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Abstract 
 

Traditional outlier detection methods cannot be directly applied to spatial data because 
of its global nature. Spatial outlier detection methods concentrate on discovering 
neighborhood instabilities (Shekhar et al. 2002). However, most of the traditional detection 
methods may not accurately locate outliers when multiple outliers exist. Robust spatial z test 
proposed by Hadi and Imon (2018) has largely resolved this issue. But lots of unresolved 
issues exist in spatial regression where likewise linear or generalized linear models, the entire 
inferential procedure is generally affected in the presence of unusual observations called 
outliers (y-outliers) and high leverage points (x-outliers) or both. A large body of literature 
are available now for the identification of unusual observations in linear and/or generalized 
linear regression but this is still an unexplored area in spatial regression. In this paper we 
propose a new method for the identification of multiple spatial outliers and spatial high 
leverage points based on robust and clustering algorithms. We also propose a very simple but 
attractive graphical display to locate these two types of outliers in the same graph. 
 
Keywords: Spatial outlier; Differencing; Masking; High leverage points; Clustering; GP-GSR 
plot. 
 
1. Introduction 

 
Conceptually spatial outliers are very different from classical outliers. A commonly 

used definition is that outliers are a minority of observations in a dataset that have different 
patterns from that of the majority of observations in the dataset. The assumption here is that 
there is a core of at least 50% of observations in a dataset that are homogeneous (that is, 
represented by a common pattern) and the remaining observations (hopefully few) have 
patterns that are inconsistent with this common pattern. Spatial outliers are those observations 
whose characteristics are markedly different from their spatial neighbors. The identification 
of spatial outliers is important because it can reveal hidden but valuable knowledge in many 
applications such as identifying aberrant genes or tumor cells, discovering highway traffic 
congestion points, locating extreme meteorological events such as tornadoes, and hurricanes 
etc. 
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Figure 1: Outliers in data clusters 

 
Although outliers could be easily identified in univariate, bivariate, or even trivariate 

data through graphical examination of the data, visual inspection does not usually work for 
more than three dimensions. Not only that automated identification of outliers is tricky even 
for a two dimensional data if the data form clusters as shown in Figure 1. Here the idea of 
majority minority simply does not work, bad clusters are identified as outliers (Hadi et al., 
2009) based on classification techniques. Things could even be cumbersome in regression 
models where outliers can occur along the y-dimension, or along the x-dimension, or both 
and/or among the relationship between x and y. An excellent review of different aspects of 
spatial outliers is available in Shekhar et al. (2002) and Hadi and Imon (2018). Conceptually, 
spatial outliers match with outliers in big data and for this reason outlier detection techniques 
designed for big data are often routinely employed in spatial data. In big data the concept of 
outlier is local, not global so as in spatial data. The distance and/or density based methods 
such as k–nearest neighbourhood, local outlier factor (LOF), spatial outlier factor (SOF) 
methods have become more popular. But all these methods are designed to identify outliers 
along the y-axis and hence are not readily applicable for spatial regression. For example, 
temperatures and amount of rainfall of different regions may vary due to their distances from 
sea or mountain. Once we fit this relationship by regression we may observe not only strange 
temperature or rainfall pattern, the distance factor may also be unusual. Attempts have been 
made to identify outliers based on residuals but it only focuses on the outliers in y, but not in 
x or both and the whole concept is rather global than local. To overcome this problem in this 
paper we propose a method which not only focuses on both x and y dimensions at the same 
time, but also considers classification techniques to identify outliers. 
 
2. Methodology 

 
Let us assume that we have n pairs of spatial observations (𝑢#, 𝑣#), i = 1, 2, …, n. We further 

assume that V depends on U and we are interested to investigate their nature of relationship. In 
order to understand whether spatial observations are stable in their neighborhood, Shekhar et al. 
(2002) suggested considering the first order differences of the spatial observations. For both 
U and V we take the first order differences defined as 
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𝑥# = 𝑢# − 𝑢#*+, 𝑦# = 𝑣# − 𝑣#*+; i = 2, 3, …, n                                                                                  (1) 
 
Based on the differenced observations obtained in (1), let us consider a standard regression model 
    

𝑌 = 𝑋𝛽 + 𝜀                                                                              (2) 
 
where Y is a vector of observed responses of order (n – 1), X is an (n – 1) × 2 matrix of explanatory 
variables including the constant, 𝛽 is a vector of unknown finite parameters of order 2 and 𝜀 is an n-
vector of random disturbances with E (𝜀) = 0 and V(𝜀) = 𝜎3I. The traditionally used ordinary least 
squares (OLS) estimator of 𝛽 is 𝛽4 = (𝑋5𝑋)*+𝑋5𝑌 and the vector of fitted values is 𝑌6 = 𝑋𝛽4 =
𝐻𝑌.The matrix 
 

																						𝐻 = 𝑋(𝑋5𝑋)*+𝑋5                                                                                             (3)    
 
is often referred to as weight or leverage matrix whose diagonal elements ℎ##are termed leverages. 
The OLS residual vector 𝜀̂ is defined as 𝜀̂ = 𝑌 − 𝑌6 . Observations corresponding to exceptionally 
large 𝜀̂ values are termed outliers. However, the question still remains how large is large? For this 
reason we often consider the standardized version of residuals. One very popular choice is deleted 
Studentized residuals (DSR) defined as 
 

																																																	𝑡# =
<=*>=

?@A(B=)

CD(=)E(+*F==)
, i = 2, 3, …, n                                                              (4) 

 
where	𝛽A (*#)and 𝜎G(#)are the OLS estimates of 𝛽 and 𝜎 respectively with the i-th observation deleted. 
We call an observation outlier when its corresponding deleted Studentized residual value exceeds 3 
in absolute value. Observations corresponding to exceptionally large ℎ## values are termed high 
leverage points which are essentially outliers in the X-space. However, since residuals are also 
functions of leverages, it is better if we identify both outliers and high leverage points 
simultaneously rather than separately. Gray (1986) proposed the Leverage-Residual (L-R) plot 
where the leverage value ℎ##for each observation i, is plotted against the square of a normalised 
form of its corresponding residual. The bulk of the cases will be associated with low leverage and 
small residuals so that they cluster near the origin (0, 0). The unusual cases will have either high 
leverages or large residual components and so will tend to be separated from the bulk of the data. 
High leverage cases will be located in the upper area of the plot and observations with large 
residuals will be located in the area to the right. 
 

The L-R plot may be effective in the identification of single outlier but it may be ineffective 
in the presence of multiple outliers unless we remove a group of suspect outliers prior to fitting the 
model. Denote a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted’ by D. Also 
suppose that R contains (n – 1 – d) cases after d<(n – 1 – k) cases in D are deleted. Without loss of 
generality, assume that these observations are the last d rows of X and Y so that we can partition the 
matrices as  

 

 𝑋 = H𝑋I𝑋J
K,    𝑌 = H𝑌I𝑌J

K,  𝐻 = H 𝐻I 𝐻IJ
𝐻JI 𝐻J

K                                   (5) 

 
where	𝐻I = 𝑋I(𝑋5𝑋)*+𝑋I5  and 𝐻J = 𝑋J(𝑋5𝑋)*+𝑋J5  are symmetric matrices of order(n – 1 – d) 
and d respectively, and 𝐻IJ = 𝑋I(𝑋5𝑋)*+𝑋J5 is an (n – 1 – d)×d matrix. However, (𝑋I5𝑋I)*+ 
can be expressed as  
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(𝑋I5𝑋I)*+ = (𝑋5𝑋 − 𝑋J5𝑋J)*+ =(𝑋5𝑋)*+ + (𝑋5𝑋)*+𝑋J5(𝐼J − 𝑈J)*+(𝑋5𝑋)*+                      (6) 
 
where	𝐼J is an identity matrix of order d and 𝑈J = 𝑋J(𝑋J5𝑋J)*+𝑋J5. Using (6), Imon (2002) 
defined a group deleted version of high leverage points called generalized potentials defined as   
 

                 𝑝##∗ = P
F==
(BQ)

+*F==
(BQ) 𝑖 ∈ 𝑅

	ℎ##
(*J) 𝑖 ∈ 𝐷

                                                                     (7) 

 
where	ℎ##

(*J) = 𝑥#5(𝑋I5𝑋I)*+𝑥#, i= 2, 3, …, n. In other words,	ℎ##
(*J)is the i-th diagonal element of 

𝑋(𝑋I5𝑋I)*+𝑋5matrix. The vector of estimated parameters after the deletion of d observations, 
denoted by 𝛽4(*J), is obtained using (6) as 
 
          𝛽6(−𝐷) = (𝑋I5𝑋I)*+𝑋I5𝑌I = 𝛽4 − (𝑋5𝑋)*+𝑋J5(𝐼J − 𝑈J)*+𝜀Ĵ                                  (8) 
 
where 𝜀Ĵ = 𝑋J𝛽4. Using (6), (7) and (8), Imon (2005) introduced a group deleted version of 
residuals called generalized Studentized residuals (GSR) defined as 
 

𝑡##∗ =

⎩
⎪
⎨

⎪
⎧ <=*<G=

(BQ)

CD(BQ)Z+*F==
(BQ)

𝑖 ∈ 𝑅

<=*<G=
(BQ)

CD(BQ)Z+*F==
(BQ)

𝑖 ∈ 𝐷
                                            (9) 

 
where𝑦G#

(*J) = 𝑥𝑖𝑇𝛽6
(−𝐷) and 𝜎G(*J) are the fitted values of y and the scale parameter 𝜎 

respectively after the omission of the suspected outlier group indexed by D. Although the 
expression of generalized potentials is available for any arbitrary set of deleted cases, D, the choice 
of such a set is clearly important since the omission of this group determines the weights for the 
whole set. We call an observation outlier when its corresponding generalized Studentized residual 
value exceeds 3 in absolute value. No such value exists for generalized potentials. We follow Hadi 
(1992) to declare an observation as a high leverage point if its corresponding 𝑝##∗ exceeds a threshold 
given as 
 
																																																𝑝##∗ 	>  Median (𝑝##∗ ) + 3MAD (𝑝##∗ ).                                                       (10) 
 
where MAD stands for the median absolute deviation. 
 

These above results enable us to define a simple graphical display of classifying group 
deleted leverages and residuals for possible identification of them. Generalized potentials are used 
as leverages and the generalized Studentized residuals as deletion residuals in a ‘generalized 
potentials –generalized Studentized residuals (GP-GSR)’ plot. Since the high leverage points need 
not to be outliers and outliers may not be points of high leverage we may expect different deletion 
sets D from the computation of these two quantities. Since D is the group of suspected outliers we 
prefer to include all observations considered to be suspect either along the y dimension or along the 
x dimension. We employ the blocked adaptive computationally-efficient outlier nominators 
(BACON) proposed by Billor et al. (2000) as a classifier. Another possibility could be the 
application of support vector regression for the same, especially when the data is big. The 
main advantage of the GP-GSR plot is that it is suitable for the data where masking (false negative) 
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and/or swamping (false positive) make single case diagnostic plots misleading. This plot, unlike the 
L-R plot retains the signs of residuals, which can be very important when their interpretation is 
concerned. Since the bulk of the cases will be associated with low leverage and small residuals, 
most of the pairs (𝑡##∗ , 𝑝##∗ ) will cluster near the origin (0, 0). The unusual cases will have either high 
leverages or large residual components and will tend to be separated from the bulk of the cases. 
High leverage cases will be located at the right corner of the plot and observations with large 
residuals will be located either at the upper or lower corner of the plot depending on their signs; 
large positive outliers will be plotted at the upper corner and large negative outliers will be located 
at the bottom corner of the plot. 
 
3. Results 

 
In this section we would like to present an example to demonstrate how our proposed 

method works in the classification of spatial regression outliers in both x and y dimensions. 
Here we consider a spatial outlier data given by Hadi and Imon (2018) extending the idea of 
Shekhar et al. (2002). Although this data is artificial in nature, the use of this type of data is very 
common in the outlier detection literature (Rousseeuw and Leroy, 1987; Hadi et al., 2009) because 
here we definitely know which observations are genuine outliers. For real data with multiple 
outliers due to masking and swamping there could be always lots of disagreements regarding which 
observations are genuine outliers or not. We present the data in Table 1 and also in Figure 2. 
 

Table 1: Hadi and Imon (2018) spatial outlier data 
 

Index Location Attribute Diff_Location Diff_Attribute 
1 1.0 2.0 * * 
2 2.0 3.0 1.0 1.0 
3 2.1 3.2 0.1 0.2 
4 2.6 7.0 C 0.5 3.8 C 
5 3.0 4.0 0.4 –3.0 C 
6 3.8 5.0 0.8 1.0 
7 3.9 5.6 0.1 0.6 
8 4.0 5.7 0.1 0.1 
9 4.2 1.6 D 0.2 –4.1 D 

10 4.5 6.0 0.3 4.4 D 
11 5.0 6.2 0.5 0.2 
12 6.0 8.0 A 1.0 1.8 
13 6.2 6.3 0.2 –1.7 
14 6.4 6.1 0.2 –0.2 
15 6.7 5.5 0.3 –0.6 
16 7.1 5.0 0.4 –0.5 
17 7.3 4.4 0.2 –0.6 
18 7.5 4.3 0.2 –0.1 
19 7.7 6.9 E 0.2 2.6 E 
20 8.0 2.8 0.3 –4.1 E 
21 8.4 2.1 0.4 –0.7 
22 9.0 1.0 B 0.6 –1.1 
23 9.2 2.1 0.2 1.1 
24 10.0 2.7 0.8 0.6 
25 10.1 3.2 0.1 0.5 
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26 11.0 4.0 0.9 0.8 
27 15.0 F 4.1 4.0 F 0.1 
28 17.0 4.2 2.0 0.1 
29 19.0 4.3 2.0 0.1 
30 20.0 4.4 1.0 0.1 

 
This example gives a clear distinction between classical outlier and spatial outlier. In 

Figure 2(a) attribute values are plotted against their locations. For global outliers, traditional 
statistics will essentially look at the attribute values in the y axis and if we do that we observe 
that the points which are very high such as A or very low such as B. In contrast to that, the 
spatial outliers are like the spikes C, D and E. They look like spatial outliers because they 
violate the law of geography that the nearby things should be very similar. When we take the 
first order difference of the attributes as shown in Figure 2(b) clearly C, D and E look very 
different than their neighbors. It is also interesting to note that the possible global outliers A 
and B do not look like outliers anymore. In general, we do not search for outliers along the x-
axis. But when we carefully look at Figure 2(a), we observe that the point F has a marked 
difference from its neighbors. Points G and H look unusual too. This difference is visible 
more clearly when we look at the first order difference of the locations as shown in Figure 
2(b). Point F now clearly looks like a high leverage point or an outlier along the x-space. 
Points G and H look more extreme as well.  
 

  
2(a). The original data 2(b) The first order differenced data 

 
Figure 2: Scatter plot of the original and the first order differenced data 

 
Now we run a spatial regression of attributes on locations. Since our interest is to 

understand the neighbourhood instability we consider the first order difference of attributes 
and locations as given in columns 4 and 5 of Table 1. We then run a regression of differences 
in attributes on differences in location and the resulting deleted Studentized residuals and 
leverages are given in columns 2 and 3 of Table 2. Although DSR is very popular outlier 
measure it fails to identify even a single observation as an outlier. Here the cut-off for the 
leverage is 0.2 and it can identify F as a high leverage point. We see exactly the same picture 
in the L-R plot as shown in Fig 3(a). Now we compute GSR and GP and the results are 
presented in columns 4 and 5 of Table 2. We use BACON classifier to obtain the D set first 
and then compute GSR and GP as outlined in equations (7) and (8). It is worth mentioning 
that the cut-off value for GP is 0.1 based on equation (10). We also present the GP-GSR plot 
for this data in Figure 3(b). These results clearly show the merit of our proposed method. It 
can successfully identify 3 spatial outliers (C, D and E) and 3 spatial high leverage points(F, 
G, H).     
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Table 2: Residuals and leverages for the spatial outlier data 
 

Index Del St. Residual Leverage GSR GP 
1 * * * * 
2 0.45678 0.040885 1.09925 0.06658 
3 0.11424 0.051079 0.20420 0.06290 
4 2.15139 0.035779 5.31765 C 0.03590 
5 –1.69711 0.037989 –4.20445 C 0.03835 
6 0.47421 0.035612 1.13209 0.04571 
7 0.32834 0.051079 0.72348 0.06290 
8 0.06085 0.051079 0.07645 0.06290 
9 –2.41622 0.045639 –6.03394 D 0.05185 
10 2.61223 0.041275 6.49375 D 0.04367 
11 0.07639 0.035779 0.07645 0.03590 
12 0.89298 0.040885 0.13783 0.06658 
13 –0.92108 0.045639 2.34566 0.05185 
14 –0.10826 0.045639 –2.56908 0.05185 
15 –0.33030 0.041275 –0.32208 0.04367 
16 –0.28573 0.037989 –0.85865 0.03835 
17 –0.32172 0.045639 –0.74085 0.05185 
18 –0.05503 0.045639 –0.84428 0.05185 
19 1.43538 0.045639 3.58453 E 0.05185 
20 –2.42202 0.041275 –6.02091 E 0.04367 
21 –0.39244 0.037989 –1.00843 0.03835 
22 –0.62533 0.034647 –1.61273 0.03631 
23 0.58737 0.045639 1.39415 0.05185 
24 0.26077 0.035612 0.59882 0.04571 
25 0.27470 0.051079 0.59176 0.06290 
26 0.35834 0.037710 0.84471 0.05471 
27 –0.49040 0.636897 F –0.91806 1.75404 F 
28 –0.12121 0.131865 –0.24012 0.34271 G 
29 –0.12121 0.131865 –0.24012 0.34271 H 
30 –0.02276 0.040885 –0.06854 0.06658 

 
 

  
3(a). L-R plot 3(b). GP-GSR plot 

 
Figure 3: Diagnostic plots for the spatial regression data 
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4. Discussion and Conclusion 
 

The main objective of our research was to develop a method for the joint identification 
of outliers and high leverage points for spatial regression. In Section 2 we develop a new 
method to identify both of them and propose a new graphical display called GP-GSR plot to 
locate both of them in the same graph. In spatial statistics literature observations with 
neighbourhood instability are diagnosed as outliers. For this reason we employ our method on 
the first order difference of x and y. A numerical example clearly shows the advantage of 
using our proposed method. It clearly shows that the proposed method can successfully 
identify outliers and high leverage points simultaneously while the existing methods fail to do 
so.  
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