
Statistics and Applications {ISSN 2454-7395 (online)}
Special Issue in Memory of Prof. C R Rao
Volume 22, No. 3, 2024 (New Series), pp 119–152
http://www.ssca.org.in/journal

Confidence Ellipsoids of a Multivariate Normal Mean
Vector Based on Noise Perturbed and Synthetic Data with

Applications

Biswajit Basak1, Yehenew G. Kifle2 and Bimal K. Sinha2,3
1Department of Statistics, Sister Nivedita University, Kolkata 700156, India

2Department of Mathematics and Statistics
University of Maryland Baltimore County, Maryland 21250, USA

3Center for Statistical Research and Methodology, U.S. Census Bureau, 4600 Silver Hill
Rd, Suitland-Silver Hill, MD 20746, USA

Received: 19 April 2024; Revised: 09 June 2024; Accepted: 11 June 2024

Abstract
In this paper we address the problem of constructing a confidence ellipsoid of a mul-

tivariate normal mean vector based on a random sample from it. The central issue at hand
is the sensitivity of the original data and hence the data cannot be directly used/analyzed.
We consider a few perturbations of the original data, namely, noise addition and creation
of synthetic data based on the plug-in sampling (PIS) method and the posterior predictive
sampling (PPS) method. We review some theoretical results under PIS and PPS which are
already available based on both frequentist and Bayesian analysis (Klein and Sinha, 2015,
2016; Guin et al., 2023) and derive the necessary results under noise addition. A theoretical
comparison of all the methods based on expected volumes of the confidence ellipsoids is
provided. A measure of privacy protection (PP) is discussed and its formulas under PIS,
PPS and noise addition are derived and the different methods are compared based on PP.
Applications include analysis of two multivariate datasets. The first dataset, with p = 2,
is obtained from the latest Annual Social and Economic Supplement (ASEC) conducted by
the US Census Bureau in 2023. The second dataset, with p = 3, pertains to renal variables
obtained from the book by Harris and Boyd (1995). Using a synthetic version of the original
data generated through PIS and PPS methods and also the noise added data, we produce
and display the confidence ellipsoids for the unknown mean vector under various scenar-
ios. Finally, the privacy protection measure is evaluated for various methods and different
features.
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1. Introduction

Statistical data analysis under privacy protection has been the focus of statistical re-
search at many government agencies where the charge is to collect public data or information
on many aspects of their lives and then analyze and disseminate the information for public
use, policy decisions, and further research by other interested parties. Often the information
provided by the public as in the decennial census in the USA contain some sensitive features
and it is the responsibility of the data collecting agency to ensure that information related to
these features are not compromised, properly hidden, and hard to retrieve from subsequent
data analysis and released tables. Statistical research dealing with this task falls into the
category of Statistical Disclosure Control (SDC) Methods. Fortunately, many novel methods
of SDC have been developed and used over the years, notably noise addition/multiplication,
swapping, and synthetic data creation (Drechsler and Reiter (2010); Drechsler (2011); Kin-
ney et al. (2014); Kinney et al. (2011); Kinney et al. (2014); Lin and Wise (2012); Little
et al. (1993); Meng (1994); Klein et al. (2014); Klein and Sinha (2013a); Klein and Sinha
(2015); Klein and Sinha (2016); Raghunathan et al. (2003); Reiter (2003); Reiter (2004);
Reiter (2005a); Reiter (2005b); Reiter (2005c); Reiter and Kinney (2012); Reiter and Mitra
(2009); Reiter and Raghunathan (2007); Rubin (1987); Rubin (1993); Rubin (1996); Nayak
et al. (2011); Sinha et al. (2011);Klein and Sinha (2013b)). There are three distinct parts
in this process: how to perturb or distort the sensitive parts of the information collected,
how to carry out proper statistical analysis based on the perturbed data so as to draw valid
inference about some population features (like proportions, means, variances, correlation)
and a study of the extent to which privacy has been preserved!

The focus of this paper is on multivariate data analysis in the context of sensitive
data collected on p continuous features from a random sample of n units of a population.
We assume that data follows a multivariate normal (MVN) model with the mean vector µ
and dispersion matrix Σ, both unknown, and primarily address the problem of constructing
confidence sets (CS) for µ based on suitable perturbations of the original data. Three
methods of SDC are considered: noise addition, synthetic data analysis based on Plug-in
Sampling (PIS) scheme and synthetic data analysis based on Posterior Predictive Sampling
(PPS) scheme. In each case we clearly spell out 1) how to create artificial data, 2) how to
analyze it so as to produce a valid CS for µ, and 3) to what extent privacy is protected based
on a suitable privacy protection (PP) measure. We should point out that the above methods
are widely used in the literature and we have freely used some results which are already
available and derived necessary additional results for a complete analysis of the MVN data.

The organization of the paper is as follows. In Section 2 we discuss valid inference
based on noise added data, including proper analysis leading to a CS for µ. Section 3
is devoted to valid analysis of synthetic data under PIS and Section 4 to valid analysis
under PPS. Both Sections 3 and 4 reside in the frequentist paradigm. We consider Bayesian
analysis of PIS and PPS data in Section 5. A comparison of the suggested methods based
on the expected volumes is done in Section 6. In Section 7 a measure of privacy protection
(PP) suitable for multivariate data is given and explicit expressions of this measure for all
the methods are derived. A comparison of the suggested artificial data generation methods
based on PP is also given. It should be noted that evaluation of PP depends only on the
way the original data are perturbed and not on subsequent data analysis methods. Finally,
in Section 8, we apply all the proposed methods in the analysis of two multivariate datasets:
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the first, with p = 2, is obtained from the US Census Bureau, and the second dataset,
encompassing renal variables with p = 3, is obtained from the book by Harris and Boyd
(1995), providing a comprehensive analysis of both datasets.

Throughout this paper we assume the original data X = (x1, x2, . . . , xn) are iid as
Np(µ, Σ), where n > p and Σ is a positive definite matrix. Define µ̂ = x̄ = 1

n

∑n
i=1 xi (sample

mean), Wx = ∑n
i=1(xi − x̄)(xi − x̄)′ (sample Wishart matrix) and Σ̂ = Wx

n−1 . Based on the
original data, (µ̂, Σ̂) are jointly sufficient for (µ, Σ). Define T 2

x = n(x̄ − µ)′W −1
x (x̄ − µ),

then
(

n−p
p

)
T 2

x ∼ Fp,n−p. A (1−γ) level confidence ellipsoid (CE) for µ based on the original
data X will be

∆(µ) =
{

µ : T 2
x ≤

(
p

n − p

)
Fp,n−p;γ

}
, (1)

where Fp,n−p;γ is the 100(1 − γ)th percentile of an F -distribution with (p, n − p) degrees of
freedoms. The observed volume and the expected volume of the above CE will be

Vµ(X) = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

|Wx|
1
2 (2)

E [Vµ(X)] = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

Cn,p|Σ|
1
2 , (3)

where E[|Wx| 1
2 ] = Cn,p|Σ| 1

2 and Cn,p = ∏p
i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
.

2. Inference based on noise added data

In this section our objective is to propose an inferential method of finding a suitable
confidence set for the unknown µ based on the noise added data. The original data X =
(x1, x2, . . . , xn) are assumed to be independent and identically distributed (iid) as Np(µ, Σ),
where n > p. Based on these data, one can define the summary statistics x̄ = 1

n

∑n
i=1 xi

(sample mean) and Wx = ∑n
i=1(xi − x̄)(xi − x̄)′ (sample Wishart matrix). Sometimes the

unit level/micro data are available and sometimes they are not. We have encountered these
two cases in the following subsections.

2.1. Case 1: Unit level data available

When unit level data are available, they can be perturbed by adding some random
noise ei ∼ Np(0, R), iid for i = 1, · · · , n, to the ith level - resulting in ui = xi + ei ∼
Np(µ, Σ + R), i = 1, 2, . . . , n, where R is a known positive definite noise dispersion matrix.
Our objective is to propose an inferential method of finding a suitable confidence set for the
unknown µ based on the noise added data U = (u1, u2, . . . , un). Define ū = 1

n

∑n
i=1 ui and

W u = ∑n
i=1(ui − ū)(ui − ū)′. It is very easy to verify that, based on the noise added data

U , (ū, W u) are jointly sufficient for (µ, Σ). Clearly ū ∼ Np

(
µ, Σ+R

n

)
, independently of

W u ∼ Wishartp(Σ + R, n − 1). We define T 2
u = n(ū − µ)′W−1

u (ū − µ) which follows p
n−p

times an F-distribution with degrees of freedoms (p, n − p). Clearly, T 2
u can be looked upon
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as a pivot and can be used to find a (1 − γ) ellipsoid for µ as given by

∆1
NA(µ) =

{
µ : n(µ − ū)′W−1

u (µ − ū) ≤ p

n − p
Fp,n−p;γ

}
, (4)

where Fp,n−p;γ is the 100(1 − γ)th percentile of an Fp,n−p distribution. The volume of the
confidence ellipsoid ∆1

NA(µ) based on the noise added data U is given by

Vµ(U ) = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

|Wu|
1
2 . (5)

Note that E(|Wu| 1
2 ) = Cn,p|Σ + R|1/2 with Cn,p = ∏p

i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
, the expected volume is

obtained as

E[Vµ(U )] = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

Cn,p|Σ + R|
1
2 . (6)

2.2. Case 2: Unit level data not available

If unit level/micro data is not available on X, but only summary statistics x̄ and
Wx are available, we define ū = x̄ + ē, where ē ∼ Np(0, R

n
), independent of x̄, and Wu =

Wx + Wr, where Wr ∼ Wishartp(r, R) with r ≥ p, independent of W . Consequently we
have ū ∼ Np(µ, Σ+R

n
) and Wu follows a distribution which is the sum of two independent

Wishart distributions: Wishartp(n − 1, Σ) and Wishartp(r, R). For the sake of simplicity,
we write it as Wu ∼ Wp(n − 1, Σ) + Wp(r, R). Define Fu = n(ū − µ)′W −1

u (ū − µ). Here,
it should be noted that the distribution of Fu is not independent of the parameter Σ and
hence can not be used as a pivot. Our goal is to find F ∗ which is stochastically larger than
Fu and which has a distribution free from the parameter.

Consider v =
√

n(Σ+R)− 1
2 (ū−µ) ∼ Np(0, Ip), that is

√
n(ū−µ) = (Σ+R) 1

2 v, and
W ∗

u = (Σ+R)− 1
2 Wu(Σ+R)− 1

2 , we can rewrite Fu = v′(W ∗
u)−1v. Note that, W ∗

u ∼ Wp(n−
1, A1)+Wp(r, A2), where A1 = (Σ+R)− 1

2 Σ(Σ+R)− 1
2 and A2 = (Σ+R)− 1

2 R(Σ+R)− 1
2

with A1 + A2 = Ip.

Theorem 1: If w1 ∼ Wishartp(n − 1, Ip), independently of w2 ∼ Wishartp(r, Ip), the
distribution of F ∗ = Max

{
v′w−1

1 v, v′w−1
2 v

}
is stochastically larger than Fu and also free

from the parameter.

Proof: Suppose S1 = (Σ + R)− 1
2 W (Σ + R)− 1

2 ∼ Wishartp(n − 1, A1), independently of
S2 = (Σ+R)− 1

2 Wr(Σ+R)− 1
2 ∼ Wishartp(r, A2), and S = S1 +S2, then Fu can be written

as Fu = v′S−1v. We first note that,

Fu = v′S−1v = Max
l :l′l=1

{
(l′v)2

l′Sl

}
. (*)
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Let w1 ∼ Wishartp(n − 1, Ip), independently of w2 ∼ Wishartp(r, Ip). For any l such that
l′l = 1, l′w1l ∼ χ2

n−1, and l′w2l ∼ χ2
r. Again l′S1l

l′A1l ∼ χ2
n−1 and l′S1l

l′A2l ∼ χ2
r, which implies

l′S1l
d= (l′A1l)(l′w1l),

and l′S2l
d= (l′A2l)(l′w2l).

Hence

l′Sl = l′(S1 + S2)l d= (l′A1l)(l′w1l) + (l′A2l)(l′w2l)
≥
st

(l′A1l + l′A2l)Min
{
l′w1l, l′w2l

}
= (l′l)Min

{
l′w1l, l′w2l

}
, [Since, A1 + A2 = Ip]

= Min
{
l′w1l, l′w2l

}
, [Since, l′l = 1]

Thus we have
(l′v)2

l′Sl
≤
st

(l′v)2

Min
{
l′w1l, l′w2l

}
d= Max

{
(l′v)2

l′w1l
,
(l′v)2

l′w2l

}
.

From (*),

Fu = Max
l :l′l=1

{
(l′v)2

l′Sl

}

≤
st

Max
l :l′l=1

{
Max

{
(l′v)2

l′w1l
,
(l′v)2

l′w2l

}}
d= Max

{
v′w−1

1 v, v′w−1
2 v

}
= F ∗

Clearly the distribution of F ∗ is free from Σ, as all of v, w1 and w2 are having distributions
free from Σ.
[Note: Here we have used the symbols d=, ≤

st
and ≥

st
, which stands for identically distributed,

stochastically smaller and stochastically larger respectively].

We determine F ∗
n,p,r,γ such that P [F ∗ ≤ F ∗

n,p,r,γ] = 1 − γ, which implies P [Fu ≤ F ∗
n,p,r,γ] ≥

P [F ∗ ≤ F ∗
n,p,r,γ] = 1 − γ. Therefore a confidence ellipsoid for µ with confidence level at least

(1 − γ) is given by

∆2
NA(µ) =

{
µ : n(µ − ū)′W−1

u (µ − ū) ≤ F ∗
n,p,r,γ

}
. (7)

The volume of the confidence ellipsoid ∆2
NA(µ) is given by

V ∗
µ = πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
|Wu|

1
2 . (8)
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The expected volume can be computed by evaluating E
[
|Wu| 1

2
]
. Recall Wu = Wx + Wr,

we can use the result, |Wx + Wr|
1
2 > Max

{
|Wx| 1

2 , |Wr|
1
2
}

with probability 1, resulting in
E
[
|Wx + Wr|

1
2
]

> E
[
Max

{
|Wx| 1

2 , |Wr|
1
2
}]

≥ Max
{
E
[
|Wx| 1

2
]

, E
[
|Wr|

1
2
]}

. Therefore a
lower bound to the expected volume will be

E[V ∗
µ ] ≥ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Max

{
Cn,p|Σ|

1
2 , Cr+1,p|R|

1
2
}

≈ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Cn,p|Σ|

1
2 . (9)

[Assuming |R| to be significantly small.]

Remark 1: We can do a direct comparison of the expected volume in (6) when unit level
data are available and the lower bound of the expected volume in (9) when unit level data
are not available in situations when R is small. This essentially boils down to a comparison
of [p/(n − p)]Fp,n−p;γ and F ∗

n,p,r,γ. However, from the definition of F ∗ it follows that any
percentile of F ∗ is larger than the corresponding percentile of v′w−1

1 v. Since the latter per-
centile is [p/(n − p)]Fp,n−p;γ, it readily follows that F ∗

n,p,r,γ is larger than [p/(n − p)]Fp,n−p;γ,
regardless of r. In other words, even the lower bound for the expected volume given in (9) is
larger than the exact expected volume in (6), whatever be the df r. Table 1 shows a direct
comparison of these two cut-off points.

Table 1: The first table presents F ∗
n,p,r,γ cut-off points for various combinations

of n, p and r, while the second table displays the [p/(n − p)]Fp,n−p;γ cut-off points
across different values of n and p, with γ = 0.05. significance level.

n r=10 r=15 r=20 r=100
p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

25 0.921 1.504 2.379 0.534 0.797 1.070 0.394 0.568 0.739 0.307 0.419 0.539
50 0.969 1.518 2.402 0.532 0.795 1.092 0.382 0.523 0.693 0.134 0.179 0.219

100 0.976 1.531 2.437 0.544 0.820 1.097 0.363 0.522 0.679 0.069 0.090 0.109

[p/(n − p)]Fp,n−p;γ cut-off points
n p=2 p=3 p=4

25 0.298 0.416 0.541
50 0.133 0.179 0.224

100 0.063 0.083 0.103

3. Analysis of synthetic data under plug-in sampling

In this section we briefly review the method of analysing synthetic data obtained
under plug-in sampling method, which are derived by (Klein and Sinha, 2016). The main
objective here is to obtain a confidence ellipsoid for µ, based on the synthetic data, for a
given confidence level.

Under plug-in sampling method, singly imputed synthetic data, denoted by Y =
(y1, y2, . . . , yn), are obtained by drawing iid observations from Np(µ̂, Σ̂). Based on these
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synthetic data, ȳ = 1
n

∑n
i=1 yi and Wy = ∑n

i=1(yi − ȳ)(yi − ȳ)′ are jointly sufficient for
(µ, Σ) (See (Klein and Sinha, 2016)). Clearly, given the original data X , ȳ ∼ Np(x̄, n−1Σ̂)
independently of Wy ∼ Wishartp(Σ̂, n − 1). The joint pdf (unconditional) of (ȳ, Wy) is
given by

fµ,Σ (ȳ, W y) ∝
�

Σ̂∈S++
n

|W y|
n−p−2

2 |Σ + Σ̂|−
1
2

|Σ|
n−1

2 |Σ̂|
p+1

2

e
− 1

2

[
n(ȳ−µ)′(Σ+Σ̂)−1

(ȳ−µ)+T r(W yΣ̂−1)+(n−1)T r(Σ̂Σ−1)
]
dΣ̂,

where S++
n stands for the set of p × p positive definite matrices. For the derivation of the

above expression we refer to (Klein and Sinha, 2016).

Based on the synthetic data Y , consider T 2
y = n(ȳ − µ)′W−1

y (ȳ − µ), which has a
mixture-type distribution mentioned in the following theorem which is derived by (Klein and
Sinha, 2016). The theorem also shows that T 2

y is a pivotal quantity and can be used to find
a confidence ellipsoid for µ.

Theorem 2: The distribution of T 2
y = n(ȳ − µ)′W−1

y (ȳ − µ) has the representation: T 2
y =

Ty1 × Ty2 where Ty1 ∼ 1
χ2

n−p
, independent of Ty2, and the conditional distribution of Ty2,

given a Wishart matrix W ∗, is ∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with
1 degree of freedom and λ1, . . . , λp are the roots of |(n − 1)I p + (1 − λ)W ∗| = 0 where
W ∗ ∼ Wishartp(I p, n − 1).

Theorem 2 shows that T 2
y can be used as a pivotal quantity, and hence we can con-

struct a (1 − γ) ellipsoid for µ based on T 2
y as given by

∆1(µ) = {µ : n(µ − ȳ)′W−1
y (µ − ȳ) ≤ an,p,γ} (10)

where an,p,γ is the (1 − γ) percentile from the distribution of T 2
y . The cut-off point an,p,γ can

be obtained by simulating from the distribution of T 2
y as given below:

1. Generate λ1, λ2, . . . , λp, the roots of |(n − 1)I p + (1 − λ)W ∗| = 0 where W ∗ ∼
Wishartp(I p, n − 1).

2. Generate Ty2 = ∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with 1 degree
of freedom.

3. Generate Ty1 ∼ 1
χ2

n−p
, independent of Ty2.

4. Finally compute T 2
y = Ty1 × Ty2.

The volume of the confidence ellipsoid ∆1(µ) based on the synthetic data Y is given by

Vµ(Y ) = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2|Wy|
1
2 . (11)
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Since E
(
|Wy| 1

2
)

= C 2
n,p

(n−1)p/2 |Σ| 1
2 with Cn,p = ∏p

i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
, the expected volume is ob-

tained as
E[Vµ(Y )] = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|
1
2 . (12)

4. Analysis of synthetic data under posterior predictive sampling

Likewise in the previous section, the original data X = (x1, x2, . . . , xn) is assumed
to be iid as Np(µ, Σ), where n > p. In this section we briefly discuss a method, illustrated
in ((Klein and Sinha, 2015)), to obtain confidence ellipsoid for µ based on a synthetically
generated data under posterior predictive sampling. Consider x̄ and Wx, as mentioned in the
section (1), which are jointly sufficient for (µ, Σ). Under the posterior predictive sampling
method, a vague prior for (µ, Σ) is set as π(µ, Σ) ∝ |Σ|− α

2 , where n + α > 2p + 3. The joint
posterior distribution of (µ, Σ) given X , can be represented as

Σ−1|X ∼ Wishartp(W −1
x , n + α − p − 2)

µ|(Σ, X) ∼ Np

(
x̄,

Σ
n

)
. (13)

We draw (µ∗, Σ∗) from the above posterior and finally a random sample Z = (z1, z2, . . . , zn)
is drawn from Np(µ∗, Σ∗), which constitutes the synthetic data. Based on these synthetic
data Z , one can easily verify that z̄ = 1

n

∑n
i=1 zi and Wz = ∑n

i=1(zi − z̄)(zi − z̄)′ are jointly
sufficient for (µ, Σ).

The joint pdf of z̄ and W z is obtained by integrating out Σ∗ from the joint pdf of
(z̄, W z, Σ∗) given by

f(z̄, W z, Σ∗) ∝ e− 1
2 [n(z̄−µ)′(Σ+2Σ∗)−1(z̄−µ)+T r(W zΣ∗−1)] |Σ + 2Σ∗|−

1
2 |Σ|

n−p+α−2
2

|Σ + Σ∗|−
2n−p+α−3

2 |Σ∗|−( p+1
2 +α)|W z|

n−p−2
2 .

Define T 2
z = n(z̄ − µ)′W−1

z (z̄ − µ), then the distribution of T 2
z , as mentioned in (Klein and

Sinha, 2015), given in Theorem (3) below.

Theorem 3: T 2
z has the representation: T 2

z = Tz1 × Tz2 with Tz1 ∼ 1
χ2

n−p
, independent

of Tz2 = ∑n
i=1 λiχ

2
1i where χ2

1i are independent χ2 random variables each with 1 degree of
freedom and λ1, λ2, . . . , λp are the roots of |I p + (2 − λ)Σ̃| = 0, and the distribution of Σ̃ is
given by

f(Σ̃) ∝ |Σ̃|
n−p−2

2 × |I + Σ̃|−
2n+α−p−3

2 .

From the above theorem it is clear that T 2
z can be used as a pivot and hence a (1−γ)

level confidence ellipsoid for µ based on T 2
z is given by

∆2(µ) = {µ : n(µ − z̄)′W−1
z (µ − z̄) ≤ bn,p,α,γ}, (14)

where bn,p,α,γ is the (1 − γ) level cut-off point from the distribution of T 2
z and it can be

obtained by simulating from the distribution of T 2
z as discussed below.
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1. To generate Σ̃ having the density f(Σ̃) as defined in Theorem (3), one can generate
A1 ∼ Wishartp(I p, n − 1) independent of A2 ∼ Wishartp(I p, n + α − p − 2), and set
Σ̃ = A

1
2
1 A−1

2 A
1
2
1 . The proof of this representation of Σ̃ appears in the proof of Theorem

8.2.8 of (Muirhead, 1982).

2. Obtain the eigenvalues of Σ̃ as δ1, δ2, . . . , δp and take λi = 2 + 1
δi

, i = 1, . . . , p.

3. Generate Tz2 = ∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with 1 degree
of freedom.

4. Generate Tz1 ∼ 1
χ2

n−p
, independent of Tz2.

5. Finally compute T 2
z = Tz1 × Tz2.

The volume of the confidence ellipsoid ∆2(µ) based on the synthetic data Z is given by

Vµ(Z) = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2|Wz|
1
2 , (15)

therefore the expected volume is

E[Vµ(Z)] = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2D2
n,pEn,p,α|Σ|

1
2 , (16)

where Dn,p = ∏p
i=1

[√
2Γ( n−i+1

2 )
Γ( n−i

2 )

]
and En,p,α = ∏p

i=1

[
Γ( n+α−p−i−2

2 )√
2Γ( n+α−p−i−1

2 )

]
.

5. Bayesian analysis of PIS and PPS data

In this section, which is essentially based on Guin et al. (2023), we discuss the
Bayesian credible confidence ellipsoids (BCCE) for the mean vector µ and their (frequentist)
expected volumes under PIS and PPS.

5.1. BCCE under PIS

Referring to the likelihood function of the released data y1, · · · , yn under PIS men-
tioned in Section 3, we now apply a diffuse prior π(µ, Σ) ∝ |Σ|−

δ
2 . This results in the

posterior joint distribution of µ and Σ, which can be represented in the following manner:
Σ̂|W y, ȳ ∼ Wishart−1

p (W y, n − p + δ − 2)
Σ|Σ̂, ȳ, W y ∼ Wishart−1

p

(
(n − 1)Σ̂, n − p + δ − 2

)
µ|Σ, Σ̂, ȳ, W y ∼ Np

(
ȳ,

1
n

(
Σ + Σ̂

))
(17)

The above can be further reformulated as:
W y

−1/2Σ̂W y
−1/2 ∼ Wishart−1

p (Ip, n − p + δ − 2)
Σ̂−1/2ΣΣ̂−1/2 ∼ Wishart−1

p ((n − 1)Ip, n − p + δ − 2)

µ | Σ, Σ̂, ȳ ∼ Np

(
ȳ,

1
n

(
Σ + Σ̂

))
(18)
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which has the benefit that W y
−1/2Σ̂W y

−1/2 is independent of Σ̂−1/2ΣΣ̂−1/2 and their pos-
terior distributions are unconditional. The posterior distributions are proper as long as
n > max{p, 2p − δ + 1}. A (1 − γ) BCCE for µ can be taken as [(Guin et al., 2023)]

∆3(µ) =
{
µ : T 2

y ≤ cn,p,δ;γ
}

, (19)

where T 2
y = n(ȳ − µ)′W−1

y (ȳ − µ) and the cut-off point cn,p,δ;γ is obtained by simulation
through the following steps:

1. Generate B ∼ Wishart−1
p (Ip, n − p + δ − 2).

2. Generate A | B ∼ Wishart−1
p ((n − 1)B, n − p + δ − 2) + B.

3. Generate λ1, . . . , λp, the roots of |A − λIp| = 0.

4. Generate T 2
y=∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The observed and expected volumes of the above BCCE under PIS are readily obtained as

V B
µ (Y ) = πp/2

Γ
(

p
2 + 1

) (cn,p,δ;γ/n)p/2 |W y|1/2 (20)

E[V B
µ (Y )] = πp/2

np/2Γ
(

p
2 + 1

) (cn,p,δ;γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|1/2 , (21)

where Cn,p = ∏p
i=1

[
21/2Γ(n−i+1

2 )/Γ(n−i
2 )
]
.

5.2. BCCE under PPS

Referring to the likelihood function of the released data z1, z2, . . . , zn under PPS
mentioned in Section 4, we now apply a diffuse prior π(µ, Σ) ∝ |Σ|−

δ
2 . This results in the

posterior joint distribution of µ and Σ which can be represented in the following form:

Σ∗ | Wz ∼ Wishart−1
p (Wz, n − 2p + δ − 1 + 2α)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n + α − δ − 1

2 ,
n − p + δ − 2

2

)

µ | Σ, Σ∗, z̄ ∼ Np

(
z̄,

1
n

(Σ + 2Σ∗)
)

(22)

where BII
p (a, b) denotes the matrix variate beta type II distribution as described in (Muirhead,

1982). We can reformulate the above posterior distributions as:

W −1/2
z Σ∗W −1/2

z ∼ Wishart−1
p (Ip, n − 2p + δ − 1 + 2α)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n + α − δ − 1

2 ,
n − p + δ − 2

2

)

µ | Σ, Σ∗, z̄ ∼ Np

(
z̄,

1
n

(Σ + 2Σ∗)
)

(23)
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which has the benefit that W −1/2
z Σ∗W −1/2

z is independent of Σ∗−1/2ΣΣ∗−1/2 and its pos-
terior distribution is unconditional. The posterior distributions are proper as long as n >
max{p, 2p − α + 1, 3p − δ, p − α + δ, 2p − δ + 1 − 2α}.

A BCCE for µ can be taken as [(Guin et al., 2023)]

∆4(µ) = {µ : T 2
z ≤ dn,p,α,δ,γ}, (24)

where T 2
z = n(µ − z̄)′W−1

z (µ − z̄) and the cut-off point dn,p,α,δ,γ is obtained by simulation
through the following steps:

1. Generate B ∼ Wishart−1
p (Ip, n − 2p + δ + 2α − 1) and decompose as B = DD′.

2. Generate V0 ∼ Wishartp(Ip, n − p + δ − 2), V1 ∼ Wishartp(Ip, n + α − δ − 1),
C = V −1

0 V1V
−1

0 and A = DCD′ + 2B (Gupta and Nagar, 1999).

3. Generate λ1, . . . , λp, the roots of |A − λIp| = 0.

4. Generate T 2
z =∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The observed and expected volumes of the above BCCE under PPS are readily ob-
tained as

V B
µ (Z) = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ;γ)p/2 |Wz|1/2 , (25)

E[V B
µ (Z)] = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ,γ)p/2 D2
n,pEn,p,α × |Σ|1/2 , (26)

where Dn,p = ∏p
i=1

[√
2Γ( n−i+1

2 )
Γ( n−i

2 )

]
and En,p,α = ∏p

i=1

[
Γ( n+α−p−i−2

2 )√
2Γ( n+α−p−i−1

2 )

]
.

6. Comparison of the suggested methods based on the expected volumes

6.1. Expressions of observed and expected volumes

In this subsection, we provide a brief overview of various expressions for observed and
expected volumes for µ within the noise-added data context and also both frequentist and
Bayesian frameworks under PIS and PPS methods.

The observed and expected volumes of the confidence ellipsoid for µ (see 4), derived
from noise added data U , when unit level data are available, are given below.

Vµ(U ) = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

|Wu|
1
2 ,

E[Vµ(U )] = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

Cn,p|Σ + R|
1
2 . (27)
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where Cn,p = ∏p
i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
.

If unit level data are not available, the observed volume and a lower bound to the
expected volume of the confidence ellipsoid for µ (see 7) are given by,

V ∗
µ = πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
|Wu|

1
2 ,

E[V ∗
µ ] ≥ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Max

{
Cn,p|Σ|

1
2 , Cr+1,p|R|

1
2
}

≥ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Cn,p|Σ|

1
2 . (28)

[Assuming |R| to be significantly small]

Below are the observed and expected volumes of the confidence ellipsoid for µ (see 10),
derived from synthetic data Y using the PIS method.

Vµ(Y )P IS = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2|Wy|
1
2 ,

E[Vµ(Y )]P IS = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|
1
2 . (29)

Likewise, the observed and expected volumes of the confidence ellipsoid for µ (see
14), utilizing synthetic data Z under the PPS method, are presented below.

Vµ(Z)P P S = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2|Wz|
1
2 ,

E[Vµ(Z)]P P S = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2D2
n,pEn,p,α|Σ|

1
2 , (30)

where Dn,p = ∏p
i=1

[√
2Γ( n−i+1

2 )
Γ( n−i

2 )

]
and En,p,α = ∏p

i=1

[
Γ( n+α−p−i−2

2 )√
2Γ( n+α−p−i−1

2 )

]
.

In the Bayesian framework, we provide below the observed and expected volumes of
credible confidence ellipsoids for µ within the context of synthetic data generated using the
PIS method (see 19),

V B
µ (Y )P IS = πp/2

np/2Γ
(

p
2 + 1

) (cn,p,δ;γ)p/2 |Wy|1/2 ,

E[V B
µ (Y )]P IS = πp/2

np/2Γ
(

p
2 + 1

) (cn,p,δ;γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|1/2 , (31)
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Table 2: Coefficients of |Σ| 1
2 in the expected volume expression under various

perturbation schemes (γ = 0.05).

DIFFERENT SCHEMES n
p

2 3 4

NA DATA (r = 100)
25 0.8619 0.9690 1.1219
50 0.4061 0.2999 0.2231
100 0.2390 0.1279 0.0683

PIS
25 1.7928 2.8911 5.0991
50 0.8181 0.8554 0.9147
100 0.3949 0.2770 0.2017

PPS (α = 4)
25 2.2241 5.9769 14.3850
50 1.2394 1.6682 2.3476
100 0.5877 0.5294 0.4796

PIS BAYES (δ = 10)
25 1.1445 1.6016 2.3651
50 0.6672 0.6517 0.6477
100 0.3572 0.2468 0.1717

PPS BAYES (α = 1, δ = 10)
25 1.457 2.4228 5.1696
50 0.7489 0.7758 0.9171
100 0.3773 0.2768 0.2032

and under PPS method (see 24),

V B
µ (Z) = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ;γ)p/2 |Wz|1/2 ,

E[V B
µ (Z)] = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ,γ)p/2 D2
n,pEn,p,α × |Σ|1/2 . (32)

6.2. Comparison of expected volumes - all are proportional to |Σ|1
2

Note that the expected volume expressions presented in equations 29, 30, 31 and 32
for various methods are directly proportional to |Σ| 1

2 . The coefficient of |Σ + R| 1
2 in the

equation 27 is the same as that of the expected volume under the original data, hence it is
immaterial to consider it for the comparison. Rather we compare the expected volume under
noise added data when unit level data are not available. We assume |R| to be small enough
and calculate the coefficient of |Σ| 1

2 in (28). Consequently, a straightforward comparison of
these methods can be made by examining the coefficients of the expected volume expressions,
without considering the population parameter |Σ| 1

2 . In Table (2), we present the coefficients
obtained from various perturbation schemes in different combinations of n and p values.
Specifically, we used n values of 25, 50, and 100, and p values of 2, 3, and 4. The parameters
α = 4 and δ = 10 remain fixed in the frequentist approach, while in the Bayesian framework
we used α = 1 and δ = 10. Additionally, for data with added noise, we set r = 100.
Throughout the analysis, we maintain a consistent value of γ = 0.05.

From Table (2), it is clear that the expected volume decreases as the sample size (n) increases
under any schemes, which is quite natural. Also, in all the choices of the pair (n, p), we can
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see that the expected volumes under the noise added data (taking r = 100) are quite smaller
than the other schemes. As anticipated, in both the frequentist and Bayesian frameworks,
the expected volumes under PPS exceed those under PIS.

Remark 2: Referring to Remark 1, it is obvious that in case unit level data are available,
the expected volume then will be the least among all reported above. Therefore, if one were
to make practical recommendations based on the expected volumes only, gathering unit level
data and subsequent noise addition will certainly pay off, followed by the same noise addition
mechanism based on summary data.

7. Measure of privacy protection

Disclosure risk evaluation

When the original (unit level) microdata is considered to be sensitive and thus hidden
through the use of a masked version, it is natural to examine the extent to which sensitivity
of a data point has been protected. A slight variation of a popular privacy measure to study
the disclosure risk of a single scalar value xi, given in Klein and Sinha (2016), can be taken
as

P [|x̂i − xi| < ϵ|X] = θi (33)
where X is the entire original data, and x̂i is an intruder’s prediction of xi based upon seeing
the released (artificial/synthetic) data, ϵ be any small positive quantity. Naturally, a high
value of the above probability indicates a low level of protection and vice versa. This privacy
measure (PM) is computed based on the random mechanism producing the masked data,
given the original data X.

In the multivariate case, a generalization of (33) can be taken as

θi = P [(x̂i − xi)tA(x̂i − xi) ≤ ϵ|X] (34)

where A is a positive definite symmetric matrix.

Returning to our specific problem, based on the synthetic multivariate data released
by the data producer, a naive intruder’s best guess about xi, the original value for the ith
unit, can be discussed under two circumstances: (a) the identities of the perturbed data
are released by the data producer and ui, yi or zi, the perturbed value of xi based on
NA/PIS/PPS, corresponding to the identifiable ith unit, is taken as intruder’s choice, and
(b) the identities of the perturbed data are lost/retained by the data producer in which case
ū = [∑n

i=1 ui]/n, ȳ = [∑n
i=1 yi]/n or z̄ = [∑n

i=1 zi]/n is taken as intruder’s choice.

There is also a 3rd case in the multivariate data context in which an intruder may be
interested in a particular component, say component 1, of the p vector multivariate data. If
original data x1, · · · , xn are available, intruder’s obvious choice is x̄1 = (x11 + ... + xn1)/n
where we write xi = (xi1, xi2, · · · , xip), i = 1, · · · , n. In the absence of the original data, we
can take ū1, ȳ1 and z̄1 as intruder’s choice under NA/PIS/PPS, respectively.

In subsection 7.1 we discuss PP under noise added data, in subsection 7.2 we discuss
PP under PIS and PPS is taken up in subsection 7.3.

All the above methods discussed in Sections (7.1), (7.2) and (7.3), are from a naive intruder’s
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perspective. However, a smart intruder with an excellent training in statistics can think in
a different way. We have added a remark to this effect at the end of this section.

7.1. Three cases under noise added (NA) data

7.1.1. Case (a)

Here we assume that the identities of the released perturbed data are known and hence
the intruder’s best choice of xi will be ui. Recall that ui = xi + ei where ei ∼ Np(0, R)
is independent of the original data X. Note that e∗

i = R− 1
2 ei ∼ Np(0, Ip). Define B =

R
1
2 AR

1
2 , which is a symmetric positive definite matrix, there exists an orthogonal matrix

Γ such that B = Γ′ΛΓ, where Λ = Diag(λ1, · · · , λp) be a diagonal matrix with diagonal
elements λi’s (i = 1, · · · , p), which are the solutions to the equation |B − λIp|. Considering
mi = Γe∗

i ∼ Np(0, Ip) we can deduce the privacy measure (θi) corresponding to the ith unit
as given by

θi = P [(ui − xi)′A(ui − xi) ≤ ϵ|X]
= P [e′

iAei ≤ ϵ]
= P

[
(e∗

i )′R
1
2 AR

1
2 (e∗

i ) ≤ ϵ
]

= P [(e∗
i )′B(e∗

i ) ≤ ϵ]
= P [(e∗

i )′Γ′ΛΓ(e∗
i ) ≤ ϵ]

= P [m′
iΛmi ≤ ϵ]

= P

 p∑
j=1

λjχ
2
1j ≤ ϵ

 (35)

In the above expression χ2
1j, j = 1, · · · , p are independent central chi square variables each

with 1 d.f. Note that the quantity θi = P
[∑p

j=1 λjχ
2
1j ≤ ϵ

]
= θ∗ is independent of any

specific unit i and hence it can be taken as a measure of overall privacy protection. The
following are two special cases based on the choice of matrix A.

Case 1: A = Ip ⇒ λ1, · · · , λp are the solutions of |R − λIp| = 0.

Case 2: A = Diag(a11, · · · , app) ⇒ λ1, · · · , λp are the solutions of |R−λDiag( 1
a11

, · · · , 1
app

)| =
0.

7.1.2. Case (b)

When the identities of the released perturbed data are not known, the intruder’s
best choice of xi (i = 1, · · · , n) will be ū. Note that ū − xi = ē − (xi − x̄), and for
conditionally given X, it follows Np

(
xi − x̄, R

n

)
. Define e∗

i =
√

nR− 1
2 (ū−xi), which implies

e∗
i |X ∼ Np(δi, Ip), where δi =

√
nR− 1

2 (xi − x̄). Here we take B = R
1
2 AR

1
2

n
, which is

a symmetric and positive definite matrix, there exists an orthogonal matrix Γ such that
B = Γ′ΛΓ, where Λ = Diag(λ1, · · · , λp) be a diagonal matrix with diagonal elements λj’s
(j = 1, · · · , p), which are the solutions to the equation |B − λIp|. Likewise Case (a), we
define mi = Γe∗

i , which conditionally for given X, follows Np(ηi, Ip), where ηi = Γδi. We
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proceed in a similar fashion as mentioned in Case (a) and deduce the privacy measure (θi)
corresponding to the ith unit as

θi = P [(ū − xi)′A(ū − xi) ≤ ϵ|X]

= P

(e∗
i )′ R

1
2 AR

1
2

n
(e∗

i ) ≤ ϵ|X


= P [(e∗

i )′B(e∗
i ) ≤ ϵ|X]

= P [(e∗
i )′Γ′ΛΓ(e∗

i ) ≤ ϵ|X]
= P [m′

iΛmi ≤ ϵ|X]

= P

 p∑
j=1

λjχ
2
1j(η2

ij) ≤ ϵ

 , (36)

where χ2
1j(η2

ij), j = 1, · · · , p are independent noncentral chi-squared variables each with 1
d.f. and noncentrality parameters η2

ij, which is the squared jth component (j = 1, · · · , p) of
ηi.

Unlike Case (a), here θi depends on the specific unit i through the noncentrality
parameters ηij’s. We can write,

θi ≤ P [
p∑

j=1
λjχ

2
1j ≤ ϵ] = θ∗ (say).

The quantity θ∗ is independent of i and can be taken as a measure of overall privacy measure.
Two special choices of A as similar to Case (a) are given below.

Case 1: A = Ip ⇒ λ1, · · · , λp are the solutions of |R
n

− λIp| = 0.

Case 2: A = Diag(a11, · · · , app) ⇒ λ1, · · · , λp are the solutions of |R
n

−λDiag( 1
a11

, · · · , 1
app

)| =
0.

7.1.3. Case (c)

When an intruder is interested in a particular component, say component 1, of the p-
component vector multivariate data, based on the original data x1, · · · , xn, intruder’s obvious
choice is x̄1 = (x11 + ... + xn1)/n where we write xi = (xi1, xi2, · · · , xip), i = 1, · · · , n. In the
absence of the original data, the best choice would be ū1 = 1

n

∑n
i=1 ui1. Clearly, ū1 − x̄1 = ē1,

independently of the original data X, follows N(0, r11
n

), where r11 be the (1, 1)th element of
R. Therefore the privacy measure (θ) is given by

θ = P
[
(ū1 − x̄1)2 ≤ ϵ|X

]
= P

[
ē2

1 ≤ ϵ
]

= P
[
χ2

1 ≤ nϵ

r11

]
(37)

From the above, it readily follows that, more the variability in a particular noise component,
more the privacy protection for the same component.
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7.2. Three cases under PIS

7.2.1. Case (a)

Since the identities of the released masked data are known, the intruder’s choice of xi

can be taken as yi, which conditionally given X, is Np

(
x̄, Wx

n−1

)
according to the PIS scheme.

It is interesting to observe that yi has no bearing with the index i as far as the PIS scheme
is concerned.

Before we compute the PM θ in Case (a), let us look at Case (b).

7.2.2. Case (b)

Since in the absence of the identity of the ith unit ȳ seems to be the intruder’s obvious
choice of xi, to compute the PM θ, we proceed as follows. Recall that

θ = P
[
(ȳ − x̄i)tA(ȳ − x̄i) ≤ ϵ|X

]
. (38)

Note that under PIS, ȳ1, · · · , ȳn are iid following Np

(
x̄, Wx

n−1

)
, implying ȳ|X ∼ Np

(
x̄, Wx

n(n−1)

)
.

Define D = Wx
n(n−1) , we have (ȳ−x̄i)|X ∼ Np ((x̄ − x̄i), D), which implies D−1/2(ȳ−x̄i)|X ∼

Np

(
D−1/2(x̄ − xi), Ip

)
. Write Z = D−1/2(ȳ − x̄i), then θi = P [ZtD1/2AD1/2Z ≤ ϵ|X] =

P [ZtBZ ≤ ϵ|X], where D1/2AD1/2 = B: p × p symmetric pd and Z|X ∼ Np (δi, Ip) with
δi = D−1/2(x̄ − xi).

Since B is symmetric pd, there exists an orthogonal matrix Γ such that ΓtΛΓ = B,
where Λ is a diagonal matrix with elements λ1, · · · , λp as the characteristic roots of B. Let
U = ΓZ ∼ Np[ηi, Ip], where ηi = Γδi. Then

θi = P [ZtΓtΛZΓ ≤ ϵ]
= P [U tΛU ≤ ϵ]

= P [
p∑

j=1
λjχ

2
1j(η2

ij) ≤ ϵ]. (39)

Note that the roots of B are the solutions of |B − λIp| = 0 ⇐⇒ |D1/2AD1/2 − λIp| = 0
⇐⇒ |A − λD−1Ip| = 0 ⇐⇒ |A − λn(n − 1)S−1

x | = 0. Moreover, χ2
1j(η2

ij), j = 1, · · · , p are
independent noncentral chisquare variables each with 1 d.f. and noncentrality parameters as
appear above.

For any specific unit i, θi above can be taken as a privacy measure. Obviously, for
any i

θi ≤ P [
p∑

j=1
λjχ

2
1j ≤ ϵ] = θ∗ (say). (40)

We can take the absolute quantity θ∗, which is independent of any specific unit i, as a
measure of overall privacy protection. In the above, χ2

11, · · · , χ2
1p are iid central chi-square

each with 1 d.f. Here are two special cases:

Case 1: A = Ip ⇒ λ1, · · · , λp are the solutions of | Wx
n(n−1) − λIp| = 0.
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Case 2: A = Diag(a11, · · · , app) ⇒ λ1, · · · , λp are the solutions of | Wx
n(n−1)−λDiag( 1

a11
, · · · , 1

app
)| =

0. Note that a11, · · · , app can be interpreted as quantities representing relative importance
of the p components of the vector x.

Returning now to Case (a), we proceed as in Case (b) and it is easy to check that the
PM θi simplifies to

θi = P [
p∑

j=1
λjχ

2
1j(η2

ij) ≤ ϵ]. (41)

≤ P [
p∑

j=1
λjχ

2
1j ≤ ϵ]. (42)

where λ1, · · · , λp are now the roots of the equation |A − λ(n − 1)W −1
x | = 0 and χ2

11, · · · , χ2
1p

are independent central chi-square variables each with 1 d.f. The two special cases of choice
of A can be similarly dealt here.

7.2.3. Case (c)

From the conditional multivariate normal distribution of ȳ|X ∼ Np

(
x̄, Wx

n(n−1)

)
, it

readily follows that the conditional univariate distribution of ȳ1, given X, is normal with
mean x̄1 and variance Wx11

n(n−1) = d (say). Therefore the privacy measure (PM) θ, which is
P [(ȳ1 − x̄1)2 ≤ ϵ|X], can be simplified as

θ = P
[
(ȳ1 − x̄1)2 ≤ ϵ|X

]
= P

[
χ2

1 ≤ ϵ

d

]
. (43)

The implication of the PM in this case is obvious - the component having the maximum
sampling variation will offer maximum privacy protection.

7.3. Three cases under PPS

7.3.1. Case (a)

Since the identities of the released masked data are known in this case, the intruder’s
obvious choice of xi is zi, which (under the PPS scheme) conditionally given X and Σ∗, is
Np

(
x̄, (1 + 1

n
)Σ∗

)
with Σ∗ having an Inverted Wishart distribution (see (44) below). Again,

as under PIS, here also the unit i has no direct relevance.

Before we compute the PM θ in Case (a), let us look at Case (b).

7.3.2. Case (b)

Recall that z̄ is the intruder’s choice of xi in this case. To compute the PM θi, we
proceed as follows.

Recall that under PPS:

z̄ − xi|Σ∗, X ∼ Np

(
x̄ − xi,

2
n

Σ∗
)

and Σ∗|X ∼ Wishart−1
p

(
W −1

x , n + α − p − 2
)

(44)
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with (Anderson (2003))

h(Σ∗) ∼ e− 1
2 trΣ∗−1Sx|Σ∗|−( n+α−1

2 )|Wx|(
n+α−p−2

2 ) (45)

Combining (44) and (45), the marginal density of z̄, given X, is readily obtained as:

f(z̄|X) ∼
�

Σ∗

e− n
4 (z̄−x̄)tΣ∗−1(z̄−x̄)

|Σ∗|p/2 e− 1
2 trΣ∗−1Wx |Σ∗|−( n+α−1

2 )|Wx|(
n+α−p−2

2 )dΣ∗

∼
�

Σ∗
e− 1

2 trΣ∗−1[Wx+ n
2 (z̄−x̄)(z̄−x̄)t]|Σ∗|−( n+α−1+p

2 )|Wx|(
n+α−p−2

2 )dΣ∗

∼ |Wx|n+α−p−2
2

|Wx + n
2 (z̄ − x̄)t(z̄ − x̄)|n+α−2

2

∼ |Wx|− p
2

|1 + n
2 (z̄ − x̄)tW −1

x (z̄ − x̄)|n+α−2
2

(46)

which is a multivariate t-distribution. The privacy measure (PM) θi can then be written as

θi = P
[
(z̄ − xi)tA(z̄ − xi) ≤ ϵ|X

]
= P

[{
(z̄ − x̄) + (xi − x̄)

}t
A
{
(z̄ − x̄) + (xi − x̄)

}
≤ ϵ|X

]
= P

[
(y − ζi)tA(y − ζi) ≤ ϵ|X

]
(47)

where y = z̄ − x̄ and ζi = xi − x̄. Note from (46) that the pdf of y can be written as

h(y) ∼ |B|p/2[1 + ytBy]−
n+α−2

2 (48)

where B = n
2 W −1

x . It is well known that a multivariate t-distribution is a scale-mixture of
normal and gamma. This follows because (48) can be written as

∼
� ∞

0

[
e− ytBy

2 u|B|p/2up/2
][

e− u
2 u

ν−p
2
]
du (49)

∼ |B|p/2(1 + ytBy)−( ν
2 +1) where ν = n + α − 4 (50)

y|u ∼ Np

(
0,

B−1

u

)
, u ∼ e− u

2 u
ν−p

2 , 0 < u < ∞. (51)

Let Γ : p × p be a nonsingular matrix such that ΓB−1Γt = Ip ⇔ B−1 = Γ−1(Γt)−1 =
(ΓtΓ)−1. Then Vi

def= Γ(y − ζ)i|u ∼ Np

(
−Γζi = δi,

Ip

u

)
.

The privacy measure θi from 47) can be expressed as

θi = P
[
(y − ζi)tA(y − ζi) ≤ ϵ|X

]
= P

[
Vt

i

(
(Γ−1)tAΓ−1

)
Vi ≤ ϵ|X

]
.
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Finally, let us write C = (Γ−1)tAΓ−1 and choose an orthogonal matrix Λ satisfying
C = ΛtD(λ)Λ, where D(λ) is a diagonal matrix with the diagonal elements as the roots of
C. Then

θi = P
[
Vt

iΛtD(λ)ΛVi ≤ ϵ|X
]

= P
[
V∗

i
tD(λ)V∗

i ≤ ϵ|X
]
, V∗

i = ΛVi ∼ Np

(
ηi,

1
u

Ip

)
, where ηi = −ΛΓζi

= Eu

P

 p∑
j=1

λjχ
2
1j(uη2

ij) ≤ uϵ|u

 , where ηij be the jth component of ηi. (52)

≤ P
[ p∑

j=1
λjχ

2
1j(central) ≤ ϵχ2

ν−p+2

]
. (53)

Recall that λ1, · · · , λp are the roots of C, which are the same as the roots of A(ΓtΓ)−1 =
AB−1 = 2

n
(AWx), and χ2

11, · · · , χ2
1p are independent central χ2 with 1 degree of freedom.

The universal upper bound in (53) can be used as a privacy measure for any unit.

Three special cases follow.

Case 1: A = Ip =⇒ θ ≤ P
[∑p

i=1 λiχ
2
1i(central) ≤ ϵχ2

ν−p+2

]
, where λ1, · · · , λp are the roots

of 2
n
Wx.

Case 2: A = W −1
x =⇒ λ1 = · · · = λp = 2

n
, which implies θ ≤ P

[
χ2

p ≤ n
2 ϵχ2

ν−p+2

]
.

Case 3: A = Diag(a1, · · · , ap) =⇒ λ1, · · · , λp are the roots of 2
n


a1 0 . . . 0
0 a2 . . . 0
... ... . . . ...
0 0 . . . ap

Wx.

Returning now to Case (a), it is easy to verify from the distributional property of zi
and the derivation under Case (b) that here

θ ≤ P
[ p∑

j=1
λjχ

2
1j(central) ≤ ϵχ2

ν−p+2

]
(54)

where λ1, · · · , λp are now the roots of (1 + 1
n
)AWx. Three special cases as in Case b can be

easily dealt here.

7.3.3. Case (c)

From the derivation under case (a), referring to equation (51) which displays the
conditional multivariate normal distribution of z̄, given X and u, it readily follows that
the conditional univariate distribution of z̄1, given X and u, is N

(
x̄1, ( 2

n
)Wx11

)
with the

marginal pdf of u as ∼ e−u/2u
ν−p

2 , 0 < u < ∞. Hence the privacy measure (PM) P [(z̄1 −
x̄1)2 ≤ ϵ] can be computed as

P [(z̄1 − x̄1)2 ≤ ϵ] = P
[
χ2

1 ≤ nϵ

2Wx11
χ2

ν−p+2

]
= P

[
F1,n+α−p−2 ≤ nϵ(n + α − p − 2)

2Wx11

]
(55)
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since ν = n + α − 4.

Remark 3: Smart intruder’s case

A smart intruder with sufficient training in statistics is likely to think in a completely
different manner than a naive intruder. A general result to predict unobserved X from an
observed Y is to use the conditional mean formula: E(X|Y). In our case upon observing
the released data (u, y, z) under the three data generation or perturbation schemes, it is
possible to compute the conditional means E(X|u or y or z] although the expressions will
be quite complicated in some cases. We do not pursue this aspect here.

8. Applications

In this section, we consider one publicly accessible multivariate dataset obtained from
the US Census Bureau website and another multivariate dataset on renal variables from
the book by Harris and Boyd (1995). Subsequently, we employ the various data masking
procedures described in the prevision sections. The goal is to construct a credible ellipsoid
for the unknown mean vector based on the original data and its perturbed versions, and
display and compare them. We also study which component of the multivariate data vector
is expected to provide least to most privacy protection based on the criterion used in Section
7.

Subsection 8.1 provides a description and summary of the Census Bureau data for
p = 2, while subsection 8.2 focuses on the renal dataset for p = 3, presenting its description
and analysis. Privacy protection measures for both datasets are presented in subsection 8.3.

8.1. Description and summary of census bureau data

This subsection provides an overview of the 2023 Current Population Survey (CPS)
Annual Social and Economic Supplement (ASEC) data, conducted by the Bureau of the
Census for the Bureau of Labor Statistics. The ASEC Supplement includes crucial monthly
demographic and labor force data, supplemented by additional details on work experience, in-
come, noncash benefits, health insurance coverage, and migration. Our data analysis focused
on the District of Columbia (D.C.) for p = 2, we have examined two variables, Total House-
hold Earnings (THHE), which includes Wages and Salary income, and Other Household
Earnings (OHHE), encompassing retirement, interest, dividend, and social security income,
chosen from a diverse range of available data. The ”2023 Annual Social and Economic Sup-
plements” can be accessed at https://www.census.gov/data/datasets/2023/demo/cps/cps-
asec-2023.html.

In our analysis for the District of Columbia data from the Census Bureau, utilizing
two variables (p = 2: THHE and OHHE), we have examined a sample of 171 households with
Total Household Earnings (THHE) more than 200,000 USD. The resulting mean vector and

dispersion matrix (in thousands) are: X̄ =
[

THHE OHHE
347.51113 26.44435

]
, and S = W /(n − 1) =[

19649.7273 548.1169
548.1169 1241.4463

]
. Based on the original data, the observed volume (2) of the (1−γ)
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level confidence ellipsoid (1) is 553.25 and the coefficient of |Σ| 1
2 in the expected volume

expression of Equation (3) is 0.11205.

8.1.1. CE Under NA Data: Census bureau data

Case 1: Unit level data available

We have taken the noise dispersion matrix as R =
[
1000 10
10 100

]
and r = 100. If unit

level data are available, then for p = 2, n = 171, a significance level of γ = 5% for type-I
error the observed volume (5) under NA data is 577.6583. The coefficient of |Σ + R| 1

2 in
the expected volume expression of Equation 6 is the same as for the original data, that is
0.11205. Figure 2 displays the confidence ellipsoid for the unknown mean vector µ derived
from noise added data when unit level data are available.

Case 2: Unit level data not available

Likewise the previous case, here we also have taken the noise dispersion matrix as

R =
[
1000 10
10 100

]
and r = 100. If unit level data are not available, then for p = 2, n = 171,

a significance level of γ = 5% for type-I error the observed volume (8) under NA data
is 1026.853. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 9 is
0.2012185. Figure 3 displays the confidence ellipsoid for the unknown mean vector µ derived
from noise added data when unit level data are available.

8.1.2. CE Under PIS: Census bureau data

For p = 2, n = 171, a significance level of γ = 5% for type-I error, the observed volume
(11) under PIS is 1140.265. The coefficient of |Σ| 1

2 in the expected volume expression of
Equation 12 is 0.2258409. Figure 6 displays the confidence ellipsoid for the unknown mean
vector µ derived from synthetic data using PIS.

8.1.3. CE Under PPS: Census bureau sata

For p = 2, n = 171, a significance level of γ = 5% for type-I error, α = 4, the
observed volume (15) under PPS is 1639.902. The coefficient of |Σ| 1

2 in the expected volume
expression of Equation 16 is 0.3382968. Figure 7 displays the confidence ellipsoid for the
unknown mean vector µ derived from synthetic data using PPS.

8.1.4. BCCE Under PIS: Census bureau data

For p = 2, n = 171, a significance level of γ = 5% for type-I error, and a hyperpa-
rameter δ = 10 in the prior distribution, the observed volume (20) under PIS is 1062.07.
The coefficient of |Σ| 1

2 in the expected volume expression of Equation 21 is 0.2104. Figure
9 displays the credible ellipsoid for the unknown mean vector µ derived from synthetic data
using PIS.
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8.1.5. BCCE Under PPS: Census bureau data

For p = 2, n = 171, a significance level of γ = 5% for type-I error, α = 1, and
a hyperparameter δ = 10 in the prior distribution, the observed volume (25) under PPS
is 1019.4310. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 26 is
0.22239. Figure 10 displays the credible ellipsoid for the unknown mean vector µ derived
from synthetic data using PPS.

8.2. Description and summary of renal data

In this section, we used a renal data set from the book by Harris and Boyd (1995),
Appendix 4.2 on page 137. Serum creatinine (SCR), urea nitrogen (BUN), and uric acid
(UA) levels were assessed from a single blood specimen collected from a group of male
medical students at the University of Virginia between 1987 and 1991 (Harris and Boyd,
1995). To demonstrate the methodologies introduced in this paper, we applied them to
a subset of renal data with p = 3 (SCR, BUN, and UA) and a sample size of n = 150.

The resulting mean vector and dispersion matrix are: X̄ =
[

BUN SCR UA
15.3600 1.0967 6.4680

]
, and

S = W /(n − 1) =

12.9970 0.0495 0.3478
0.0495 0.0183 0.0574
0.3478 0.0574 1.5086

. Based on the original data, the observed

volume (2) of the (1 − γ) level confidence ellipsoid (1) is 0.0294 and the coefficient of |Σ| 1
2

in the expected volume expression of Equation (3) is 0.0518.

8.2.1. CE Under NA Data: Renal data

Case 1: Unit level data available

We have taken the noise dispersion matrix as R =

 0.7 −0.3 −0.3
−0.3 0.7 −0.3
−0.3 −0.3 0.7

 and r = 100.

If unit level data are available, then for p = 3, n = 150, a significance level of γ = 5% for
type-I error the observed volume (5) under NA data is 0.24303. The coefficient of |Σ + R| 1

2

in the expected volume expression of Equation 6 is the same as for the original data, that is
0.0518.

Case 2: Unit level data not available

Likewise the previous case, here we also have taken the noise dispersion matrix as

R =

 0.7 −0.3 −0.3
−0.3 0.7 −0.3
−0.3 −0.3 0.7

 and r = 100. If unit level data are not available, then for p = 3,

n = 150, a significance level of γ = 5% for type-I error the observed volume (8) under NA
data is 0.35897. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 9 is
0.10454.
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8.2.2. CE Under PIS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, the observed
volume (11) under PIS is 0.09941. The coefficient of |Σ| 1

2 in the expected volume expression
of Equation 12 is 0.14711.

8.2.3. CE Under PPS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, α = 4, the observed
volume (15) under PPS is 0.15295. The coefficient of |Σ| 1

2 in the expected volume expression
of Equation 16 is 0.27928.

8.2.4. BCCE Under PIS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, and a hyperpa-
rameter δ = 10 in the prior distribution, the observed volume (20) under PIS is 0.0904. The
coefficient of |Σ| 1

2 in the expected volume expression of Equation 21 is 0.1338.

8.2.5. BCCE Under PPS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, α = 1, and a
hyperparameter δ = 10 in the prior distribution, the observed volume (25) under PPS is
0.0605. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 26 is 0.1482.

The outcomes of observed and expected volumes for both datasets under various
perturbation schemes have been summarized into a single, as shown in Table (3).

Table 3: Observed volumes and the coefficients of |Σ| 1
2 in the expected volume

expression (denoted as Expected∗) for various perturbation schemes and two data
sets (γ = 0.05).

DIFFERENT SCHEMES Volumes CB Data Set Renal Data Set
(n = 171, p = 2) (n = 150, p = 3)

NA DATA Observed 577.6583 0.24303
(Microdata Available) Expected 0.11205 0.05180

NA DATA Observed 1026.853 0.35897
(Microdata NOT Available) Expected 0.20122 0.10454

PIS Observed 1140.265 0.09941
Expected 0.22584 0.14711

PPS Observed 1639.902 0.15295
(α = 4) Expected 0.33830 0.27928

PIS BAYES Observed 1062.070 0.09040
(δ = 10) Expected 0.21040 0.13380

PPS BAYES Observed 1019.4310 0.0605
(α = 1, δ = 10) Expected 0.2239 0.1482
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8.3. Privacy protection measures

Here we have obtained privacy protection measures for selective units from both
Census Bureau data set (p = 2) and Renal data set (p = 3). Under noise added data, as
it is immaterial to consider the second scenario, that is when the original microdata are
not available, we have only considered the scenario when all the units of the original data
are available. However we have considered the situation when only the summary statistics
corresponding to the perturbed data are available. We have used privacy measures as given
in the equations (36), (39) and (52) under NA data, PIS and PPS respectively. Privacy
measures for two different data sets have been obtained in the following subsections.

8.3.1. Census bureau dataset

For CB data set, as mentioned in section (8.1), with two variables (p = 2: THHE
and OHHE), we have examined a sample of 171 households with Total Household Earnings
(THHE) more than 200,000 USD. We choose three responses with the values (in thousands)
in the two categories as (214.735, 113.943), (305, 134.217) and (500, 155). Under any pertur-
bation scheme, privacy measures for each unit are obtained taking ϵ = 0.6(0.05)1 and for the

ith selected unit xi = (xi1, xi2), the matrix A is chosen as A =
 1

x2
i1

0
0 1

x2
i2

. For noise added

data, the noise dispersion matrix is taken as R =
[
10000 100
100 1000

]
and α = 4 under PPS.

Table 4: Privacy Measures under different schemes of perturbation and for three
different units from CB data set.

Units Schemes ϵ
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Unit 1
NA Data 0 0 0 0 0.0004 0.0085 0.0828 0.3353 0.6920

PIS 0 0 0 0.0001 0.0030 0.0274 0.1342 0.3662 0.6521
PPS 0 0.0001 0.0006 0.0051 0.0252 0.0858 0.2117 0.3988 0.6045

Unit 2
NA Data 0.0122 0.3084 0.8799 0.9971 1 1 1 1 1

PIS 0.0206 0.3183 0.8516 0.9939 1 1 1 1 1
PPS 0.0691 0.3584 0.7628 0.9597 0.9968 0.9999 1 1 1

Unit 3
NA Data 0 0 0.0012 0.1300 0.7500 0.9919 1 1 1

PIS 0 0 0.0058 0.1680 0.7126 0.9793 1 1 1
PPS 0 0.0016 0.0356 0.2449 0.6527 0.9245 0.9926 0.9996 1

8.3.2. Renal dataset

For Renal data set, as mentioned in section (8.2), with three variables (p = 3: SCR,
BUN and UA), we have examined a sample of 150 male medical students at the University
of Virginia between 1987 and 1991 (Harris and Boyd, 1995). We choose three responses
with the values in the three categories as (12, 0.9, 6.1), (15, 1.1, 6.9) and (25, 1.1, 6.6). Un-
der any perturbation scheme, privacy measures for each unit are obtained for the choices
of ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.12, 0.14, 0.145, 0.15, 0.16} and for the ith selected unit xi =
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(xi1, xi2, xi3), the matrix A is chosen as A =


1

x2
i1

0 0
0 1

x2
i2

0
0 0 1

x2
i3

. For noise added data, the noise

dispersion matrix is taken as R =

 0.7 −0.3 −0.3
−0.3 0.7 −0.3
−0.3 −0.3 0.7

 and α = 4 under PPS.

Table 5: Privacy Measures under different schemes of perturbation and for three
different units from Renal data set

Units Schemes ϵ
0.005 0.01 0.05 0.1 0.12 0.14 0.145 0.15 0.16

Unit 1
NA Data 0 0 0 0.1079 0.3657 0.6169 0.6697 0.7165 0.7961

PIS 0 0 0 0.0195 0.2549 0.7275 0.8177 0.8850 0.9607
PPS 0 0 0 0.0684 0.3109 0.6588 0.7331 0.7971 0.8916

Unit 2
NA Data 0.2478 0.7521 0.9995 1 1 1 1 1 1

PIS 0.5071 0.9755 1 1 1 1 1 1 1
PPS 0.4415 0.8959 1 1 1 1 1 1 1

Unit 3
NA Data 0 0 0 0 0 0 0.0009 0.3152 0.8991

PIS 0 0 0 0 0.0003 0.1461 0.3094 0.5236 0.8710
PPS 0 0 0 0 0.0080 0.2221 0.3560 0.5078 0.7815

9. Conclusion

Referring to Table 2 in Section 6.2, it is evident that the expected volume decreases
with increasing sample size (n). Conversely, regardless of the scheme used, the expected
volume increases with an increase in the number of components (p). In particular, among
all perturbation schemes, the smallest expected volumes are consistently observed with the
noise-added data. Moreover, in both frequentist and Bayesian frameworks, PIS resulted in
a smaller expected volumes compared to PPS.

We have performed some data analyses in section (8) for Census Bureau data set
(p = 2) and for the Renal data set (p = 3). The observed and expected volumes for both data
sets under any scheme are summarized in Table (3). The volumes under noise added data are
the smallest among all the schemes and for both the data sets, whereas under two schemes
of noise added data (units available and units not available), we can see smaller volumes
when units are available. For both data sets, under frequentist setup, PPS is showing larger
volumes than PIS. On the other hand, under the Bayes framework, the observed volumes
under PPS scheme are marginally smaller than those under the PIS scheme. The diagrams
(2, 3, 6, 7, 9, 10) of the ellipsoids obtained for the CB data set under different schemes are
given in the appendix. Also some diagrams are obtained overlapping the ellipsoids obtained
under two different schemes as, 1. NA 1 and NA 2 (fig : 4), 2. PIS and PPS under the
frequentist framework (fig : 8) and 3. PIS and PPS under Bayesian framework (fig : 11).
From the diagrams it is clear that one should expect a smaller volume under NA 1 scheme
than that under NA 2 scheme as the ellipsoid under NA 2 scheme is containing the ellipsoid
under NA 2 scheme. Under frequentist setup, ellipsoid obtained under PPS contains the
ellipsoid obtained under PIS. However, in the Bayesian framework, the scenario is not the
same, where none of the ellipsoids, under PIS or PPS, contain another.
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For privacy protection analysis, as carried out in section (8.3), we have selected three
units from both the data sets. Units are so chosen that, one is very close to the sample mean
which is happen to be the second unit in both the cases, the third units are a bit distant
from the mean and the first units are taken to be extreme. Privacy measures for CB data
set are shown in Table (4) and those for Renal data set are shown in Table (5). As expected,
the privacy measures for the second units for each data set and under any scheme are very
high, which means lower privacy protection. For both data sets, we can see a higher privacy
protection for Unit 3 compared to Unit 1. Comparing the perturbation schemes in terms of
the privacy measure, we can say that, no scheme can be chosen over others through out for
any choices of ϵ. It depends on the choice of specific units and also upon the choices of ϵ.
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ANNEXURE

Figure 1: Confidence Ellipsoid for the unknown mean vector using original Data.

Figure 2: Confidence Ellipsoid for the unknown mean vector using Noise Added
Data (Microdata Available).
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Figure 3: Confidence Ellipsoid for the unknown mean vector using Noise Added
Data (Microdata Not Available).

Figure 4: Confidence ellipsoids for the unknown mean vector under NA 1 (Mi-
crodata Available) and NA 2 (Microdata Not Available).
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Figure 5: Confidence ellipsoids for the unknown mean vector under Original,
NA 1 (Microdata Available) and NA 2 (Microdata Not Available).

Figure 6: Confidence Ellipsoid for the unknown mean vector using synthetic
data under PIS.
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Figure 7: Confidence Ellipsoid for the unknown mean vector using synthetic
data under PPS.

Figure 8: Confidence ellipsoids for the unknown mean vector using synthetic
data under PIS and PPS.
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Figure 9: Credible ellipsoid for the unknown mean vector using synthetic data
under PIS.

Figure 10: Credible ellipsoid for the unknown mean vector using synthetic data
under PPS.
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Figure 11: Credible ellipsoids for the unknown mean vector using synthetic data
under PIS and PPS.
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