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Abstract
In the world of linear statistical models there is a particular matrix equation, G(X :

VX⊥) = (X : 0), which is sufficiently important that it is sometimes called the fundamental
BLUE equation. In this equation, X is a model matrix, V is the covariance matrix of y in the
linear model y = Xβ + ε, and we are interested in finding the best linear estimator, BLUE,
of Xβ. Any solution G for this equation has the property that Gy provides a representation
for the BLUE of Xβ: this is the message of the the fundamental BLUE equation, whose
main developer was the late Professor C. R. Rao in early 1970s. In this article we revisit
some interesting features and consequences of this equation. We do not provide essentially
new results – the aim is to offer a compact easy-to-follow review including also some recent
related results by the authors.

Key words: BLUE; BLUP; Covariance matrix; Equality of the BLUEs; Linear sufficiency;
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1. Introduction

Our main focus in this paper is the linear model y = Xβ + ε, denoted as triplet
M = {y, Xβ, V}.

Here y is an n-dimensional observable random vector, and ε is an unobservable random
error vector with a known (possibly singular) covariance matrix cov(ε) = V = cov(y) and
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expectation E(ε) = 0. The matrix X is a known n × p matrix, i.e., X ∈ Rn×p. Vector β is a
vector of fixed (but unknown) parameters; here symbol ′ stands for the transpose. We will
also denote µ = Xβ. If we want to emphasize what is the covariance matrix, we may use
notation M (V).

As for notations, the symbols r(A), A−, A+, C (A), and C (A)⊥, denote, respec-
tively, the rank, a generalized inverse, the Moore–Penrose inverse, the column space, and
the orthogonal complement of the column space of the matrix A. By (A : B) we denote the
columnwise partitioned matrix with Aa×b and Ba×c as submatrices. By A⊥ we denote any
matrix satisfying C (A⊥) = C (A)⊥. We will write PA = AA+ = A(A′A)−A′ to denote the
orthogonal projector onto C (A) and QA = Ia −PA , where Ia is the identity matrix of order
a with a being the number of rows in A. In particular, we denote

H = PX , M = In − PX , Mi = In − PXi
, i = 1, 2 .

The following special cases or extensions of M will be considered in this paper:

(a) The partitioned linear model is denoted as

M12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} = {y, µ1 + µ2, V} .

(b) In addition to the full model M12, we will consider the small models Mi = {y, Xiβi, V},
i = 1, 2, and the reduced model

M12·2 = {M2y, M2X1β1, M2VM2},

which is obtained by premultiplying the model M12 by M2 = In − PX2 .

(c) Let y∗ denote a q × 1 unobservable random vector containing new observations. The
new observations are assumed to be generated from

y∗ = X∗β + ε∗ ,

where X∗ is a known q×p matrix, β is the same vector of fixed but unknown parameters
as in M , and ε∗ is a q-dimensional random error vector. We further assume that

E
(

y
y∗

)
=
(

Xβ
X∗β

)
=
(

X
X∗

)
β , cov

(
y
y∗

)
=
(

V V12
V21 V22

)
= Ψ,

where Ψ is known. We denote this setup shortly as

M∗ =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
. (1)

We call M∗ “the linear model with new observations”. Our main interest in M∗ lies in
predicting y∗ on the basis of observable y. Notice the crucial role of the cross-covariance
matrix cov(y, y∗) = V12 ∈ Rn×q. The mixed linear model can be interpreted as a
special case of M∗; see Sec. 4.
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Under the model M = {y, Xβ, V}, the statistic Gy, where G is an n × n matrix,
is the best linear unbiased estimator, BLUE, of µ = Xβ if Gy is unbiased, i.e., GX = X,
and it has the smallest covariance matrix in the Löwner sense among all unbiased linear
estimators of Xβ; shortly denoted

cov(Gy) ≤L cov(Cy) for all C ∈ Rn×n: CX = X .

The BLUE of an estimable parametric function µ∗ = X∗β, where X∗ ∈ Rq×p, is defined in
the corresponding way. Estimability of X∗β means that it has a linear unbiased estimator
which happens if and only if C (X′

∗) ⊆ C (X′). In particular, µ1 = X1β1 is estimable in the
partitioned model if and only if

C (X1) ∩ C (X2) = {0} .

The random vector Ay is a linear unbiased predictor (LUP) of y∗ if E(y∗ − Ay) = 0 for all
β ∈ Rp. Such a matrix A ∈ Rq×n exists if and only if C (X′

∗) ⊆ C (X′), i.e., X∗β is estimable
under M and then we say that y∗ is predictable under M∗. Now a LUP Ay is the best linear
unbiased predictor, BLUP, for y∗, if the covariance matrix of the prediction error, subject
to the unbiasedness of the prediction, is minimized:

cov(y∗ − Ay) ≤L cov(y∗ − A#y) for all A# : A#X = X∗ .

Our matrix expressions will use generalized inverses heavily and in this context it is
essential to know whether the expressions are independent of the choice of the generalized
inverses involved. Lemma 2.2.4 of Rao and Mitra (1971) gives the condition under which
the matrix product AB−C is invariant with respect to the choice of B−.

Proposition 1: For nonnull matrices A and C the following holds:

(a) AB−C = AB+C for all B− ⇐⇒ C (C) ⊆ C (B) & C (A′) ⊆ C (B′).

(b) AA−C = C for some (and hence for all) A− ⇐⇒ C (C) ⊆ C (A).

(c) C′A−A = C′ for some (and hence for all) A− ⇐⇒ C (C) ⊆ C (A′).

Suppose that the matrix equation

YB = A (2)

is solvable for Y, i.e., C (A′) ⊆ C (B′). Then it is well known, see, e.g., Rao and Mitra (1971,
p. 24), that the general solution Y0 to (2) can be written, for example, as

Y0 = AB+ + E(I − PB) = AB+ + EQB , where E is free to vary, (3a)
Y0 = {one solution to YB = A} + {general solution to YB = 0}. (3b)

For later considerations, we collect some useful results into the following proposition.

Proposition 2: Consider the partitioned model M12(V), and let “⊕” refer to the direct
sum and “⊞” to the direct sum of orthogonal subspaces. Then
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(a) C (X1 : X2) = C (X1 : M1X2) , i.e., C (X) = C (X1) ⊞ C (M1X2) .

(b) C (X : V) = C (X : VM) = C (X) ⊕ C (VM) = C (X) ⊞ C (MV) .

(c) M = In − PX = In − (PX1 + PM1X2) = M1QM1X2 = M1M .

(d) Q(X:V) = In − (PX + PMV) = M − PMV = MQMV = MQ(X:V) .

(e) r(AB) = r(A) − dim C (A′) ∩ C (B⊥) for conformable A and B.

We assume the model M (V) to be consistent in the sense that y lies in C (X : V)
with probability 1, i.e., the observed numerical value of y satisfies

y ∈ C (X : V) = C (X) ⊕ C (VM) = C (X) ⊞ C (MV) ,

so that
y = Xa + VMb for some vectors a ∈ Rp and b ∈ Rn. (4)

There is one special class of matrices worth particular attention and that is the set
W≥ of nonnegative definite matrices defined as

W≥ =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
. (5)

In (5) U can be any matrix comprising p rows as long as C (W) = C (X : V) is satisfied.
One obvious choice is U = Ip. In particular, if C (X) ⊆ C (V), we can choose U = 0. The
extended version of W≥ is

W =
{
W ∈ Rn×n : W = V + XTX′, C (W) = C (X : V)

}
. (6)

Above T ∈ Rp×p is free to vary subject to condition C (W) = C (X : V). Notice that W
belonging to W is not necessarily nonnegative definite and it can be nonsymmetric. We may
use the notations W (A ) or W (V) to indicate that the model A or the covariance matrix
V is under consideration. Proposition 3 collects together some properties of the class W .

Proposition 3: Let V ∈ Rn×n be nonnegative definite and let X ∈ Rn×p and define W as
W = V + XTX′, where T ∈ Rp×p. Then the following statements are equivalent:

(a) C (X : V) = C (W) ,

(b) C (X) ⊆ C (W) ,

(c) X′W−X is invariant for any choice of W−,

(d) C (X′W−X) = C (X′) for any choice of W−,

(e) X(X′W−X)−X′W−X = X for any choices of W− and (X′W−X)−.
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Observe that obviously C (W) = C (W′) since

C (W′) = C (V + XT′X′) ⊆ C (W) , r(W′) = r(W) ,

and hence in statements (a)–(e) W can be replaced with with W′. For further properties of
W , see, e.g., Baksalary and Mathew (1990, Th. 2), and Puntanen et al. (2011, Sec. 12.3).
Haslett et al. (2022a) provide an extensive review of the class W .

Let us cite Puntanen et al. (2011, Sec. 5.13):

Proposition 4: Consider the model M = {y, Xβ, V} and let W ∈ W (M ). Then

(a) C (VM)⊥ = C (W+X : QW) = C [(W+)′X : QW] ,

(b) C (W+X)⊥ = C (WM : QW) = C (VM : QW) .

It appears to be useful to denote

Ṁ = M(MVM)−M .

The matrix Ṁ is unique with respect to the choice of the generalized inverse (MVM)− if and
only if Rn = C (X : V). However, for example, VṀPW is always unique. It is noteworthy
that using the Moore–Penrose inverse the following holds:

M(MVM)+M = (MVM)+M = M(MVM)+ = (MVM)+. (7)

In particular, for a positive definite V we have, for any (MVM)−,

M(MVM)−M = V−1/2PV1/2MV−1/2 = V−1/2(In − P(V1/2M)⊥)V−1/2

= V−1 − V−1X(X′V−1X)−X′V−1 =: V−1(In − PX;V−1),

where we have used the obvious fact C (V1/2M)⊥ = C (V−1/2X).

We will use the following notation:

PX;W+ = X(X′W−X)−X′W+, PX∗;W+ = X∗(X′W−X)−X′W+.

Notice that PX;W+ and PX∗;W+ are invariant for any choice of the generalized inverses W−

and (X′W−X)− but this invariance does not concern the matrix

PX;W− = X(X′W−X)−X′W−.

Proposition 5: Consider the linear model M = {y, Xβ, V}. Let T be any p × p matrix
such that the matrix W = V + XTX′ satisfies the condition C (W) = C (X : V), i.e.,
W ∈ W (M ), and denote Ṁ = M(MVM)−M . Then

(a) PWM(MVM)−MPW = W+ − W+X(X′W−X)−X′W+.
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(b) PWM(MVM)−MPW = (MVM)+ = PWṀPW .

(c) PX;W+ = X(X′W−X)−X′W+ = PW − VM(MVM)−MPW .

(d) PX;W+ = H − HVM(MVM)−MPW = H − HVM(MVM)+M , where H = PX.

The result (a) is the the most crucial one in Proposition 5. For the proof of (a), see
Puntanen et al. (2011, Prop. 15.2) and Isotalo et al. (2008, Cor. 2.2). Notice that in light of
Proposition 2, we have

PW = PX + PMV = H + PMVM , MPW = MPMV = PMV = PMVM ,

which implies (b) of Proposition 5. Premultiplying (a) by W and using C (X) ⊆ C (W) gives
(c), i.e.,

X(X′W−X)−X′W+ = PW − VM(MVM)−MPW = PW − VM(MVM)+MPW

= PW − V(MVM)+PW = PW − V(MVM)+

= PW − VM(MVM)+M , (8)

where we have used (7) and the fact that C [(MVM)+] = C (MVM) ⊆ C (W). From (8)
we immediately confirm that X(X′W−X)−X′W+ is invariant with respect to the choice of
W ∈ W supposing that C (X : V) = C (W) is holding. Premultiplying (8) by H = PX gives

X(X′W−X)−X′W+ = H − HVM(MVM)−MPW = H − HVM(MVM)+MPW

= H − HV(MVM)+PW = H − HV(MVM)+

= H − HVM(MVM)+M . (9)

Remark 1: The equality (9) follows from (a) of Proposition 5. However, it is interesting to
prove (9) directly. This is done by first observing that

X(X′W−X)−X′W+(X : VM) = [H − HVM(MVM)+MPW](X : VM) , (10)

and then confirming that

X(X′W−X)−X′W+QW = [H − HVM(MVM)+MPW]QW . (11)

Now (10) and (11) together imply (9).

2. The fundamental BLUE equation

Theorem 1 below provides so-called fundamental BLUE equations.

Theorem 1: [BLUE] Consider the linear model M = {y, Xβ, V}.

(a) Then the linear estimator Gy is the BLUE for µ = Xβ if and only if G ∈ Rn×n

satisfies the equation
G(X : VX⊥) = (X : 0) . (12)
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(b) Let µ∗ = X∗β, where X∗ ∈ Rq×p, be estimable so that C (X′
∗) ⊆ C (X′). Then By is

the BLUE of µ∗ if and only if B ∈ Rq×n satisfies the equation

B(X : VX⊥) = (X∗ : 0) . (13)

(c) Let µ1 = X1β1 be estimable in the partitioned model M12. Then Cy is the BLUE of
µ1 if and only if

C(X1 : X2 : VX⊥) = (X1 : 0 : 0) . (14)

For the proofs, see, e.g., Rao (1973, p. 282) and for coordinate-free approach Drygas
(1970, p. 55) and Zmyślony (1980). For further proofs see, for example, Groß (2004), Kala
(1981, Th. 3.1), Puntanen et al. (2000), Puntanen et al. (2011, Th. 10), and Baksalary
(2004).

For Theorem 2, characterizing the BLUP, see, e.g., Christensen (2020, Th. 6.6.3),
and Isotalo and Puntanen (2006, p. 1015).

Theorem 2: [BLUP] Consider the linear model with new observations defined as M∗ in
(1), where C (X′

∗) ⊆ C (X′), i.e., y∗ is predictable. Then:

(a) Ay is the BLUP for y∗ if and only if A(X : VX⊥) = (X∗ : V21X⊥) .

(b) By is the BLUE of µ∗ = X∗β if and only if B(X : VX⊥) = (X∗ : 0) .

(c) Dy is the BLUP for ε∗ if and only if D(X : VX⊥) = (0 : V21X⊥) .

Theorems 1 and 2 offer extremely handy tools to check whether a given estima-
tor/predictor is a BLUE/BLUP. Moreover, they provide convenient ways to introduce var-
ious representations for the BLUE/BLUP. The solutions are unique if and only if C (X :
VX⊥) = Rn. Trivially, one choice for X⊥ is M = In − PX. In view of (3b), the general
solution for G in (12) can be expressed as

{one solution to G(X : VM) = (X : 0)} + {general sol. to G(X : VM) = (0 : 0)}. (15)

Suppose that W ∈ W (M ) where M = {y, Xβ, V}. We observe immediately that

X(X′W−X)−X′W+(X : VM) = X(X′W−X)−X′W+(X : WM) = (X : 0) ,

and so

PX;W+y = X(X′W−X)−X′W+y
= X(X′W−X)−X′W−y = PX∗;W−y = BLUE(Xβ) = µ̃ ,

where we have used the consistency condition (4) to replace W+ with W−. Correspondingly,
for an estimable µ∗ = X∗β we have

PX∗;W+y = X∗(X′W−X)−X′W+y = BLUE(X∗β) = µ̃∗ . (16)
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Moreover, in view of (8) and (9) and the consistency of the model M , we have

µ̃ = PWy − VM(MVM)−MPWy = y − VM(MVM)−My, (17a)

µ̃ = HPWy − HVM(MVM)−MPWy = Hy − HVM(MVM)−My
= OLSE(µ) − HVM(MVM)−My, (17b)

which hold for all y ∈ C (X : V) and OLSE(µ) refers to the ordinary least squares estimator
of µ. One of the first references to (17b) is Albert (1973). Notice that in light of (17a) the
BLUE’s residual can be expressed as

ε̃ := y − µ̃ = VM(MVM)−My .

If C (X) ⊆ C (V), then M is said to be a weakly singular linear model. In this
situation we can choose T = 0 in (6) and thereby replace W with V so that

BLUE(Xβ) = X(X′V−X)−X′V−y . (18)

3. How to solve the fundamental BLUE equation?

In the previous section we have shown that certain expressions satisfy the fundamental
BLUE equation. It is another question how to end up into these solutions, i.e., how to
introduce these solutions. And this is just what we aim to do in this section. We believe
that our approaches – some not much used in literature as straightforward as they are – may
increase the insight of the meaning of the fundamental BLUE equations.

To begin, notice that part (b) of Theorem 1 can be expressed so that By = BLUE(µ∗)
if and only if the following two conditions are satisfied:

(i) By is unbiased for µ∗ , (ii) By is uncorrelated with My. (19)

How to solve (19)? As said, by simple substitution we can check that PX∗;W+y is indeed the
BLUE for µ∗ = X∗β under M . We may now raise the question how to introduce a solution
B for fundamental BLUE equation

B(X : VM) = (X∗ : 0) , (20)

where X∗ = LX for some L so that µ∗ = X∗β is estimable. Notice that then

X∗X+ = LXX+ = LPX = LH .

■ Solution 1: The general solution to the unbiasedness condition (i) in (19), i.e., to
BX = X∗ , can be expressed, e.g., as

B0 = X∗X+ + E(In − PX) = LH + EM , where E is free to vary.

Hence the requirement (ii) in (19), i.e., B0VM = 0, is satisfied if and only if

LHVM + EMVM = 0 , i.e., EMVM = −LHVM ,
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from which we get the general expression for E:

E0 = −LHVM(MVM)+ + E1QMV , where E1 is free to vary. (21)

In view of the decomposition

Q(X:V) = In − (PX + PMV) = −H + QMV ,

we have QMV = H + Q(X:V) , and thereby by (21) we have

E0 = −LHVM(MVM)+ + E1(H + Q(X:V)) ,

and hence the expression for the general solution to B in (20) can be written as

B0 = LH + E0M = LH − LHVM(MVM)+M + E1Q(X:V)M
= L[H − HVM(MVM)+M] + E1Q(X:V)

= LX(X′W−X)−X′W+ + E1Q(X:V)

= X∗(X′W−X)−X′W+ + E1Q(X:V) , (22)

where E1 is free to vary. In (22) we have used (9).

■ Solution 2: An alternative way to introduce a representation for B is to start from
BVM = 0 , which by Proposition 4 is equivalent to

C (B′) ⊆ C (VM)⊥ = C
[
(W+)′X : QW

]
,

where W ∈ W (M ), so that

B′ = (W+)′XR + QWS , for some S and R.

Now the unbiasedness condition X′B′ = X′
∗ holds if and only if

X′W+XR + X′QWS = X′W+XR = X′
∗ ,

from which it follows that the general expression for R can be expressed as

R = (X′W+X)−X′
∗ + QX′W+E3 = (X′W+X)−X′

∗ + QX′E3 ,

where E3 is free to vary. Hence the general expression for B′ satisfying B(X : VM) = (X∗ :
0) can be written as as

B′
0 = (W+)′X(X′W+X)−X′

∗ + (W+)′XQX′E3 + QWS
= (W+)′X(X′W+X)−X′

∗ + QWS ,

so that
B0 = X∗(X′W+X)−X′W+ + S′QW = PX∗;W+ + S′QW ,

where S is free to vary. Thus we have obtained the same presentation as in (22).
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■ Solution 3: It is clear that there exists a matrix X∼ such that XX∼y is the BLUE for
Xβ, i.e.,

XX∼(X : VM) = (X : 0) , (23)
so that X∼ ∈ {X−}. According to Rao and Mitra (1971, Th. 2.4.1), the general expression
for a generalized inverse X∼ ∈ {X−} can be written as

X∼ = X+ + E3(In − PX) + (Ip − PX′)E4 ,

where E3 and E4 are free to vary. Now

XX∼ = H + XE3M , (24)

and hence (23) holds if and only if

XX∼VM = HVM + XE3MVM = 0 ,

i.e.,
XE3MVM = −HVM . (25)

One solution for XE3 in (25) is XE3 = −HVM(MVM)+, and thus XX∼ in (24) can be
written as

XX∼ = H − HVM(MVM)+M . (26)
Notice that X∼ satisfying (23) can be written as

X= = X+ − X+VM(MVM)+M .

Another choice for X∼ satisfying (23) is obviously

X# = (X′W+X)+X′W+.

It is easy to confirm that actually X= = X#.

■ Solution 4: A very straightforward way to find a general solution to B(X : VM) = (X∗ :
0) is to write

B0 = (X∗ : 0)(X : VM)+ + EQ(X:V) =: B1 + EQ(X:V) ,

where the matrix E is free to vary. It is easy to confirm that (X : VM)+ can be written as

(X : VM)+ =
(

X+[In − V(MVM)+]
(MVM)+

)
. (27)

Therefore, when X∗ = LX for some L ∈ Rq×n so that X∗X+ = LH,

B1 = (X∗ : 0)(X : VM)+ = X∗X+[In − V(MVM)+]
= L[H − HV(MVM)+] = LX(X′W+X)+X′W+. (28)

■ Solution 5: In the partitioned model M12 = {y, (X1 : X2)β, V}, one expression for the
BLUE of µ1 can be obtained from (16) yielding

BLUE(µ1 | M12) = µ̃1(M12) = (X1 : 0)(X′W−X)−X′W+y =: P#1y .
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Premultiplying the model M12 by M2 yields the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} .

The fundamental BLUE equation for estimating θ1 := M2X1β1 under M12·2 is now

L(M2X1 : M2VM2 · QM2X1) = (M2X1 : 0) . (29)

To find a solution for L in (29), we observe that choosing W = V + XX′ ∈ W (M12) we
have M2WM2 ∈ W (M12·2) . Hence one solution for L in (29) is

L = M2X1(X′
1Ṁ2X1)−X′

1Ṁ2y =: M2 · PX1;Ṁ2
,

where
Ṁ2 = M2(M2WM2)+M2 ,

and so Ly = BLUE(θ1 | M12·2) and PX1;Ṁ2
y = BLUE(µ1 | M12·2), i.e.,

X1(X′
1Ṁ2X1)−X′

1Ṁ2y = PX1;Ṁ2
y = µ̃1(M12·2) .

It is easy to confirm that

PX1;Ṁ2
(X1 : X2 : VM) = (X1 : 0 : 0) ,

so that the BLUEs of µ1 under M12 and M12·2 coincide, which is the message of the Frisch–
Waugh–Lovell theorem, see, e.g., Groß and Puntanen (2000, Sec. 6).

Actually the following holds, see Haslett et al. (2023, Prop. 3.1),

P1# = (X1 : 0)(X′W−X)−X′W+ = X1(X′
1Ṁ2X1)−X′

1Ṁ2 = PX1;Ṁ2
,

and hence

P1# = (X1 : 0)X∼, where X∼ = (X′W−X)−X′W+ ∈ {X−} ,

PX1;Ṁ2
= X1 X∼

1 , where X∼
1 = (X′

1Ṁ2X1)−X′
1Ṁ2 ∈ {X−

1 } .

■ Solution 6: Let W ∈ W≥(M ). Then it is clear that

G(X : VM) = (X : 0) ⇐⇒ G(X : WM) = (X : 0) .

Observing that MW = {y, Xβ, W} is a weakly singular linear model we can conclude,
parallel to (18), that

X(X′W−X)−X′W−y = BLUE(Xβ | MW) = BLUE(Xβ | M ) . (30)

For (30) see also Christensen (2020, Th. 10.1.3).

■ Solution 7: (Pandora’s Box.) Rao (1971, Th. 3.1) proved that the matrix G is a solution
to the fundamental equation G(X : VM) = (X : 0) if and only if there exists a matrix L
such that G is a solution to (

V X
X′ 0

)(
G′

L

)
=
(

0
X′

)
.
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Let us denote

Γ =
(

V X
X′ 0

)
, C =

(
C11 C12
C21 −C22

)
=
(

V X
X′ 0

)−

∈ {Γ−} ,

so that C is a generalized inverse of Γ. Rao (1971) showed that the matrix C is like
a Pandora’s Box, providing surprisingly many useful results concerning the model M =
{y, Xβ, V}. For example, denoting µ̃ = BLUE(Xβ | M ), the following holds:

µ̃ = XC′
12y, cov(µ̃) = XC22X′, ε̃ = y − µ̃ = VC11y.

4. Solutions for BLUPs

Let us define the sets {Py∗|M∗
}, {PX∗|M∗

}, and {Pε∗|M∗
} as follows:

A ∈ {Py∗|M∗
} ⇐⇒ A(X : VM) = (X∗ : V21M) , (31a)

B ∈ {PX∗|M∗
} ⇐⇒ B(X : VM) = (X∗ : 0) , (31b)

D ∈ {Pε∗|M∗
} ⇐⇒ D(X : VM) = (0 : V21M) . (31c)

Using (27), one solution to A(X : VM) = (X∗ : V21M) can be written as

A1 = (X∗ : V21M)(X : VM)+ = B1 + V21(MVM)+,

where by (28), B1 = X∗(X′W+X)+X′W+. Putting (31b) and (31c) together yields(
B
D

)
(X : VM) =

(
X∗ 0
0 V21M

)
,

which implies that
(B + D)(X : VM) = (X∗ : V21M) ,

and thereby (B + D)y is a BLUP for y∗ and we have the following result:

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) .

From part (c) of Theorem 2 we observe that Dy is the BLUP for ε∗ if D = KM
for some matrix K ∈ Rq×n such that KMVM = V21M , from which one solution to K is
K = V21M(MVM)− yielding the following expression:

BLUP(ε∗) = Dy = V21M(MVM)−My = V21Ṁy.

Further representations, see Haslett et al. (2014, Th. 2), are

BLUP(ε∗) = V21M(MVM)−My = V21V−VM(MVM)−My
= V21W−WM(MVM)−My = V21V−(y − µ̃)
= V21V−(In − G)y = V21W−(In − G)y,
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where G = X(X′W−X)−X′W−. If V is positive definite and r(X) = p, we obtain

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) = X∗β̃ + V21V−1(y − Xβ̃) ,

where β̃ = (X′V−1X)−1X′V−1y.

One application of the model M∗ is the linear mixed model

y = Xβ + Zu + e, or shortly, L = {y, Xβ + Zu, D, R} ,

where Xn×p and Zn×q are known matrices, β ∈ Rp is a vector of unknown fixed effects,
u is an unobservable vector (q elements) of random effects with E(u) = 0, cov(u) = D ,
cov(e, u) = 0 , and E(e) = 0, cov(e) = R. In this situation we have

cov
(

e
u

)
=
(

R 0
0 D

)
=: Λ , cov

(
y
u

)
=
(

Σ ZD
(ZD)′ D

)
=: Ω .

The mixed model can be expressed as a version of the model with “new future observations”,
the new (unobservable) observations being, for example, in u = 0β + ε∗:

L∗ :=
{(

y
u

)
,

(
X
0

)
β,

(
Σ ZD

(ZD)′ D

)}
. (32)

Corresponding to (1) we have

y = Xβ + ε , ε = Zu + e , cov(ε) = cov(y) = ZDZ′ + R =: Σ ,

y∗ = u , X∗ = 0 ,

ε∗ = u , cov(ε∗) = D, cov(ε, ε∗) = ZD.

Now under the mixed model L , B1y is the BLUE for µ = Xβ and B2y is the BLUP
for u if and only if (

B1
B2

)
(X : ΣM) =

(
X 0
0 (ZD)′M

)
. (34)

Thus the BLUP(u) can be written as

BLUP(u) = DZ′W−(y − µ̃) = DZ′M(MΣM)−My,

where W = Σ + XX′. For example, in the simple situation when X has full column rank
and Σ = ZDZ′ + R is positive definite, we have

BLUP(u) = DZ′Σ−1(In − Xβ̃) , β̃ = (X′Σ−1X)−1X′Σ−1y.

Remark 2: We can write up the mixed model (32) as(
y
u

)
=
(

X
0

)
β +

(
ε
ε∗

)
, where cov

(
ε
ε∗

)
= Ω . (35)

It noteworthy that even as (35) looks like a standard linear model it is not quite correct:
the random vector u is unobservable. On the other hand, keeping u fixed (but unknown)
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and denoting y0 = u + ε∗ we get a fixed partitioned model with supplemented stochastic
restrictions on u:

F :=
{(

y
y0

)
,

(
X Z
0 Iq

)(
β
u

)
,

(
R 0
0 D

)}
.

We get an interesting version of F by putting y0 = 0:

F# :=
{(

y
0

)
,

(
X Z
0 Iq

)(
β
u

)
,

(
R 0
0 D

)}
=
{
y#, X#π, Λ

}
.

Of course F# is not a proper model since y0 = 0. In the full rank case fitting the model F#
yields to so-called Henderson equations and the BLUE of Xβ and BLUP of u are obtained
by minimizing the following quadratic form f(β, u) (keeping u as a non-random vector):

f(β, u) = (y# − X#π)′Λ−1(y# − X#π) .

For further references, see, e.g., Henderson (1950, 1963) and Haslett et al. (2015).

5. Two models with different covariance matrices

Suppose that we have two models M (V0) = {y, Xβ, V0} and M (V) = {y, Xβ, V},
which have different covariance matrices. Then we can ask, for example, what is needed
that every representation of the BLUE of µ = Xβ under M (V0) remains BLUE under
M (V). Mitra and Moore (1973, p. 139) give a very clear description of the different problems
occurring:

(a) Problem MM-1: When is specific linear representation of the BLUE of Xβ under
M (V0) also BLUE under M (V)?

(b) Problem MM-2: When does Xβ have a common representation for the BLUE under
M (V0) and M (V)?

(c) Problem MM-3: When does every linear representation of the BLUE of Xβ under
M (V0) remain BLUE also under M (V)?

As for MM-1, we may mention that Hauke et al. (2013) consider conditions under
which

PX;W+
0
y = X(X′W−

0 X)−X′W+
0 y = BLUE(Xβ | M (V)). (36)

This happens if and only if PX;W+
0
VM = 0, which further is equivalent to

X′W+
0 VM = 0 , i.e., C (VM) ⊆ C (W+

0 X)⊥ = C (V0M : QW0) ,

where we have used Proposition 4. Denoting Z = (V0M : QW0), Hauke et al. (2013) showed
that (36) holds if and only if V belongs to the class Vmm1, say, defined as

V ∈ Vmm1 ⇐⇒ V = XAA′X′ + ZBB′Z′ for some matrices A and B. (37)
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Let us take a closer look at MMM-3 in the spirit of Puntanen et al. (2011, Sec. 11.1).
First, let us denote

G ∈ {Pµ | V0} ⇐⇒ G(X : V0M) = (X : 0) .

Let G be such a matrix that Gy is the BLUE for Xβ under M (V0), Then we say that Gy
remains BLUE under M (V) if the following implication holds:

G(X : V0M) = (X : 0) =⇒ G(X : VM) = (X : 0) .

Moreover, let the set of all representations of BLUE of µ under M (V0) be denoted as

B(µ | V0) = {BLUE(µ | V0)} = {Gy : G(X : V0M) = (X : 0)}
= {Gy : G ∈ {Pµ | V0}} . (38)

It is important to understand that the notation of the above type (38) is merely symbolic.
Our main interest lies in the multipliers, like the members of {Pµ | V0}, of the response vector
y which have specific properties. For the property that every representation of the BLUE
of µ under M (V0) remains BLUE of µ under M (V) we will use the notation

B(µ | V0) ⊆ B(µ | V) , i.e., {Pµ | V0} ⊆ {Pµ | V} . (39)

We may consider M (V0) as the original model and M (V) as the misspecified model; mis-
specification concerning only the covariance matrix.

Let us next show that (39) is equivalent to

C (VM) ⊆ C (V0M) , (40)

which is essentially Rao’s result in Theorem 5.3 of his paper in 1971. This is a well-known old
but yet a fundamental result whose proof is worth going through. Proceeding as Puntanen
et al. (2011, p. 270), we observe that a general representation of a member in {Pµ | V0} can
be expressed as

G0 = PX;W+
0

+ EQW0 = X(X′W−
0 X)−X′W+

0 + E(In − PW0) ,

where E is free to vary and W0 ∈ W (V0). Now (39) holds if and only if

G0(X : VM) = (PX;W+
0

+ EQW0)(X : VM) = (X : 0) ,

i.e.,
PX;W+

0
VM + EQW0VM = 0 for all E, (41)

which implies that QW0VM = 0, i.e., C (VM) ⊆ C (W0) = C (X : V0M) , which further
means that

VM = XR + V0MS for some R and S. (42)
Substituting (42) into (41) shows that XR = 0 and thereby (39) implies (40). The reverse
relation is easy to check. It is worth noting that

C (VM) ⊆ C (V0M) =⇒ C (X : VM) ⊆ C (X : V0M)

but the reverse implication does not hold.
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Remark 3: Let us consider conditions under which

PX;W−
0

y = X(X′W−
0 X)−X′W−

0 y = BLUE(Xβ | M (V)) for all W−
0 , (43)

i.e.,
X′W−

0 VM = 0 for all W−
0 . (44)

Now in view of Proposition 1, (44) holds if and only if

X′W+
0 VM = 0 and C (VM) ⊆ C (W0) , (45)

i.e.,
C (VM) ⊆ C (W+

0 X)⊥ = C (V0M : QW0) and C (VM) ⊆ C (W0) , (46)
which together imply (40).

It is clear that µ = Xβ has a common representation for the BLUE under M (V0)
and M (V), i.e., {Pµ | V0} ∩ {Pµ | V} ≠ {∅}, if and only if the equation

G(X : V0M : VM) = (X : 0 : 0)

has a solution for G, i.e.,

C [(X : 0 : 0)′] ⊆ C [(X : V0M : VM)′] , (47)

for which, according to Mitra and Moore (1973, Sec. 3), it is necessary and sufficient that

C (V0M : VM) ∩ C (X) = {0} .

Suppose that (47) holds. Given V0, how can we then characterize the class Vmm2, say, of
matrices V such that {Pµ | V0} and {Pµ | V} are not disjoint? Mitra and Moore (1973, Sec. 3)
showed that Vmm2 = Vmm1 so that

V ∈ Vmm2 ⇐⇒ V = XAA′X′ + (V0M : QW0)
(

B1
B2

)
(B′

1 : B′
2)
(

MV0
QW0

)
, (48)

for some matrices A, B1 and B2.

Let us next consider the following task: Given a covariance matrix V0, characterize
the set V of covariance matrices such that every representation of the BLUE of Xβ under
M (V0) remains BLUE under M (V), i.e.,

V ∈ V ⇐⇒ B(µ | V0) ⊆ B(µ | V) .

We will next show that a necessary condition for V ∈ V is the following:

V = XAA′X′ + V0MBB′MV0 for some matrices A and B. (49)

This is also given by Rao (1971, Th. 5.3) but we will give a slightly different proof. Notice
that class Vmm2 in (48) is wider than class V defined in (49).
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Since C (X : V0M : QW0) = Rn, where W0 ∈ W (V0), an arbitrary nonnegative
definite matrix V can be expressed as V = UU′ where

U = XL1 + V0ML2 + QW0L3 ,

for some matrices L1, L2, L3, so that

V = XL11X′ + V0ML22MV0 + QW0L33QW0 + N + N′, (50)

where Lij = LiL′
j, j = 1, 2, 3, and

N = XL12MV0 + XL13QW0 + V0ML23QW0 .

Now
U′M = L′

2MV0M + L′
3QW0M = L′

2MV0M + L′
3QW0 =: S ,

where QW0M = QW0 follows from part (d) of Proposition 2. Moreover,

C (UU′M) = C (XL1S + V0ML2S + QW0L3S) ⊆ C (V0M)

holds if and only if
C (XL1S + QW0L3S) ⊆ C (V0M) . (51)

Premultiplying (51) by QW0 shows that QW0L3S = 0, i.e.,

QW0L32MV0M + QW0L33QW0 = 0 . (52)

Postmultiplying (52) by QW0 implies that QW0L33QW0 = 0, i.e.,

L3QW0 = 0 . (53)

Substituting (53) into (51) yields

C (XL1S) ⊆ C (V0M) . (54)

The disjointness of C (X) and C (V0M) implies that (54) holds if and only if

XL1S = XL1(L′
2MV0M + L′

3QW0) = 0 ,

which further is equivalent to
XL12MV0 = 0 . (55)

Substituting (53) and (55) into (50) proves that (49) is a necessary condition for V ∈ V . Its
sufficiency is obvious.

Some equivalent statements to (39) are given as follows.

Proposition 6: Consider the linear models M (V0) = {y, Xβ, V0} and M (V) = {y, Xβ, V}.
Then the following statements are equivalent:

(a) B(µ | V0) ⊆ B(µ | V), i.e., V ∈ V .

(b) C (VM) ⊆ C (V0M).
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(c) V = XAA′X′ + V0MBB′MV0 , for some matrices A and B.

(d) V = V0 + XCC′X′ + V0MDD′MV0 , for some matrices C and D.

For the proof of Proposition 6 and related discussion, see, e.g., Mitra and Moore
(1973, Th. 4.1–4.2), Rao (1968, Lemma 5), Rao (1971, Th. 5.2, Th. 5.5), Rao (1973, p. 289),
and Baksalary and Mathew (1986, Th. 3).

Consider then the special case when we have models M (I) = {y, Xβ, I} and M (V) =
{y, Xβ, V}. Then the BLUE of Xβ under M (I) is PXy = Hy since the unique solution
for G in G(X : M) = (X : 0) is H. When is Hy, i.e., the ordinary least squares estimator
(OLSE) BLUE for Xβ under M (V)? The answer is by part (b) of Proposition (6) the
inclusion C (VM) ⊆ C (M), which can be equivalently expressed as any of the following
conditions:

C (VH) ⊆ C (H), HV = VH, HVM = 0 .

For further references regarding the equality of OLSE and BLUE, see, e.g., Rao (1967),
Zyskind (1967), and Markiewicz et al. (2010, 2021).

Let V1/12 denote the set of nonnegative definite matrices V such that every represen-
tation of the BLUE of µ1 under M (V0) remains BLUE under M (V), i.e.,

V ∈ V1/12 ⇐⇒ B(µ1 | V0) ⊆ B(µ1 | V) .

In view of Haslett and Puntanen (2010a, Th. 2.1, 2023b, Th. 11.4), see also Mathew and
Bhimasankaram (1983, Th. 2.1, Th. 2.4), the following holds:

Proposition 7: Consider the partitioned linear models M (V0) and M (V), where µ1 =
X1β1 is estimable. Then the following statements are equivalent:

(a) B(µ1 | V0) ⊆ B(µ1 | V), i.e., V ∈ V1/12 .

(b) C (M2VM) ⊆ C (M2V0M).

(c) C (VM) ⊆ C (X2 : V0M) .

(d) The matrix V can be expressed, for some Li, Lij = LiL′
j, as

V = X1L11X′
1 + X2L22X′

2 + V0ML33MV0 + Z + Z′,

where Z = X1L12X′
2 + X2L23MV0 .

So far in this section we have been dealing with linear models M (V0) = {y, Xβ, V0}
and M (V) = {y, Xβ, V}. The corresponding considerations can be done for the two models
with new future observations. For this purpose, denote

A1 =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
V11 V12
V21 V22

)}
,
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where C (X′
∗) ⊆ C (X′). Consider now another model A2, which may differ from A1 through

its covariance matrix, i.e.,

A2 =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
¯
V11 ¯

V12

¯
V21 ¯

V22

)}
.

For the proof of the following result see Haslett and Puntanen (2010b).

Proposition 8: Consider the models A1 and A2 (with new unobserved future observations),
where C (X′

∗) ⊆ C (X′). Then every representation of the BLUP for y∗ under the model A1
is also a BLUP for y∗ under the model A2 if and only if

C

(
¯
V11M

¯
V21M

)
⊆ C

(
X V11M
X∗ V21M

)
.

Consider then two mixed models:

B1 = {y, Xβ + Zu, D1 , R1} , B2 = {y, Xβ + Zu, D2, R2} .

The only difference above concerns the covariance matrices. We may denote Σi = ZDiZ′ +
Ri , i = 1, 2 . For the next proposition, see Haslett and Puntanen (2011).

Proposition 9: Consider the mixed models B1 and B2. Then every representation of the
BLUP for u under the model B1 is also the BLUP for u under the model B2 if and only if

C

(
Σ2M

D2Z′M

)
⊆ C

(
X Σ1M
0 D1Z′M

)
.

In particular, both the BLUE(Xβ) under B1 continues to be BLUE(Xβ) under B2 and
BLUP(u) under B1 continues to be BLUP(u) under B2 if and only if

C

(
Σ2M

D2Z′M

)
⊆ C

(
Σ1M

D1Z′M

)
.

6. Further remarks

In this section we very briefly review some recent articles by the authors. Fundamental
BLUE/BLUP equations have instrumental role in these papers.

[A] Haslett et al. (2023), [B] Haslett et al. (2020).

In these articles we consider the partitioned linear model M12 , and the corresponding
small model M1. We focus on comparing the BLUEs of µ1 under M12 and M1. Particular
attention is paid on the consistency of the model, i.e., whether the realized value of the
response vector y belongs to the column space of (X1 : V) or (X1 : X2 : V). In [A]
these models are supplemented with the new unobservable random vector y∗, coming from
y∗ = X∗β1 + ε∗. We will concentrate on comparing the BLUEs of µ1 and µ, and BLUPs of
y∗ and ε∗ under M12 and M1.
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Let us shortly consider paper [A] to get an idea what kinds of problems we are dealing
with here. Denote

G1 = X1(X′
1W+

1 X1)−X′
1W+

1 , PX1;Ṁ2
= X1(X′

1Ṁ2X1)−X′
1Ṁ2 ,

where W1 = V + X1X′
1 so that G1y = µ̃1(M1) and PX1;Ṁ2

y = µ̃1(M12). We might now be
tempted to express the equality G1y = PX1;Ṁ2

y as

µ̃1(M1) = µ̃1(M12) , i.e., BLUE(µ1 | M1) = BLUE(µ1 | M12) . (56)

However, the notation used in (56) can be problematic when the possible values of the
response vector y are taken into account. Doing that, we can consider for example statements
like

G1y = PX1;Ṁ2
y for all y ∈ C (X1 : V) , (57a)

G1y = PX1;Ṁ2
y for all y ∈ C (X1 : X2 : V) . (57b)

The claim (57a) appears to be equivalent to {Pµ1 | M12} ⊆ {Pµ1 | M1}.

[C] Haslett et al. (2021), [D] Haslett et al. (2023a).

In these articles we consider the partitioned fixed linear model F : y = X1β1+X2β2+
ε and the corresponding mixed model M : y = X1β1 + X2u + ε, where ε is random error
vector and u is a random effect vector. Isotalo et al. (2006) found conditions under which
an arbitrary representation of the BLUE of an estimable parametric function of β1 in the
fixed model F remains BLUE in the mixed model M . In paper [C] we extend the results
concerning further equalities arising from models F and M . In paper [D] we establish
upper bounds for the Euclidean norm of the difference between the BLUEs of an estimable
parametric function of β1 under models F and M .

[E] Haslett et al. (2023c), [F] Haslett et al. (2023b), [G] Haslett and Puntanen (2023).

We consider the partitioned linear model M12(V0) and the corresponding small model
M1(V0). We define the set V1/12 of nonnegative definite matrices V such that every represen-
tation of the BLUE of µ1 under M12(V0) remains BLUE under M12(V). Correspondingly,
we can characterize the set V1 of matrices V such that every BLUE of µ1 under M1(V0)
remains BLUE under M1(V). In paper E we focus on the mutual relations between the sets
V1 and V1/12.

In article [F] we focus on the mutual relations between the sets V1 and V12, where
V1 is defined as in [E] and V12 is the set of nonnegative definite matrices V such that every
representation of the BLUE of µ = Xβ under M12(V0) remains BLUE under M12(V).

Structural insight into Rao’s condition of 1971 can be gained by writing the quadratic
form that is permitted to be added to the original covariance in block diagonal form. When
the original full linear model is made smaller by reducing the number of regressors, block
diagonal or diagonal matrices also provide insight into conditions for the entire set of full,
small, and intermediate models each to retain their own BLUEs. The paper [G] outlines the
role that such changes in error covariance structure can play in data confidentiality and data
encryption, especially when the covariance of the BLUEs is also retained.
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[H] Haslett et al. (2021)

A linear statistic Fy is called linearly sufficient for X∗β under M (V) if there exists
a matrix A such that AFy is the BLUE for X∗β, i.e., there exists a matrix A such that

AF(X : VM) = (X∗ : 0) .

Thus we can immediately recognize the crucial role of the fundamental BLUE equation
in definition of the linear sufficiency. Originally the concept of linear sufficiency as done
by Baksalary and Kala (1981, 1986). The article [H] provides an extensive review of this
concept.
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