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Abstract 

 
Bayesian credible intervals are obtained for Generalized Inverse Weibull distribution 

using different priors. Gibbs sampling procedure is used to draw Markov Chain Monte Carlo 
(MCMC) samples which are used to construct the Bayesian estimates and corresponding 
credible intervals. Simulation study is conducted by taking different configurations of 
parameter points and sample sizes to highlight the properties and comparison of the credible 
intervals. Illustrative example based on a real data set is also provided. 
 
Key words: Generalized inverse Weibull distribution; Credible interval; MCMC algorithm; 
Posterior distribution. 
___________________________________________________________________________ 
 

1. Introduction 
 

The three-parameter Generalized Inverse Weibull distribution (GIWD), introduced  by 
Gusmao et al. (2011), is a positively skewed distribution used to model the income data and 
because of  its ability of possessing decreasing and unimodal failure rate, is also useful in 
reliability and biological studies. Generalized inverse Weibull distribution is the generalization 
of various well-known and useful distributions, including inverse Weibull, inverse exponential, 
inverse Rayleigh and Fr�́�chet distributions as special sub-models. 

 
These distributions play an important role in many applications, including the dynamic 

components of diesel engines, several data sets such as the times to breakdown of an insulating 
fluid subject to the action of a constant tension, failure characteristics such as infant mortality, 
useful life and wear-out periods, analyzing the wind speed data (Drapella (1993), Jiang et al. 
(2001), Nelson (1982), Khan (2008), Zaharim et al. (2009)). Most of the sub-cases of 
generalized inverse Weibull distribution are families of inverse distributions, which can be 
easily fitted to income related data. These distributions have two parameters but in order to fit 
better at the tails, three parameters distribution (GIWD) is used in the present study. 

 
The cdf of generalized inverse Weibull distribution is 

𝐹(𝑥) 	= 𝑒
!"#$!"%

#
&
 , 𝑥 > 0	; 		𝛼, 𝛽, 𝛾 > 0 , 

 
where 𝛼 is scale parameter and 	𝛽, 𝛾 are shape parameters. 

The pdf of generalized inverse Weibull distribution is 
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𝑓(𝑥) = 𝛾𝛽𝛼'𝑥"(')*)𝑒
!"#$!"%

#
&
. 

 
Sub-models: 

• For 𝛼 = 1, it reduces to inverse Weibull (IW) distribution. 
• For 𝛾 = 𝛼 = 1, it reduces to Fr�́�chet (F) distribution. 
• For 𝛽	 = 	2, 𝛼 = 1, it reduces to inverse Rayleigh (IR) distribution. 
• For 𝛾 = 𝛽 = 1, it reduces to inverse exponential (IE) distribution. 

 
In this paper, credible intervals for the parameters of the generalized inverse Weibull 

distributions are obtained. Some work using Generalized Pareto Distribution (Hosking (1987)), 
Weibull distribution (Kundu (2008)), Generalized Exponential Distribution (Kundu et. al. 
(2009)) and Generalized Inverted Exponential Distribution (Dey et. al. (2014) is already 
available in the literature in the case of credible interval, however, in the context of Bayesian 
and income inequality measure is already available in the literature for GIWD and some other 
distributions (Bhattacharya et al. (1999), Mahajan et. al. (2015), Arora et. al. (2017), Kaur et. 
al.  (2018), Kaur et. al.  (2021)). In the context of Credible interval, no work has been done for 
Generalized inverse Weibull distribution.    

Credible interval is an interval in the domain of a posterior probability distribution or 
predictive distribution in Bayesian statistics. The Bayesian equivalent of the confidence 
interval in the classical inference is the credible interval. Bayesian interval estimators have a 
clearer and more direct interpretation than classical confidence intervals. Like classical 
confidence interval, the 95% Bayesian credible interval contains the true value with 
approximately 95% confidence. Bayesian intervals treat their bounds as fixed and the estimated 
parameter as a random variable, whereas frequentist confidence intervals treat their bounds as 
random variables and the parameter as a fixed value.  95% credible interval is any interval 
which contains a 95% percent of the posterior probability. Because the posterior density is a 
true probability density, we can compute quantiles and percentiles of the parameter. The 
simplest 95% credible interval is bounded by the 2.5th and 97.5th percentiles. This interval is 
called a symmetric credible interval because it removes equal probability (2.5%) from both 
tails of the distribution.  

 
According to Eberly and Casella (2003) the 100	(1 − α)% equal tail credible interval for 

exact posterior distribution can be defined as 
 

                       𝑃(𝜃 < 𝐿) 	= ∫ 𝜋(𝜃|𝑥),
"∞ 𝑑𝜃 = -

.
  ,   𝑃(𝜃 > 𝑈) 	= ∫ 𝜋(𝜃|𝑥)∞

/ 𝑑𝜃 = 	-
.
            (1) 

 
where, 
 
𝜋(𝜃|𝑥)is posterior density of 𝜃 and  
(𝐿	, 𝑈)are the lower and upper limits of the credible interval respectively for specified value 
of 𝛼 (level of significance). 

 
The posterior distribution is always available, although in realistically complex problems 

it cannot be represented analytically and becomes difficult in generation of random samples.  
There are two types of algorithms used to draw samples from the true posterior.  The first 

type is a direct method, when we draw a sample from an easily sampled density and reshape 
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this sample by only accepting some of the values into the final sample in such a way that the 
accepted values constitute a random sample from the posterior. This method is inefficient as 
the number of parameters increases in the posterior distribution. 

 
Secondly, the simulation method for sampling from posterior distribution is called the 

Markov Chain Monte Carlo (MCMC) method (Metropolis et. al. (1949)). The advantage of 
MCMC is that it gives not only a point estimator of the parameter,  but  also  gives  an interval 
estimation based on the final simulated empirical distribution. MCMC is essentially an iterative 
sampling algorithm, drawing values from the posterior distribution of the parameter in the 
model concerned. The simulation method for sampling from posterior distribution which 
computes posterior quantities of interest is called the Markov Chain Monte  
Carlo (MCMC) method. A Markov chain is a well-known stochastic process model that can be 
used to characterize the probability of moving from one state to another. Numerous algorithms 
have been developed that will simulate samples from a discrete-time continuous-space Markov 
chain such that, after reaching a steady-state, the sequence of samples constitutes a sample from 
the desired joint posterior distribution. These simulated samples estimate the mean and 
especially the quantiles (used to compute credible intervals) of marginal posterior distributions 
for the parameters of interest. MCMC involves two methods, Metropolis–Hastings’ algorithm 
and Gibbs sampling for generating samples from the posterior distribution (Metropolis et al. 
(1953), Hastings (1970)). For more details about MCMC and the related methodologies, one 
can refer to Gentle (1998), Chen et al. (2000) and Robert and Casella (2004). Gibbs sampling 
procedure and Metropolis-Hastings (M-H) method are used to generate samples from the 
posterior density function to compute the Bayesian point estimates and credible intervals. 
When using a Markov Chain Monte Carlo algorithm such as the Gibbs sampler to generate a 
sample from the posterior distribution (marginal) of interest, calculations are often easier. 
 
1.1. Metropolis-Hastings (Bolstad, 2010) algorithm 

 
The algorithm of Metropolis-Hastings (Bolstad, 2010) is as follows: 

 
Let the proposed density using the Metropolis-Hastings algorithm is denoted by  𝑞(𝜃, 𝜃 ′), 

which is close to target density 𝑔(𝜃|𝑥),  
 
where 
 
𝜃is starting value, 
𝜃 ′is the next generating value of 𝜃 and 
𝑔(𝜃|𝑥)is the posterior target density from which we need to generate 𝜃. 
1.  Start at an initial value𝜃(0). 
2.  Do for  𝑛		 = 	1,2, . . . . . . , 𝑛  (𝑛 is the number of iterations) 

(a) Draw a sample from  𝑞(𝜃(1"*), 𝜃 ′). 
(b) Calculate 𝑟	 = probability of acceptance = 𝛼(𝜃(1"*), 𝜃 ′). 
(c)Draw 𝑢 from the uniform distribution 𝑈(0,1). 
(d) If  𝑢 < 𝑟, then let 𝜃(1) =	𝜃 ′, else let 𝜃(1) =	𝜃(1"*). 

 
The density 𝑞(𝜃, 𝜃 ′) close to the target density 𝑔(𝜃|𝑥) leads to more points being 

accepted. In fact, proposed density has the same shape as the target density. 
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𝑞(𝜃, 𝜃 ′) = 𝑘𝑔(𝜃′|𝑥) 
 
the acceptance probability 

𝛼(𝜃, 𝜃 ′) = 𝑚𝑖𝑛 I1, 2(3
′|5)6(3′,3)

2(3|5)6(3,3′)
J 

             = 𝑚𝑖𝑛 I1, 2(3
′|5)2(3|5)

2(3|5)2(3′|5)
J 

                                                                = 1 
 
i.e in this case, all points will be accepted. 

 
After generating the sample from the posterior distribution using MCMC simulation 

method, one important question is: how many samples are needed to accurately approximate 
the characteristics of the posterior distribution? This question is difficult to answer because 
samples generated on successive iterations are not independent of one another. Frequently, the 
values from one iteration and the next will be highly correlated, and a very large number of 
iterations will be necessary to make sure that the sample covers the entire range of the 
distribution. We would like our Markov chain to move about the space covered by the 
distribution freely. When outcome of one iteration has little effect on the next iteration, we say 
that the chain is mixing quickly. If the outcomes on successive iterations are highly linked, then 
we say that the chain is mixing slowly. If the chain is mixing slowly then it will have to be run 
for a long time until we can be sure that our sample properly represents the posterior 
distribution. 
 
1.2.  Trace plots 

 
The simplest tool for visualizing the convergence of a Markov chain is the trace plot, 

the plot of the values generated from the Markov chain versus the iteration number. This plot 
shows that the chain is mixing well, moving back and forth over the space and suggests how 
much sample values are enough to produce accurate approximation of the posterior summaries. 

 
It may be noted that if the chain does not converge to its stationary distribution, then there 

will be long burn-in period.  One can observe from a trace plot that there is a relatively constant 
mean and variance in case of stationarity.   
 
1.3.  Burn-in period 

 
To discard the initial portion of a Markov chain, so that the effect of initial values on the 

posterior inference is minimized, we use Burn-in procedure. The initial samples are not 
completely valid because the Markov Chain has not stabilized to the stationary distribution or 
at beginning of sequence, we need to run MCMC for a while to achieve convergence to target 
pdf. The burn in samples allows us to discard these initial samples that are not yet at the 
stationary distribution. 

 
This study focuses on the generation of samples using MCMC algorithm from the 

posterior distribution. Then the generated samples using Metropolis–Hastings’ algorithm and 
Gibbs sampling are used to compute the credible intervals for the parameters of interest using 
different prior and squared error loss function (SELF) in case of generalized inverse Weibull 
distribution. 
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The outline of the paper is: the Posterior distributions of generalized inverse Weibull 
distribution using different priors are given in Section 2. In Section 3, algorithms are given to 
compute credible intervals for the above said distributions. The convergence and mixing of 
Markov chain through graphical method are presented in Section 4. In this section, simulation 
study along with real life illustration is also carried out to compute credible intervals using 
different priors in case of generalized inverse Weibull distribution. Finally, Section 5 gives the 
conclusion of the study. 
 
2.   Posterior Distributions for Parameters of Generalized Inverse Weibull Distribution 
 

The pdf of generalized inverse Weibull distribution is 

𝑓(𝑥) = 𝛾𝛽𝛼'𝑥"(')*)𝑒
!"#$!"%

#
&
,  𝛼, 𝛽, 𝛾 > 0. 

          The likelihood function of generalized inverse Weibull distribution is given by 

𝐿(𝑥|𝛾, 𝛼, 𝛽) = 𝛾1𝛽1𝛼1' 	K∏ 𝑥8
"(')*)		1

89* M 𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8
"'1

89* ). 
 

2.1.  Posterior densities of parameters of GIWD using informative prior 
 

Informative prior depends on the elicitation of prior distribution based on pre-existing 
scientific knowledge in the area of investigation. This information may be available from the 
previous investigation or from non-statistician experts. Assuming parameters 𝛼, 𝛽, 𝛾 have 
independent Gamma priors with the pdf's 

 
																																																								𝑔(𝛼; 𝑎.,𝑏.) = :$

%$-%$&';5<	("-:$)
>(?$)

, 

𝑔(𝛽; 𝑎@,𝑏@)= :(
%('%'&';5<	("':()

>(?()
, 

 
𝑔(𝛾; 𝑎*,𝑏*)= :'

%'#%'&';5<	("#:')
Γ(?')

, 
 
where 𝑎8 , 𝑏8 for  𝑖 = 1,2,3 are hyperparameters. 

 
Assuming that the parameters are mutually independent, the posterior distribution is 

proportional to the product of the prior and the likelihood function given by 
 

𝑔∗(𝛼, 𝛽, 𝛾|𝑥) ∝ 𝛾1𝛽1𝛼1'T𝑥8
"(')*) 𝑒𝑥𝑝 U−𝛾𝛼'V𝑥8

"'
1

89*

W𝛾?'"* 𝑒𝑥𝑝(−𝛾𝑏*) 𝛼?$"*
1

89*

 

 
𝑒𝑥𝑝	(−𝛼𝑏.)𝛽?("*𝑒𝑥𝑝(−𝛽𝑏@) 
 
The full conditional posterior density of 𝛼 is 

 
𝑔∗(𝛼|𝛽, 𝛾, 𝑥) ∝ 𝛼1')?$"*𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8

"'1
89* − 𝑏.𝛼). 

 
The full conditional posterior density of 𝛽 is 
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𝑔∗(𝛽|𝛼, 𝛾, 𝑥) ∝ 𝛽1)?("*𝛼1')?("*∏ 𝑥8
"(')*)𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8

"'1
89* − 𝑏@𝛽)1

89* . 
 
The full conditional posterior density of 𝛾 is         
 
𝑔∗(𝛾|𝛼, 𝛽, 𝑥) ∝ 𝛾1)?'"*𝑒𝑥 𝑝 K−K𝛼' ∑ 𝑥8

"'1
89* − 𝑏*M𝛾M~	𝐺𝑎𝑚𝑚𝑎(𝑛 +

														𝑎*, 	𝛼' ∑ 𝑥8
"' −1

89* 𝑏*). 
 
2.2.  Posterior densities of parameters of GIWD using Jeffreys’ prior 

 

Jeffreys’ (1946) prior based on the Fisher’s information, is defined as            

𝜋(𝜃) 		∝ [𝐼(𝜃) , 

where 𝐼(𝜃) =	−𝐸 I B
$

B3$
	𝑙𝑛𝐿(𝜃|𝑥)J is Fisher’s information based on likelihood function 𝐿(𝜃|𝑥). 

 
The expected value of double derivatives is not in the closed form, hence the explicit 

experrsion for the Jeffreys’ prior is not obtained. For simplicity it is assumed that all the three 
parameters are independent, therefore joint prior in case of Jeffreys’ prior (Guure, 2012), Singh 
(2011) is written as 

𝑔(𝛼, 𝛽, 𝛾) ∝  *
#-'

 . 

The full conditional posterior density of 𝛼 is 
 

𝑔∗(𝛼|𝛽, 𝛾, 𝑥) ∝ 𝛼1'"*𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8
"'1

89* ). 
 
The full conditional posterior density of 𝛽 is 

 
𝑔∗(𝛽|𝛼, 𝛾, 𝑥) ∝ 𝛽1"*𝛼1'"*∏ 𝑥8

"(')*)𝑒𝑥𝑝	(−𝛾𝛼' ∑ 𝑥8
"'1

89* )1
89* . 

 
The full conditional posterior density of 𝛾 is          

 
𝑔∗(𝛾|𝛼, 𝛽, 𝑥) ∝ 𝛾1"*𝑒𝑥 𝑝 K−K𝛼' ∑ 𝑥8

"'1
89* M𝛾M		~			𝐺𝑎𝑚𝑚𝑎(𝑛, 𝛼' ∑ 𝑥8

"'1
89* ). 

 

Note: The full conditional posterior densities of 𝛼, 𝛽 and 𝛾 using Jeffreys’ prior are obtained 
by taking hyperparametres as zero (	𝑎* 	= 	 𝑏* 	= 	 𝑎. 	= 	 𝑏. 	= 	 𝑎@ 	= 𝑏@ 	= 	0). 

3.  Algorithms to Compute Credible Intervals for Generalized Inverse Weibull 
Distribution 

The posterior densities using different priors cannot be solved directly to compute lower 
limit (L) and upper limit (U) of credible interval as stated in equation 1. MCMC simulation 
techniques allow us to generate a sample from these posterior densities using Metropolis-
Hastings (M-H) method and Gibbs sampling method.  

 
The conditional posterior distributions of  𝛼 and 𝛽 cannot be reduced analytically to well-

known distributions and therefore it is not possible to simplify it directly by standard methods, 
but their graphs indicate that they are like the Gamma and Weibull distributions, respectively.  
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So, to generate random numbers from these distributions, use the Metropolis-Hastings (M-H) 
method with Gamma and Weibull as the proposed distributions. To generate 𝛾 from the 
posterior density, Gibbs sampling method is used. 

 
The following algorithm is given to generate 𝛼, 𝛽	and	𝛾 from their posterior density 

functions and in turn to obtain the Bayes estimates and the corresponding credible intervals. 
 

• Start with 𝛼0 =	𝛼b and	𝛽0 =	𝛽c  as their initial approximation. 
• Set 𝑗	 = 	1, using Metropolis – Hasting generate 𝛼C from conditional posterior density 

of 𝛼 with the Gamma (𝛼C"*, 2) as the proposal distribution and also generate 𝛽C from      
conditional posterior density of 𝛽 with the Weibull (𝛽C"*, 2) as the proposal 
distribution. Generate 𝛾C from Gamma (𝑛 + 𝑎*, (𝛼' ∑ 𝑥8

"'1
89* + 𝑏*)) using Gibbs 

sampling. 
• Set 𝑗	 = 	𝑗 + 1 
• Repeat step 2, 𝑁 times. 
• Obtain the Bayes estimates of  𝛼, 𝛽and𝛾 using SELF as 

𝛼b=  ∑ -)
*
)+,-'
E"F

,  where𝑀 is the burn-in period. 

𝛽c=  ∑ ')
*
)+,-'
E"F

  , where 𝑀 is the burn-in period. 

𝛾b=  ∑ #)
*
)+,-'
E"F

 , where 𝑀 is the burn-in period. 
• To compute the credible intervals of 𝛼, 𝛽	and	𝛾, order 𝛼F)*, 𝛼F).…… . , 𝛼E ;       

𝛽F)*, 𝛽F).…… . , 𝛽E and 𝛾F)*, 𝛾F).…… . , 𝛾E in ascending order as   
𝛼(*), 𝛼(.)…… . , 𝛼(E"F) ; 𝛽(*), 𝛽(.)…… . , 𝛽(E"F) ; 𝛾(*), 𝛾(.)…… . , 𝛾(E"F). Then the 
100(1 − 𝜂)% credible intervals for 𝛼, 𝛽and𝛾 are 

• i𝛼$(*&,)0$ %, 𝛼$*"0$%(E"F)
j,       i𝛽$(*&,)0$ %, 𝛽$*"0$%(E"F)

j  and  i𝛾$(*&,)0$ %, 𝛾$*"0$%(E"F)
j 

, 
where 𝜂 is the level of significance. 
 
In the next section, credible intervals are computed using R-software by the above algorithm. 
 
4.  Simulation Study 

Statistical simulation study is carried out to compute the 95% and 99% credible intervals 
using different priors for generalized inverse Weibull distribution. The comparisons of priors 
are also done based on the width of the credible intervals; smaller the width better is the 
interval. According to distributions, combinations of parameters, hyper parameters and sample 
size should be chosen, and these are discussed below for all the three parameters. The credible 
intervals are computed based on 10,000 MCMC samples and first 500 values are discarded as 
burn-in. We plot the trace plots of the chains to determine whether the chain is exploring the 
parametric space well for all the parameters of GIWD. The monitoring MCMC convergence 
and mixing is also checked using trace and autocorrelation plots. The autocorrelation shows 
the mixing rate, and it is measured by autocorrelations of different lags. 
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The  credible   interval   are   computed   for  Jeffreys’  and   informative  prior  for  the  
parametres of GIWD obtained  using squared error loss function. These intervals are computed 
for different sample sizes 𝑛	 = 	30, 50 with parameters combinations 𝛼 = 𝛽 = 𝛾= 2. The 
combinations of  hyperparameters are taken as 𝑎* =𝑏* = 	6,𝑎. = 𝑏. = 𝑎@ = 𝑏3 = 	4 (Kaur et. 
al. (2018)) according to  misfit measure. The trace, posterior density and autocorrelation plots 
of 𝛼, 𝛽 and 𝛾 are plotted in case of informative prior. 
 
 

   
 

Figure 1: Trace, posterior density and autocorrelation plots of 𝛼 

 

 

   
 

Figure 2: Trace, posterior density and autocorrelation plots of 𝛽 
 
 

   
 

Figure 3: Trace, posterior density and autocorrelation plots of 𝛾 
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Based on trace, autocorrelation and posterior plots (Figure 1-3), we conclude that 
 

• Markov Chain (MC) has reached convergence, 
• trace plot is perfect and the centre of the chain having small fluctuations 

indicates that the MC has reached the right distribution, 
• all autocorrelations are close to zero for  𝛼 and 𝛾	i.e., MCMC sampling is done in 

independent manner and stationarity is reached. The autocorrelation plots for 𝛽 shows 
low mixing at the starting lags and good mixing after 10th lag. 
 

The credible intervals are reported in the following Tables 1-3. From the Tables, it may be 
seen that  
 

(i) Credible intervals using informative priors lead to smaller width of the interval as 
compared to non-informative prior for all the three parameters both for 95% and 
99% C.I.  

(ii) As the sample size increases, the width of the credible intervals decreases 
 

 

Table 1: Credible intervals for 𝛼 
 

n Prior Estimate 95% C.I. 
(width) 

99% C.I. 
(width) 

30 
Jeffrey 1.93205 (0.56643,4.87645) 

4.31002 
(0.35410,6.02160) 

5.6675 

Informative 2.17695 (0.51799,4.46347) 
3.94548 

(0.36721,5.68138) 
5.31417 

50 
Jeffrey 2.01670 (0.57516,4.48867) 

3.91351 
(0.34895, 5.91940) 

5.57045 

Informative 2.05906 (0.54841,4.37218) 
3.82377 

(0.33537,5.60383) 
5.26846 

 
 

Table 2: Credible intervals for 𝛽 
 

N Prior Estimate 95% C.I 
(width) 

99% C.I 
(width) 

30 
Jeffrey 2.17912 (1.73348, 2.67003) 

0.93655 
(1.60958, 2.86279) 

1.25321 

Informative 2.05582 (1.62910, 2.53639) 
0.90729 

(1.49765, 2.71638) 
1.21873 

50 
Jeffrey 1.82986 (1.55504, 2.13338) 

0.57834 
(1.48468, 2.25778) 

0.7731 

Informative 1.90897 (1.59993, 2.15669) 
0.55676 

(1.51976, 2.27387) 
0.75411 
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Table 3: Credible intervals for 𝛾 
 

n Prior Estimate 95% C.I. 
(width) 

99% C.I. 
(width) 

30 
Jeffrey 2.01406 (1.49211, 2.60510) 

1.11299 
(1.46391, 2.92407) 

1.46016 

Informative 2.13966 (1.61030, 2.71203) 
1.10173 

(1.36377, 2.81584) 
1.45207 

50 
Jeffrey 2.15621 (1.75397, 2.59709) 

0.84312 
(1.65186, 2.76850) 

1.11664 

Informative 2.00077 (1.64707, 2.39050) 
0.74343 

(1.55070, 2.51419) 
0.96349 

 
Table 4: Credible intervals for 𝛼, 𝛽	and g 

 

Parameters Prior estimate 95%  C.I 
(width) 

99% C.I. 
(width) 

𝛼 
Jeffrey 1.01693 

 
(0.29426, 2.72271) 

2.42845 
(0.18097, 3.62492) 

3.44395 

Informative 1.14379 
 

(0.26616, 2.34805) 
2.08189 

(0.17551, 2.97161) 
2.7961 

𝛽 
Jeffrey 2.20413 

 
(1.81032, 2.65222) 

0.8419 
(1.69353, 2.83398) 

1.14045 

Informative 2.04210 
 

(1.67144, 2.46173) 
0.79029 

(1.56256, 2.63407) 
1.07151 

g 

Jeffrey 
 5.12292 (3.53113, 6.96405) 

3.43292 
(3.12454, 7.53388) 

4.40934 
Informative 

 4.83125 (3.36143, 6.57182) 
3.21039 

(2.95502, 7.17773) 
4.22271 

 
Real Life Example 

 
The real-life data of percentage of GDP of different countries is taken from Dataset: 

Central Government Dept of 2009. The GIWD is used to fit this data set. To check the validity 
of the model, we compute of Kolmogorov-Smirnov test and p-value for this test is 0.1859, 
suggesting thereby the appropriateness of the GIWD. The credible intervals are computed 
based on 10,000 MCMC samples and first 500 values are discarded as burn-in. The trace plots 
are also plotted to determine whether the chain is exploring the parametric space well for all 
the parameters of three distributions in case of real-life example. 
 
It is seen from the above tables, for all three parameters of GIWD the informative prior 
performs better as compared with non-informative prior (Jeffreys’ prior). 

 
5.  Conclusion 
 

The informative prior performs better as compared to non-informative prior and findings 
from the analysis of real life example are in accordance with those of simulation study in case 
of generalized inverse Weibull distribution. One can further infer that as the sample sizes 
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increases, the width of the credible interval decreases for both 95% and 99% credible intervals 
in case of Generalized inverse Weibull distribution. 
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