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Abstract
As a bridge between the exponential and Lindley distributions, the modified Lind-

ley distribution was created. It has been used successfully in a variety of fields related to
survival analysis. In this study, we present a novel distribution that extends the modified
Lindley distribution using the traditional weighted (or length/size-biased) approach. It is
named as weighted modified Lindley distribution. This idea is mainly used to flexibilize
the former modified Lindley distribution through the use of a one-parameter polynomial
weight. This weight is intended to modulate the functionalities of the new distribution, well
beyond those of the former modified Lindley distribution. The related probability density
function, cumulative density function, hazard rate function, moments, moment generating
function and characteristic function are analysed from a theoretical and practical point of
view. Estimation of the parameters is done by the classical method of maximum likelihood
and a simulation study is carried out to check the consistency of the maximum likelihood
estimates. A data set is used to illustrate the application of the proposed distribution.

Key words: Data analysis; Lindley distribution; Estimation; Modified Lindley distribution;
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1. Introduction

Lindley is the inventor of the Lindley (L) distribution (see Lindley (1958)). For many
statistical settings, the L distribution is established as an alternative to the exponential
distribution. It is governed by the following one-parameter cumulative density function
(cdf):

FL(x; υ) = 1−
[
1 + υx

1 + υ

]
e−υx, x > 0,
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where υ > 0, and FL(x; υ) = 0 for x ≤ 0. Then its probability density function (pdf) is
derived as

fL(x; υ) = υ2

1 + υ
(1 + x)e−υx, x > 0,

and fL(x; υ) = 0 for x ≤ 0.

Several authors have researched and generalized this distribution during the last few
decades. There is a vast literature in this area. Some examples of such distributions in-
clude the three-parameter L distribution by Zakerzadeh and Dolati (2009), generalized L
distribution by Nadarajah et al. (2011), generalized Poisson-L distribution by Mahmoudi
and Zakerzadeh (2010), power L distribution by Ghitany et al. (2013), two parameter-L
distribution by Shanker and Mishra (2013a), quasi L distribution by Shanker and Mishra
(2013b), transmuted L distribution by Merovci (2013), transmuted L-geometric distribution
by Merovci and Elbatal (2014), beta-L distribution by Merovci and Sharma (2014), negative
binomial-L distribution Zamani and Ismail (2010) and gamma-L distribution by Zeghdoudi
and Nedjar (2016). For more details, see a comprehensive review study of the L distribution
by Tomy (2018).

Among its generalizations, Ghitany et al. (2011) introduced the weighted L (WL)
distribution, with pdf determined as

fWL(x;α, υ) = Ψ−1
α xα−1fL(x; υ),

where α > 0, Ψα represents the normalizing constant corresponding to the expectation of
Xα−1, X being a random variable with the L distribution with parameter υ. The pdf of the
WL distribution can also be expressed as

fWL(x;α, υ) = υα+1

(υ + α)Γ(α)x
α−1(1 + x)e−υx, x > 0,

where Γ(α) denotes the Euler gamma function at α, and fWL(x;α, υ) = 0 for x ≤ 0. It is
proved that the polynomial weight xα−1 modulates the shape properties of the functions of
the former L distribution, increasing their capabilities in terms of modeling. As a conse-
quence, the hazard rate function (hrf) of the WL distribution exhibits bathtub or increasing
shapes. Furthermore, for some non-grouped or grouped survival data, the WL model is
better than several well-known two-parameter survival models.

Recently, an intermediary distribution between the classical exponential and the L
distribution has been proposed by Chesneau et al. (2019), called the modified L (ML) dis-
tribution. Its cdf is specified by

FML(x; υ) = 1−
[
1 + υx

1 + υ
e−υx

]
e−υx, x > 0,

with υ > 0 and FML(x; υ) = 0 for x ≤ 0, and the related pdf is obtained as

fML(x; υ) = υ

1 + υ
[(1 + υ)eυx + 2υx− 1] e−2υx, x > 0,
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and fML(x; υ) = 0 for x ≤ 0. In Chesneau et al. (2019), it is proved that a strong first
order stochastic ordering property relates the exponential, L and ML distributions. In this
precise mathematical sense, the ML distribution is “sandwiched” between the exponential
and L distributions. Also, the hrf of the ML distribution is non-monotonic, contrary to the
hrf of the exponential distribution, which is constant, and the one of the L distribution,
which is increasing. In addition, an important structural property of the ML distribution
is that fML(x; υ) can be expressed as a linear combination of exponential and gamma pdfs.
Furthermore, in Chesneau et al. (2019), it is discussed the applicability of the ML model and
illustrated its workability via several relevant practical data sets. More recently, Chesneau
et al. (2020a,c) introduced two extensions of the ML distribution, namely the inverse ML
distribution and the wrapped ML distribution, respectively.

The aim of this study is to offer an extension of the ML model that allows for more
flexibility in modeling lifetime data. Following the idea of Ghitany et al. (2011), we propose
the weighted ML (WML) distribution by considering the following weighted pdf:

fWML(x;α, υ) = Φ−1
α xα−1fML(x; υ),

where α > 0, Φα represents the normalizing constant corresponding to the expectation
of Xα−1, X being a random variable with the ML distribution with parameter υ. After
simplifications, we arrive at the following analytical expression:

fWML(x;α, υ) = (2υ)α
[(υ + 1)2α + α− 1]Γ(α)x

α−1 [(1 + υ)eυx + 2υx− 1] e−2υx, x > 0, (1)

and fWML(x;α, υ) = 0 for x ≤ 0. Thus, the WML distribution is to the ML distribution,
what the WL distribution is to the L distribution, with the hope of the same additional
benefit from the statistical modelling point of view. This study develops all these aspects,
respecting the rules of the art in the field.

The sections of this article are arranged as follows: Section 2 concerns some characteris-
tics and properties of the WML distribution. Section 3 is devoted to the estimation of model
parameters as well as real data applications. Section 4 ends the paper with conclusions.

2. Theoretical Work

Some relevant theoretical results on the WML distribution are presented in this section.

2.1. Analysis of the pdf

The pdf of the WML distribution as defined by Equation (1) satisfies the following
asymptotic properties. In the case where x tends to be in the neighborhood of 0; an equivalent
function is described below:

fWML(x;α, υ) ∼ (2υ)αυ
[(υ + 1)2α + α− 1]Γ(α)x

α−1.

Hence, we see the importance of the new parameter α is the behavior of this function in 0;
When α < 1, fWML(x;α, υ) diverges to +∞, when α = 1, fWML(x;α, υ) tends to υ2/(υ+1),
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and when α > 1, fWML(x;α, υ) tends to 0.

For the behavior at x→ +∞, the following result holds:

fWML(x;α, υ) ∼ (2υ)α(1 + υ)
[(υ + 1)2α + α− 1]Γ(α)x

α−1e−υx → 0.

In this case, the dominant term in the convergence is e−υx; α plays a secondary role. The criti-
cal points of fWML(x;α, υ) are the solutions to the following equation: d log fWML(x;α, υ)/dx =
0, which is equivalent to the following analytical equation:

(α− 1)1
x

+ υ
(υ + 1)eυx + 2

(1 + υ)eυx + 2υx− 1 = 2υ.

We see that α only modulates the term (α−1)/x, which can be of great impact on the small
values of x. The described critical points contain the possible mode of the WML distribution.
They are not expressible in the strict mathematical sense, but can be determined numerically
via any scientific software.

In order to provide a comprehensive study of the characteristics of fWML(x;α, υ), we
end this part with a graphical analysis in Figure 1; it shows the panel of its possible shapes,
depending on the conjoint values of the parameters α and υ. From Figure 1, one can observe
various kinds of non-monotonic or monotonic shapes, such as reverse J-shaped, right-skewed
and unimodal shapes.
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Figure 1: Examples of graphs of the pdf of the WML distribution
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2.2. Expression of the cdf

Based on Equation (1), the cdf of the WML distribution can be determined; it can
be expressed according to the lower incomplete Euler gamma function defined as γ(s, x) =´ x

0 t
s−1e−tdt with s > 0 and x > 0. Concretely, for any x > 0, we have

FWML(x;α, υ) =
ˆ x

−∞
fWML(t;α, υ)dt

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
(1 + υ)

ˆ x

0
tα−1e−υtdt+ 2υ

ˆ x

0
tαe−2υtdt−

ˆ x

0
tα−1e−2υtdt

]

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
1 + υ

υα
γ(α, υx) + 1

(2υ)αγ(α + 1, 2υx)− 1
(2υ)αγ(α, 2υx)

]
.

By using the relation: γ(s+ 1, x) = sγ(s, x)− xse−x, we arrive at the simple expression:

FWML(x;α, υ) =
1

[(υ + 1)2α + α− 1]Γ(α)
[
(1 + υ)2αγ(α, υx) + (α− 1)γ(α, 2υx)− (2υx)αe−2υx

]
. (2)

For x ≤ 0, we put FWML(x;α, υ) = 0.

Some technical comments on this cdf are now given. As expected, by taking α = 1, we
get

FWML(x;α, υ) = 1
2(υ + 1)

[
2(1 + υ)(1− e−υx)− 2υxe−2υx

]
= FML(x; υ).

Moreover, since −(2υx)αe−2υx < 0, the following first-order stochastic dominance holds:
FWML(x;α, υ) ≤ FMixG(x;α, υ) for all x ∈ R, where FMixG(x;α, υ) denotes the following
generalized mixture cdf:

FMixG(x;α) = λFG(x;α, υ) + (1− λ)FG(x;α, 2υ),

where λ = (1 + υ)2α/[(υ + 1)2α + α − 1] and FG(x;α, υ) = γ(α, υx)/Γ(α) corresponds to
the cdf of the classical gamma distribution with parameters α and υ. Note that λ is always
positive, but 1 − λ can be negative if α < 1. In this case, since FG(x;α, υ) ≤ FG(x;α, 2υ),
for all x ∈ R, we have

FWML(x;α, υ) ≤ FMixG(x;α, υ) ≤ FG(x;α, υ).

Thus, in this case, the WML distribution first-order stochastically dominates the gamma
distribution. For α > 1, there is no such dominance; the situation is more complex. For
illustrative purposes, Figure 2 shows the variation of FWML(x;α, υ) for varying α and υ.
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Figure 2: Examples of graphs of the cdf of the WML distribution

Last but not least, the cdf is essential for defining other distributional functions, such
as the quantile function (qf) and hrf, which will be the subject of two coming subsections.

2.3. Quantile function

The qf is defined by the inverse function of FWML(x;α, υ), say F−1
WML(u;α, υ) with u ∈

(0, 1). In view of Equation (2), it is not possible to express it in an analytical way. However,
it is always possible to do a numerical evaluation by giving values for the first quartile (when
u = 1/4), the median (when u = 1/2) and the third quartile (when u = 3/4). In addition,
this qf has a simple functional lower bound; the following inequality holds: For all u ∈ (0, 1)
and α < 1, F−1

WML(x;α, υ) ≥ F−1
G (x;α), where F−1

G (x;α, υ) denotes the qf of the classical
gamma distribution with parameters α and υ defined by F−1

G (x;α, , υ) = υ−1γ−1(α, uΓ(α))
with u ∈ (0, 1), γ−1(α, y) being the inverse function of γ(α, x).

2.4. On the hrf

From fWML(x;α, υ) and FWML(x;α, υ) as given by Equations (1) and (2), respec-
tively, we can present the hrf of the WML distribution by the following ratio function:
hWML(x;α, υ) = fWML(x;α, υ)/[1− FWML(x;α, υ)]. When x > 0, it is given as

hWML(x;α, υ) =
(2υ)αxα−1 [(1 + υ)eυx + 2υx− 1] e−2υx

[(υ + 1)2α + α− 1]Γ(α)− (1 + υ)2αγ(α, υx)− (α− 1)γ(α, 2υx) + (2υx)αe−2υx .

and hWML(x;α, υ) = 0 for x ≤ 0. The possible shapes of hWML(x;α, υ) are of great interest
in understanding the modelling capability of the WML model (see, Aarset (1987)). Since
the expression of hWML(x;α, υ) is mathematically complex, we conduct a visual analysis in
Figure 3, showing the diverse shapes possessed by this model. From Figure 3, it is clear that
hrf has various kinds of non-monotonic shapes, such as reverse J-shaped, reversed N-shaped,
right-skewed and unimodal shapes, which makes the proposed distribution more flexible to
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fit different data sets. As we know, the L and ML distributions have only unimodal hrf.
Hence, the WML distribution is more flexible than its parent distributions, such as the L
and ML distributions.
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Figure 3: Examples of graphs of the hrf of the WML distribution

2.5. Mathematical moments

In this section, we study the useful moment characteristics and measures of the WML
distribution. Let X be a random variable that follows the WML distribution. Besides, we
discuss the incomplete moments of X, from which we derive moments and discuss some
related quantities. The moment generating and characteristic functions are also expressed.

2.5.1. Incomplete moments

As a first information, the sth incomplete moment of X exists, and it is classically de-
fined by ms(x) = E(XsI(X ≤ x)), where E denotes the mathematical expectation operator.
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Therefore, by taking into account the definition of fWML(x;α, υ), the integral definition of
ms(x) becomes

ms(x) =
ˆ x

0
tsfWML(t;α, υ)dt

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
(1 + υ)

ˆ x

0
ts+α−1e−υtdt+ 2υ

ˆ x

0
ts+αe−2υtdt−

ˆ x

0
ts+α−1e−2υtdt

]

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)×[

1 + υ

υs+α
γ(s+ α, υx) + 1

(2υ)s+αγ(s+ α + 1, 2υx)− 1
(2υ)s+αγ(s+ α, 2υx)

]
.

Since γ(s+ α+ 1, 2υx) = (s+ α)γ(s+ α, 2υx)− (2υx)s+αe−2υx, the sth incomplete moment
is reduced to

ms(x) = 1
(2υ)s[(υ + 1)2α + α− 1]Γ(α)×[

(1 + υ)2s+αγ(s+ α, υx) + (s+ α− 1)γ(s+ α, 2υx)− (2υx)s+αe−2υx
]
. (3)

From this expression, by taking s = 0, we logically obtain the expression of FWML(x;α, υ).
Furthermore, some uses of this manageable expression are described below. Also, by taking
α = 1, we rediscover the sth incomplete moment of a random variable with the former ML
distribution.

2.5.2. Ordinary moments and related measures

Also, the ordinary moments of X can be easily obtained by applying x → +∞ in
Equation (3). That is, the sth ordinary moment of X is given as

ms = ms(+∞) = 1
(2υ)s[(υ + 1)2α + α− 1]Γ(α)

[
(1 + υ)2s+α + s+ α− 1

]
Γ(s+ α).

In particular, by using the relation: Γ(x + 1) = xΓ(x) for x > 0, the four first ordinary
moments of X are

m1 = α [(1 + υ)21+α + α]
2υ[(υ + 1)2α + α− 1] , m2 = α(α + 1) [(1 + υ)22+α + α + 1]

(2υ)2[(υ + 1)2α + α− 1] ,

m3 = α(α + 1)(α + 2) [(1 + υ)23+α + α + 2]
(2υ)3[(υ + 1)2α + α− 1]

and

m4 = α(α + 1)(α + 2)(α + 3) [(1 + υ)24+α + α + 3]
(2υ)4[(υ + 1)2α + α− 1] .
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The classical central and dispersion moment parameters of X follow immediately, including
the mean given as m = m1, variance given as V = m2 −m2

1, coefficient of variation
√
V /m,

as well as the skewness and kurtosis coefficients obtained as

S = m3 − 3m2m+ 2m3

V 3/2

and
K = m4 − 4m3m+ 6m2m

2 − 3m4

V 2 ,

respectively. The numerical pliancy of these important probabilistic measures is shown in
Table 1. Since the skewness has positive values, the WML distribution is skewed to the right.
In addition, the WML distribution can be platykurtic (when K < 3) and leptokurtic (when
K > 3). Furthermore, the mean of the proposed distribution can be smaller or greater than
its variance.

2.5.3. Some related functions

Incomplete and ordinary moments are the main ingredients of various functions or
indexes that are useful in various applied areas. For instance, from the first incomplete and
ordinary moments, one can express the mean residual function given as

MWML(x) = E(X − x | X > x)

= m1 −m1(x)
1− FWML(x;α, υ) − x

=
[
(1 + υ)21+α + α

]
Γ(α+ 1)− (1 + υ)21+αγ(α+ 1, υx)− αγ(1 + α, 2υx) + (2υx)1+αe−2υx

2υ[(υ + 1)2α + α− 1]Γ(α)− (1 + υ)2αγ(α, υx)− (α− 1)γ(α, 2υx) + (2υx)αe−2υx − x

and the mean reversed residual function defined as

M rev
WML(x) = E(x−X | X ≤ x)

= x− m1(x)
FWML(x;α, υ)

= x− 1
2υ

(1 + υ)21+αγ(1 + α, υx) + αγ(1 + α, 2υx)− (2υx)1+αe−2υx

(1 + υ)2αγ(α, υx) + (α− 1)γ(α, 2υx)− (2υx)αe−2υx .

In terms of reliability and life testing, these functions play a crucial role. See, for instance,
Barlow and Proschan (1975) and Nanda et al. (2003). They can be used in the setting of
the WML distribution for further purposes in this direction.

2.5.4. Moment functions

Based on Equation (1), the moment generating and characteristic functions of the WML
distribution can be obtained using the lower incomplete Euler gamma function. Indeed, for
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any x < υ, we have

RWML(x) = E(exX) =
ˆ +∞

0
extfWML(t;α, υ)dt

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)×[

(1 + υ)
ˆ +∞

0
tα−1e−(υ−x)tdt+ 2υ

ˆ +∞

0
tαe−(2υ−x)tdt−

ˆ +∞

0
tα−1e−(2υ−x)tdt

]

= (2υ)α
[(υ + 1)2α + α− 1]Γ(α)

[
1 + υ

(υ − x)αΓ(α) + 2υ
(2υ − x)α+1 Γ(α + 1)− 1

(2υ − x)αΓ(α)
]

= (2υ)α
(υ + 1)2α + α− 1

[
1 + υ

(υ − x)α + 2υ(α− 1) + x

(2υ − x)α+1

]
.

By taking α = 1, we rewrite the moment generating function of the former ML distribution.
By using the standard formula, we have ms = RWML(x)(s) |x=0. Also, the rth cumulant of
X can be obtained through the following equation: κs = {logRWML(x)}(s) |x=0. Also, the
characteristic function of X is immediately deduced from RWML(x); it is given as

ΨWML(x) = E(eixX) = (2υ)α
(υ + 1)2α + α− 1

[
1 + υ

(υ − ix)α + 2υ(α− 1) + ix

(2υ − ix)α+1

]
, x ∈ R,

where i2 = −1. This function fully characterizes the WML distribution, and can be used for
further results in distribution involving the WML distribution.

3. Estimation and Application

In this section, we will discuss estimation and its applicability in a concrete data
analysis scenario.

3.1. Parametric estimation

The maximum likelihood (MaxLik) method can be applied to obtain efficient estimates
of the WML model parameters. In this context, what is necessary is specified below. Let
x1, . . . , xn be realizations of n independent random variables, all distributed following the
WML distribution with parameters α and υ. Then, the estimates suggested by the MaxLik
method are given by the arguments of the maxima of the likelihood function, or the log-
likelihood function defined by

`(α, υ) =
n∑
i=1

log fWML(xi;α, υ) = nα log 2 + nα log υ − n log Γ(α)− n log[(υ + 1)2α + α− 1]

+ (α− 1)
n∑
i=1

log xi − 2υ
n∑
i=1

xi +
n∑
i=1

log [(1 + υ)eυxi + 2υxi − 1] .

The maximum likelihood estimates (MaxLikEs) are denoted by α̂ and υ̂, satisfying `(α, υ) ≤
`(α̂, υ̂) for any α > 0 and υ > 0, by construction. They are also the solutions of the two
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following equations with respect to the parameters:

∂

∂α
`(α, υ) = n log 2 + n log υ − n∂Γ(α)/∂α

Γ(α) − n(υ + 1)2α log(2) + 1
(υ + 1)2α + α− 1 +

n∑
i=1

log xi = 0

and

∂

∂υ
`(α, υ) = n

α

υ
− n 2α

(υ + 1)2α + α− 1 − 2
n∑
i=1

xi +
n∑
i=1

xi[(υ + 1)eυxi + 2] + eυxi

(1 + υ)eυxi + 2υxi − 1 = 0.

Explicit formulations for α̂ and υ̂ are not possible due to the intricacy of these equations. As
a result, numerical methods involving Newton-type algorithms must be used to solve them.
Alternatively, one can investigate the maximization of `(α, υ) numerically through specific
functions in the R package, such as the constrOptim function, optim function or maxLik
function.

The theory of MaxLikEs ensures that α̂ and υ̂ are efficient in several senses, including
their fast numerical convergence to the underlying true values of the parameters. Other
important properties are described in Casella and Berger (1990).

Using the asymptotic normal distribution of the MaxLikEs, we can evaluate the confi-
dence intervals (CIs) of unknown parameters. In this regard, the observed Fisher information
matrix I(α, υ) formed of the negative second derivatives of the log-likelihood function must
be determined. In this asymptotic framework, the 100(1 − γ)% CI for α is defined by the
interval with the following lower bound (LB) and upper bound (UB):

LB = α̂± zγ/2

√
Iα̂α̂, UB = α̂± zγ/2

√
Iα̂α̂,

where zγ/2 is the percentile of the standard normal distribution with right tail probability
γ/2, and Iα̂α̂ is the first diagonal component of I−1(α̂, υ̂). The same holds for the parameter
υ by the consideration of υ̂ instead of α̂, and Iυ̂υ̂ instead of Iα̂α̂.

3.2. Simulation study

We are now conducting a simulation research to assess the performance of the MaxLikEs
of the parameters of the WML distribution. The Newton formula is used because the qf of
this distribution is not available in closed form. The simulation experiment was repeated
1000 times with sample sizes of 25, 80 and 150 from the WML distribution. The assessment
was based on the following steps of simulation study:

1. Generate 1000 samples of size N .

2. Assign the sample size of n and the values of the parameters.

3. Assign the initial value for the random start y0.

4. For j = 1, . . . , n, generate uj from a random variable Uj following the unit uniform
distribution.
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5. Change y0 by y∗ by using the Newton formula as follows:

y∗ = y0 −
{
FWML(y0;α, υ)− uj
fWML(y0;α, υ)

}
.

6. If |y0 − y∗| ≤ ε for small ε > 0, ε being considered as a tolerance limit, then y = y∗ is
considered as a generated value from the WML distribution with parameters α and υ,
else set y0 = y∗ and go to the previous step.

7. Repeat steps 4 to 6 for j = 1, . . . , n to obtain n values y1, . . . , yn.

8. Compute the MaxLikEs of α and υ from y1, . . . , yn.

9. Repeat steps 2 to 8, N times.

10. Compute the Bias and mean square error (MSE) for each parameter, defined as

Bias(α) = 1
N

N∑
i=1

(α̂i − α), MSE(α) = 1
N

N∑
i=1

(α̂i − α)2,

Bias(υ) = 1
N

N∑
i=1

(υ̂i − υ), MSE(υ) = 1
N

N∑
i=1

(υ̂i − υ)2,

where α̂i and υ̂i are the MaxLikEs of α and υ, respectively, obtained at the ith repli-
cation.

The parameter combinations are given below:

1. α = 1.5, υ = 1.5

2. α = 2, υ = 3.5

3. α = 3.5, υ = 2.5

4. α = 4, υ = 2.5

Table 2 presents the Bias, MSE, LB and UB related to the CIs of the parameters for
different sample sizes. The Bias and MSE decrease as n increases. As a result, the MaxLik
approach for estimating the parameters of the WML distribution using Bias and MSE works
fairly well.

3.3. Application

This portion contains an application of the WML distribution to real lifetime data.
To demonstrate the potential of the WML distribution, a comparison is made using two-
parameter extensions or modifications of the L distribution, which are the WL distribution
by (Ghitany et al., 2011) and some other extended L distributions. Below is a list of the
competing distributions.
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1. The quasi L (QL) distribution (Shanker and Mishra, 2013b) with pdf

f(x;α, υ) = υ(α + xυ)
α + 1 e−υx, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

2. The two-parameter L (SL) distribution (Shanker and Mishra, 2013a) with pdf,

f(x;α, υ) = υ2

αυ + 1(α + x)e−υx, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

3. The exponentiated L (EL) distribution (see, Cordeiro et al., 2013) with pdf,

f(x;α, υ) = αυ2

υ + 1e
−υx(1 + x)

[
1−

(
1 + υx

1 + υ

)
e−υx

]α−1
, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

4. The power L (PL) distribution (Ghitany et al., 2013) with pdf,

f(x;α, υ) = αυ2

υ + 1(1 + xα)xα−1e−υx
α

, x > 0,

and f(x;α, υ) = 0 for x ≤ 0.

For the pdfs above, it is supposed that υ > 0 and α > 0.

The MaxLik method is applied to estimate the unknown parameters, along with the de-
termination of the related standard errors (SEs). The following criteria are used to choose the
best-fitting distribution: negative maximized Log-likelihood value (− logL), Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC). The value of the Kolmogorov-
Smirnov (K-S) statistic and the p-value are also provided.

The real data set corresponds to the life of a fatigue fracture of Kevlar 373/epoxy
that was subjected to steady pressure (at 90% stress) until it failed. Therefore, we have
comprehensive data with accurate failure periods. The data set has been obtained from
Barlow et al. (1984) and Andrews and Herzberg (1985). For previous studies on the data,
see Chesneau et al. (2020a).

The values of this data set are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763,
0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851,
0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503,
1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375,
1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846,
3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960
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The findings of a descriptive evaluation of the fitted models for the data set are shown
in Table 3. The R program is used to perform the necessary calculations.

Based on the goodness-of-fit measures, the smallest −logL, AIC, BIC, K-S statistics
and the highest p-values are obtained for the WML distribution. These observations indicate
that the WML model provides the best fit for the data set. Moreover, from the study,
the competing distributions can be ranked in the following order (best to the least): EL
distribution, SL distribution, WL distribution, QL distribution, and PL distribution.

As a graphical approach, in Figure 4, we present the estimated pdfs against the fitted
pdfs. In addition, the empirical cdf against the fitted cdfs is also given in Figure 5. From
these figures, we see that the two fits of the estimated functions of the WML model have well
captured the forms or curvatures of the empirical objects, confirming the previous numerical
analysis.
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Figure 4: Graphs of the estimated pdfs of the considered distributions
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Figure 5: Graphs of the estimated cdfs of the considered distributions
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4. Conclusions

In this paper, we introduced a weighted scheme for the modified L distribution, referred
to as the weighted modified Lindley distribution. The main motivations for introducing this
new distribution are provided. Various shapes of pdf and hrf, which are attractive for
statistical modeling, are highlighted. In particular, we have exhibited that the pdf and hrf
can be unimodal and monotonically decreasing. In addition, detailed and elegant discussions
of incomplete moments, ordinary moments with their related measures, moment generating
function and characteristic function are given. Parameter estimation is approached by the
use of the maximum likelihood function in a simulation study. The usefulness of the new
distribution is illustrated in an analysis of real data. Thus, the proposed model can be used
quite effectively for analysing lifetime data.

Acknowledgements

We thank our students for participating in the classroom activity which eventually led
to this paper. We are grateful to an anonymous referee who suggested many improvements
and furthermore generously listed many useful references. Finally, we thank the Chair Editor
for his encouragement, guidance and counsel.

References

Aarset, M. V. (1987). How to identify bathtub hazard rate. IEEE Transactions and Relia-
bility, 36, 106-108.

Andrews, D. F. and Herzberg, A. M. (1985). Data: A Collection of Problems from Many
Fields for the Student and Research Worker. Springer Series in Statistics, New York.

Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing:
Probability Models. Holt, Rinehart, and Winston, New York.

Barlow, R. E., Toland, R. H. and Freeman, T. (1984). A Bayesian analysis of stress-rupture
life of kevlar 49/epoxy spherical pressure vessels. In: Proceedings of Canadian Confer-
ence Applied Statistics, Marcel Dekker, New York.

Casella, G. and Berger, R. L. (1990). Statistical Inference. Brooks/Cole Publishing Company:
Bel Air, CA, USA.

Chesneau, C., Tomy, L. and Gillariose, J. (2019). A new modified Lindley distribution
with properties and applications. Journal of Statistics and Management Systems, DOI:
10.1080/09720510.2020.1824727.

Chesneau, C., Tomy, L., Gillariose, J. and Jamal, F. (2020a). The inverted modified Lindley
distribution. Journal of Statistical Theory and Practice, 14, 1-17.

Chesneau, C., Tomy, L. and Gillariose, J. (2020b). On a sum and difference of two Lindley
distributions: theory and applications. REVSTAT- Statistical Journal, 18, 673-695.

Chesneau, C., Tomy, L. and Jose, M. (2020c). Wrapped modified Lindley distribution. Jour-
nal of Statistics and Management Systems, DOI: 10.1080/09720510.2020.1796313.

Cordeiro, G. M., Ortega, E. M. and Cunha, D. C. C. (2013). The exponentiated generalized
class of distributions. Journal of Data Science, 11, 1-27.

Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K. and Husain, H. A. (2011). A two-parameter
weighted Lindley distribution and its applications to survival data. Mathematics and
Computers in Simulation, 81, 1190-1201.



172 C. CHESNEAU, L. TOMY AND J. GILLARIOSE [Vol. 20, No. 2

Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N. and Al-Enezia, L. J. (2013). Power Lind-
ley distribution and associated inference. Computational Statistics and Data Analysis,
6, 20-33.

Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Sta-
tistical Society, 20, 102-107.

Mahmoudi, E. and Zakerzadeh, H. (2010). Generalized Poisson-Lindley distribution. Com-
munications in Statistics - Theory and Methods, 39, 1785-1798.

Merovci, F. (2013). Transmuted Lindley distribution. International Journal of Open Prob-
lems in Computer Science and Mathematics, 6, 63-72.

Merovci, F. and Elbatal, I. (2014). Transmuted Lindley-geometric distribution and its ap-
plications. Journal of Statistics Applications & Probability, 3, 77-91.

Merovci, F. and Sharma, V. K. (2014). The beta Lindley distribution: Properties and appli-
cations. Journal of Applied Mathematics, 2014, 1-10.

Nadarajah, S., Bakouch, H. and Tahmasbi, R. (2011). A generalized Lindley distribution.
Sankhya B-Applied and Interdisciplinary Statistics, 73, 331-359.

Nanda, A. K., Singh, H., Misra, N. and Paul, P. (2003). Reliability properties of reversed
residual lifetime. Communications in Statistics-Theory and Methods, 32, 2031-2041.

Shanker, R. and Mishra, A. (2013a). A two parameter Lindley distribution. Statistics in
Transition New Series, 14, 45-56.

Shanker, R. and Mishra, A. (2013b). A quasi Lindley distribution. African Journal of Math-
ematics and Computer Science Research, 6, 64-71.

Tomy, L. (2018). A retrospective study on Lindley distribution. Biometrics and Biostatistics
International Journal, 7, 163-169.

Zakerzadeh, H. and Dolati, A. (2009). Generalized Lindley distribution. Journal of Mathe-
matical Extension, 3, 13-25.

Zamani, H. and Ismail, N. (2010). Negative binomial-Lindley distribution and its application.
Journal of Mathematics and Statistics, 6, 4-9.

Zeghdoudi, H. and Nedjar, S. (2016). Gamma-Lindley distribution and its application. Jour-
nal of Applied Probability and Statistics, 11, 129-138.



2022] ON THE WEIGHTED MODIFIED LINDLEY DISTRIBUTION 173

ANNEXURE
Table 1: Some numerical values of moment measures of the WML distribution

(α, v)→ (2, 0.02) (2, 2) (0.2, 0.2) (0.2, 2) (0.75, 70)

m 0.0015 1.0000 0.5182 9.9910 64.7160

m2 0.0008 1.4711 3.1704 143.5341 5751.618

m3 0.0008 2.8846 31.9664 2741.3372 514672.4

m4 0.0012 7.1034 461.7491 66105.4505 46346481

V 7.9357 0.4712 2.9019 43.5341 1563.458

S 11.1390 1.4569 5.5259 1.5155 0.9691

K 185.9511 6.2699 47.5460 6.6337 2.0563
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Table 2: Simulation results related to the parameters of the WML distribution

Combinations n Bias MSE LB UB

α = 1.5, υ = 1.5

100
α 0.0585 0.0751 1.4990 1.6110
υ 0.0644 0.0780 1.4981 1.6177

200
α 0.0295 0.0346 1.4941 1.5550
υ 0.0336 0.0348 1.4962 1.5591

500
α 0.0169 0.0138 1.49067 1.5271
υ 0.0173 0.0132 1.4973 1.5273

α = 2, υ = 3.5

100
α 0.0635 0.1055 1.9999 2.1259
υ 0.1309 0.3794 3.4981 3.7489

200
α 0.0352 0.0477 1.9988 2.0651
υ 0.0677 0.1700 3.4911 3.6241

500
α 0.0120 0.0207 1.9994 2.0246
υ 0.0215 0.0704 3.4913 3.5447

α = 3.5, υ = 2.5

100
α 0.1240 0.3002 3.4993 3.7287
υ 0.0947 0.1818 2.4992 2.6762

200
α 0.0453 0.1397 3.4930 3.5968
υ 0.0450 0.0887 2.4988 2.5858

500
α 0.0103 0.0555 3.4897 3.5310
υ 0.0146 0.0325 2.4942 2.5303

α = 4, υ = 2.5

100
α 0.1163 0.3703 3.9992 4.2334
υ 0.0826 0.1625 2.4905 2.6600

200
α 0.0556 0.1778 3.9976 4.1135
υ 0.0368 0.0839 2.4970 2.5767

500
α 0.0162 0.0667 3.9936 4.0388
υ 0.0135 0.0307 2.4982 2.5288
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Table 3: Descriptive evaluation of the fitted models for the data set

Model MaxLikE (SE) −logL AIC BIC K-S p-value

WML υ̂ = 0.7020 (0.1303) 121.4213 246.8426 251.5041 0.0931 0.4965
α̂ = 1.2723 (0.2657)

WL υ̂ = 1.0007 (0.1469) 122.0275 248.055 252.7164 0.10413 0.3573
α̂ = 1.3809 (0.2339)

QL υ̂ = 0.9543 (0.0954) 121.6503 247.3006 251.962 0.13049 0.1374
α̂ = 0.1498 (0.1437)

SL υ̂ = 0.9544 (0.0954) 121.6503 247.3006 251.962 0.10247 0.3765
α̂ = 6.3676 (6.4571)

EL υ̂ = 9364 (0.1047) 121.8991 247.7981 252.4596 0.10221 0.3796
α̂ = 1.3905 (0.2376)

PL υ̂ = 0.7046 (0.0819) 122.4001 248.8001 253.4616 0.11233 0.2719
α̂ = 1.1425 (0.0908)


