
Statistics and Applications {ISSN 2454-7395 (online)}
Volume 21, No. 2, 2023 (New Series), pp 193–210
http://www.ssca.org.in/journal

The gLinear Failure Rate Distribution: A New Mixture
with Bayesian and Non-Bayesian Analysis

R. M. Mandouh1
1Department of Mathematical Statistics

Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt

Received: 02 September 2022; Revised: 27 November 2022; Accepted: 13 March 2023

Abstract
A mixture of the gamma and linear failure rate distributions is constructed and

studied. The model parameters are estimated using maximum likelihood and Bayesian based
on real and simulated data.
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1. Introduction

In statistical analysis, the survival function and hazard function are used to model
distribution of data representing lifetime or waiting time. The survival function or reliability
function is the probability of survival of an item without failing until time t. Alternatively,
we can describe the survival experience in term of hazard failure (instantaneous rate of
death) which is the chance of death (failure) as a function of age. The hazard function or
the instantaneous failure rate has many types which appeared in practice such as unimodal
shaped; bathtub shaped and others. The main aim of this paper is to introduce a new
distribution with two parameters. The hazard function of this distribution can be constant,
unimodal (upside-down bathtub) or increasing-decreasing-increasing depending on the values
of its two parameters. The shapes of the hazard function of the new distribution enables it
to be a good model to fit various data sets.

The mixture distribution (Everitt (2013)) is one of the means can be utilized to
construct these new distributions. The finite mixture is formed as follow:

f(x) =
c∑

i=1
pifi(x)

where ∑c
i=1 pi = 1 with c = 2 in our distribution. Many Papers dealing with two mixture

models such as, Lindley (1958) introduced a one parameter distribution, now known as the
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Lindley distribution. Ghitany et al. (2008) studied its properties in details. Shanker and
Mishra (2013) added one extra parameter to Lindley distribution and introduced the quasi
Lindley distribution. They studied some of its properties. Sen et al. (2016) proposed and
studied another finite mixture distribution which is called the xgamma distribution.Sen and
Chandra (2017) added one extra parameter to the xgamma distribution and introduced
the quasi xgamma distribution. Moreover, many Papers dealing with three mixture models
such as, Sarhan et al. (2014) introduced two lifetime distributions. They referred to these
two distributions as N(β) and TN(α, β) respectively and they discussed some properties of
these two distribution such as the behavior of their hazard functions. Mahmoud et al. (2017)
introduced two distributions based on mixing between different types of distributions.

2. The gLinear failure rate distribution

Now, we introduce a mixture density of two mixture components, one follows gamma
(2, β) and the other follows linear failure rate (β, β2) with mixing weights β

α+β
and α

α+β
. The

pdf of the new mixture distribution will be as follows:

f(x) = β

α + β
(β2x + α(1 + βx)e− β2

2 x2)e−βx, x > 0, β, α > 0. (1)

We refer to this distribution as glfr (α, β). For α = 1, we have the following new distribution
as a special case

f(x) = β

1 + β
(β2x + (1 + βx)e− β2

2 x2)e−βx, x > 0, β > 0, (2)

which is a mixture of gamma (2, β) and the other follows linear failure rate (β, β2) with
mixing weights β

1+β
and 1

1+β
and we refer to this distribution as glfr (β). Figure (1) shows

pdf of the glfr distribution for different parameter values. The corresponding cdf of (2.1)
takes the following form

F (x) = 1
α + β

(β + α − e−βx(β(1 + βx) + αe− β2
2 x2)), x > 0, β, α > 0. (3)

Then the survival function is given by

S(x) = 1
α + β

(e−βx(β(1 + βx) + αe− β2
2 x2)), x > 0, β, α > 0, (4)

and the hazard function is given by

h(x) = β(β2x + α(1 + βx)e− β2
2 x2)

(β(1 + βx) + αe− β2
2 x2)

, x > 0, β, α > 0, (5)

One can note that h(x) is bounded, i.e. αβ
α+β

< h(x) < β. The hazard function of glfr
distribution is plotted in Figure (2) for four different pairs of choices of α and β.



2023] THE gLINEAR FAILURE RATE DISTRIBUTION 195

α=1.6;β=2.5

α=0.6;β=1.5

α=0.1;β=1.5

α=1.0;β=1.0

α=0.2;β=2.5

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure 1: The gLinear failure rate pdfs for some parameter values

The moments and shape measures

Let X follow gLinear failure rate distribution. After some algebra, the rth moment of
X is derived as

E(Xr) = Γ(r + 2)
βr−1(α + β) + 2α

√
e

βr(α + β)

ˆ ∞

1/
√

2
t(

√
2t − 1)re−t2

dt (6)

Therefore, the expectation variance of the two parameter glfr distribution in terms of the
error function (erf) and its complementary (erfc) are given by

E(X) =
4β + α

√
2eπ(erfc( 1√

2))
2β(α + β) ,

and

V ar(X) =
6β + 2α − α

√
2eπ(erfc( 1√

2))
β2(α + β) − (

4β + α
√

2eπ(erfc( 1√
2))

2β(α + β) )2,

where, erfc(z) = 1 − erf(z) and erf(z) = 2√
π

´ z

0 e−t2
dt.

Also, one can use eq.(6) and the relation between the moments and the central moments to
obtain skewness and kurtosis.

The mean residual life

One of special relevance in reliability and survival analysis is the analysis of the
lifetime of a device after it has attained age x. Thus, if X is the lifetime with survival
function given by (4), the corresponding residual lifetime after age x is the random variable
Xx = (X − x|X > x) and the mean residual life of X is defined as m(x) = E(X − x|X > x).
It is also called the expected additional lifetime given that a component has survived until
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time t is a function of t

m(x) = E(X − x|X > x)

= 1
S(x)

ˆ ∞

x

S(t)dt

=
´∞

x
e−βt(β(1 + βt) + αe− β2

2 t2)dt

e−βx(β(1 + βx) + αe− β2
2 x2)

=
β(2 + βx)e−βx +

√
eπ
2 erfc(1+βx√

2 )

β(e−βx(β(1 + βx) + αe− β2
2 x2))

,

where, erfc(z) = 1 − erf(z) and erf(z) = 2√
π

´ z

0 e−t2
dt.
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Figure 2: The hazard rate function of the gLinear failure rate for some parameter
values

3. Maximum likelihood estimation (MLE)

For different statistical models, MLE is widely utilized to estimate the model param-
eters. Assume that n independent and identical items are put on a life test simultaneously.
The lifetimes of these items are assume to have follow glinear failure rate distribution. Let
x = (x1, x2, ..., xn) be the failure times of the items. The Likelihood function for α, β is given
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by
L(α, β; x) = βn

(α + β)n

n∏
i=1

(β2xi + α(1 + βxi)e− β2
2 x2

i )e−βxi (7)

The log-likelihood function is

L = L(α, β; x) = nlnβ − nln(α + β) − β
n∑

i=1
xi +

n∑
i=1

lnAi(α, β) (8)

where Ai(α, β) = β2xi + α(1 + βxi)e− β2
2 x2

i , i = 1, 2, ..., n.

Taking partial derivatives of the log-likelihood in (8) w.r.t. α and β, we have

Lα = − n

α + β
+

n∑
i=1

Ai,α(α, β)
Ai(α, β) (9)

Lβ = n

β
− n

α + β
−

n∑
i=1

xi +
n∑

i=1

Ai,β(α, β)
Ai(α, β) (10)

where

Ai,α(α, β) = ∂Ai(α, β)
∂α

= (1 + βxi)e− β2
2 x2

i ,

Ai,β(α, β) = ∂Ai(α, β)
∂β

= 2βxi + αxie
− β2

2 x2
i − αβ(1 + βxi)x2

i e
− β2

2 x2
i .

The second derivative of the log-likelihood are

Lα,α = n

(α + β)2 +
n∑

i=1

Ai(α, β)Ai,α2(α, β) − (Ai,α(α, β))2

(Ai(α, β))2

Lα,β = n

(α + β)2 +
n∑

i=1

Ai(α, β)Ai,αβ(α, β) − (Ai,α(α, β))(Ai,β(α, β))
(Ai(α, β))2 (11)

Lβ,β = − n

β2 + n

(α + β)2 +
n∑

i=1

Ai(α, β)Ai,β2(α, β) − (Ai,β(α, β))2

(Ai(α, β))2

where

Ai,α2(α, β) = 0,

Ai,αβ(α, β) = xie
− β2

2 x2
i (1 − βxi(1 + βxi)),

Ai,β2(α, β) = 2xi + αxie
− β2

2 x2
i (−βxi − 3βx2

i + β2x3
i (1 + βxi)).

To calculate the information matrix, the expectation of the following matrix is required

T (α, β) = −
[
Lα,α Lα,β

Lα,β Lβ,β

]

Equating the derivatives in (9) and (10) to zero and solving them numerically to obtain the
mle of α and β, say α̂ and β̂ such that T (α̂, β̂) is positive definite.
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For Interval estimation of (α, β), the mle of parameters α and β are asymptotically
normally distributed with means equal the true values of α and β and variances given by
the inverse of the observed information matrix,T (α̂, β̂), i.e.[

α̂

β̂

]
∼ N2

[[
α
β

]
, T̂ −1

]
(12)

where T̂ −1 is the inverse of T (α̂, β̂). Using (12), large sample (1−ν)100% confidence intervals
for α and β are α̂±zν/2

√
var(α̂), β̂ ±zν/2

√
var(β̂), where zν/2 is the upper 100ν/2 quantile

of the standard normal distribution and var(α̂) and var(β̂) are the main diagonal of T̂ −1.

4. Bayesian estimation

Let x1, x2, ..., xn be a random sample from glinear failure rate distribution. The
likelihood of this sample is given by (7). Let the two parameters α and β are independent
random variables with prior distributions gamma(a1, b1) and gamma(a2, b2), respectively.
That is, the joint prior density of α and β is

g0(α, β) ∝ αa1−1βa2−1e−b1α+−b2β, α, β > 0 (13)

where the hyperparameters ai and bi, i = 1, 2. are assumed to be positive and known. Using
the likelihood function (7) and the joint prior density function (13) and applying Bayes’
theorem, we get the joint posterior density function of (α, β), given the data, as

g(α, β|x) ∝ αa1−1βa2+n−1

(α + β)n
e−b1α+−b2β

n∏
i=1

(β2xi + α(1 + βxi)e− β2
2 x2

i )e−βxi , α, β > 0 (14)

Bayes estimators of the unknown parameters of any function of the unknown parameters,
say h(θ), can be obtained as follows

E(h(θ)|x) =
´∞

0

´∞
0 h(θ)g0(α, β)exp(L)dαdβ´∞

0

´∞
0 g0(α, β)exp(L)dαdβ

, (15)

Formula (15) involves a ratio of two multidimentional integrals and does not have analytical
solution. Thus, some approximation methods were suggested to approximate these integrals
and calculate the ratio of the integrals such as the methods discussed by Lindley (1958) and
Tierney and Kadane (1986) . These methods work well for low dimensions. In this paper
we will use Tierney and Kadane’s approximation method. They approximate (15) by using
Laplace method as follow

E(h(θ)|x) =
(

detΣ∗

detΣ

)1/2

exp(n(L(θ̂∗) − L(θ̂))) (16)

where nL(θ̂∗) = lnh + lng0 + L, nL(θ̂) = lng0 + L and Σ∗ and Σ are minus the inverse
Hessian of L(θ̂∗) and L(θ̂) evaluated at θ∗ and θ, respectively. For more details about
Laplace approximation see Crawford (1994) and Tierney et al. (1989).
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For many applications, Bayesian inference is performed using Markov Chain Monte
Carlo (MCMC), which estimates expectations w.r.t. g(θ|x) by sampling from it. One of
MCMC, Metropolis-Hastings (MH) algorithm, is proposed here. MH algorithm requires a
proposal distribution and a common choice of it is the multivariate normal distribution.
Metropolis-Hastings algorithm steps are

1. Specify the size of the random draws, say m.

2. Choose an initial value of θθθ, say θθθ(0).

3. For i = 1, 2, . . . , m, repeat the following steps:

(a) Set θ(i) = θ(i−1).
(b) Generate a candidate value θ∗ from a proposal distribution p(θ(∗)|θ(i)).

(c) Compute the ratio κ = min(1, g(θθθ(∗)|data)/p(θθθ(∗)|θθθ(i)

g(θθθ(i)|data)/p(θθθ(i)|θθθ(∗))).

(d) Generate a random value u from uniform distribution on (0, 1).
(e) Put θθθ(i) = θθθ∗, ifκ ≥ u, otherwise put θ(i) = θ(i−1).

4. Return the values θθθ(0), θθθ(1), . . . , θθθ(m).

For more details about MH algorithm see Puza (2015). For other applications where θ
is high dimensional or fast computation is of primary interest, variational Bayesian (VB)
is an attractive alternative to MCMC. Yamaguchi et al. (2010) developed a VB approach
for approximately computing posterior distributions of parameters of mixture of Erlang
distribution and they investigated that computation speed of the VB becomes up to 200
times faster than that of MCMC. VB approximates the posterior distribution by a probability
distribution with density q(θ) belonging to some tractable family of distributions Q such as
Gaussians. The VB method treats an optimization to minimize the Kullback–Leibler (KL)
divergence from an approximate posterior distribution to the exact posterior distribution,
i.e. The best VB approximation q∗ ∈ Q is

q∗ = argmin
q∈Q

{
KL(q||g(., x)) :=

ˆ
q(θ)log

q(θ)
g(θ|x)dθ

}
.

5. Simulation study

A simulation study was carried out to investigate the performance of the accuracy
of point and interval estimates of the two parameters of the glfr(α, β) distribution. The
following steps are carried out:

1. Specify the values of the parameters α and β.

2. Specify the sample size n.

3. Generate a random sample (x1, x2, x3, ..., xn) with size n from glfr(α, β) distribution
using the following algorithm:
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• Generate U ∼ uniform(0, 1) with size n.
• Generate V ∼ gamma (2, β) with size n.
• Generate W ∼ linear failure rate (β, β2) with size n.
• If u ≤ β/(α + β) set x = u, otherwise set u = w

4. Calculate the mle of the two parameters.

5. Repeat steps 2-4, N times.

6. Calculate the mean squared error (MSE), the average of the confidence interval widths,
and the coverage probability for each parameter. The MSE associated with the MLE
of the parameter θ, MSEθ, is

MSEθ = 1
N

N∑
i=1

(θ̂ − θ)2,

where θ̂ is the MLE of θ. Coverage probability is the proportion of the N simulated
confidence intervals which include the true parameter θ.

The simulation study is carried out using N = 1000. The sample sizes are 50, 75, 100, 150
and 200 and the selected parameter values are (α, β)= (0.8, 0.8), (0.8, 1.0), (1.0, 1.0), (1.0,
1.2), (1.2, 1.2) and (1.6, 2.5). Table 1 presents the MSE, coverage probability (CPθ) and
average width (AWθ) of 95% confidence intervals of each parameter. This table shows that
,in the most cases, the MSEs and the average widths decrease as the sample size increases
and the coverage probability are close to the nominal level of 95%.

6. Applications

In this section, to illustrate the applicability of the two new distributions proposed
in this paper, we analyze three data sets. The first data set represents the remission times
(in months) of a random sample of 128 bladder cancer patients. Bladder cancer is a disease
in which abnormal cells multiply without control in the bladder. The most common type
of bladder cancer recapitulates the normal histology of the urothelium and is known as
transitional cell carcinoma.This data were studied by Zea et al. (2012).The second data
represents a complete data with the exact times of failure. This data is considered a data
set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure
at the 90% stress level until all had failed. This data is considered by Ogunde et al. (2017).
The three data set is provided in Murthy et al. (2004), page 278, about time between failures
for repairable item.

We will refer to these data sets as data set 1, data set 2 and data set 3, respectively.
For each data set, we fit the proposed distributions and other distributions such as the quasi
xgamma (qxgamma), xgamma, quasi Lindley (qLinley), Lindley, linear failure rate (lfr) and
gamma distributions. Goodness-of-fit tests are applied to verify which distribution better
fits these data sets. The tests were carried out at 5% level of significance. We consider
the common-known Kolmogorov-Smirnov (K-S) statistic, the Anderson-Darling (A-D), and
Cramér-von Mises (C-M) statistics. Moreover, we consider some well-known measures such
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as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the
consistent Akaike information criterion (CAIC) and the Hannan-Quinn information criterion
(HQIC). These criterions are defined by:

AIC = −2L(θ̂θθ) + 2p;
BIC = −2L(θ̂θθ) + plog(n);

CAIC = −2L(θ̂θθ) + 2pn

n − p − 1;

HQIC = −2L(θ̂θθ) + 2log(log(n)).

where L(θ̂θθ) denotes the log-likelihood function evaluated at the maximum likelihood esti-
mates for parameters θθθ, p is the number of parameters and n is the sample size.Table 2 shows
the MLE of the parameters of each model, the corresponding maximum log-likelihood value,
the AIC, BIC, CAIC and HQIC for the three data sets. Table 3 presents the values of the
statistics K-S, (A-D) (A*) and C-M (W*) for the three data sets using each model. The
required numerical evaluations are carried out using R software.

For the first two data sets, glfr model has the smallest value of the Kolmogorov-
Smirnov (largest P value), Anderson-Darling and the Cramér-von Mises gooness-of-fit tests
statistics which indicate that the best fit is provided by glfr model for these data sets. For
the third data set, gamma model is a better fit than glfr (α, β) model, see Table 3

Figure 3: The histogram for the three data sets and fitted pdf of the gLinear
failure rate distribution
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Figure 4: The empirical cdf for the three data sets and fitted cdf of the gLinear
failure rate distribution

Figure 5: The TTT for the three data sets
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From the results in Table 2, one can note that the values of AIC, BIC, CAIC and
HQIC are smaller for the glfr distribution compared with those values of the other models,
so the new distribution seems to be a very competitive model to the the first two data sets.
For the third data set, gamma model has smaller values than glfr model.

Also, we plotted the scaled total time on test transform (TTT) which can help for
selecting a model. The empirical scaled TTT transform (Aarset (1987)) can be used to
identify the shape of the hazard function. As displayed in Figure 5 The TTT plot shows
that the data set 1 has a unimodel hazard, while the rest of data sets have increasing hazards.

For Bayesian computations, we concern with three approaches; the Laplace approxi-
mation, MCMC and variational Bayes (VB). We obtain the approximate Bayes estimates of
the two unknown parameters of the glfr distribution based on real data sets and simulated
samples with true values α = 1.2, β = 1.2. R package is used to compute these estimates.
Using the first two data sets and gamma priors with different values of hyper parameters
((ai, bi) = (1, 0.001) and (0.001, 0.001), i = 1, 2), the Laplace approximation, MCMC and
variational Bayes are carried out and the results are shown in Tables 4-5. From these tables,
one can note that the results are close for each other and for simulated data, the results get
closer to the true values as the sample size increases. Also, the results are close to each other
for different hyper parameters and Tables 4-5 display the results in the case of the gamma
priors with (a1, b1) = (1, 0.001). For MCMC, Figures 6- 7 show the trace, the approximated
posterior density functions and autocorrelation plots of the two parameters of the glfr dis-
tribution. These Figures show that as the sample size increases, the chains look stationary,
the kernel densities look Gaussian, and the ACF’s or autocorrelation function plot show low
autocorrelation.

7. Conclusion

A new mixture distribution named glinear failure rate distribution (glfr) is proposed
in this paper. The glfr is a mixture of gamma and failure rate distributions. Based on
some goodness of fit tests and some criteria for choosing the best fit among several, it is
observed that the glfr gives a better fit than some common distributions. The maximum
likelihood and Bayesian methods are applied to estimate the two unknown parameters of
the glfr distribution. For Bayesian method, we used Laplace approximation, MCMC and
Variational Bayes and the results are close to each other and for simulated data, the results
get closer to the true values as the sample size increases.
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Figure 6: The trace, the approximated posterior density functions and autocor-
relation plots of the two parameters for the simulated data

Figure 7: The trace, the approximated posterior density functions and autocor-
relation plots of the two parameters for the two data sets
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ANNEXURE
Table 1: MSE, coverage probability (CP) and average width (AW)

α β n MSEα MSEβ CPα% AWα CPβ% AWβ

0.8 0.8 50 0.8392 3.5144 99.5 3.2434 99.5 13.7551
75 0.4296 2.5246 99.6 1.6422 99.7 9.8887
100 0.3147 1.5077 98.9 1.1966 99.9 5.9097
150 0.2112 0.1055 93.1 0.7744 94.7 0.3997
200 0.1907 0.0972 93.1 0.6707 93.6 0.3628

0.8 1.0 50 0.5761 2.0099 99.5 2.2118 99.8 7.8758
75 0.9416 1.3697 99.9 3.6092 99.9 5.3624
100 0.3623 0.1921 90.4 1.2151 91.1 0.6762
150 0.3131 0.1643 86.5 0.9748 90.8 0.5614
200 0.2879 0.1544 88.1 0.8692 89.8 0.5184

1.0 1.0 50 2.5306 7.2913 98.8 9.8568 98.5 28.4180
75 1.2069 4.7571 99.3 4.6747 99.3 18.5986
100 0.7010 3.5606 99.6 2.7089 99.6 13.9390
150 0.2758 0.1388 94.2 1.0408 95.8 0.5321
200 0.2635 0.1197 93.7 0.9921 95.3 0.4594

1.0 1.2 50 2.26458 7.1844 99.5 8.8561 99.5 28.1341
75 0.5315 3.0952 99.4 2.0152 99.8 12.1331
100 0.3748 2.0887 93.4 1.3431 99.9 8.1863
150 0.3503 0.1840 89.5 1.1865 92.9 0.6266
200 0.3500 0.1709 89.6 1.1591 91.1 0.5976

1.2 1.2 50 1.8795 5.0542 99.6 7.2992 99.6 19.7939
75 0.6501 2.8649 99.8 2.472 99.8 11.2279
100 0.3362 0.1913 90.5 1.2115 94.8 0.7192
150 0.3096 0.1483 92.3 1.1403 94.3 0.5555
200 0.2896 0.1416 92.5 1.0543 93.9 0.5360

1.6 2.5 50 1.4358 0.8157 83.1 4.0621 87.0 2.5023
75 1.4005 0.7625 76.4 3.3660 94.2 2.5460
100 1.5233 0.5758 73.0 3.5535 89.8 1.8990
150 1.3813 0.4837 61.7 2.7944 89.1 1.5026
200 1.2944 0.4622 55.0 2.4079 85.8 1.3990
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Table 2: The MLEs and some measures for the fitted models

Data set Model Parameter Estimates l(θ̂θθ) AIC BIC CAIC HQIC
Data 1 glfr(α, β) α̂ = 0.1911 and β̂ = 0.1342 -411.8 827.6 833.3 827.7 830

glfr(β) β̂ = 0.0888 -412.6 827.2 830.0 827.2 828.3
qxgamma α̂ = 2.8289 and β̂ = 0.1655 -416.9 837.9 843.6 838.0 840.2
xgamma β̂ = 0.2689 -429.4 860.7 863.6 863.8 861.9
qLindley α̂ = 2.5292 and β̂ = 0.1381 -414.9 833.7 839.4 833.8 836.1
Lindley β̂ = 0.1960 -419.5 841.1 843.9 841.1 842.2
lfr β̂ = 0.0608 -427.2 856.6 859.3 856.5 857.6
gamma β̂ = 0.2135 -426.8 855.6 858.4 855.6 856.8

Data 2 glfr(α, β) α̂ = 0.2086 and β̂ = 0.9439 -122.2 248.4 253.1 248.6 250.3
glfr(β) β̂ = 0.5537 -124.0 250.0 252.4 250.1 251
qxgamma α̂ = 0.2009 and β̂ = 1.3561 -122.5 249.0 253.6 249.1 250.8
xgamma β̂ = 1.0330 -126.3 254.7 257.0 254.7 255.6
qLindley α̂ = 0.2947 and β̂ = 0.8823 -122.0 248.0 252.7 248.2 249.9
Lindley β̂ = 0.7948 -123.7 249.4 251.7 294.4 250.3
lfr β̂ = 0.3329 -124.5 251.0 253.3 251.0 251.9
gamma β̂ = 1.0210 -123.2 248.4 250.7 248.4 249.3

Data 3 glfr(α, β) α̂ = 0.1394 and β̂ = 1.3079 -39.70 83.40 86.10 83.84 84.30
glfr(β) β̂ = 0.8413 -41.25 84.50 85.90 84.64 84.94
qxgamma α̂ = 0.1599 and β̂ = 1.156 -40.52 85.04 87.84 85.48 85.94
xgamma β̂ = 1.2690 -42.14 86.28 87.69 86.42 86.73
qLindley α̂ = 0.4026 and β̂ = 1.2962 -40.59 85.18 87.98 85.62 86.07
Lindley β̂ = 0.9947 -41.09 84.18 85.59 84.33 84.63
lfr β̂ = 0.4408 -40.73 83.46 84.86 83.60 83.91
gamma β̂ = 1.3250 -39.52 81.04 82.44 81.19 81.49
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Table 3: Statistics K-S (P value), A* and W* for the three data sets

Data set Model K-S (P value) A* W*
Data 1 glfr(α, β) 0.059 (0.800) 0.3835 0.0607

glfr(β) 0.055 (0.800) 0.6957 0.1236
qxgamma 0.100 (0.100) 1.0160 0.1687
xgamma 0.160(0.003) 2.2250 0.3787
qLindley 0.074 (0.500) 0.9005 0.1510
Lindley 0.120 (0.060) 1.0260 0.1717
lfr 0.180 (6e-04) 2.2630 0.3849
gamma 0.140 (0.010) 0.7260 0.1211

Data 2 glfr(α, β) 0.091 (0.500) 0.6425 0.1102
glfr(β) 0.130 (0.200) 0.4919 0.8261
qxgamma 0.110 (0.300) 0.7579 0.1266
xgamma 0.150 (0.070) 0.9901 0.1698
qLindley 0.120 (0.200) 0.6356 0.1082
Lindley 0.120 (0.200) 0.6907 0.1173
lfr 0.130 (0.200) 1.0470 0.1807
gamma 0.098 (0.400) 0.7005 0.1182

Data 3 glfr(α, β) 0.099 (0.900) 0.1520 0.0200
glfr(β) 0.130 (0.700) 0.1328 0.0188
qxgamma 0.120 (0.800) 0.2934 0.0401
xgamma 0.160 (0.400) 0.2481 0.03293
qLindley 0.120 (0.800) 0.1930 0.0258
Lindley 0.130 (0.700) 0.1843 0.2436
lfr 0.110 (0.900) 0.3036 0.0465
gamma 0.095 (0.900) 0.1496 0.0195
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Table 4: Summary results for the posterior parameters in the case of the glfr
distribution based on real data sets

Laplace Approximation
Data set Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

Data 1 α 0.3471 0.1829 0.0000 0.7128 0.00
β 0.1061 0.0172 0.0718 0.1404

Data 2 α 0.1157 0.1063 0.0000 0.3282 0.00
β 0.9410 0.1049 0.7312 1.1509

MCMC
Data set Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

Data 1 α 0.5968 0.5940 0.1383 2.1327 0.09
β 0.10478 0.0186 0.0784 0.1475

Data 2 α 56.4094 65.2242 0.0934 230.0292 0.07
β 0.4108 0.1615 0.2878 0.9777

Variational Bayesian
Data set Parameter Estimate: Mean Standard Deviation LB UB Minutes

of run-
time

Data 1 α 0.4631 0.0996 0.2639 0.6622 0.02
β 0.1028 0.0114 0.0799 0.1257

Data 2 α 0.1763 0.9364 0.0000 0.3636 0.02
β 0.9162 0.1047 0.7068 1.1255
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Table 5: Summary results for the posterior parameters in the case of the glfr
distribution based on simulated samples with true values α = 1.2, β = 1.2

Laplace Approximation
Samples Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

n=300 α 1.2886 0.3798 0.6621 2.1081 0.00
β 1.2314 0.1419 0.9973 1.5034

n=500 α 1.2361 0.2786 0.6789 1.7934 0.00
β 1.1732 0.1003 0.9726 1.3738

n=1000 α 1.1895 0.1850 0.8196 1.5595 0.01
β 1.2200 0.0742 1.0792 1.3608

MCMC
Samples Parameter Estimate: Mode Standard Deviation LB UB Minutes

of run-
time

n=300 α 2.3272 3.2792 0.6940 12.1946 0.12
β 1.1551 0.2263 0.6647 1.4986

n=500 α 1.4436 0.4626 0.8844 2.6375 0.16
β 1.1368 0.1152 0.8791 1.3386

n=1000 α 1.2741 0.2175 0.9189 1.7781 0.26
β 1.9835 0.0740 1.0441 1.3348

Variational Bayesian
Samples Parameter Estimate: Mean Standard Deviation LB UB Minutes

of run-
time

n=300 α 1.3167 0.3329 0.6508 1.9826 0.02
β 1.2242 0.13173 0.9607 1.4876

n=500 α 1.3633 0.2822 0.7990 1.9276 0.04
β 1.1455 0.0983 0.9490 1.3420

n=1000 α 1.2414 0.1901 0.8613 1.6215 0.07
β 1.2086 0.0703 1.0680 1.3492
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