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Abstract 

 The paper analyses a single-server Markovian queueing system having state dependent 

service rates with customer’s balking and feedback subject to catastrophes. Using matrix-

geometric solution method, we obtain steady-state solution for the system. Various measurable 

indicators have been evaluated with the assistance of Maple software and based on these measures; 

we have presented an expected cost and profit analysis. 
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1. Introduction 

 

         In such an intense market condition, where attracting and finding a potential customer is very 

difficult, no one wants to bear the cost of customer loss. So, providing quality of service at faster 

rate is very important factor in this fast paced life. Considering parameters like balking, feedback 

and state-dependent service rate provides more pliability for optimal design and finds its 

applicability in communication network, production system, and in various congestion problems. 

Queueing analysis presents an optimal solution by providing suitable suggestions to reduce 

congestion. 

  

         In this paper, we have considered the parameters; balking, feedback, catastrophe and state 

dependent service altogether, to analyse the system performance. These parameters inordinately 

affect the system and its cost function.  

 

         There are many practical situations, where service rates depend on the size of the system. 

Such situations can be seen in hotels or restaurants during rush hours, where waiters and cooks 

work with a faster rate to cope up with the demand, or in hospitals for patients coming to the 

emergency ward etc. Many authors have contributed in the study of state dependent service rates. 

Davingon and Disney (1976) considered single server state dependent feedback queue. Doshi and 

Jangerman (1986) obtained some important performance measures for an M/G/1 queue where, 

balking depended on system size using supplementary variable technique. Abou-El-Ata (1991) 

extended the model of Ancker and Gafarian (1963) to study the state dependent finite queue with 

impatient customers. Such system may also get affected by balking, where customer doesn’t want 

to join the system due to long queue.  
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         Queueing systems incorporating balking, feedback or both have attracted many researchers. 

They are useful in designing and managing systems like transmission of data, emergency ward of 

health sector where balking is common and chances of rework is more. The perception of customer 

impatience was first appeared in the work of Haight (1957). Tackas (1963) analysed a single server 

queue with feedback. For conceivable uses, the history and contributions of researchers on 

queueing systems with balking and feedback, one may see articles by Santhakumaran and 

Thangaraj (2000), Choudhury and Paul (2005), Kumar et al. (2013), Varalakshmi et al. (2018), 

Bouchentouf et al. (2019). 

 

         Queueing models with catastrophes have gained importance during last few decades because 

of its relevancy in many area viz. computers and telecommunications, health sector, production 

sector, disaster management. Queues with catastrophes have attracted many researchers due to the 

fact; they are very unpredictable in nature and force the customers to leave the system immediately. 

So, including them in modelling makes the model more pragmatic. Thangaraj and Vanitha (2009) 

obtained transient solution of M/M/1 feedback queue with catastrophe using continued fractions.  

Kumar et al. (2014) studied queueing systems subjected to catastrophes and customer’s impatience 

and obtained time-dependent and steady-state probabilities when system is operational as well 

when under repair process. Bura and Bura (2015) analysed finite, single-server markovian-

catastrophic queueing system with restorative effects. 

 

The primary objectives of this paper are: 

 

i. To obtain steady state solutions to aforesaid queueing system using matrix 

geometric method. 

ii. To evaluate important performance measures such as mean number of customers 

in the system and in the queue, probability of ideal, probability of busy, mean 

balking rate etc. and to perform sensitivity analysis. 

iii. To formulate an expected cost and profit functions based on measures obtained.  

iv. Graphical representations showing effect of different parameters on expected cost 

and expected profit functions. 

 

2. Model Assumptions and Descriptions 
 

We consider a markovian queueing system of infinite capacity, where the arrivals and 

departures both follow Poisson process with mean inter-arrival time 
1

𝜆
 and mean inter-service times 

1

𝜇1
 𝑜𝑟

1

𝜇2
 depending upon the system size. Arriving customer may join the queue with probability 

‘𝛽’ if he finds the server non-empty or balk with probability ′1 − 𝛽′ according to some 

predetermined norms. The server decides to operate with two different service rates; ‘slow and 

fast’ subjected to the length of the queue. If it finds the system size is less than or equal to the 

critical value ‘r’, it serves with a slower rate ‘𝜇1’; otherwise with a faster rate ‘𝜇2’. If customer, 

on service completion is satisfied by the service, the customer leaves the system with probability 

‘q’. On contrary the customer re-joins the queue with probability ‘p’ if one finds the service 

dissatisfactory. Occurrence of catastrophes ejects all the customers from the system instantly and 

system becomes inactive momentarily. Catastrophes occur according to Poisson process with rate 
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of occurrence′ 𝜉′, when the system is non-empty. 

 

The infinitesimal generator matrix Q of the system is given by: 
 

 

𝑸 =

(

 
 
 
 
 
 
 

−𝜆 𝜆 0 … … … … … …
(𝑞𝜇1 + 𝜉) −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 … … … … … …

𝜉 𝑞𝜇1 −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) … … … … … …
: : : … … … … … …
: : : … … … … … …
𝜉 0 0 𝑞𝜇1 −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 0 … …
𝜉 0 0 … 𝑞𝜇1 −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 … …
𝜉 0 0 … … 𝑞𝜇2 −(𝑞𝜇2 + 𝛽𝜆 + 𝜉) 𝛽𝜆 …
: : : … … … … … …
: : : … : : : : …)

 
 
 
 
 
 
 

0
1
2
:
…
𝑟 − 1
𝑟

𝑟 + 1
…
…

 

 

Let n(t) ≡ number of customers in the system at time ‘t’. Let ‘n’ be the stationary random variable 

for the number of the customers in the system. We define 𝜋𝑖={n = i}= lim
𝑡→∞

𝑃{𝑛(𝑡) = 𝑖}, where 𝑖 ∈

𝕎 and 𝜋𝑖 represents the stationary probability of i customers in the system. The stationary 

probability vector is given by, 

 

𝝅 = (𝜋0, 𝜋1, 𝜋2, …………… , 𝜋𝑟 , 𝜋𝑟+1, ……… )                                                                         (1) 
 

The steady-state probabilities 𝜋𝑖 are related geometrically to each other as 𝜋𝑖 = 𝜋𝑟𝑅
𝑖−𝑟 ∀𝑖 ≥ 𝑟. 

Here, R is called the rate element and for this system it is given by: 

 

𝑅 =
(𝛽𝜆 + 𝑞𝜇2 + 𝜉) − √(𝛽𝜆 + 𝑞𝜇2 + 𝜉)2 − 4𝛽𝜆𝑞𝜇2

2𝑞𝜇2
                                                          (2) 

 

The steady-state probabilities are obtained by solving the following equations 

𝝅𝑸 = 𝟎                                                                                                                                              (3) 
 

𝝅𝒆 = 𝟏                                                                                                                                               (4) 
 

3. Performance Measures 

 

            We calculate some performance indicators using the probabilities; obtained by employing 

equation (3) and equation (4), for the system as follows.  

i) “Expected number of customers in the system:”                                                                                              

𝑴𝑵𝑺 = ∑𝒏𝝅𝒏

𝒓

𝒏=𝟏

+∑𝒏𝝅𝒓𝑹
𝒏−𝒓

∞

𝒏=𝒓

                                                                           (5) 

ii) “Expected number of customers in the queue:” 
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𝑴𝑵𝑸 = ∑𝒏𝝅𝒏+𝟏

𝒓−𝟏

𝒏=𝟏

+∑𝒏𝝅𝒓𝑹
𝒏+𝟏−𝒓                                                                     (6)

∞

𝒏=𝒓

 

 

iii) Mean Balking Rate (B.R): 

 

𝑩.𝑹 = (𝟏 − 𝜷)𝝀(𝟏 − 𝝅𝟎)                                                                                 (7) 

 

iv) Probability that the server is busy: 

 

𝑷𝒃 = (𝟏 − 𝝅𝟎)                                                                                                      (8) 

 

v) Probability that the server is ideal: 

 

𝑷𝑰 =  𝝅𝟎                                                                                                                (9) 

vi) Expected waiting time in the system: 

𝑴𝑾𝑺 =
𝑴𝑵𝑺

𝝀
                                                                                                  (10) 

vii) Expected waiting time in the queue: 

𝑴𝑾𝑸 = 𝑴𝑾𝑺 −
𝟏 

𝝁𝟐
                                                                                      (11) 

Special Case 

 

If we put 𝛽 = 1, 𝑞 = 1, 𝜉 = 0 and consider only one service rate throughout i.e. 𝜇, then the rate 

element reduces to  

𝑹 =
𝝀

𝝁
 

and 𝝅𝒏is given by: 

𝝅𝒏 = 𝑹
𝒏(𝟏 − 𝑹) 

which is same as the probability of n customers in the system, for classical M/M/1 queue. 

 

 

Particular Cases 

 

We obtain stationary probabilities when r = 1 and r =2 in the following section. 

 

Case-I: When r = 1 

 

The infinitesimal generator matrix Q of the system is given by: 

𝑸 = (

−𝜆 𝜆 0 … … …
(𝑞𝜇1 + 𝜉) −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 0 … …

𝜉 𝑞𝜇2 −(𝑞𝜇2 + 𝛽𝜆 + 𝜉) 𝛽𝜆 0 …
: : : … … …

) 
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Using (3) and (4) we have, 

 

𝜋0 =
𝑞𝜇1(1 − 𝑅) + 𝜉

𝑞𝜇1(1 − 𝑅) + 𝜆 + 𝜉
                                                                                                          (12) 

 

𝜋1 =
𝜆(1 − 𝑅)

𝑞𝜇1(1 − 𝑅) + 𝜆 + 𝜉
                                                                                                          (13) 

 

The other steady state probabilities are obtained by 𝜋𝑖 = 𝜋1𝑅
𝑖−1 ∀ 𝑖 ≥ 2 

 

Case-II: When r = 2 

 

The infinitesimal generator matrix Q of the system is given by: 

 

𝑸 =

(

 
 

−𝝀 𝝀 𝟎 … … …
(𝒒𝝁𝟏 + 𝝃) −(𝒒𝝁𝟏 + 𝜷𝝀 + 𝝃) 𝜷𝝀 … … …

𝝃 𝒒𝝁𝟏 −(𝒒𝝁𝟏 + 𝜷𝝀 + 𝝃) … … …

𝝃 𝟎 𝒒𝝁𝟐 −(𝒒𝝁𝟐 + 𝜷𝝀 + 𝝃) 𝜷𝝀 …
: : : … … …)

 
 

 

 

Using (3) and (4) we have, 

𝜋0 =
(𝑞𝜇1 + 𝜉)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)

−1

(𝑞𝜇1 + 𝜉 + 𝜆)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)−1 + 𝛽𝜆2(1 − 𝑅)−1
        (14) 

 

𝜋1 =
(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅)𝜆

(𝑞𝜇1 + 𝜉 + 𝜆)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)−1 + 𝛽𝜆2(1 − 𝑅)−1
        (15) 

 

𝜋2 =
𝛽𝜆2

(𝑞𝜇1 + 𝜉 + 𝜆)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)−1 + 𝛽𝜆2(1 − 𝑅)−1
        (16) 

 

The remaining probabilities are obtained by 𝜋𝑖 = 𝜋2𝑅
𝑖−2 ∀ 𝑖 ≥ 3. 

 

4. Cost Model and Profit Model 

 

            Constructing an expected cost function for a system which not only get affected by varying 

arrival and service rates but also by balking, feedback, and catastrophes is very difficult. Here, we 

confine ourselves in determining the optimum value of ‘r’ which minimizes the cost. Let C1 be the 

cost associated with a customer present in the queue, C2 be the cost associated with a customer 

when server is busy, C3 be the cost associated with a customer loss, and C4 be the cost associated 

with server when it is ideal. So, we have the expected cost function as, 
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Total Expected Cost (𝐓𝐄𝐂)  =  𝑪𝟏 ∗ 𝐌𝐍𝐐 + 𝑪𝟐 ∗ 𝑷𝒃 + 𝑪𝟑 ∗ 𝐁. 𝐑 + 𝑪𝟒 ∗ 𝑷𝑰           (17) 
 

Similarly, for an expected profit function, we have 

 

Total Expected Profit (𝐓𝐄𝐏) =   𝛒 ∗ 𝐌𝐍𝐒 − 𝐓𝐄𝐂                                                              (18) 
where 𝛒 is the revenue. 

 

Though the cost function may appeared to be simple but it is highly non-linear and complex in 

nature which makes it difficult in optimizing the value of ‘r’. In order to arrive at a decision, we 

carry out sensitivity analyses by substituting different values for the parameters. 

 

5. Sensitivity Analysis 

 

            Sensitivity analyses have been performed to compare the systems r = 1 and r = 2, by 

changing values of the parameters involved. For calculation, let C1 =100, C2 =150, C3 =200, and 

C4 =250. The measurable indicators are computed coupled with total expected cost and total 

expected profit. These measures have guided in deciding the optimal value of ‘r’ in order to 

minimize its expected cost and maximize the expected profit. Different Cost and profit graphs have 

been plotted by varying the parameters under consideration. These graphs are illustrated and 

discussed below. 

 

 
Figure 1(a) 
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Figure 1(b) 

In figures 1(a) and 1(b), we fix 𝜇1 = 3, 𝜇2 = 5, = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying arrival rates for both the systems r = 1, and r = 2. It 

is clear from the graph that expected cost for both the systems are almost same and increases as 

arrival increases. Same trend can be seen for profit as well and if arrival rate becomes same or 

greater than the slow service rate, it is beneficial to use the faster rate to maximize the profit. 

 

 

Figure 2(a) 
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Figure 2(b) 

In figures 2(a) and 2(b), we fix 𝜆 = 1, 𝜇2 = 6, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying slow service rate for both the systems r = 1, and r = 

2. It is clear from the graph that expected cost for both the systems decreases as service rate 

increases. But the decrement is more rigorous for system r = 2 than for r = 1. Same trend can be 

seen for profit as well. This is because the server remains ideal for rest of the time. 

 

 

Figure 3(a) 
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Figure 3(b) 

 

In figures 3(a) and 3(b), we fix 𝜆 = 1, 𝜇1 = 2, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying fast service rate for both the systems r = 1, and r = 

2. It is clear from the graph that expected cost for both the systems decreases as service rate 

increases. Same trend can be seen for profit as well. Varying fast service rate rarely affects the 

expected cost and slightly affects the expected profit.  

 

 

Figure 4(a) 
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Figure 4(b) 

In figures 4(a) and 4(b), we fix 𝜆 = 1, 𝜇1 = 3, 𝜇2 = 5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying joining probability for both the systems r = 1, and r 

= 2. It is clear from the graph that expected cost for both the systems decreases as joining 

probability increases, whereas expected profit increases as joining probability increases. Thus, 

profit could be maximized by encouraging the customers to join the system.  

 

 

Figure 5(a) 
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Figure 5(b) 

In figures 5(a) and 5(b), we fix 𝜆 = 1, 𝜇1 = 3, 𝜇2 = 5, 𝛽 = 0.5, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying catastrophic rate for both the systems r = 1, and r = 

2. It is clear from the graph that expected cost for both the systems decreases as catastrophic rate 

increases. Same trend can be seen for profit as well. Increasing catastrophic rate barely affects the 

cost and profit function. 

 

 

 

Figure 6(a) 
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Figure 6(b)  

In figures 6(a) and 6(b), we fix 𝜆 = 1, 𝜇1 = 3, 𝜇2 = 5, 𝛽 = 0.5, and 𝜉 = 0.01 and display the 

expected cost and expected profit by varying disperse probability for both the systems r = 1, and r 

= 2. It is clear from the graph that expected cost for both the systems decreases as probability of 

leaving the system increases. Same trend can be seen for profit as well. Intuitively, increment in 

feedback probability will increase the cost. 

 

 

Figure 7(a) 
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In figure 7(a), we fix 𝜇1 = 3, 𝜇2 = 5, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the expected 

waiting time by varying arrival rates for both the systems r = 1, and r = 2. It is clear from the graph 

that expected waiting time for both the systems increases as arrival increases.  

 

 

Figure 7(b) 

 

In figure 7(b), we fix 𝜆 = 1, 𝜇2 = 6, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the expected 

waiting time by varying slow service rate for both the systems r = 1, and r = 2. It is clear from the 

graph that expected waiting time for both the systems decreases as service rate increases. But the 

decrement is more rigorous for system r = 2 than for r = 1.  

 

 

Figure 7(c) 



226                                                      A.R. CHOWDHURY AND INDRA                                             [Vol. 20, No.1 

 

In figure 7(c), we fix 𝜆 = 1, 𝜇1 = 2, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the expected 

waiting time by varying fast service rate for both the systems r = 1, and r = 2. It is clear from the 

graph that expected waiting time for both the systems decreases as service rate increases.  

 

6. Conclusions 

 

            We have presented a detailed study of a queueing system with various parameters. We 

come across many situations where customer’s impatience, dissatisfaction or sudden occurrence 

of any calamity may cause customer loss and affect the system profit as well. We have incorporated 

balking, catastrophes, feedback and state dependent service rate altogether to make the model more 

applicable in real life situations. Many practical congestion situations that we normally encounter 

such as manufacturing system, call center, communication and telecommunication systems, and 

health sector may remodel their systems to improve the output by using the results so obtained as 

tools. Using matrix-geometric solution method, we have analysed the steady-state behaviour of 

the system and evaluated various performance indicators for the same. An expected cost and profit 

analysis for the system has been presented and discussed with different set of parameters. From 

the graphs, it is clear that the optimal value for ‘r’ is 1. Also, we conclude that server can opt for 

a faster rate if the arrival rate dominates the initial service rate.  

 

7. Future Considerations 

 

Many real life congestion problems which have special structural properties can be easily 

solved using matrix-geometric technique even if the dimensions are of higher order. The work can 

be further extended for markovian and non-markovian queueing networks by considering different 

parameters along with their transient solutions.  

 

Acknowledgments 

 

We thank the Editors and the reviewers for their constructive comments that helped to 

improve this paper. 

 

References 
 

Abou-El-Ata, M. O. (1991). The state-dependent queue: M/M/1/N with reneging and general balk 

functions. Microelectronics Reliability, 31 (5), 1001-1007. 

Ancker Jr, C. J., and Gafarian, A.V. (1963). Some queuing problems with balking and reneging-

I. Operations Research, 11 (1), 88-100. 

Bouchentouf,  A.A., Cherfaoui, M. and Boualem, M. (2019). Performance and economic analysis 

of a single server feedback queueing model with vacation and impatient 

customers. Opsearch, 56 (1), 300-323. 

Bura, G. S., and Bura, R.N. (2015). Time dependent analysis of a queueing system incorporating 

the effect of environment, catastrophe and restoration. Journal of Reliability and Statistical 

Studies, 8 (2), 29-40. 

Choudhury, G. and Paul, M. (2005). A two phase queueing system with Bernoulli 

feedback. International Journal of Information and Management Sciences, 16 (1), 35-52. 

D’Avignon, G. and Disney, R. (1976). Single-server queues with state-dependent 



  2022]              COST AND PROFIT ANALYSIS OF STATE-DEPENDENT FEEDBACK QUEUE                  227 

 

          

feedback. INFOR: Information Systems and Operational Research, 14 (1), 71-85. 

Doshi, B. T. and Jagerman, D. L. (1986). An M/G/1 queue with class dependent balking 

(reneging). In Proc. of the international seminar on Teletraffic analysis and computer 

performance evaluation, 225-243. 

Haight, F. A. (1957). Queueing with balking. Biometrika, 44(3/4), 360-369. 

Kumar, B. K., Madheswari, S. P. and Lakshmi, S. A. (2013). An M/G/1 Bernoulli feedback retrial 

queueing system with negative customers. Operational Research, 13 (2), 187-210. 

Kumar, B.K., Anantha Lakshmi, S. R., Anbarasu, S. and Pavai Madheswari, S. (2014). Transient 

and steady-state analysis of queueing systems with catastrophes and impatient 

customers. International Journal of Mathematics in Operational Research, 6 (5), 523-549. 

Santhakumaran, A. and Thangaraj, V. (2000). A single server queue with impatient and feedback 

customers. International Journal of Information and Management Sciences, 11 (3), 71-80. 

Takacs, L. (1963). A single‐server queue with feedback. Bell System Technical Journal, 42 (2), 

505-519. 

Thangaraj, V. and Vanitha, S. (2009). On the analysis of M/M/1 feedback queue with catastrophes 

using continued fractions. International Journal of Pure and Applied Mathematics, 53 (1), 

131-151. 

Varalakshmi, M., Chandrasekaran, V. M. and Saravanarajan, M. C. (2018). A single server queue 

with immediate feedback, working vacation and server breakdown. International Journal 

of Engineering and Technology, 7 (4.10), 476-479.  


