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Abstract
A new model of bivariate distributions is presented in this paper. The model introduced

here is of the Marshall–Olkin type. The joint survival function, the joint probability density
function and the joint hazard function of the bivariate generalized Chen (BGCh) distribution
are obtained. The maximum likelihood and Bayesian methods are used to estimate the
unknown parameters of the BGCh distribution. Numerical methods are required to calculate
the desired estimates.
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1. Introduction

A suitable parametric model is often of interest in the analysis of survival data, as it
provides insight into the characteristics of the failure times and hazard functions that may
not be available with non-parametric methods. The Weibull distribution is one of the most
commonly used families for modeling such data. However, only monotonically increasing
and decreasing hazard functions can be generated from the classic two-parameter Weibull
distribution. As such this two-parameter model is inadequate when the true hazard shape is
of bathtub nature. Models with bathtub-shaped hazard rate are needed in reliability analysis
and decision making when the complete life cycle of the system is to be modeled. Many
authors have proposed models with bathtub-shaped failure rates. For example, Smith and
Bain (1975) proposed the exponential power distribution. Mudholkar and Srivastava (1993)
suggested the exponentiated Weibull distribution. Chen (2000) provided a two-parameter
lifetime distribution with bathtub shape or increasing failure function, now known as Chen
distribution. Xie et al. (2002) modified the Chen distribution to include a scale parameter
named modified Weibull extension and also referred to as the generalized Chen distribution.
They discussed the parameters’ estimation using maximum likelihood method. For more
generalizations and modifications of Weibull distribution, see Murthy et al. (2004) and
Pham and Lai (2007).

Bivariate lifetime data arise frequently in many practical problems and in these sit-
uations it is important to consider different bivariate models that could be used to model
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such bivariate lifetime data. There are a number of papers dealing with bivariate models
of type of Marshal-Olkin. For example, Sarhan and Balakrishnan (2007) introduced a bi-
variate distribution using exponential and generalized exponential distributions, now known
as Sarhan-Balakrishnan bivariate (SBBV) distribution. Although, they derived several in-
teresting properties of this distribution, the marginal distributions of SBBV distribution
are not in known forms. Kundu et al. (2012) modified the SBBV distribution to include
a scale parameter and discussed the estimation of parameters using maximum likelihood
method. Kundu and Gupta followed the idea using the generalized exponential to introduce
the bivariate generalized exponential (BVGE) distribution so that the marginal distributions
are generalized exponential distributions. They derived several interesting properties of this
distribution and discussed the maximum likelihood estimation of the unknown parameters.
Also, they re-analyzed a real data set that was analyzed by Meintanis (2007) and concluded
that the BVGE distribution provides a better fit than the bivariate Marshall-Olkin distri-
bution. Sarhan (2019) noted that none of the marginal distributions of the SBBV and the
BVGE provide a bathtub shape of the hazard function and this lack of the bathtub property
limits the application of these distributions. Thus he introduced a new bivariate distribution
named the bivariate generalized Rayleigh (BVGR) distribution. The BVGR distribution has
generalized Rayleigh marginal distributions. The hazard rate functions of the marginals of
the BVGR can be either increasing or decreasing or bathtub shaped, and with this prop-
erty the BVGR distribution has wider applicability than other distributions. Sarhan (2019)
investigated several interesting properties of this distribution and estimated the unknown
parameters by using the maximum likelihood and Bayes methods. Many authors discussed
the Marshal-Olkin idea for different distributions; see for example; El-Gohary et al. (2015),
Kundu and Gupta (2017), Azizi et al. (2019), Muhammed (2019) and others.

Using the idea of Marshal-Olkin, we propose a new bivariate generalized Chen (BGCh)
distribution. The BGCh distribution has generalized Chen marginal distributions. The joint
survival function, the joint probability density function and the joint hazard function of the
BGCh distribution are obtained. The maximum likelihood and Bayesian methods are used
to estimate the unknown parameters of the BGCh distribution. Numerical methods are
required to calculate these estimates.

2. The bivariate generalized Chen distribution

In this section, we define a new bivariate distribution, shortly denoted by BGCh. We
start with the joint survival function of the distribution and then we derive the corresponding
joint probability density function.

2.1. The joint survival function

Chen (2000) introduced a two-parameter lifetime distribution with either bathtub-
shaped or increasing failure rate with the survival function

SCh(t) = exp(λ(1 − e(t)β )), t ≥ 0, λ and β > 0.

and the corresponding probability density function

fCh(t) = λβ(t)β−1exp((t)β + λ(1 − e(t)β )), t ≥ 0, λ and β > 0.
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Xie et al. (2002) modified the Chen distribution to include a scale parameter named the
generalized Chen distribution. The survival function of the univariate generalized Chen
(GCh) distribution is

SGCh(t) = exp(λα(1 − e(t/α)β )), t ≥ 0, λ, α and β > 0. (1)

with probability density function (pdf)

fGCh(t) = λβ(t/α)β−1exp((t/α)β + λα(1 − e(t/α)β )), t ≥ 0, λ, α and β > 0. (2)

Now, suppose that Tj, j = 1, 2, 3 are independent random variables with Ti having GCh
distributions with scale parameters α, and λj, j = 1, 2, 3 and shape parameter β; i.e. Ti ∼
GCh(α, β, λj), j = 1, 2, 3. Define Xi = min(Ti, T3), i = 1, 2. Then one can say that the vector
(X1, X2) follows the bivariate generalized Chen distribution with scale parameters α,and
λj, j = 1, 2, 3 and shape parameter β. We will denote it by BGCh(α, β, λ1, λ2, λ3) and to
simplify we write λ123 = λ1 + λ2 + λ3 and λi3 = λi + λ3, i = 1, 2.

Theorem 1: Let (X1, X2) follows BGCh(α, β, λ1, λ2, λ3), then the joint survival function of
(X1, X2) for x1 > 0, x2 > 0, is

SX1,X2(x1, x2) = P (X1 > x1, X2 > X2)
= P (T1 > x1, T2 > x2, T3 > x3)

=
3∏

i=1
exp(λiα(1 − e(xi/α)β )),

(3)

where x3 = max{x1, x2}.
Also, the joint survival function of (X1, X2) can be written as

SX1,X2(x1, x2) =
3∏

i=1
SGCh(xi; α, β, λi)

=


SGCh(x1; α, β, λ1)SGCh(x2; α, β, λ23) if x1 < x2

SGCh(x2; α, β, λ2)SGCh(x1; α, β, λ13) if x2 < x1

SGCh(x; α, β, λ123) if x1 = x2 = x.

(4)

2.2. The joint probability density function

The following theorem gives the joint probability density function of the BGCh distri-
bution.

Theorem 2: Let (X1, X2) follows BGCh(α, β, λ1, λ2, λ3 ), then the joint pdf of (X1, X2)
takes the form

fX1,X2(x1, x2) =


f1(x1, x2) if 0 < x1 < x2 < ∞
f2(x1, x2) if 0 < x2 < x1 < ∞
f3(x) if 0 < x1 = x2 = x < ∞.

(5)

where

f1(x1, x2) = λ1λ23β
2(x1/α)(β−1)(x2/α)(β−1)e(x1/α)β+(x2/α)β

eλ1α(1−e(x1/α)β)+λ23α(1−e(x2/α)β))

= fGCh(x1; α, β, λ1)fGCh(x2; α, β, λ23),
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f2(x1, x2) = λ13λ2β
2(x1/α)(β−1)(x2/α)(β−1)e(x1/α)β+(x2/α)β

eλ13α(1−e(x1/α)β )+λ2α(1−e(x2/α)β )

= fGCh(x1; α, β, λ13)fGCh(x2; α, β, λ2),
and

f3(x) = λ3β(x/α)(β−1)e(x/α)β

eλ123α(1−e(x/α)β )

= λ3

λ123
fGCh(x; α, β, λ123).

Proof: The forms of f1(., .) and f2(., .) can be obtained simply by differentiating
SX1,X2(x1, x2) in (4) with respect to x1 and x2 for x1 < x2 and x2 < x1, respectively. The
form of f3(x) can not obtained in the same way but it can be derived by using the following
identity:

� ∞

0

� x2

0
f1(x1, x2)dx1dx2 +

� ∞

0

� x1

0
f2(x1, x2)dx2dx1 +

� ∞

0
f3(x)dx = 1

which completes the proof of the theorem.

Proposition 1: Let (X1, X2) follows BCh(β, λ1, λ2, λ3), then the joint pdf of (X1, X2) takes
the form

gX1,X2(x1, x2) =


g1(x1, x2) if 0 < x1 < x2 < ∞
g2(x1, x2) if 0 < x2 < x1 < ∞
g3(x) if 0 < x1 = x2 = x < ∞.

(6)

where
g1(x1, x2) = λ1λ23β

2(x1)(β−1)(x2)(β−1)e(x1)β+(x2)β

eλ1(1−e(x1)β )+λ23(1−e(x2)β )

= gCh(x1; β, λ1)gCh(x2; β, λ23),

g2(x1, x2) = λ13λ2β
2(x1)(β−1)(x2)(β−1)e(x1)β+(x2)β

eλ13(1−e(x1)β )+λ2(1−e(x2)β )

= gCh(x1; β, λ13)gCh(x2; β, λ2),
and

g3(x) = λ3β(x)(β−1)e(x)β

eλ123(1−e(x)β )

= λ3

λ123
gCh(x; β, λ123).

Proof: The result is obtained immediately from Theorem 2 upon setting α = 1.

The BGCh distribution has both a singular part and an absolutely continuous part
similar to Marshal-Olkin’s bivariate exponential distribution, Sarhan and Balakrishnan bi-
variate distribution, the bivariate generalized exponential introduced by Kundu and Gupta
(2009) and the bivariate generalized Rayleigh distribution provided by Sarhan (2019). The
function fX1,X2 (., .) may be considered to be a density function for the BGCh distribution
if it is understood that the first two terms are densities with respect to two-dimensional
Lebesgue measure and the third term is a density function with respect to one dimensional
Lebesgue measure, see Bemis et al. (1972). It is well known that although in one dimension
the practical use of a distribution with this property is unusual, but they do arise quite
naturally in higher dimensions, see Marshal and Olkin (1967).



2023] BIVARIATE GENERALIZED CHEN DISTRIBUTION 165

In many practical situations it may happen that X1 and X2 both are continuous random
variables, but X1 = X2 has a positive probability. The BGCh distribution may be used as
a competing risk model or a shock model similar to the bivariate Marshall-Olkin model.
Marshal and Olkin (1967) has examples in this connection.. The following theorem provides
the explicit forms of the absolute continuous and the singular parts of the BGCh distribution.

Theorem 3: If (X1, X2) follows BGCh(α, β, λ1, λ2, λ3), then

SX1,X2(x1, x2) = λ3

λ123
Ss(x1, x2) + λ12

λ123
Sa(x1, x2).

For x = max(x1, x2) we get,
Ss(x1, x2) = eλ123α(1−e(x)β ),

and
Sa(x1, x2) = λ123

λ12

3∏
i=1

eλiα(1−e(xi/α)β ) − λ3

λ12
eλ123α(1−e(x)β ),

here Ss(., .) and Sa(., .) are the singular and the absolutely continuous parts, respectively.

Proof: The joint survival function SX1,X2(x1, x2) can be written as

SX1,X2(x1, x2) = P (X1 > x1, X2 > x2|A)P (A) + P (X1 > x1, X2 > x2|Á)P (Á)

Let A = {T3 < T1} ∩ {T3 < T2} ≡ {X1 = X2}, therefore

P (A) =
� ∞

0
λ3β(x/α)(β−1)e(x/α)β

eλ123α(1−e(x/α)β )dx = λ3

λ123

and
Ss(x1, x2) = P (X1 > x1, X2 > x2|A)

= λ123

λ3

� ∞

0
λ3β(x/α)(β−1)e(x/α)β

eλ123α(1−e(x/α)β )dx

= eλ123α(1−e(x/α)β ).

Once P (A) and Ss(x1, x2) are obtained, the function Sa(x1, x2) can be obtained by
subtraction.

Different shapes of the joint pdf and corresponding contours for different sets of pa-
rameters values are provided in Figure 1.



166 R.M. MANDOUH [Vol. 21, No. 1

Set (1): (λ1, λ2, λ3, β, α)=(2,2,2,2,1)

Set (2): (λ1, λ2, λ3, β, α)=(0.5,0.5,1,1.5,1)

Figure 1: The joint probability density function of the BGCh distribution and
corresponding contour

2.3. The joint hazard rate function

Using the relation between the joint pdf of (X1, X2) and the joint survival function of
(X1, X2), one can obtain the joint hazard rate function of (X1, X2) according to the relation

hX1,X2(x1, x2) = fX1,X2(x1, x2)
SX1,X2(x1, x2)

.

Here we use the forms (4) and (6) to obtain the joint hazard rate function. In Figure 2 we
provide the surface plots of the joint hazard rate function and corresponding contours for
different values of the parameters.

3. Statistical properties

3.1. Marginal distributions

One can easily verify that the marginal distribution of Xi, i = 1, 2, follows GCh(β, α, λi).
For this, we first derive the marginal survival function of Xi, say SXi

(x), as follows
SXi

(x) = P (Xi > x) = P (min(Ti, T3) > x) = P (Ti > x, T3 > x)
and since Ti, i = 1, 2 and T3 are independent random variables, then

SXi
(x) = P (Ti > x)P (T3 > x) = SXi

(x; β, α, λi3) = eλi3α(1−e(x/α)β ) (7)
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Set (1): (λ1, λ2, λ3, β, α)=(2,2,2,2,1)

Set (2): (λ1, λ2, λ3, β, α)=(0.2,0.2,0.8,0.8,1)

Figure 2: The joint hazard rate function of the BGCh distribution and corre-
sponding contour

Using (7), the marginal pdf of Xi is

fXi
(x) = λi3β(x/α)(β−1)e(x/α)β

eλi3α(1−e(x/α)β)), (8)

and the marginal hazard rate function (hrf) of Xi is

hXi
(x) = λi3β(x/α)(β−1)e(x/α)β

. (9)

Xie et al. (2002) noted that the hrf depends only on the shape parameter β and they
observed that: when β > 1, the hrf has an increasing shape and when β < 1, the hrf has
a bathtub shape. Shapes of the pdf and hrf of Xi for different values of β, α and λi3 are
provided in Figure 3 . Also, Xie et al. (2002) showed that the GCh distribution can be
used in modeling bathtub-shaped failure rate univariate lifetime data. Hence, we expect the
BGCh distribution can be used in modeling bathtub-shaped failure rate bivariate lifetime
data.

3.2. Conditional distributions

Having obtained the marginal pdf of X1 and X2, one can derive the conditional proba-
bility density function. The following theorem provides the conditional pdf of X1 given X2 =
x2, say fX1|X2(x1|x2).

Theorem 4: If (X1, X2) follows BGCh(β, α, λ1, λ2, λ3), then the conditional pdf of X1 given
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Figure 3: The probability density and hazard rate functions of the marginal
distribution of X1

X2 = x2 is

fX1|X2(x1, x2) =


f1(x1|x2) if x1 < x2

f2(x1|x2) if x2 < x1

f3(x1|x2) if x1 = x2 = x,

(10)

where

f1(x1|x2) = λ1β(x1/α)(β−1)e(x1/α)β

eλ1α(1−e(x1/α)β),

f2(x1|x2) = (λ12λ2)/λ23β(x1/α)(β−1)e(x1/α)β

eα(λ13(1−e(x1/α)β )−λ3(1−e(x2/α)β )), and

f3(x1|x2) = λ3/λ23e
λ1α(1−e(x/α)β ).

Proof: The results of this theorem are easily derived using the definition of conditional
probability and the results of Theorem 2 and the form (8). Figure 4 shows some plots of the
conditional pdf’s of X1 given X2 = x2 for different values of x2(x2 = 0.5, 1, 2) and different
values of parameters.

Similarly, the conditional pdf of X2 given X1 = x1 can be obtained in a similar manner
as above. Also, one can note that if α = 1, the conditional pdf in the case of BCh distribution
can be obtained.
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Figure 4: The conditional probability density function of X1 given X2 = x2 at
different sets of the parameters

4. Parameters’ estimation

Suppose that {(X11, X21), (X12, X22), . . . , (X1n, X2n)} is a random sample from BGCh
(λ1, λ2, λ3, β, α). The likelihood function for this sample is

L(data; θ) =
n∏

i=1
f1(x1i, x2i)I(x1i<x2i)f2(x1i, x2i)I(x1i>x2i)f3(x1i, x2i)I(x1i=x2i), (11)

where I(A) is an indicator function that is equal to 1 if A is true and 0 otherwise and
θ = (λ1, λ2, λ3, β, α). Substituting (5) in (11) and taking the natural logarithm, we obtain
the log-likelihood function as

LL =
n∑

i=1
I(x1i < x2i){ln(λ1) + ln(λ23) + 2ln(β) + (β − 1)ln(x1i/α) + ln(x2i/α) + (x1i/α)β

+ (x2i/α)β + λ1(1 − e(x1i/α)β ) + (λ23)(1 − e(x2i/α)β ))}
+ I(x1i > x2i){ln(λ2) + ln(λ13) + 2ln(β) + (β − 1)(ln(x1i/α) + ln(x2i/α) + (x1i/α)β

+ (x2i/α)β + λ2(1 − e(x2i/α)β ) + (λ13)(1 − e(x1i/α)β )}
+ I(x2i = x1i){ln(λ3) + ln(β) + (β − 1)ln(x1i/α) + (x1i/α)β + (λ123)(1 − e(x1i/α)β )}.

(12)
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4.1. Maximum likelihood estimation

Here we use maximum likelihood method to estimate the unknown parameters of the
BGCh distribution. For fixed α, the likelihood equations are

∂LL
∂λ1

= n1

λ1
+ n2

λ13
+

n∑
i=1

I(x1i < x2i)(1 − e(x1i/α)β ) = 0,

∂LL
∂λ2

= n1

λ23
+ n2

λ2
+

n∑
i=1

I(x1i > x2i)(1 − e(x2i/α)β ) = 0,

∂LL
∂λ3

= n1

λ23
+ n2

λ13
+ n3

λ3
+

n∑
i=1

{I(x1i < x2i)(1 − e(x2i/α)β )

+ {I(x1i > x2i) + I(x1i = x2i)}(1 − e(x1i/α)β )} = 0,

and
∂LL
∂β

=
n∑

i=1
I(x1i < x2i){2/β + ln(x1i/α) + ln(x2i/α) + (x1i/α)βln(x1i/α)(1 − λ1e

(x1i/α)β )

+ (x2i/α)βln(x2i/α)(1 − λ23)e(x2i/α)β }
+ I(x1i > x2i){2/β + ln(x1i/α) + ln(x2i/α) + (x1i/α)βln(x1i/α)(1 − λ13e

(x1i/α)β )
+ (x2i/α)βln(x2i/α)(1 − λ2)e(x2i/α)β )}
+ I(x2i = x1i){1/β + ln(x1i/α) + (x1i/α)βln(x1i/α)(1 − λ123e

(x1i/α)β )} = 0,
(13)

where n1 = ∑n
i=1 I(x1i < x2i) , n2 = ∑n

i=1 I(x1i > x2i), and n3 = ∑n
i=1 I(x1i = x2i).

The likelihood equations (13) do not have a closed-form solution, so a numerical technique
must be used to find the maximum likelihood estimates (mles) of λ1, λ2, λ3, and β. The
likelihood equations may have multiple roots, Small et al. (2000) discussed this problem
using the Hessian matrix. They showed that the likelihood equations have a unique root
when the Hessian matrix of the log-likelihood is negative definite for all value of θ. This
relies on maximizing the log-likelihood function. The Hessian matrix is written as

T (θ) =


LLλ1λ1 LLλ1λ2 LLλ1λ3 LLλ1β

LLλ2λ1 LLλ2λ2 LLλ2λ3 LLλ2β

LLλ3λ1 LLλ3λ2 LLλ3λ3 LLλ3β

LLβλ1 LLβλ2 LLβλ3 LLββ


where LLθiθj

= ∂2LL
∂θi∂θj

is the second partial derivative of the log-likelihood function with re-
spect to the components θi and θj of θ and T (θ̂) is the Hessian matrix computed at θ = θ̂.

Large-sample confidence intervals: Under regularity conditions, the mles of the pa-
rameters λ1, λ2, λ3, and β are asymptotically normally distributed with means equal to the
true values of these parameters and variances given by the inverse of the information matrix.
One can approximate the expected values of the second-order derivatives of logarithms of
likelihood function with the maximum likelihood estimates of the parameters as given in
Cohen (1965). That is, using normality property of mles, one can construct the asymptotic
confidence interval for each parameter.
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4.2. Bayes estimation

Now, we discuss the Bayesian estimation of the unknown parameters of the BGCh
distribution. For fixed α, let the four parameters θ = (λ1, λ2, λ3, β) are independent random
variables and follow the gamma prior distribution. That is, the joint prior pdf of θ is

g0(θ) ∝ λ
(a1−1)
1 λ

(a2−1)
2 λ

(a3−1)
3 β(a4−1)e(−b1λ1−b2λ2−b3λ3−b4β), λ1, λ2, λ3, β > 0, (14)

where all the hyperparameters ai and bi, i = 1, 2, 3, 4 are assumed to be positive and known.
The log-prior density function is

g0(θ) ∝
3∑

i=1
(ai − 1)ln(λi) + (a4 − 1)ln(β) −

3∑
i=1

biλi − b4β. (15)

Using (12) and (15) and applying Bayes theorem, the joint posterior probability density
function of θ, given data, is

g(θ|data) = 1
K

exp(LL + g0(θ)), (16)

where K is the normalizing constant. Bayes estimators of the unknown parameters and/or
of any function of the unknown parameters, say w(θ), can be obtained as follows

ŵ(data) =
� ∞

0

� ∞
0

� ∞
0

� ∞
0 w(θ)exp(LL + g0(θ))dλ1dλ2dλ3dβ� ∞

0

� ∞
0

� ∞
0

� ∞
0 exp(LL + g0(θ))dλ1dλ2dλ3dβ

. (17)

Formula (17) involves a ratio of two multidimentional integrals and does not have analytical
solution. Thus, some approximation methods were suggested to approximate these integrals
and calculate the ratio of the integrals such as the methods discussed by Lindley (1980) and
Tierney and Kadane (1986). These methods work well for low dimensions. In this paper
we will use Markov Chain Monte Carlo (MCMC) method that work well in the case of high
dimensions, see Gelman et al. (2003). MCMC method generates random draws from the
joint posterior distribution by generating draws from an arbitrary distribution (proposal
distribution) that easy to simulate from then apply an accept-reject method. Here, we
use multivariate normal as a proposal distribution. The following steps can be followed to
generate random draws from the joint posterior distribution (16):

1. Specify the size of the random draws we wish to generate, say m.

2. Choose an initial value of θ, say θ(0).

3. For i = 1, 2, . . . , m, repeated the following steps:

(a) Generate θ∗ from the multivariate normal with mean θ(i−1) and variance-covariance
Σ.

(b) Compute the ratio κ = min{1, g(θ∗|data)
g(θ(i−1)|data)

}.

(c) Generate a random value from uniform distribution on (0, 1).
(d) If κ ≥ put θ(i) = θ∗, otherwise put θ(i) = θ(i−1).
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Discarding the early m0 number of burn-in draws and using the remaining m − m0, θ(m0+1),
θ(m0+2), . . . , θ(m), as the chosen draws from the joint posterior distribution, the Bayes esti-
mate of θj is

θ̂j =
m−m0∑

i=m0+1

θ
(i)
j

m − m0
, j = 1, 2, 3, 4.

Furthermore, for 0 < ν < 1, one can obtain the lower and upper bounds of the 100(1 − ν)%
Bayesian probability interval of θj via (ν/2)100th and (1 − ν/2)100th percentiles of the
sequence of the m − m0 draws; θ(m0+1), θ(m0+2), . . . , θ(m).

5. Simulation results and applications

In this section, some simulation results and the analysis of a data set are presented.

5.1. Simulation results

In this section, we provide the following steps to generate a random sample of the
BGCh distribution:

1. Generate u1, u2 and u3 from uniform (0, 1).

2. Compute t1 = α(ln(1 − ln(1−u1)
λ1α

)1/β, t1 = α(ln(1 − ln(1−u2)
λ2α

)1/β and
t3 = α(ln(1 − ln(1−u3)

λ3α
)1/β.

3. Obtain x1 = min(t1, t3) and x2 = min(t2, t3).

To obtain some simulation results for samples size (n=100) and for different parameter
values, we consider three different sets of parameter values namely: (i) λ1 = λ2 = λ3 = β =
1, (ii) λ1 = λ2 = λ3 = 2, β = 1, and (iii) λ1 = 0.5, λ2 = 0.5, λ3 = 1, β = 1.5. We replicate
the process 1000 times and report the average estimates and the root mean square errors
(RMSEs) in Table 1. Also, we compute the Bayes estimates of the unknown parameters as
mentioned in the previous section with assuming uniform priors. We simulate 10000 runs
and replicate the process 1000 times. The average estimates and the RMSEs are also listed
in Table 1 and one can note that results of Bayes estimates are better than mles.

5.2. Applications

In this section we present the analysis of a data set to discuss how the proposed
distribution can be used in practice. This data represents the UEFA Champion’s League
Data and it was analyzed in Meintanis (2007) using the Marshall-Olkin exponential model
(MO) and by Kundu and Gupta (2009) using the bivariate generalized exponential (BVGE)
model, then by Sarhan (2019) using the bivariate generalized Rayleigh (BVGR) model.
Kundu and Gupta (2009) reported that the BVGE model fits the data better than MO
model and Sarhan (2019) reported that the BVGR model fits the data better than both the
MO and the BVGE models. Here, we use the BCh model to reanalyze the same data and
compare it with the three models; the MO, the BVGE and the BVGR but first we have
fitted Ch(β, λ) model to the marginal and the minimum of the two marginals. The mles of
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Table 1: The mles and the Bayes estimates and their RMSEs (in paren-
theses) of the parameters

Parameter value Method β λ1 λ2 λ3

MLE 1.3834 2.6776 1.3080 1.5323
(0.4243) (1.6961) (0.3732) (0.5492)

(1.0, 1.0, 1.0, 1.0) Bayes 1.3429 1.4783 1.2716 1.4297
(0.3609) (0.4788) (0.2993) (0.4316)

MLE 2.9372 5.0508 2.8083 1.5604
(1.9725) (3.0754) (0.8590) (0.4518)

(1.0, 2.0, 2.0, 2.0) Bayes 2.3606 2.4705 2.3693 1.3772
(1.3661) (0.4714) (0.3867) (0.6247)

MLE 1.7625 4.3562 1.5935 1.4858
(0.4276) (3.8752) (1.1251) (0.4916)

(1.5, 0.5, 0.5, 1.0) Bayes 0.9269 0.9891 1.3696 1.3696
(0.5764) (0.4892) (0.8753) (0.3736)

the unknown parameters, the Kolmogorov-Smirnov (K-S) distances between the empirical
distribution function (EDF) and the fitted distribution function and the associated p values
are reported in Table 2. Based on the p values, one can observe that Chen distribution may
be used to fit X1, X2 and min(X1, X2).

Table 2: The mles of the parameters, the K-S test statistics
and associated p-values

Variable mle K-S p-value
X1 β̂ = 0.403, λ̂ = 0.010 0.013 0.572
X2 β̂ = 0.379, λ̂ = 0.184 0.106 0.804
min(X1, X2) β̂ = 0.389, λ̂ = 0.019 0.094 0.899

Now, to test whether BCh distribution fits the data or not, we use the two-dimensional
Kolomogorov-Sminrov test of goodness of fit as proposed by Peacock (1983). Using the
computational environmental R peacock package, we obtain the value of test statistic as
0.2712 with p value 0.6482. Based on the p value, we cannot reject the null hypothesiss that
the data came from the BCh distribution at 0.05 level of significance. For more details about
multivariate Kolomogorov-Sminrov test of goodness of fit see Justel et al. (1997).

Hence, we have used the BCh model to analyze the bivariate data set. We use R to
get mles of the unknown parameters. Table 3 shows the mles of the unknown parameters
of the proposed distribution together with the values of the log-likelihood values and the
Akaike information criterion (AIC=-2 LL+2k,k is the number of estimated parameters; see
Akaike, 1974). The AIC suggests that the BCh distribution provides a better fit than the
three models; the MO, the BVGE and the BVGR.

To indicate that a unique root for the likelihood equations exist. We use the estimates

λ̂1, λ̂2, λ̂3 and β̂ obtained with respect to the given bivariate data set. These estimates
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Table 3: The mles of the parameters, the log-likelihood values and AIC values

Model mle L AIC
MO λ̂1 = 0.012, λ̂2 = 0.014, λ̂3 = 0.022, -339.006 684.012
BVGE α̂1 = 1.351, α̂2 = 0.465, α̂3 = 1.153, β̂ = 0.039 -296.935 601.870
BVGR α̂1 = 0.492, α̂2 = 0.166, α̂3 = 0.410, λ̂ = 0.020 -293.357 594.714
BCh λ̂1 = 0.026, ˆlambda2 = 0.055, λ̂3 = 0.048, β̂ = 1.020 0.094 0.899

are obtained using nlm R package which minimize the negative of the log-likelihood function.
We obtain T (θ̂) as follows:


0.0424 −1.63E − 0710−7 9.8070 6.0055

− 33.114 2.0183 8.427
− − 46.709 11.059
− − − 104.0074


The eigen values of this matrix are -103.6646, -42.8617, -31.9991 and -2.2724. This indicates
that T (θ̂) is negative definite. Then according to Small et al. (2000), the likelihood equations
has a unique root. For more details see Thomas and Jose (2021).

For Bayesian computations, we obtain the Bayes estimates of the unknown parameters
based on the uniform priors and the gamma priors. In the case of the gamma priors, we
assume that all hyperparameters equal and equal to 0.5. For the two cases, the proposal
distribution is multinormal with variance covariance matrix and the choice of its value de-
pends on the acceptance rate which is assumed such that the acceptance rate (number of
accepted runs out of total runs) increases. Here, we simulate 10000 runs from the joint
posterior distribution of the four parameters and the early 20% of the runs were discarded.
The trace plots of the draws are plotted in Figures 5 and 6 after discarding the early 2000
draws (burn-in period). Tables 4-5 list the posterior descriptive summaries of interest such
as the posterior mean, median, standard deviation and the 95% Bayesian credible intervals.

Table 4: Summary results for the posterior parameters in the case of gamma
priors (the acceptance rate is 38.18%)

Parameter Mean Median Standard deviation 95% credible intervals
λ1 0.0837 0.0754 0.0408 (0.0533, 0.1053)
λ2 0.5379 0.5278 0.1352 (0.4347, 0.6332)
λ3 0.1707 0.1604 0.0620 (0.1274, 0.2031)
β 0.2114 0.2114 0.0168 (0.1995, 0.2227)

6. Conclusion

In this paper, the bivariate generalized Chen distribution (BGCh) is proposed as a
new bivariate lifetime distribution. The BGCh distribution is of Marshal-Olkin type whose
marginal are generalized Chen distributions. One can observe that the BGCh distribution is
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Table 5: Summary results for the posterior parameters in the case of
uniform priors (the acceptance rate is 54.83%)

Parameter Mean Median Standard deviation 95% credible intervals
λ1 0.1137 0.1042 0.0533 (0.0756, 0.1401)
λ2 0.6255 0.6134 0.1575 (0.5175, 0.7273)
λ3 0.2227 0.2167 0.0779 (0.1657, 0.2697)
β 0.2019 0.2015 0.0171 (0.1900, 0.2127)

Figure 5: The trace plot of the random draws from the joint posterior distribu-
tion in the case of gamma priors

a singular distribution and has an absolute continuous and a singular part. Some statistical
properties are investigated. The estimation of the parameters has been approached by max-
imum likelihood and Bayesian methods. For Bayesian method, we used the MCMC method.
Numerical methods are required to calculate the desired estimates. One real data set is
analyzed using the BCh distribution which showed a better fit than the MO, the BVGE and
the BVGR distributions.
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Figure 6: The trace plot of the random draws from the joint posterior distribu-
tion in the case of uniform priors
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