hence, the estimate
of C(ỹN , ψ̃, η̃) can be zero which is not desirable. We get around this difficulty by splitting
R0 into two regions and converting this problem into a classical high-dimensional integration
problem and a multivariate normal probability problem. The details of evaluating C(ỹN , ψ̃, η̃)
are given in Appendix C.

3. Simulation Study

In this section we compare the methodology presented in Section 2, NIG (non-ignorable),
with inferences assuming an ignorable model (IG) and standard design based methodology
using the Horvitz-Thompson (HT) estimator. For IG the model is given by (2) and (3), i.e.,
without any consideration of the selection probabilities. For the standard design based inference
we use the Horvitz-Thompson point estimator, Ŷ = t

n ∑
n
i=1(yi/νi). (Recall that ∑

N
i=1 νi = t is

known.) The standard 100(1−α) percent interval is Ŷ ± zα/2
1

n(n−1) ∑
n
i=1(

yi
pi
− Ŷ )2 where pi =
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νi/t.

Here we emphasize inference for the finite population total, i.e., point estimation and nom-
inal 95 percent intervals. Inference for finite population quantiles and other quantities can be
made in a straightforward manner: use (5) and the methodology in the Appendices to make
inference for ỹns, then for ỹ.

We start by choosing values for the super-population parameters, i.e., µ,σ2,β0,β1, and σ2
e .

Then we draw a finite population of size N from the joint distribution of y and ν . From this
finite population we draw a sample of size n using systematic pps sampling. We repeat these
steps K times. The examples presented in this section use N = 100, n = 10 and K = 200. We
have also used n = 20 and larger values of K but have seen no qualitative differences in our
results.

For NIG the methodology is described in Section 2.2. In this study both HPD and equal
tailed intervals were used. One thousand Gibbs samples were selected from the approximate
posterior distribution πa (after a burn-in of 5000 runs), and 200 without replacement samples
were chosen to implement the SIR algorithm. We have also used larger numbers of Gibbs sam-
ples and SIR subsamples, but have seen no qualitative differences in our results.

Our first comparisons use the relative bias, interval coverage and width, averaged over the K
finite populations, i.e., these are unconditional evaluations. First we plot in Figure 1 the values
of the sample mean (X axis) vs. the posterior mean for the non-sampled units (Y axis) for NIG
for 200 finite populations selected from the super-population with µ = 0.5,σ2 = 0.162,β0 =
0,β1 = 1,σ2

e = 1. Clearly, as expected, the sample means tend to be large, the posterior means
(for the non-sampled units) small, as they should be.

Figure 1: Sample Means vs. Posterior Means for Non-sampled Units (µ = 0.5,σ =
0.16,β0 = 0,β1 = 1,σe = 1)

Tables 1 and 2 compare NIG with IG for several choices of the super-population parameters,
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chosen to yield a range of correlations between y and ν but restricted to cases where ν is
proportional to y. Table 1 presents the relative bias associated with E(Y ) = eµ+(σ2/2) and the

Table 1: Relative Bias Comparison between NIG and IG
Relative Bias

(β0,β1,σe) = (0,1,1) IG NIG
µ σ corr(Y,v) E(Y ) Ȳ E(Y ) Ȳ

0.5 0.16 0.25 0.0355 0.0283 0.0106 0.0034
0.5 0.38 0.57 0.2177 0.1893 0.0159 -0.0058
0.5 0.70 0.86 0.9884 0.8246 -0.0049 -0.0694
1.0 0.10 0.26 0.0108 0.0108 0.0008 0.0010
1.0 0.25 0.58 0.0754 0.0746 0.0050 0.0045
1.0 0.50 0.85 0.3798 0.3544 -0.0123 -0.0257
1.5 0.06 0.26 0.0069 0.0067 0.0027 0.0026
1.5 0.15 0.56 0.0320 0.0305 0.0060 0.0046
1.5 0.35 0.86 0.1812 0.1765 0.0034 0.0003
2.0 0.04 0.28 0.0011 0.0015 -0.0004 0.0000
2.0 0.10 0.59 0.0158 0.0151 0.0058 0.0051
2.0 0.20 0.83 0.0529 0.0524 0.0040 0.0036

finite population mean, Ȳ . As expected, the relative bias for NIG is very small while that for IG
is large for moderate to large correlations. Table 2 compares the average widths and coverages
for NIG and IG. Clearly for moderate to large correlations the average widths of the intervals for
IG are much too large, e.g., 4.0554 for IG vs. 0.9287 for NIG (see µ = 1.0,σ = 0.50; inference
for Ȳ ). To make the two methods comparable we adjusted the width of each IG interval to make
it the same as the corresponding NIG interval and used these intervals to evaluate the adjusted
coverage of IG in the last column. For example, for µ = 2.0,σ = 0.20 and E(Y ), the widths
are quite different for IG(2.3391) and NIG(1.2768). Making the width for IG equal to that for
NIG, 1.2768, the coverage for IG is 0.7300 (column 6) which should be compared with 0.9600
(column 11), the coverage for NIG.

Table 2: CI Width and Coverage Probability Comparison between NIG and IG
95% CI

(β0,β1,σe) = (0,1,1) IG NIG
µ σ corr(Y,v) E(Y) Ȳ E(Y) Ȳ

width CP adjusted CP width CP adjusted CP width CP width CP
0.5 0.16 0.25 0.3961 0.9400 0.9200 0.3753 0.9300 0.9100 0.3488 0.9050 0.3301 0.9400
0.5 0.38 0.57 1.5487 0.8850 0.5400 1.3378 0.9000 0.5400 0.7681 0.9150 0.7076 0.9100
0.5 0.70 0.86 10.6780 0.9650 0.0150 8.7670 0.9700 0.0050 1.0286 0.9500 0.7913 0.8100
1.0 0.10 0.26 0.3679 0.9150 0.8600 0.3489 0.9300 0.8700 0.3295 0.8850 0.3092 0.8850
1.0 0.25 0.58 1.0931 0.9450 0.7750 1.0354 0.9400 0.7900 0.7685 0.9350 0.7128 0.9200
1.0 0.50 0.85 4.3844 0.9700 0.1250 4.0554 0.9600 0.0750 1.1294 0.9400 0.9287 0.9100
1.5 0.06 0.26 0.3771 0.9350 0.9150 0.3577 0.9450 0.9100 0.3351 0.9150 0.3142 0.9150
1.5 0.15 0.56 0.9624 0.9500 0.8350 0.9121 0.9550 0.8200 0.7122 0.9050 0.6501 0.9200
1.5 0.35 0.86 3.4085 0.9600 0.3450 3.2234 0.9700 0.2800 1.2770 0.9250 1.0563 0.9450
2.0 0.04 0.28 0.4136 0.9500 0.8750 0.3923 0.9350 0.8850 0.3524 0.8800 0.3286 0.8750
2.0 0.10 0.59 1.0556 0.9750 0.9150 1.0015 0.9700 0.8800 0.7795 0.9350 0.7082 0.9100
2.0 0.20 0.83 2.3391 1.0000 0.7300 2.2170 0.9800 0.6450 1.2768 0.9600 1.0809 0.8950

That is, for either E(Y ) or Ȳ compare the values of “adjusted CP” for IG with “CP” for
NIG. For small corr(Y,ν) the two coverages are similar. However, as expected, for moderate
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to large values of corr(Y,ν) the coverage for NIG is generally close to the nominal 0.95 while
that for IG is smaller, markedly so for the large correlations.

In Table 3 we compare NIG with the standard design based method using the same set of
superpopulation parameters as in Tables 1 and 2. The relative bias of each method is small, as
expected. However, for each set of parameter values, the average width of the HT interval is

Table 3: Relative Bias and CI Comparison between NIG and HT for β0 = 0
Relative Bias 95% CI

(β0,β1,σe) = (0,1,1) HT NIG HT NIG
µ σ corr(Y,v) Ȳ Ȳ width CP adjusted CP width CP

0.50 0.16 0.25 -0.0312 0.0037 1.0936 0.9700 0.5650 0.3295 0.9400
0.50 0.38 0.57 -0.0335 -0.0055 1.0027 0.9150 0.8250 0.7082 0.9100
0.50 0.70 0.86 -0.0084 -0.0694 1.1849 0.8950 0.8150 0.7915 0.7950
1.00 0.10 0.26 -0.0210 0.0010 1.2400 0.9900 0.5700 0.3087 0.8800
1.00 0.25 0.58 -0.0166 0.0045 1.2630 0.9400 0.8050 0.7099 0.9250
1.00 0.50 0.85 -0.0181 -0.0261 1.1703 0.8850 0.8850 0.9275 0.8950
1.50 0.06 0.26 -0.0040 0.0026 1.2794 1.0000 0.6050 0.3154 0.9250
1.50 0.15 0.56 -0.0035 0.0047 1.2439 0.9950 0.8400 0.6574 0.9150
1.50 0.35 0.86 -0.0045 0.0002 1.2843 0.9550 0.9150 1.0626 0.9400
2.00 0.04 0.28 -0.0012 0.0000 1.2845 1.0000 0.6100 0.3291 0.8800
2.00 0.10 0.59 0.0038 0.0051 1.2869 1.0000 0.8500 0.7078 0.9150
2.00 0.20 0.83 -0.0004 0.0037 1.2739 0.9500 0.9250 1.0825 0.9050

much wider than its NIG counterpart, leading to somewhat better coverage. To make the two
methods comparable we adjusted the width of each HT interval to make it the same as the
corresponding NIG interval and used these intervals to evaluate the adjusted coverage of HT
in the 8th column. Thus, the coverage for NIG is much better when there is small to moderate
correlation while there is little difference when there is a large correlation. This, too, is not
surprising since the HT based interval should perform very well when ν is proportional to y.

We next compare NIG with HT assuming that the intercept, β0, is larger than zero. Table 4
gives the relative biases and interval widths and coverages. It is clear that the biases are small,
as expected. When the correlation is moderate to large, the widths of the nominal 95 percent
intervals for HT are much wider than those for NIG. Making the adjustment described above
so that the widths of the HT and NIG intervals are the same, the coverage for NIG is better
than HT, markedly so when the correlation is large, e.g., 0.94 vs. 0.21 when the correlation is
0.99 (β0 = 50,σe = 0.1). A referee noted that a comparison with the GREG estimator may have
been more appropriate when, as here, β0 > 0.

The results presented in Tables 1-4 are averages over a large set of finite populations and
do not display variation over the populations. Figure 2 shows the relative bias (Y axis) plotted
against the 200 finite populations for NIG (filled circle) and HT (empty circle) with param-
eter setting: µ = 0.5,σ = 0.16,β0 = 0,β1 = 1,σe = 1. This is a case with β0 = 0, suppos-
edly favorable to the HT estimator, but one can see that the relative bias of HT varies more
widely than the relative bias of NIG. Thus, many individual HT samples will have a large
relative bias. In Figure 3, we assume an intercept greater than zero with parameter setting:
µ = 0.5,σ = 0.7,β0 = 50,β1 = 1,σe = 0.1. Here, the relative bias of NIG is essentially constant
over the populations while that for HT varies widely. Clearly, these figures show the advantage
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Table 4: Relative Bias and CI Comparison between NIG and HT for β0 > 0
Relative Bias 95% CI

(β0,β1,σe) = (0.5,0.7,1) HT NIG HT NIG
β0 σe corr(Y,v) Ȳ Ȳ width CP adjusted CP width CP
10 5.5 0.27 -0.0130 0.0279 1.9767 0.8850 0.8900 2.0714 0.9100
10 2.5 0.57 0.0056 0.0439 1.5703 0.9350 0.9400 1.7180 0.9300
10 1 0.86 0.0062 0.0020 1.5234 0.9850 0.9350 1.0249 0.9500
10 0.1 0.99 -0.0026 -0.0016 1.5505 1.0000 0.2400 0.1336 0.9300
50 5.5 0.27 -0.0249 0.0310 1.7155 0.8800 0.8950 1.9732 0.9100
50 2.5 0.57 0.0111 0.0370 1.8071 0.9100 0.8750 1.6656 0.9150
50 1 0.86 -0.0125 -0.0107 1.7643 0.9700 0.8150 1.0444 0.9300
50 0.1 0.99 -0.0097 -0.0019 1.8269 1.0000 0.2100 0.1414 0.9400
400 5.5 0.27 0.0072 0.0556 1.9680 0.8950 0.8900 2.0915 0.9000
400 2.5 0.57 -0.0051 0.0198 1.8365 0.9300 0.9250 1.7082 0.9350
400 1 0.86 -0.0048 -0.0061 1.8423 0.9700 0.8250 1.0287 0.9350
400 0.1 0.99 0.0058 -0.0008 1.9884 1.0000 0.2250 0.1402 0.9550

of using NIG, i.e., more consistent conditional performance.

Figure 2: Relative Bias Plot for Ȳ for NIG (filled circle) and HT (empty circle) (µ =
0.5,σ = 0.16,β0 = 0,β1 = 1,σe = 1)

Finally, note that we have considered a large number of combinations of the super-population
parameters, i.e., µ,σ ,β0,β1,σe. The results shown are typical of this large ensemble of evalu-
ations.

4. Summary

We have shown how to carry out a complete analysis of a complicated problem using survey
data; i.e., where the analyst has only limited information about the survey design and there is
a selection bias. Our model in (2) and (3) is appropriate for many establishment surveys while



216 JUNHENG MA ET. AL. [Vol. 16, No. 1

Figure 3: Relative Bias Plot for Ȳ for NIG (filled circle) and HT (empty circle) (µ =
0.5,σ = 0.7,β0 = 50,β1 = 1,σe = 0.1)

our specification of the model for sample selection in (4) should provide a good approximation
for many survey designs.

Our examples show that relating the selection probabilities to the responses will provide
more appropriate intervals vis a vis a model that does not account for selection bias. This is
especially true when the correlation between the variable of interest, Y, and the covariate, ν , is
high, a situation common in establishment surveys.

There are also (overall) gains for our method when compared with a standard approach
based on the Horvitz-Thompson (HT) estimator. Of special note is the improved conditional
performance. While the unconditional bias for the HT method may be small, it is common to
have substantial variation over the samples. Conversely, the conditional bias associated with
our method has significantly less variation (Figures 2-3).

Appendix A Distribution of Z̃ Under Restrictions

Based on the transformation from ν̃ to Z̃, the reverse transformation is

ν1 = Z1 +ZN , ν2 = Z2 +ZN , , ..., νN−1 = ZN−1 +ZN , νN = ZN−
N−1

∑
i=1

Zi.

The Jacobian of this transformation can be computed as
1 0 0 ... 0 1
0 1 0 ... 0 1
. . . ... . .
0 0 0 ... 1 1
−1 −1 −1 ... −1 −1


N×N
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and |J|= N. For i = 1,2, ...,N, the distribution of νi given β0,β1,σ
2
e , and Yi is

νi|β0,β1,σ
2
e ,Yi ∼ N(β0 +β1Yi, σ

2
e )

i.e.,

fνi(νi) =
1√

2πσe
exp
{
−(νi−β0−β1yi)

2

2σ2
e

}
.

Due to the fact that νi’s are independent, the joint distribution of ν̃ = (ν1,ν2, ...,νN) given
β0,β1,σ

2
e , and Ỹ is

fν̃i(ν1,ν2, ...,νN) =
N

∏
i=1

[
1√

2πσe
exp
{
−(νi−β0−β1yi)

2

2σ2
e

}]
.

Then the distribution of Z̃ given β0,β1,σ
2
e , and Ỹ can be written as

fZ̃(z1,z2, ...,zN) =N(
√

2πσe)
−N exp

{
− 1

2σ2
e

[
Nz2

N−2zN

N

∑
i=1

θi

+
(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
,

where θ j = β0 +β1y j for j = 1,2, ...,N.

There are also some restrictions for Z̃, which are related to the restrictions for ν̃ . The re-
strictions for ν̃ can be summarized as

1. 0≤ nνi
∑

N
j=1 ν j

≤ 1 for i = 1,2, ...,N;

2. ∑
N
j=1 ν j = t

Based on the transformation from ν̃ to Z̃ , the restrictions for Z̃ are

1. zN = t
N ;

2. − t
N ≤ zi ≤ t

n −
t
N for i = 1,2, ...,N−1;

3. t
N −

t
n ≤ ∑

N−1
j=1 z j ≤ t

N .

Given ZN = t
N , the conditional distribution of (Z1,Z2, ...,ZN−1) is

f (z1,z2, ...,zN−1|zN =
t
N
) =

1
f (zN = t

N )
f (z1,z2, ...,zN−1,zN =

t
N
).

Then under the second and third restrictions for Z̃, the conditional distribution of (z1,z2, ...,zN−1)
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is

fR0(z1,z2, ...,zN−1|zN =
t
N
) =

f (z1,z2, ...,zN−1|zN = t
N )∫

R0
f (z1,z2, ...,zN−1|zN = t

N )dz1dz2...dzN−1

=
f (z1,z2, ...,zN−1,zN = t

N )∫
R0

f (z1,z2, ...,zN−1,zN = t
N )dz1dz2...dzN−1

,

where

R0 =

{
(z1,z2, ...,zN−1)|−

t
N
≤ zi ≤

t
n
− t

N
for i = 1,2, ...,N−1;

t
N
− t

n
≤

N−1

∑
j=1

z j ≤
t
n

}
.

Finally, the distribution of (Z1,Z2, ...,ZN) under the restrictions for Z̃ is

fR0(z1,z2, ...,zN−1,zN) =
1

C(ỹN , ψ̃, η̃)
N(
√

2πσe)
−N exp

{
− 1

2σ2
e

[
t2

N
−2

t
N

N

∑
i=1

θi

+
(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
,

where ZN = t
N ,(Z1,Z2, ...,ZN−1) ∈ R0 and

C(ỹN , ψ̃, η̃) =
∫

R0

N(
√

2πσe)
−N exp

{
− 1

2σ2
e

[
t2

N
−2

t
N

N

∑
i=1

θi +
(N−1

∑
i=1

zi +θN

)2

+
N−1

∑
i=1

(zi−θi)
2

]}
dz1dz2...dzN−1.

Appendix B Gibbs Sampler

We use the Gibbs sampler to draw samples from πa(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ). In order to per-
form the Gibbs sampler, we need to find the conditional distributions of ỹns, z̃ns, ψ̃ , and η̃ re-
spectively given everything else.

The conditional distribution of ỹns, given (ỹs, z̃N , ψ̃, η̃ , Ĩ) is

P(ỹns|ỹs, z̃N , ψ̃, η̃ , Ĩ) ∝ exp

{
T1

N−1

∑
i=n+1

(
yi +

Ti

2T1

)2
+T1

(
yN +

T2

2T1

)2
}
, (B.1)

where

T1 =−
1

2σ2 −
β 2

1
2σ2

e
, T2 =

µ

σ2 −
β1(β0 +∑

N−1
i=1 zi− zN)

σ2
e

,

Ti =
µ

σ2 −
β1(β0− zi− zN)

σ2
e

, i = n+1,n+2, ...,N−1.

From (6), we see that given (yn+1, ...,yN−1, ỹs, z̃N , ψ̃, η̃ , Ĩ), yN has a normal distribution with
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mean − T2
2T1

and variance − 1
2T1

, i.e.,

yN |yn+1, ...,yN−1, ỹs, z̃N , ψ̃, η̃ , Ĩ ∼ N(− T2

2T1
, − 1

2T1
).

Also, given (yn+1, ...,yi−1,yi+1, ...,yN−1,yN , ỹs, z̃N , ψ̃, η̃ , Ĩ), yi has a normal distribution with
mean − Ti

2T1
and variance − 1

2T1
, i.e.,

yi|yn+1, ...,yi−1,yi+1, ...,yN−1,yN , ỹs, z̃N , ψ̃, η̃ , Ĩ ∼ N(− Ti

2T1
, − 1

2T1
)

for i = n+1,n+2, ...,N−1.

The conditional distribution of z̃ns given (ỹN , z̃s, ψ̃, η̃ , Ĩ) is

P(z̃ns|ỹN , z̃s, ψ̃, η̃ , Ĩ) ∝ exp

− 1
2σ2

e

[(
N−1

∑
i=n+1

zi +T3

)2

+
N−1

∑
i=n+1

(zi−θi)
2

] , (B.2)

where z̃ns ∈ R and T3 = ∑
n
i=1 zi +θN . Notice that the right side of (7) is the kernel of a multi-

variate normal distribution, MV N(µ̃0, Σ̃), where

µ̃0 =


µ01
µ02
...

µ0(N−n−1)

=


1

N−n [(N−n−1)θn+1−θn+2− ...−θN−1−T3]
1

N−n [(N−n−1)θn+2−θn+1− ...−θN−1−T3]

...
1

N−n [(N−n−1)θN−1−θn+1− ...−θN−2−T3]


(N−n−1)×1

(B.3)

and

Σ̃
−1 =

1
σ2

e


2 1 ... 1
1 2 ... 1
. . ... .
1 1 ... 2


(N−n−1)×(N−n−1)

. (B.4)

From (7), (8), and (9) we see that z̃ns given (ỹN , z̃s, ψ̃, η̃ , Ĩ) has a multivariate normal distribution
with mean µ̃ and variance Σ̃ restricted to region R, i.e.,

z̃ns|ỹN , z̃s, ψ̃, η̃ , Ĩ ∼MV N(µ̃0, Σ̃),

where z̃ns ∈ R. One may draw samples from z̃ns given everything else by generating random
samples from the multivariate normal density, MV N(µ̃0, Σ̃), and only keeping the samples
which fall in R. This procedure performs poorly because there are too many rejections. Thus,
we proceed by sampling the members of z̃ns one at a time, i.e., for zi, i = n+1,n+2, ...,N−1
given (zn+1, ...,zi−1,zi+1, ...,zN−1, z̃s, ỹN , ψ̃, η̃ , Ĩ), we have

P(zi|zn+1, ...,zi−1,zi+1, ...,zN−1, z̃s, ỹN , ψ̃, η̃ , Ĩ) ∝

exp

{
− 1

2σ2
e

(
zi +

1
2

(
T3 +

N−1

∑
j=n+1

z j− zi−θi

)2
}
,
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where Tmaxi ≤ zi ≤ Tmini and

Tmaxi = max

(
− zN ,

t
n

(
n−1−

n

∑
i=1

πi−
n(N−n−1)

N

)
−

N−1

∑
j=n+1

z j + zi

)
,

Tmini = min

((
N
n
−1
)

zN ,
t
n

(
n−

n

∑
i=1

πi−
n(N−n−1)

N

)
−

N−1

∑
j=n+1

z j + zi

)
.

Then, given (zn+1, ...,zi−1,zi+1, ...,zN−1, z̃s, ỹN , ψ̃, η̃ , Ĩ),zi, i = n+1,n+2, ...,N−1, has a trun-
cated normal distribution, i.e.,

zi|zn+1, ...,zi−1,zi+1, ...,zN−1, z̃s, ỹN , ψ̃, η̃ , Ĩ ∼ N

(
− 1

2

(
T3 +

N−1

∑
j=n+1

z j− zi−θi

)
,

1
2

σ
2
e

)
,

where Tmaxi ≤ zi ≤ Tmini.

The conditional distribution of ψ̃ , given (ỹN , z̃N , η̃ , Ĩ), is

P(ψ̃|ỹN , z̃N , η̃ , Ĩ) ∝ σ
−N−2 exp

{
− 1

2σ2

N

∑
i=1

(yi−µ)2

}
.

Then the conditional distribution of µ given (σ2, ỹN , z̃N , η̃ , Ĩ) is

P(µ|σ2, ỹN , z̃N , η̃ , Ĩ) ∝ exp

{
− N

2σ2

(
µ− 1

N

N

∑
i=1

yi

)2
}
.

Thus, given (σ2, ỹN , z̃N , η̃ , Ĩ), µ has a normal distribution with mean 1
N ∑

N
i=1 yi and variance

1
N σ2, i.e.,

µ|σ2, ỹN , z̃N , η̃ , Ĩ ∼ N

(
1
N

N

∑
i=1

yi,
1
N

σ
2

)
.

Similarly, the conditional distribution of σ2, given (µ, ỹN , z̃N , η̃ , Ĩ), is

P(σ2|µ, ỹN , z̃N , η̃ , Ĩ) ∝ σ
−N−2 exp

{
− 1

2σ2

N

∑
i=1

(yi−µ)2

}
.

Then, given (µ, ỹN , z̃N , η̃ , Ĩ),σ2 has an Inverse-Gamma distribution with shape parameter N/2
and scale parameter 1

2 ∑
N
i=1(yi−µ)2, i.e.,

σ
2|µ, ỹN , z̃N , η̃ , Ĩ ∼ Inverse-Gamma

(
N
2
,
1
2

N

∑
i=1

(yi−µ)2

)
.
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The conditional distribution of η̃ , given (ỹN , z̃N , ψ̃, Ĩ), is

P(η̃ |ỹN , z̃N , ψ̃, Ĩ) ∝σ
−N−2
e exp

{
− 1

2σ2
e

[
Nz2

N−2zN

N

∑
i=1

(β0 +β1yi)

+

(
N−1

∑
i=1

zi +β0 +β1yN

)2

+
N−1

∑
i=1

(zi−β0−β1yi)
2

] .

Then the conditional distribution of σ2
e , given (β0,β1, ỹN , z̃N , ψ̃, Ĩ), is

P(σ2
e |β0,β1, ỹN , z̃N , ψ̃, Ĩ) ∝ σ

−N−2
e exp

{
− 1

2σ2
e

T4

}
,

where

T4 = Nz2
N−2zN

N

∑
i=1

(β0 +β1yi)+

(
N−1

∑
i=1

zi +β0 +β1yN

)2

+
N−1

∑
i=1

(zi−β0−β1yi)
2.

So, given (β0,β1, ỹN , z̃N , ψ̃, Ĩ), σ2
e has an Inverse-Gamma distribution with shape parameter

N/2 and scale parameter T4/2, i.e.,

σ
2
e |β0,β1, ỹN , z̃N , ψ̃, Ĩ ∼ Inverse-Gamma

(
N
2
,
T4

2

)
.

The conditional distribution of β0 given (σ2
e ,β1, ỹN , z̃N , ψ̃, Ĩ) is

P(β0|σ2
e ,β1, ỹN , z̃N , ψ̃, Ĩ) ∝ exp

{
− 1

2σ2
e

[
Nβ

2
0 +2

(
β1

N

∑
i=1

yi− t

)
β0

]}
.

This implies that, given (σ2
e ,β1, ỹN , z̃N , ψ̃, Ĩ), β0 has the following normal distribution

β0|σ2
e ,β1, ỹN , z̃N , ψ̃, Ĩ ∼ N

(
− 1

N

(
β1

N

∑
i=1

yi− t

)
,

1
N

σ
2
e

)
.

Similarly, the conditional distribution of β1 given (σ2
e ,β0, ỹN , z̃N , ψ̃, Ĩ) is

P(β1|σ2
e ,β0, ỹN , z̃N , ψ̃, Ĩ) ∝ exp

{
− 1

2σ2
e

[
β

2
1

N

∑
i=1

y2
i +2T5β1

]}
,

where

T5 =
N−1

∑
i=1

yi(β0− zi)+ yN

(
β0 +

N−1

∑
i=1

zi

)
− t

N

N

∑
i=1

yi.
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Then, given (σ2
e ,β0, ỹN , z̃N , ψ̃, Ĩ), β1 has the following normal distribution

β1|σ2
e ,β0, ỹN , z̃N , ψ̃, Ĩ ∼ N

(
− T5

∑
N
i=1 y2

i
,

1

∑
N
i=1 y2

i
σ

2
e

)
.

After having all the conditional distributions, we use the Gibbs sampler to draw samples from
πa(ỹns, z̃ns, ψ̃, η̃ |ỹs, z̃s, Ĩ).

Appendix C Evaluating C(ỹN , ψ̃, η̃)

The weights in the SIR algorithm are related to the normalization constant C(ỹN , ψ̃, η̃)
as shown in Section 2.3. Given (ỹN , ψ̃, η̃), we need to compute C(ỹN , ψ̃, η̃). First, notice that
C(ỹN , ψ̃, η̃) can be further rewritten as

C(ỹN , ψ̃, η̃) =
∫

R0

N(
√

2πσe)
−N exp

{
− 1

2σ2
e

[
t2

N
−2

t
N

N

∑
i=1

θi +
(N−1

∑
i=1

zi +θN

)2

+
N−1

∑
i=1

(zi−θi)
2

]}
dz1dz2...dzN−1

= N(
√

2πσe)
−N exp

{
− 1

2σ2
e

[
t2

N
−2

t
N

N

∑
i=1

θi

]}

×
∫

R0

exp

{
− 1

2σ2
e

[(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
dz1dz2...dzN−1.

Let g(z̃N , ỹN , ψ̃, η̃) denote

exp

{
− 1

2σ2
e

[(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
.

We also define G(ỹN , ψ̃, η̃) as

G(ỹN , ψ̃, η̃) =
∫

R0

exp

{
− 1

2σ2
e

[(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
dz1dz2...dzN−1

=
∫

R0

g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1.

We separate region R0 into two parts, R1 and R2:

R1 =

{
(z1,z2, ...,zN−1|−

t
N
≤ zi ≤

t
n
− t

N
)

}
,

R2 =

{
(z1,z2, ...,zN−1|

t
N
− t

n
≤

N−1

∑
i=1

zi ≤
t
N
)

}
.
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Then we have

G(ỹN , ψ̃, η̃) =
∫

R0

g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1

=
∫

R1

IR2g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1

=
∫

R1

(IR2C0)
1

C0
g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1,

where C0 is defined as

C0 =
∫

R1

g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1

=
∫

R1

exp

{
− 1

2σ2
e

[(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
dz1dz2...dzN−1.

From the above definition, we see that 1
C0

g(z̃N , ỹN , ψ̃, η̃) is a multivariate normal density re-
stricted to R1 and C0 is the corresponding normalization constant. Now consider the following
integral, ∫

R1

IR2

1
C0

g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1.

One can compute this integral by drawing samples from the multivariate normal density
1

C0
g(z̃N , ỹN , ψ̃, η̃) restricted to R1 and counting how many samples fall in R2. It is our experi-

ence that this proportion usually is close to 1. Notice that g(z̃N , ỹN , ψ̃, η̃) is the kernel of the
multivariate normal distribution with mean µ̃ ′ and variance Σ̃′ where

µ̃
′ =


µ ′1
µ ′2
...

µ ′N−1

=


1
N [(N−1)θ1−θ2− ...−θN−1−θN ]
1
N [(N−1)θ2−θ1− ...−θN−1−θN ]

...
1
N [(N−1)θN−1−θ1− ...−θN−2−θN ]


(N−1)×1

and

Σ̃′
−1

=
1

σ2
e


2 1 ... 1
1 2 ... 1
. . ... .
1 1 ... 2


(N−1)×(N−1)

. (C.1)

We still need to evaluate C0, the normalization constant for g(z̃N , ỹN , ψ̃, η̃), which can be
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rewritten as

C0 =
∫

R1

exp

{
− 1

2σ2
e

[(N−1

∑
i=1

zi +θN

)2
+

N−1

∑
i=1

(zi−θi)
2

]}
dz1dz2...dzN−1

=
∫

R1

[
exp

− 1
2σ2

e

[
θ

2
N +

N−1

∑
i=1

θ
2
i −

(
N−1

∑
i=1

µ
′
i

)2

−
N−1

∑
i=1

(µ ′i )
2

](2π)
N−1

2

√
|Σ̃′|

]

× 1

(2π)
N−1

2
√
|Σ̃′|

exp
{
−1

2

[
(z̃N−1− µ̃ ′)

′
Σ
′−1

(z̃N−1− µ̃ ′)
]}
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is the probability of a multivariate normal distribution over region R1. This is a standard prob-
lem and one can use the algorithm proposed by Genz (1992) to compute this probability. By
putting everything together, we see how C(ỹN , ψ̃, η̃) is evaluated, i.e.,
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In the SIR algorithm the computational burden is to compute this normalization constant,
C(ỹN , ψ̃, η̃). This has to be done at each Gibbs sampler step. Specifically, at each Gibbs sampler
step, we need to draw samples from g(z̃N , ỹN , ψ̃, η̃) using another Gibbs sampler to compute∫

R1

IR2

1
C0

g(z̃N , ỹN , ψ̃, η̃)dz1dz2...dzN−1.

We also need to calculate the (N−1) dimensional multivariate normal probability∫
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2
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]}
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at each Gibbs sampler step. It is our experience that C(ỹN , ψ̃, η̃) usually is a very small num-
ber. For this purpose, we have developed a parallel computing algorithm for SIR in a high-
performance cluster environment.
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