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Abstract

Combining information from several surveys, or survey integration, is an important practical
problem in survey sampling. When the samples are selected from similar but different populations,
random effect models can be used to describe the sample observations and to borrow strength from
multiple surveys. In this paper, we consider a prediction approach to survey integration assuming
random effect models. The sampling designs are allowed to be informative. The model parameters
are estimated using a version of EM algorithm accounting for the sampling design. The mean
squared error estimation is also discussed. Two limited simulation studies are used to investigate
the performance of the proposed method.
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1 Introduction

Combining information from several independent surveys is an important practical problem in
survey sampling. By making the maximum use of information, we can minimize the cost associ-
ated with surveys and, at the same time, minimize the respondent burden (Bycroft, 2010). Such
problem is called survey integration. Survey integration is an emerging area of research due to the
increasing concerns of response burden (Citro, 2014) and availability of the auxiliary information
in the era of big data (Tam and Clarke, 2015).

There are two approaches for survey integration. One is macro level approach, which com-
bines the summary information from each source using general least squares estimation or other
statistical tools. The US Consumer Expenditure Survey is one of the early applications of survey
integration (Zieschang, 1990), where diary survey and quarterly interview survey are used to obtain
improved estimates for diary survey item. Zieschang (1990) suggested the use of the generalized
least squares adjustment algorithm to incorporate ancillary information to reduce the design vari-
ance of estimated survey total. Area level small area estimation (Fay and Herriot, 1979; Rao and
Molina, 2015) is also an example of macro approach to survey integration.

The other approach is micro level approach, where the goal is to create a single data that
contains all available information. Calibration weighting (Wu, 2004), synthetic data imputation
(Kim and Rao, 2012) or statistical matching (Kim et al., 2016) can belong to the micro approach
to survey integration. Statistical matching is a tool for integrating two or more sources where
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variables are never jointly observed. Statistical matching using file concatenation with adjusted
weights and multiple imputations are discussed by Rubin (1986).

When the two survey data are obtained from the same target population, we may have sys-
tematic differences in two survey measurements, due to measurement errors in survey operation
(Biemer et al., 2013). In this case, the survey integration can be developed using measurement error
models. Kim et al. (2016) consider the case when the two data sources have a common measure-
ment x but different measurements for y. They developed a statistical matching using fractional
imputation based on measurement error models. Park et al. (2017) present an application of the
measurement error model approach to survey data integration.

In this paper, we consider another important situation where the two surveys are obtained from
two different populations but there are some similarities between the two populations. For example,
if the two populations are different only in terms of survey years but otherwise the same, then we
can expect that there exists some common structure shared in both populations. In this case, such
shared features can be built into the model and we may wish to combine the information from two
sources. If the two sub-populations are two mutually exclusive subset of the same finite population,
we can expect that the two sub-populations share some common structures. Such information can
be built into the model and survey integration method can be developed accordingly. Random
effect model is a natural approach of building such information into the models.

In random effect models, we assume common slope and common model variances but we allow
for differential intercept terms. The sample-specific effect is assumed to be random, that is ai ∼
N(0, σ2

a), and the parameter (σ2
a) associated with the random effect model determines the level of

homogeneity between the two populations. We first discuss parameter estimation for the random
effect model under complex sampling. The sampling design is allowed to be informative in the
sense of Sugden and Smith (1984). Once the model parameters are estimated, best prediction for
the population mean of y can be developed in the form of synthetic data imputation. Such synthetic
data imputation, or mass imputation, can be regarded as micro-level survey data integration.

This paper organized as follows. In Section 2, we introduce the basic setup for survey inte-
gration. In Section 3, we discuss the estimation of model parameters. We propose a method of
moments estimation and a pretest method for estimation of model parameters. In Section 4, the
best prediction for population mean of y and variance estimation are discussed. Results from two
limited simulation studies are presented in Section 5. Concluding remarks are made in Section 6.

2 Basic Setup

Suppose that we have two surveys with the same measurement. For simplicity, we assume
that two surveys are obtained from the same population in different time points, say t = 1 and
t = 2. Furthermore, the two samples are independently selected. Let Y1 be the study variable for
population one (t = 1) and Y2 be the study variable for population two (t = 2). We are interested
in estimating the finite population means, denoted by µ1 = N−1

∑N
i=1 y1i and µ2 = N−1

∑N
i=1 y2i.

We observe (xi, y1i) from A1 selected from population one and observe (xi, y2i) from A2 se-
lected from population two. If the two populations share the same structure, for example,

yij = β0 + β1xi + eij, j = 1, 2 (2.1)

where eij ∼ (0, σ2). Then there is no systematic difference between the two populations and one
can simply combine the two sample and estimate the parameters. However, such assumption is
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probably unrealistic. Now, if the two populations are completely different, for example,

yij = β0j + β1xi + eij, j = 1, 2 (2.2)

where eij ∼ (0, σ2
j ). Then we cannot combine the two samples and we simply apply separate

analysis from each sample.
Now, one can consider a compromise between (2.1) and (2.2), by considering a random effect

model for the two populations.

yij = αj + β0 + β1xi + eij, j = 1, 2 (2.3)

where αj ∼ N(0, σ2
a) and eij ∼ N(0, σ2

e). Note that σ2
a = 0 case reduces to model (2.1). Also, the

case of σ2
a →∞ is essentially equal to model (2.2).

Thus, model (2.3) is a flexible model that we may borrow strength from the other survey. Note
that we assume that the slopes are the same. If such assumption is not justifiable, we can use

yij = αj + βjxi + eij, (2.4)

where αj ∼ N(µa, σ
2
a), βj ∼ N(µb, σ

2
b ) and eij ∼ N(0, σ2

e). Such model can be called random
coefficient model.

We first consider parameter estimation and prediction under model (2.3) where the samples are
selected from complex sampling designs. Note that if xi are available throughout the population,
then we can predict the population mean of yij for given j by

µ̂∗j =
1

Nj

∑
i∈Aj

yij +
∑
i∈Ac

j

ŷ∗ij


where Aj is the set of sample indices for the j-th survey, Nj is the size of population j, and

ŷ∗ij = α̂∗j + (β̂0 + β̂1xi). (2.5)

Here, α̂∗j is the best predictor of αj which will be presented in section 4.
If xi are available only in the two samples, under simple random sampling, we can still use

µ̂∗1 = n−1

{∑
i∈A1

y1i +
∑
i∈A2

ŷ∗1i

}
where n = n1 + n2 and ŷ∗1i is obtained from (2.5). If the two surveys are obtained from complex
sampling and wij is the sampling weight for unit i in survey j, then we can use

µ̂∗1 = P

∑
i∈A1

w1iy1i∑
i∈A1

w1i

+ (1− P )

∑
i∈A2

w2iŷ
∗
1i∑

i∈A2
w2i

as an estimator of µ1 = E(Y1) using the whole sample, where P is the proportion between 0 and
1. Optimal choice of P will be discussed in Section 4.

To compute the predicted values, parameters in model (2.3) need to be estimated. If both survey
samples are obtained by simple random sampling, then the model parameters can be estimated by
the maximum likelihood method using EM algorithm Dempster et al. (1977). Parameter estimation
under complex survey sampling is discussed in the next section.



230 EUNSEON GWAK ET. AL. [Vol. 16, No. 1

3 Parameter Estimation

3.1 ML Estimation using EM Algorithm

We now discuss parameter estimation for the random effects model (2.3) under complex sam-
pling. Under the model (2.3) we are interested in estimating θ1 = (β0, β1, σ

2
e) and θ2 = σ2

a

consistently from the sample obtained from complex sampling design. The sampling design can
be an element sampling, or any other complex sampling design where the first order and the sec-
ond order inclusion probabilities are available. The sampling design can be informative when the
sample distribution is different from that of the population.

Suppose that Ii = 1 if element i is sampled and Ii = 0 otherwise. For any measurable set B,
the sampling design is called noninformative if

P (yi ∈ B|xi, Ii = 1) = P (yi ∈ B|xi) (3.1)

The left side is the sample model and the right side is the population model. Equality (3.1) does
not hold when the sampling design is informative. Kim et al. (2017) consider parameter estimation
in the context of generalized linear mixed models under two-stage cluster sampling where the
sampling distribution is informative. In this paper, we consider ML estimation using EM algorithm
based on the proposed method by Kim et al. (2017). We will briefly introduce the the basic idea of
Kim et al. (2017) and then apply it to our problem.

Suppose that survey units are obtained with two-stage cluster sampling. Let yij be the study
variable for element i in cluster j. Let xij be the covariates for the regression model for yij . Assume
that the elements in cluster j satisfy the following model

yij|αj ∼ f1(yij|xij, αj; θ1), i = 1, ...,Mj (3.2)

for some θ1 with

αj ∼ f2(αj; θ2), j = 1, ..., N (3.3)

where αj is the unobserved random effect associated with cluster j.
Assume that clusters are sampled with unequal selection probability and the first-order inclu-

sion probability of cluster j are available. From the sampled cluster j, mj elements are sampled
by simple random sampling. Under this setup, model (3.2) can be written as

yj ∼ f̃1(yj|xj, αj; θ1) =

mj∏
i=1

f1(yij|xij, αj; θ1) (3.4)

where yj = (y1j, · · · , ynj ,j) and xj is the covariate for cluster j.
LetA(1) be the set of indices for sampled clusters. Consider the following pseudo log-likelihood

lp(θ1, θ2) =
∑
j∈A(1)

wjlj(θ1, θ2), (3.5)

where wj is the sampling weight associated with cluster j and

lj(θ1, θ2) = log

∫
f̃1(yj|xj, αj; θ1)f2(αj; θ2)dαj
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is the likelihood function obtained from the marginal distribution of yj on xj .
Under informative sampling, that is, when the equality (3.1) does not hold, the density function

f̃1(yj|xj, αj; θ1) in (3.4) is unknown and we cannot obtain the predictive distribution

αj|(xj, yj; θ) ∼
f̃1(yj|xj, αj; θ1)f2(αj; θ2)∫
f̃1(yj|xj, αj; θ1)f2(αj; θ2)dαj

. (3.6)

Kim et al. (2017) proposed an alternative method that implements valid EM algorithm without
calculating the sample likelihood in (3.4). The idea is to find α̂j = α̂j(θ) such that

α̂j|αj ∼ g1(α̂j|αj; θ1)

and use following approximate distribution instead of (3.6)

αj|(α̂j; θ) ∼
g1(α̂i|αj; θ1)f2(αj; θ2)∫
g1(α̂j|αj; θ1)f2(αj; θ2)dαj

. (3.7)

By treating αj as fixed, α̂i = α̂i(θ) be the solution to

∂

∂αj
l̂1j(θ1, αj) = 0 (3.8)

with

l̂1j(θ1;αj) =
∑
i∈A(2)

j

wi|jlogf1(yij|xij, αj; θ1)

where A(2)
j is the index set of sample elements in cluster j and wi|j is the sampling weight associ-

ated with element i in cluster j. The EM algorithm can be implemented as

θ̂
(t+1)
1 = argmax

θ1

∑
j∈A(1)

wjE{l̂1j(θ1, αj)|α̂j, xj; θ̂(t)} (3.9)

θ̂
(t+1)
2 = argmax

θ2

∑
j∈A(1)

wjE{log f2(αj; θ2)|α̂j, xj; θ̂(t)} (3.10)

For the sampling distribution g1(·), we can use

α̂j(θ̂1)|αj ∼ N
[
αj, V̂

{
α̂j(θ̂1)

}]
(3.11)

where V̂
{
α̂j(θ̂1)

}
is the design unbiased estimator of the variance of α̂j(θ̂1).

Note that under the model (2.3), we assume that two samples are independently selected from
the same population in different time point. In the following, notation j and i denote the survey j
and element i respectively. Under the model (2.3) by treating αj as fixed, the score equation for
θ1 = (β0, β1, σ

2
e) and αj is∑

j

∑
i

wij
{

(yij − αj − β0 − β1xi)
}

(1, xi) = (0, 0) (3.12)
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∑
j

∑
i

wij
{

(yij − αj − β0 − β1xi)
2 − σ2

e

}
= 0 (3.13)

∑
i

wij(yij − αj − β0 − β1xi) = 0 (3.14)

where wij is the sampling weight associated with element i in survey j and for θ2 = (µa, σ
2
a) is∑

j

(αj − µa) = 0 (3.15)

∑
j

{(αj − µa)2 − σ2
a} = 0 (3.16)

From (3.14), α̂j(θ1) = ȳj−β0−β1x̄j , we have α̂j(θ1) = αj+ēj where ēj = (
∑

i∈Aj
wij)

−1(
∑

i∈Aj
wijeij)

and eij = yij − αj − β0 − β1xi. Since αj ∼ N(µa, σ
2
a) with µa = 0, we express the distribution of

αj given α̂j(θ1)

αj|α̂j(θ1) ∼ N [cjα̂j(θ1), cjV̂j(β)] (3.17)

where cj = σ2
a

σ2
a+V̂j(β)

, α̂j(θ1) = ȳj − β0 − β1x̄j and V̂ (α̂j) = V̂j(β) evaluated at the current
parameter value of θ. Therefore, the EM algorithm for estimating θ can be easily derived from
(3.17). That is, the M-step for parameter can be written as∑

j

∑
i

wij{yij − c(t)
j âj(θ

(t)
1 )− β(t+1)

0 − β(t)
1 xi} = 0 (3.18)

∑
j

∑
i

wij{yij − c(t)
j âj(θ

(t)
1 )− β(t)

0 − β
(t+1)
1 xi}xi = 0 (3.19)

∑
j

∑
i

wij{(yij − c(t)
j âj(θ

(t)
1 )− β(t+1)

0 − β(t+1)
1 xi)

2 + c
(t)
j V̂j(β

(t))− σ2(t+1)
e } = 0 (3.20)

µ̂(t+1)
a = (

∑
j

)−1
∑
j

c
(t)
i âj(θ

(t)) (3.21)

σ̂2(t+1)
a = (

∑
j

)−1
∑
j

[{c(t)
j α̂j(θ

(t))}2 + c
(t)
j V̂j(β

(t))]− {µ̂(t+1)
a }2 (3.22)

where c(t)
j = σ̂

2(t)
a /{σ̂2(t)

a + V̂j(β
(t))}.

The ML estimation of σ2
a is obtained for the parameter space {σ2

a;σ
2
a > 0}. However, if we

suspect that σ2
a = 0, then the ML estimator of σ2

a will be still positive and the resulting prediction
is not necessarily efficient. We propose an alternative parameter estimation method that allows for
σ̂2
a = 0 for some cases. The idea is based on pretest estimation (Datta et al., 2011). More details

will be presented in the next section.
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3.2 Method of Moments Estimation and Constrained EM Algorithm

The ML estimation of σ2
a in Section 3.1 is obtained for the parameter space {σ2

a;σ
2
a > 0}, the

ML estimator of σ2
a will be still positive and the resulting prediction is not necessarily efficient

when the true population follows (2.3) with σ2
a = 0. That is, if the two samples are from the same

distribution, ML estimation does not give σ̂2
a = 0. Therefore the critical part is on how to estimate

σ2
a when we suspect that σ2

a = 0.
We now introduce parameter estimation method for σ2

a that can allow for σ̂2
a = 0 with pos-

itive probability. As discussed in Section 3.1, we can obtain the marginal distribution of α̂j(θ1)
combining (3.11) with αj ∼ N(0, σ2

a), as

α̂j(θ1) ∼ N(0, σ2
a + V̂ (α̂j))

Since the two samples are independently selected, Cov(α̂1(θ1), α̂2(θ1)) = 0. Thus, the expec-
tation of squares of the difference between α̂1(θ1) and α̂2(θ1) is

E{(α̂1(θ1)− α̂2(θ1))2} = V̂ (α̂1) + V̂ (α̂2) + 2σ2
a. (3.23)

Now we define

T =
α̂1(θ1)− α̂2(θ1)

{V̂ (α̂1) + V̂ (α̂2)}1/2
,

then we can obtain

E{(T 2 − 1)} .= 2σ2
a

V̂ (α̂1) + V̂ (α̂2)

Thus, we can use

σ̂2
a =

1

2
{V̂ (α̂1) + V̂ (α̂2)}(T 2 − 1) (3.24)

as a method-of-moments estimator of σ2
a.

By (3.24), if |T | < 1 , then σ̂2
a takes negative values. Thus, we will use

σ̂2
a = max{D, 0}, (3.25)

where D = 1
2
{V̂ (α̂1) + V̂ (α̂2)}(T 2 − 1), to avoid the negative estimator of σ2

a .
A method-of-moments estimator of σ2

a in (3.24) is an approximately unbiased estimator for σ2
a.

This method can improve the precision of estimator for σ2
a. Once estimator of σ2

a is estimated,
then we can estimate other parameters (β0, β1, σ

2
e ) by EM algorithm. We propose a version of EM

algorithm, so-called constrained EM algorithm, to estimate model parameters. To implement the
constrained EM algorithm, we can consider the following steps:

1. Estimate σ2
a by a method-of-moments estimation given by (3.25).

2. Estimate parameters (β0, β1, σ
2
e ) by EM algorithm given by (3.18)-(3.20).

3. Update σ̂2
a using (3.25) with estimated parameters (β0, β1, σ

2
e ) from Step 2.

4. Repeat Step 1 ∼ Step 3 until convergence.
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3.3 Pretest Estimation

We now discuss another parameter estimation method using a pretest method. Pretest method
for small area estimation has been discussed by Datta et al. (2011) and Molina et al. (2015). In
Section 3.2, we proposed a Method of Moments (MOM) estimator for σ2

a. The MOM estimator is
approximately unbiased estimator for σ2

a. Instead of using |T | > 1 one may also consider |T | > γ,
where γ > 1, which gives more shrinkage toward zero. In this case, we can use

σ̂2
a(γ) =

1

2
{V̂ (α̂1) + V̂ (α̂2)}(T 2 − γ) (3.26)

σ̂2
a(γ) = max{Dγ, 0} (3.27)

where Dγ = 1
2
{V̂ (α̂1) + V̂ (α̂2)}(T 2 − γ).

Since σ̂2
a(γ) in (3.26) depends on unknown shrinkage parameter γ, we wish to find an optimal

γ using survey sample data. The idea is based on cross validation. Cross validation is a model val-
idation technique and mainly used in a prediction problem. Cross validation combines prediction
errors to asses a performance of estimate of model prediction. Cross validation divide the sample
into a training sample and a validation sample. The analysis conducted on the training sample and
then validating analysis on the validation sample.

To find an optimal γ in the survey sample data using cross validation, we randomly divide
survey sample data into 60% of data (called training set) and 40% of data (called validation set).
If γ is given, we can compute a σ̂2

a(γ) using (3.26)-(3.27), on the training set. Then the estimation
for the other model parameters is implemented by the constrained EM algorithm. Using these
estimated parameters, we can predict y1 in the validation set of survey 1. Now, we define CV that
is a sum of square of difference between observed value, y1i, and its predicted value, ŷ1i, in the
validation set. That is

CV (γ) =
∑
i

(y1i − ŷ1i(γ))2 (3.28)

Note that, the difference of y1i and ŷ1i(γ) means the prediction error of ŷ1i(γ) given the choice of
γ in the validation set. We will compute CV (γ) for γ ∈ [1, 4] in the simulation study. We define
the γ∗ as

γ∗ = arg
γ

minCV (γ) (3.29)

where CV (γ) is defined by (3.28). The optimal γ∗ minimizes the mean squared prediction error
of the validation set of survey 1. Once the optimal γ∗ is determined by (3.29), we can use (3.27)
to estimate σ2

a and then estimate the other parameters by the Constrained EM algorithm.

4 Best Prediction

Let Y1 be the study variable for population one and Y2 be the study variable for population two.
We observe (xi, y1i) from A1 selected from population one and observe (xi, y2i) from A2 selected
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from population two. We now discuss the best prediction of y1i. The model for the population
elements can be described as

y1i = α1 + β0 + β1xi + e1i (4.1)
y2i = α2 + β0 + β1xi + e2i (4.2)

where αj ∼ N(0, σ2
a) and eij ∼ N(0, σ2

e). The two error terms, e1i and e2i are independent because
the error terms are defined for different units.

Using the parameter estimation method in Section 3, we can obtain consistent estimates for the
model parameters, β0, β1, σ

2
a and σ2

e . Assuming that the parameters are all known, we can compute
the best prediction of y1i for i ∈ A2. The best predictor of y1i is given by

ŷ∗1i = α̂∗1 + (β0 + β1xi) (4.3)

where
α̂∗1 = c1α̂1 (4.4)

with

c1 =
σ2
a

σ2
a + V̂ (α̂1)

and
α̂1 = (

∑
i∈A1

w1i)
−1{
∑
i∈A1

w1i(y1i − β0 − β1xi)} = ȳ1 − β0 − β1x̄1.

Thus, using (4.3), we can compute

µ̂∗1 = P

∑
i∈A1

w1iy1i∑
i∈A1

w1i

+ (1− P )

∑
i∈A2

w2iŷ
∗
1i∑

i∈A2
w2i

:= Pµ̂1,d + (1− P )µ̂1,s (4.5)

as an estimator of µ1 = E(Y1) using the whole sample, where P is the proportion between 0 and
1. Here, the subscript in µ̂1,d indicates that this estimator is computed directly from the sample A1

and the subscript in µ̂1,s indicates that this estimator is computed from synthetic sample data. Note
that µ̂∗1 is unbiased for any choice of P ∈ (0, 1). A simple choice is P =

∑
i∈A1

w1i/{
∑

i∈A1
w1i+∑

i∈A2
w2i}.

Note that
µ̂1,d = β0 + β1x̄1 + α1 + ē1 (4.6)

where

(x̄1, ē1) =

∑
i∈A1

w1i(xi, e1i)∑
i∈A1

w1i

.

Also,

µ̂1,s = α̂∗1 + β0 + β1x̄2

= c1(α1 + ē1) + β0 + β1x̄2, (4.7)



236 EUNSEON GWAK ET. AL. [Vol. 16, No. 1

where x̄2 = (
∑

i∈A2
w2i)

−1
∑

i∈A2
w2ixi. Therefore, combining (4.6) and (4.7) with (4.5), we

obtain

µ̂∗1 = β0 + β1x̄
∗ + {P + (1− P )c1}(α1 + ē1) (4.8)

where x̄∗ = Px̄1 + (1− P )x̄2. Thus, we obtain

V {µ̂∗1} = β2
1V (x̄∗) + {P + (1− P )c1}2{σ2

a + V (ē1)}. (4.9)

We can use (4.9) to obtain the optimal choice of P that minimizes the variance (4.9) and also
use it for variance estimation as follows

V̂ {µ̂∗1} = β̂2
1 V̂ (x̄∗) + {P ∗ + (1− P ∗)ĉ1}2{σ̂2

a + V̂ (ē1)}, (4.10)

where ĉ1 = σ̂2
a

σ̂2
a+V̂ (ē1)

.

5 Simulation Study

To test our proposed methods, we performed two limited simulations. In this section, we
present the results from two simulation studies. In the first simulation, we assume that the samples
are selected by simple random sampling under the random effect model. In the second simulation,
we assume that the samples are selected by two stage cluster sampling under the random effect
model. In the simulation study, our goal is to obtain µ̂1 from the two survey data. We will compare
the proposed method and existing method in three cases, σ2

a ∈ {0, 0.2, 1}. Five methods are
considered in the simulation study.

1. Separate: We compute a simple mean of yij in the survey 1 sample.

µ̂1 = n−1
1

∑
i∈A1

y1i

2. Combined: We compute a simple mean of yij from the pooled sample data.

µ̂1 = n−1[
∑
i∈A1

y1i +
∑
i∈A2

y2i]

3. Best prediction using EM algorithm: We compute a simple mean of y1 from the survey 1
sample and estimate a mean of y1 in survey 2 sample.

µ̂1 = n−1[
∑
i∈A1

y1i +
∑
i∈A2

ŷ∗1i],

where ŷ∗1i = α̂∗1+β̂0+β̂1xi. Here, α̂∗1 can be obtained using (4.4) and model parameters(β0, β1, σ
2
e , σ

2
a)

are estimated by EM algorithm.

4. Best prediction using Method of Moments estimation: σ2
a is estimated by method of mo-

ments estimation described in (3.24)-(3.25) and then use the constrained EM algorithm
method for other parameter estimation.
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5. Best prediction using Pretest method: σ2
a is obtained from optimal γ∗ in (3.29) which min-

imize a CV (γ) in the validation set and then use the constrained EM algorithm for other
parameter estimation.

Note that, when we set σ2
a = 0 in the simulation setup, then the population structure follows

model (2.1). That is, there is no systematic difference between the two populations. We are mainly
interested in investigating the performance of different estimation methods in this case.

5.1 Simulation One

For the simulation one, we generate two finite populations with size N1 = N2 = 10, 000
from a random effect model and then select simple random samples with size n1 = n2 = 100
independently from each finite population. We repeat this Monte Carlo simulation independently
B = 2, 000 times.

The finite populations are generated from

y1i = α1 + βxi + e1i,
y2i = α2 + βxi + e2i

where αj ∼ N(µa, σ
2
a), eij ∼ N(0, σ2

e), xi ∼ N(1, 1), µa = 1, σe = 0.1, β1 = 1. Note that, in this
setup, β = β1, µa = β0 in the model (2.3).

Table 1 presents the Monte Carlo biases, standard errors of the estimated parameters from ML
estimation using EM algorithm(ML), Method of Moment estimation based on the Constrained EM
algorithm(MOM) and Pretest method(Pretest) for different values of σ2

a. The simulation result
shows that all estimated parameters are nearly unbiased. Standard error(SE) of β0 estimated by
ML is bigger than MOM and Pretest when σ2

a = 0. When σ2
a increases, standard error(SE) of β0 is

almost the same in all methods.
Table 2 presents Monte Carlo mean squared errors (MSE) of the point estimators for µ1 for the

three scenarios of σ2
a. The MSE of the point estimators for µ1 for ML method is bigger than those

for MOM and Pretest method when σ2
a = 0. However, the differences are very small.

Since the ML estimation of σ2
a is obtained for the parameter space {σ2

a;σ
2
a > 0}, the ML

estimation of σ2
a will be positive. When σ2

a is large, the MSE of point estimator for µ1 for combined
method is much bigger than those for MOM and Pretest method.

Table 3 shows that Monte Carlo means and variances of γ∗ which is obtained from (3.29).
Since γ is a unknown shrinkage parameter, we determined an optimal γ by pretest method based
on cross validation. When σ2

a = 0, Monte Carlo Mean of γ∗ is 1.311 and variance is 0.550. Note
that, as described in Section 3.2, MOM estimator uses γ = 1 when we estimate σ2

a.

5.2 Simulation Two

For the simulation Two, we generate two finite populations from a random effect model and
then select a sample from each finite population using a two stage cluster sampling design. To
implement the simulation we can consider the following steps:
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1. The first stage: nj = 100 clusters are sampled from each finite population with PPS.
2. The second stage: m = 10 elements are sampled from each cluster with SRS.
The finite population model as follows:

ykij = αj + βx∗kij + ekij, i = 1, ...Mk, k = 1, ..., N, j = 1, 2

where αj ∼ N(µa, σ
2
a), ekij ∼ N(0, σ2

e), x∗kij ∼ N(1, 1), µa = 1, σ2
e = 0.02, β = 1, N = 10, 000.

Note that, in this setup, β = β1, µa = β0 in the model (2.3). Here, x∗kij = xkij + rk where
xkij ∼ N(1, 0.5) and rk ∼ N(0, 0.5). The cluster size is Mk = round(50r̃k), with r̃k = exp(2.5 +
rk)/(1 + exp(2.5 + rk)). From each finite population, nj = 100 clusters are sampled by the
probability proportional to size(PPS) sampling with the measure of size Mk. That is, the first order
inclusion probability is equal to π(1)

k = njMk/
∑N1

k=1 Mk.
Once the clusters are sampled, m = 10 elements are sampled by simple random sampling in

each cluster. We repeat this simulation independently with B = 500.
Table 4 present the Monte Carlo biases, standard errors of the estimated parameters from ML

estimation using EM algorithm(ML), Method of Moment estimation based on the Constrained EM
algorithm(MOM) and Pretest method(Pretest) for σ2

a = 0, 0.2, 1.0, respectively. Table 4 shows that
all estimated parameter are nearly unbiased when σ2

a = 0. When σ2
a = 0.2, the estimator of β0 has

a positive bias 0.017 and estimator of σ2
a has a negative bias -0.002 in all methods. When σ2

a = 1,
estimator of β0 has a positive bias 0.039 in all methods. Table 4 show that Bias and Standard
error(SE) of the parameter estimation methods has almost the same results for three methods.

Table 5 presents Monte Carlo mean squared errors (MSE) of the point estimators for µ1 for the
three scenarios for σ2

a. The simulation results show that MOM and Pretest methods perform well
in all cases.

Table 6 shows that Monte Carlo means and variances of γ∗ which is obtained from (3.29).
Optimal γ∗ is determined by pretest method based on cross validation. As presented in table 6,
Monte Carlo Mean of γ∗ is 1.163 and variance is 0.336 when σ2

a = 0.

6 Concluding Remark

We have considered the problem of survey integration using random effect models in survey
sampling. Parameter estimation for random effect model involves a version of EM algorithm
adapted to survey sampling setup. Constrained EM algorithm is developed to obtain better predic-
tion when there is some possibility that there is no systematic difference between the two popula-
tions. In the simulation study, the prediction based on constrained EM shows better performances.

The proposed method is developed only under the linear random effect model. Extension to
generalized linear mixed models will be a topic of future study.
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Table 1: Monte Carlo biases, standard errors of the proposed methods for simulation study
one

Parameter ML MOM Pretest

σ2
a = 0

Bias

β0 0.000 0.000 0.000
β1 0.000 0.000 0.000
σ2
e 0.000 0.000 0.000
σ2
a 0.000 0.000 0.000

S.E

β0 0.008 0.003 0.002
β1 0.006 0.005 0.005
σ2
e 0.000 0.000 0.000
σ2
a 0.000 0.000 0.000

σ2
a = 0.2

Bias

β0 -0.006 -0.006 -0.006
β1 0.000 0.000 0.000
σ2
e 0.000 0.001 0.001
σ2
a -0.001 -0.001 -0.001

S.E

β0 0.316 0.312 0.311
β1 0.006 0.025 0.026
σ2
e 0.001 0.015 0.016
σ2
a 0.278 0.278 0.278

σ2
a = 1

Bias

β0 -0.006 -0.006 -0.006
β1 0.000 0.000 0.000
σ2
e 0.000 0.001 0.001
σ2
a -0.001 -0.001 -0.001

S.E

β0 0.316 0.312 0.311
β1 0.006 0.025 0.026
σ2
e 0.001 0.015 0.016
σ2
a 0.278 0.278 0.278
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Table 2: Monte Carlo mean squared errors(MSE) of point estimator for µ1

Parameter Method σ2
a = 0 σ2

a = 0.2 σ2
a = 1

Separate 0.01078 0.01036 0.01036
Combined 0.00521 0.10449 0.50095

µ1 ML 0.00529 0.00555 0.00555
MOM 0.00525 0.00570 0.00570
Pretest 0.00526 0.00570 0.00570

Table 3: Monte Carlo Means and Variances of γ∗ for Pretest method

Mean Variance

σ2
a = 0 1.311 0.550

σ2
a = 0.2 2.311 2.161
σ2
a = 1 2.386 2.196
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Table 4: Monte Carlo biases, standard errors of the proposed methods for simulation study
two

Parameter ML MOM Pretest

σ2
a = 0

Bias

β0 0.000 0.000 0.000
β1 0.000 0.000 0.000
σ2
e 0.000 0.000 0.000
σ2
a 0.000 0.000 0.000

S.E

β0 0.003 0.003 0.003
β1 0.002 0.001 0.001
σ2
e 0.000 0.000 0.000
σ2
a 0.000 0.000 0.000

σ2
a = 0.2

Bias

β0 0.017 0.017 0.017
β1 0.000 0.000 0.000
σ2
e 0.000 0.000 0.000
σ2
a -0.002 -0.002 -0.002

S.E

β0 0.315 0.315 0.315
β1 0.002 0.002 0.002
σ2
e 0.000 0.000 0.000
σ2
a 0.268 0.268 0.268

σ2
a = 1

Bias

β0 0.039 0.039 0.039
β1 0.000 0.000 0.000
σ2
e 0.000 0.000 0.000
σ2
a -0.013 -0.013 -0.013

S.E

β0 0.704 0.704 0.704
β1 0.002 0.002 0.002
σ2
e 0.000 0.000 0.000
σ2
a 1.340 1.340 1.340

Table 5: Monte Carlo mean squared errors(MSE) of point estimator for µ1

Parameter Method σ2
a = 0 σ2

a = 0.2 σ2
a = 1

Separate 0.001038 0.00102 0.00102
Combine 0.000526 0.09933 0.49407

µ1 ML 0.000540 0.00050 0.00050
MOM 0.000538 0.00050 0.00050
Pretest 0.000537 0.00050 0.00050
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Table 6: Monte Carlo Means and Variances of γ∗ for Pretest method

Mean Variance

σ2
a = 0 1.163 0.336

σ2
a = 0.2 2.394 2.161
σ2
a = 1 2.436 2.197


