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Abstract
Tree growth rings contain yearly information about climate, extreme weather events,

and other growing conditions. In this analysis, we model the relationship strength between
tree-ring records with respect to location and time. We employ the discrete wavelet trans-
formation on the ring width records in order to de-correlate the observations within each
series while simultaneously retrieving time-scale information. Our model then describes cor-
relations among the resulting wavelet coefficients at different temporal scales by distance.
Statistical inference through a new version of the wild bootstrap indicates that the relation-
ship strength decreases linearly as record pair distance increases, but the slopes differ across
temporal scales.
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1. Introduction

Because instrumental measurements of temperature, precipitation, and other aspects
of Earth’s climate typically span only the past century or so (Harris et al., 2020), we rely on
surrogate information recovered from natural climate archives to extend our perspective on
recent changes. Fallen snow accumulates on the surface of continental ice sheets or alpine and
arctic glaciers, and builds year-by-year a frozen archive of atmospheric chemistry that can
extend back several hundreds of thousands of years (Steiger et al., 2017; Brook and Buizert,
2018). Sediment that sinks down to the bottom of lakes often traps windblown pollen
and the remains of waterborne organisms, which in turn reflect environmental conditions
across the broader region (Holmes et al., 2016; Sandeep et al., 2017). And the water that
flows underground to form cave deposits leaves behind physical and chemical clues within the
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resulting mineral structures (Arienzo et al., 2017; Affolter et al., 2019). Over the past several
decades, networks of proxy climate records have served as the foundation for quantitative
estimates of past temperature, drought severity, and other key climate metrics at the local,
regional, continental, or global scale (Trouet et al., 2018; Neukom et al., 2019; Cook et al.,
2020).

Within the so-called ‘Common Era’ (the past two thousand years), the growth rings
of trees are, by far, the most dominant source of past climate information (Emile-Geay
et al., 2017). Every year, trees across the world’s temperate and boreal forests form a new
layer of wood about their stem. One of the most obvious signs in nature documenting the
passage of time, those rings also encode information about the tree’s immediate environment
within their physical and chemical structure (St George and Ault, 2014). For trees growing
in cold alpine or arctic forests, the width and wood density of their annual ring can be
excellent surrogates for growing season temperatures (Esper et al., 2018; St George and
Esper, 2019). And for trees in warmer and drier environs, because narrow rings tend to
follow dry weather, tree-ring records can be used to estimate past changes in precipitation
or drought extending back hundreds of years or more (Granato-Souza et al., 2019; Opa la-
Owczarek and Niedźwiedź, 2019).

Because tree rings and other proxies can extend our perspective on climate change
farther back in time than instrumental weather observations, they offer new opportunities
to evaluate the time evolution of the dominant modes of climate variability. Towards that
purpose, the wavelet transform is commonly applied to study multiscale, nonstationary pro-
cesses occurring across space and time within tree-ring records (Fan and Bräuning, 2017;
McKenzie et al., 2018; Kasatkina et al., 2019).

Climate is a multi-scale phenomenon. Some quasi-periodic and oscillatory patterns like
the El Niño Southern Oscillation (ENSO) are sub-decadal in periodicity, while others like
the Atlantic multi-decadal oscillation (AMO) or the Pacific decadal oscillation (PDO) have
longer time scales. In this paper, our primary goal is to verify that at different temporal
scales, the correlation between tree-ring records decay smoothly over space in a climatically
homogeneous region. To that end, in this paper we explore the spatio-temporal patterns
of paleoclimate records, as exhibited by Ponderosa pine (Pinus ponderosa Douglas ex C.
Lawson) tree-ring records from four states of the USA. We restrict to only this subspecies of
trees in order to eliminate differences due to species variation, and restrict regionally so that
we may consider a homogeneous, contiguous region where the climatic patterns are similar.
Additional details are provided later in this paper.

Our principal approach is to consider each three ring record as an individual functional
observation over time, that exhibits quasi-periodic and oscillatory patterns according to the
climatic conditions the tree has experienced in the past. A discrete wavelet transformation
of these records allows us to deconstruct such functional time series into various temporal
scales. We then consider correlations between the wavelet coefficients from two different
trees, at different scales, and study the pattern of such correlations as a function of distance
between the two trees.

Notice that the data that we analyze here has complex dependency patterns, hence
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it is non-trivial to conduct inference on a statistical model for how correlations, across
various wavelet scales, decays over spatial distance. To address this issue, we propose a novel
resampling scheme, that generalizes the well-known wild or external bootstrap scheme.

The rest of the paper is as follows: In Section 2 we provide a detailed description
of the dataset, and then Section 3 provides an overview of the discrete wavelet transform.
Next, we present a new approach to describe spatial relationships among time-series records
in Section 4. Namely, we apply the discrete wavelet transformation on tree-ring records
and calculate three versions of correlation between pairs of wavelet coefficients within each
time-scale. Afterwards, it is necessary to re-format the data for analysis; this is described
in Section 5. With the re-formatted data, we describe a novel approach to modeling rela-
tionship strength across temporal scales in Section 6. The proposed linear model utilizes
time-scale, distance, and elevation information among the records to predict strength of re-
lationship across all record pairs. We also describe differences among obtaining estimates
utilizing least squares, median regression, and Huber’s M estimation techniques. Finally, sta-
tistical inference is performed via an extension of the wild bootstrap in Section 7. The wild
bootstrap is modified to utilize external random variables which are generated per tree-ring
record, instead of for each case within the dataset. The random variables are incorporated
together within the method to help account for dependence among cases utilizing the same
record(s) while simultaneously producing the sampling distributions for the coefficient esti-
mates. An illustrative theoretical insight into the properties of the proposed extension of
the wild bootstrap is presented in Section 9. We collect some concluding remarks and ideas
about future research in Section 10.

2. Tree-Ring Record Description

Tree-ring datasets are typically presented in the structure of a ‘chronology’ — a com-
posite series made by averaging together measurements of tree-ring width, wood density,
isotopic composition, or other anatomical or biogeochemical variables from several dozen or
more trees at the same location (Cook and Peters, 1997). Compared to the initial mea-
surements made on samples taken from individual trees, tree-ring chronologies offer several
advantages (Coulthard et al., 2020). They are easier than sample- or tree-level data to in-
corporate into regional syntheses, they have been pre-processed to remove the confounding
influence of tree size or age (Bunn et al., 2004), and they are often adjusted to minimize or
eliminate biologically-driven persistence (Kannenberg et al., 2019).

The International Tree-Ring Databank (ITRDB), an open-access database maintained
by the National Oceanic and Atmospheric Administration in Boulder, Colorado, is the largest
archive of freely-available tree-ring data worldwide (Zhao et al., 2019). The ITRDB, which
was established in 1974 as a permanent repository for digital tree-ring measurements, in-
cludes more than four thousand tree-ring datasets (each composed of measurements made
on one dozen to more than one hundred trees) from all continents except Antarctica. Here
we use a subset of the St George and Ault (2014) dataset, which used the ITRDB’s hold-
ings as the foundation for their network of more than 2,200 age-corrected, quality-controlled
tree-ring width chronologies from the Northern Hemisphere. Each of these time series, which
have annual resolution but varying start and end dates, reports yearly tree growth across



166 M. HEYMAN, S. ST. GEORGE, AND S. CHATTERJEE [Vol. 18, No. 2

an entire forest stand as a unitless index of tree-ring width (RWI). Our analysis focuses
on tree-ring width chronologies derived from Ponderosa pine (Pinus ponderosa Douglas ex
C.Lawson) forests in the Four Corners region of the southwestern United States (Figure 1).
Ponderosa pine (coded as PIPO) is the fourth most common source species for tree-ring
width measurements housed by the ITRDB (St George and Ault, 2014) and a range that
extends from northern Mexico to southern Canada. Across the United States, Ponderosa
pine grow best under high precipitation and low evapotranspirative demand, but through-
out its range there are important regional differences in the species’ sensitivity to climate
(McCullough et al., 2017). For that reason, we restricted our analysis to only include those
tree-ring chronologies from Arizona, New Mexico, Colorado, and Utah (yielding a total of
97 series).

A commonly referenced set of guidelines for investigators creating tree-ring records
may be found in Cook (1987). Generally, at a given location, multiple trees are chosen to
be measured. Within each tree, between 1 and 5 cores (cylinders of heartwood extracted
from the trunk of the tree) are obtained in such a way that the tree is not vitally harmed.
The entire set of growth rings, combining both early and late wood, is measured within
each core. Then, a B-spline is used to remove a growth trend from each individual core.
Finally, all of the de-trended core series are combined into a single ring-width index (RWI)
for the location. Thus, the records of tree-ring widths are unitless and composed of many
trees and cores. It is also common practice to further clean records before analysis, by only
maintaining observations with strong coherence between cores within the record location at
any given time point.

3. Discrete Wavelet Transform

In paleoclimatology and climate science in general, nearly all applications of wavelets
are based on the continuous transform (Lau and Weng, 1995; Torrence and Compo, 1998).
That method does not place any restriction on series length, but in principle should be
applied only to data where the observations are made continuously through time. However,
tree-ring records are discrete time series, with observations that are equally spaced and made
at specific times (either once or twice within the growing season). For that reason, in this
paper, we apply the discrete wavelet transform to a network of tree-ring width chronologies to
test the potential of this other method to problems in climate science and paleoclimatology.

Our model aims to quantify spatial and temporal relationships among RWI records.
However, we cannot ignore the temporal dependencies likely present within each record. We
choose to employ wavelets to address the within record temporal dependency. Wavelets are
an ideal choice since they overcome the limitations with respect to the time and frequency
domains that are present in Fourier and windowed Fourier analyses. Let Z be the set
of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Suppose ψ ∈ L2(R) is a given function whose
properties will be discussed later. Wavelets constitute the family of functions defined by

ψj,k(u) = 2j/2ψ(2ju− k), j, k ∈ Z. (1)

For appropriate choices of ψ(·), these translations and dyadic dilations of ψ(·) constitute an
orthonormal basis of L2(R). The dilation and shrinkage within the function allow a user to
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Figure 1: Ponderosa pine record locations. Locations of the 97 Ponderosa pine
records in the Four Corners states analyzed by our model.

discover signals which change over the time domain. In many situations, a second function,
denoted as φ(·) and also called the scaling function since it may be derived from ψ(·), is
used in conjunction with subsets of the family of wavelet functions {ψj,k(·)} for representing
functions in a relatively simpler and parsimonious way. The very basic overview of wavelets
provided here is necessarily brief; more comprehensive discussions and many additional points
of interest may be found in Daubechies (1992); Hubbard (1998); Ogden (1997); Vidakovic
(1999); Wasserman (2006); Percival and Walden (2006); Nason (2008) and several other
places.

In our case, we are working with discrete time points and are specifically choosing to
employ the discrete wavelet transform (DWT). The DWT is a transformation of a vector of
data, x, which utilizes an orthonormal basis. Assume that the data vector, x = (x1, . . . , xT ),
is of length T = 2J where J ∈ Z+ = {1, 2, . . .}. Consider the collection of functions{

φ(·), ψj,k(·); j = 0, 1, . . . , J − 1, k = 1, 2, . . . , 2j
}
.

We evaluate these T = 2J functions at each of t = 1, 2, . . . , T , and construct the matrix W .
The first row of W is (φ(1), φ(2), . . . , φ(T )). Then, the remainder of the matrix is generated
from the bottom-up. That is, the T th (last) row is given by (ψ0,1(1), ψ0,1(2), . . . , ψ0,1(T )).



168 M. HEYMAN, S. ST. GEORGE, AND S. CHATTERJEE [Vol. 18, No. 2

Rows T − 2 and T − 1 are (ψ1,1(1), ψ1,1(2), . . . , ψ1,1(T )) and (ψ2,1(1), ψ2,1(2), . . . , ψ2,1(T )),
respectively. Generally, sets of 2j rows are generated together for evaluations of the wavelet
functions at time-scales, j = 0, 1, . . . , J − 1. A concrete example demonstrating this con-
struction is provided in Section 3.1. With some amount of algebra and exploiting known
properties of wavelets, for appropriate choice of the function ψ(·) it can be seen that the
matrix W is an orthonormal basis system of RT , that further has all the multi-resolution
properties for wavelets as defined in (1).

Based on this, the DWT of the data vector, x is

γ = Wx (2)

where the vector, γ, contains the wavelet coefficients. One important item of note is that the
wavelet coefficients convey coarse and fine level information about the series. Specifically, γ
may be written element-wise as

γ =
(
γ0 γJ−1,1 . . . γJ−1,2J−1 . . . γ1,1 γ1,2 γ0,1

)T
. (3)

Here, γ0 is the coarse level coefficient corresponding to the scaling function φ(·), and γj,k
is the fine level coefficient corresponding to the wavelet function ψj,k(·), for {(j, k) : j =
0, 1, . . . , J − 1, k = 1, 2, . . . , 2j}. A basic example of the DWT is provided in Section 3.1 for
readers who are less familiar with the technique.

The DWT has an additional advantage for use in large datasets. The discrete wavelet
transformation requires less stringent technical assumptions compared to Fourier transfor-
mation since the amplitude corresponding to each frequency does not have to be stable over
time. Computationally, the DWT is faster than the fast Fourier transform (see Percival
and Walden (2006) for details). As we motivate in Section 6, our model describes correla-
tions among the RWI records by incorporating spatial distance and temporal information.
In order to create the correlations between records, we need to begin by de-correlating the
individual series. The DWT tends to produce independent (or slightly correlated, Vannucci
and Corradi (1999)) coefficients from observed data series which are strongly correlated (see
Chapter 10 in Percival and Walden (2006)).

The above framework is based on T = 2J , that is, the length of the observed data is a
power of 2. There are several existing techniques to overcome this limitation, see for example
Gong et al. (2018); Walden and Cristan (1998); Ogden (1997); Nason (2008), however, we
choose not to use such advanced techniques here for clarity and tractability of the results.

3.1. Basic example of the DWT

Here we provide a basic example to demonstrate the time-scale information in wavelet
coefficients that we have discussed and utilize in our analysis. Consider the most basic
wavelet basis, proposed by Haar. The Haar wavelet basis appears as a step function (see
Figure 2).

At the coarsest level, the step function spans across the entire vector of data. At finer
levels, the step function is shrunk and translated across the data vector. Let’s consider the
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Figure 2: Haar wavelet (on a continuous scale)

the Haar basis when n=8, as generated using the GenW() within the wavethresh R package
by Nason (2016).

W =



2−3/2 2−3/2 2−3/2 2−3/2 2−3/2 2−3/2 2−3/2 2−3/2

2−1/2 −2−1/2 0 0 0 0 0 0
0 0 2−1/2 −2−1/2 0 0 0 0
0 0 0 0 2−1/2 −2−1/2 0 0
0 0 0 0 0 0 2−1/2 −2−1/2

2−1 2−1 −2−1 −2−1 0 0 0 0
0 0 0 0 2−1 2−1 −2−1 −2−1

2−3/2 2−3/2 2−3/2 2−3/2 −2−3/2 −2−3/2 −2−3/2 −2−3/2


(4)

Since the vector of wavelet coefficients is found using Wx, we can see that the scaling
coefficient, γ0 is a weighted sum of the vector entries. The coarsest wavelet coefficient, γ0,1
is a difference in weighted sums between the first and second halves of the vector entries.
The coarsest wavelet coefficients capture long-term signals in the data. The finest level
coefficients, γ2,1, γ2,2, γ2,3, γ2,4, are weighted pairwise differences between entries which are
next to each other. These capture signal changes that are close in time.

It is clear with the specific choice of Haar basis that W is an orthonormal matrix.
Most generally, orthonormality is a wavelet basis property. Although it is easier to visu-
alize and discuss, the Haar basis has an obvious discrete nature which creates non-smooth
estimates that are difficult to interpret in practice. Other wavelet bases typically do not
have closed-form solutions, but are more often used in statistical analysis. These include
Daubechies (1992) and Chui and Wang (1992). With the guidance of several existing works
that provide recommendations for selecting wavelet families, including Mandal et al. (1996),
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Strickland and Hahn (1996), and Mojsilovic et al. (2000), the analysis we present here utilizes
Daubechies Least Asymmetric family with 8 vanishing moments. Several software packages
enable automatic implementation wavelet bases for analysis including wavethresh by Nason
(2008), wavelets by Aldrich (2020), waveslim by Whitcher (2020) in R and the Wavelet
Toolbox in Matlab (The MathWorks, 2020).

4. Strength of Relationship Between RWI Records

Once we have attempted to account for the strong dependence within the RWI record
by implementing the DWT, we consider modeling the relationships among records. With-
out assuming a specific type of relationship (for example linear) between two quantitative
variables, there are several ways to compute correlation. We considered three correlation
measures to describe the RWI data.

4.1. Correlation measures

Generally, correlation measures the strength of relationship between two quantitative
variables. Suppose that x =

(
x1 x2 . . . xn

)T
and y =

(
y1 y2 . . . yn

)T
are two vec-

tors containing real-valued observations. Pearson’s correlation (eqn. 5) provides a measure
of the linear association between the vectors.

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2

√
n∑
i=1

(yi − ȳ)2
(5)

Although commonly utilized, Pearson’s correlation is limited to quantifying the linear
relationship. Spearman’s rank correlation (6) provides a bit more flexibility, by describ-
ing the strength of monotonic relationship between two quantitative variables. Spearman’s
correlation is created by utilizing the rank transformation on the observed vectors. In this
transformation, the observations within each vector are ordered from smallest to largest, and
thus, changed to values within Z+ where 1 corresponds to the smallest observation within
each vector. This transformation doesn’t depend on linearity and produces measures less
affected by outliers.

rs =

n∑
i=1

(rank(xi)− rank(x))(rank(yi)− rank(y))√
n∑
i=1

(rank(xi)− rank(x))2

√
n∑
i=1

(rank(yi)− rank(y))2
(6)

Kendall’s tau correlation (7) also provides a measure of the strength of monotonic
relationship between two quantitative variables. It specifically examines the discordance
between pairs of observations, as opposed to the orderings among the individual observations
as in Spearman’s correlation. Discordance is quantified by obtaining the sign, positive or
negative, of the difference between observations through the sgn transformation. Kendall’s
tau correlation has a bit of an advantage to Spearman’s rank correlation with respect to
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interpretability since describing discordant pairs is more straightforward than the sums of
ranks.

τ =

n∑
i=1

n∑
j=1

sgn(xi − xj)sgn(yi − yj)

n(n− 1) (7)

4.2. Creating pairwise correlations of wavelet coefficients

Our model describes correlations between the
(

97
2

)
pairs of PIPO records within the

Four Corners states. The correlations are between the series’ wavelet coefficients, not the
raw observations. This choice allows us to model the relationship strength of relationship
with respect to spatial location, while also accounting for temporal separation. Below is an
outline of the algorithm utilized to compute the correlations.

1. For the records in a given pair of locations, keep the years when both records have
observations.

2. Retain the most recent T observations for each of the series obtained in (1). We require
T = 2J for J ∈ Z+.

3. Perform the DWT on each series obtained in (2) and obtain the resulting wavelet
coefficient vectors.

4. Within the wavelet coefficients, calculate the time-scale correlation for any levels with
8 or more coefficients. For example, a correlation will be computed for the 2J−1 finest
scale coefficients. This would correspond to the same year time-scale relationship.

With the Four Corners data, we had enough observations to calculate up to 16-year
correlation information. Each of Pearson, Spearman, and Kendall correlations were calcu-
lated and considered as candidate responses for the model. The Daubechies least asymmetric
wavelet with 8 vanishing moments (see Daubechies (1992)) was selected for the basis in all
of our DWT computations.

5. Re-formatting the Data for Analysis

For each of the five available time-scales (same-, 2-, 4-, 8-, and 16-year), the algorithm
outlined in subsection 4.2 created

(
97
2

)
correlations. These correlations may be combined to

compose vectors of the form

cj =
(
c1,2,j c1,3,j . . . c96,97,j

)T
(8)

where ci,k,j denotes the correlation of records in the ith and kth locations. Time-scales, same-
year (s), 2-year (2), 4-year (4), 8-year (8), 16-year (16), are denoted by the index j in eqn. 8.
Many of the record pairings did not result in series long enough to compute the 8- or 16-
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year correlations with our constraints. Those entries are missing. To construct the response
in our model, we stack all of the time-scale correlation vectors into one vector

c =
(
cs c2 c4 c8 c16

)T
. (9)

We also construct the set of predictor variables in a similar manner. The structure of
the wavelet coefficients lends to incorporating the time-scale information to the model. A
set of indicator variables for each time scale were created with respect to the response vector

Yi,k,J0 =
{

1, j = J0 in Ci,k,j
0, j 6= J0 in Ci,k,j

. (10)

The indicator variables for each time scale were stacked in a similar fashion as the correlations
in eqn. 9 to create ys, y2, y4, y8, y16 vectors, all of the same length as c.

In addition to the time-scale information, our model also incorporates spatial informa-
tion in the form of the distance between locations in each pair. For each pair of records,
Lambert’s distance, Lambert (1942), in kilometers was calculated. The distance vector for
all pairs may be denoted as

d̃ =
(
d1,2 d1,3 . . . d96,97

)T
. (11)

Five d̃ vectors are stacked as in eqn. 9 to create d of the same length as c. Finally, along
similar lines, the absolute difference in location elevations for each pair is computed and used
to create the h predictor.

6. Model Estimation

Taking the Kendall correlation as an example, the scatterplots in Figure 5 within the
appendix indicate a negative relationship between the locations’ distance and the observed
correlation at each time-scale. Similar results also hold true for the other types of corre-
lations. Therefore, we propose a linear model with an interaction between time-scale and
distance and a linear term in elevation to describe correlation in eqn. 12.

c =β0ys + β1y2 + β3y4 + β4y8 + β5y16+
β6y + β7y2 ◦ d+ β8y4 ◦ d+ β9y8 ◦ d+ β10y16 ◦ d+
β11h+ ε.

(12)

With such a large dataset, it was difficult to pinpoint the best estimation method and
type of correlation. Even with the pairwise correlations plotted on a gradient scale, (as in
Figure 5), it is difficult to determine to see what is happening. Thus, we also considered
different estimation techniques for our model – least squares, median regression, and the
Huber M estimator.
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6.1. Estimation techniques

The three estimation techniques we consider for this analysis are all related through
an objective function, ρ which is maximized in order to obtain the estimates. The model in
eqn. 12 is a linear model. If we combined all of the predictor vectors into a matrix, X, and
all of the parameters into a vector, β, then the model could be written simply as c = Xβ+ε.

Then, the estimates obtained through least squares, median regression, and Huber-M
estimation are all solved by minimizing ρ(y−Xβ). Specifically, the least squares estimate is
obtained through minimizing the squared L2 norm as in eqn. 13 while the median regression
estimate minimizes the L1 norm (eqn. 14).

arg min
β∈Rk+1

||y −Xβ||22 (13)

arg min
β∈Rk+1

||y −Xβ||1 (14)

Huber-M estimate (eqn. 15) utilizes a combination of the L1 and L2 norms in the
minimization problem, dependant on the size of the element within y−Xβ. The Ik within
eqn. 15) is an indicator vector, the elements of which take a value of 1 when the magnitude
of y −Xβ is no larger than a specified k.

arg min
β∈Rk+1

[(
0.5||(y −Xβ) ◦ Ik||22

)
+
(
k||(y −Xβ) ◦ (1− Ik)||1 + k2/2(1− Ik)

)]
(15)

6.2. Resulting estimates

Tables 1, 2, and 3 contain the estimates for the model proposed in eqn. 12 for each of the
correlations and estimation methods. Within each correlation type, estimation method does
not seem to make much difference in the obtained values. We do see differences amongst the
point estimates across correlation type, but this was not surprising from our data exploration.
Generally, we see that each correlation and method contain the same general patterns across
the coefficients.

7. Statistical Inference

Continuing forward, the results examined utilize median regression to predict Kendall
correlation. In this section, we specifically compare the slopes in record pair distance across
time-scales. Figure 3 contains the estimated relationships while the absolute difference in
elevation is held constant at 0 km.

Although the linear model seems to be a straight-forward way to describe the RWI
correlations, the data structure is actually quite complicated. Each correlation, ci,k,j, is
based upon the ith and kth records. Thus, each record appears within 5×96 observations
within the response vector. There is not an intuitive argument to claim that the correlations
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Pearson Spearman Kendall
L.S. Med. Hub. L.S. Med. Hub. L.S. Med. Hub.

β̂0 6.597 6.806 6.663 6.431 6.630 6.480 4.614 4.695 4.623
β̂0 + β̂1 6.002 6.347 6.144 5.843 6.101 5.973 4.249 4.297 4.295
β̂0 + β̂2 5.953 6.493 6.295 5.805 6.360 6.113 4.257 4.538 4.424
β̂0 + β̂3 6.372 7.217 6.940 5.979 6.776 6.557 4.555 4.926 4.855
β̂0 + β̂4 6.511 7.120 6.930 5.744 6.352 6.074 4.497 4.716 4.663

Table 1: Estimated intercepts. Each estimate is multiplied by 1× 10−1 and bold
estimates are associated with the model in which we perform statistical infer-
ence. L.S=least squares regression, Med.=Median regression, Hub.=Huber M
estimator regression.

Pearson Spearman Kendall
L.S. Med. Hub. L.S. Med. Hub. L.S. Med. Hub.

β̂6 6.23 6.41 6.28 6.15 6.33 6.18 4.48 4.56 4.48
β̂6 + β̂7 4.70 4.97 4.79 4.63 4.74 4.73 3.46 3.41 3.48
β̂6 + β̂8 4.36 4.88 4.68 4.48 5.10 4.78 3.32 3.71 3.50
β̂6 + β̂9 5.77 6.53 6.14 5.30 5.88 5.69 4.10 4.35 4.31
β̂6 + β̂10 3.00 3.35 3.28 2.43 2.86 2.58 2.04 2.22 2.16

Table 2: Estimated slopes in distance. Each estimate is multiplied by −1× 10−4

and bold estimates are associated with the model in which we perform statistical
inference. L.S=least squares regression, Med.=Median regression, Hub.=Huber
M estimator regression.

are independent. For example, a certain record could happen to be less correlated with all of
the other records. Perhaps at that location, an external event caused all of the tree species
to have stunted growth.

There are a few existing methods to deal with dependence due to repeated measures.
A common choice is to add an individual effect to the model. That is, add a set of indicator
variables associated with record ID as fixed or random effects to the model fit. In our analysis,
this translates to adding 96 indicator variables to the model. Although possible with the
number of cases in our data, the addition of ID is difficult to interpret and our structure is
more complicated, since each response is associated with two record IDs. Moreover, treating
ID as a random quantity would create a mixed effects model. With few distributional
assumptions placed on the model error structure, inference would still be an open area of
research.

Our analysis actually continues with the model from eqn. 12 and does not over-
complicate it by adding an explicit record ID variable. Although the fits obtained should be
unbiased for a correctly specified model, utilizing the asymptotic normal distribution to esti-
mate parameter error is incorrect with dependent data. To estimate coefficient error, we will
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Pearson Spearman Kendall
L.S. Med. Hub. L.S. Med. Hub. L.S. Med. Hub.

β̂11 8.461 8.781 8.825 8.566 8.867 8.871 6.598 6.358 6.610

Table 3: Estimated slope in Elevation Difference. Each estimate is multiplied by
−1× 10−2 and the bold estimate is associated with the model in which we perform
statistical inference. L.S=least squares regression, Med.=Median regression,
Hub.=Huber M estimator regression.

instead use a version of the wild bootstrap, originally proposed by Wu (1986), which utilizes
random variables indexed by the record ID. We describe how a wild bootstrap response, cb,
is obtained in our framework in the subsequent algorithm.

1. Generate n=number of records, independent random variables, each with mean 0
and variance 1. In our analysis, this translates to generating 97 random variables,
U1, U2, ..., U97. Suppose that the index of these random variables corresponds to a
location ID.

2. Create two vectors, each of the same length as the response, c, containing the random
variables generated in (1). The elements of the first vector correspond to the first
location (i index in the c). The elements of the second vector correspond to the second
location (k index in the c). Call these vectors u1 and u2.

3. Create the wild bootstrap response, cb, as cb = ĉ+ diag(u1)diag(u2)r.

In order to decide whether there was evidence that the linear relationship with record
pair distance differed by time-scale, we implemented the described wild bootstrap to ob-
tain bootstrap distributions of all model coefficients estimated in eqn. 12. These bootstrap
sampling distributions are displayed in figure 6 within the appendix. Each distribution is
centered at the original coefficient estimate (as expected), and all seem to be fairly light-
tailed. Specifically, we explored whether there was evidence of a difference in the slopes in
distance with respect to the same-year time-scale. With B = 10, 000 bootstrap samples and
Bonferroni adjusted significance level of α = 0.05, confidence intervals were created for each
of the parameters: β7, β8, β9, and β10. These intervals are displayed in figure 4. The black
bands in each figure are associated with the bootstrap confidence interval. We can see that
all of the bootstrap confidence intervals are shorter than the typical normal intervals, which
assume independence across observations. These intervals also indicate evidence that the
slopes in distance, across different time-scales, differ from the same-year relationship.

8. Results

The results in Figure 4 imply that the linear relationship between Kendall correlation
and record pair distance differs over time. Examination of the scatterplots within Figure 5,
indicate a lack of data in the 8- and 16-year time scales, compared to the other scales. Our
model inference finds significant relationships at these scales, even though there was little
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Figure 3: Fitted lines with Kendall correlation as the response and median
regression

evidence of a relationship from the exploratory scatterplots. This finding could be due to
a lack of power at the higher time-scales with less data. Interpreting the results at these
time-scales should be done with caution.

This analysis may have significant implications for researchers examining tree-ring
chronologies. First and foremost, this study implies that these Pinus ponderosa records
contain intricate information, not only with respect to climate, as typically studied, but also
with respect to each other. The type information that these records carry also varies over
time. The specific analysis presented here was for a subset of the Pinus ponderosa in the
U.S., and the maximum record length in the set was 551 years, while the shortest record only
contained 63 years of RWIs. If older tree-ring records were available, we would be able to ex-
pand the analysis further, and draw more concrete conclusions about the longer time-scales.
Specifically, if the researcher is interested in studying a 2k time-scale in the RWI records,
then a minimum of 23+k+1 record length in the majority of records would be required. But,
as seen in our analysis, this minimum requirement creates an unwieldy correlation estimate
at the longest allowable time-scale, so the researcher would likely prefer to have records of
length 25+k+1 to seriously study the kth time-scale.
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Figure 4: Bonferroni adjusted 95% confidence intervals for the time-scale slope
parameters in distance. These are differences from the same-year slope. The tra-
ditional normal interval appears as light gray for comparison with our bootstrap
intervals, in color.

9. The Theoretical Framework

We illustrate the main ideas of the underlying theoretical framework in this section, and
omit much of the technical details. Fix a pair of locations. Since the wavelet decomposition
de-correlates the data, we consider independent observations {(Yi,1, Yi,2,xi) ∈ R×R×Rp; i =
1, . . . , n} corresponding to this pair of locations. We assume that EYi,1 = µ1, EYi,2 = µ2,
VYi,1 = σ2

1, VYi,2 = σ2
2 and Cor(Yi,1, Yi,2) = ρ(xi). In other words, our data consists of

bivariate response vectors (Yi,1, Yi,2) related to the pair of locations, and associated covariate
xi ∈ Rp that is taken to be non-random in this paper, and we model the correlation between
the two responses as a function of the covariate. The bivariate response is allowed to be
heteroscedastic, and the two means and two variances may also be functions of the covariate,
but that structure is not relevant for present purposes. We assume that EY 8k

i,j < ∞ for
j = 1, 2 and a sufficiently high positive integer k. We also write ρ ≡ ρ(xi) below, since there
is no cause of confusion here.
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Figure 5: Pairwise Kendall correlations between wavelet coefficients at each
time-scale
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Figure 6: Bootstrap sampling distributions of time-scale slopes in distance.
These are estimated differences from the same-year time-scale slope. The orig-
inal estimate is the dashed vertical line.
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Let ε� 0.25 min(σ2
1, σ

2
2) be a small constant, and let A be the event

A =
{ n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)2
> ε, and

n∑
i=1

(
Yi,2 − n−1

n∑
i=1

Yi,2
)2
> ε

}
.

On A we define our estimator of ρ to be the usual sample correlation

ρ̂ =
{ n∑

i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)2
}{

n∑
i=1

(
Yi,2 − n−1

n∑
i=1

Yi,2
)2
}1/2

n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)(
Yi,2 − n−1

n∑
i=1

Yi,2
)
.

On it complement of A, we take ρ̂ = 0. We have to separate the cases where the sample
variances are sufficiently high and where they are not using A, since we do not make any
distribution assumptions like Gaussianity in this paper. It can be shown that 1 − P[A] =
O(n−4k), consequently we only discuss ρ̂ under A, the other case is negligible.

Theorem 1: Under the conditions stated above, we have the following results:

(a) For every fixed pair of locations, the correlation estimator ρ̂ is consistent and the dis-
tribution of n1/2(ρ̂− ρ) converges weakly to a Gaussian distribution.

(b) If ρ(x) = βTx for some β ∈ Rp, then the ordinary least squares estimator for β computed
from all pairs of locations is consistent and asymptotically Gaussian.

(c) If ρ(x) = βTx for some β ∈ Rp, and β̂ is the ordinary least squares estimator for β, then
the distribution of n1/2(β̂−β) is consistently approximated by the proposed version of
the wild bootstrap scheme, conditional on the data, for almost all sample paths.

Proof: [Proof of Theorem 1]

Here, we only provide a brief outline of the main arguments for part (a) of Theorem 1,
in order to not overload this paper with algebraic details.

We define the following terms

T1 = n−1σ−2
1

n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)2
,

T2 = n−1σ−2
2

n∑
i=1

(
Yi,2 − n−1

n∑
i=1

Yi,2
)2
,

T3 = n−1σ−1
1 σ−1

2

n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)(
Yi,2 − n−1

n∑
i=1

Yi,2
)
.

In terms of thee notations, we have under A that ρ̂ = (T1T2)−1/2T3.
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In the following, the notation Ra denotes a remainder for all choices of a, with the
property that ER2k <∞. We do not explicitly report the algebra relating to such remainder
terms, those are routine. It can be worked out that on A, we have the following

T3 = ρ+ n−1/2R1 + n−1R2,

T1 = 1 + n−1/2R3 + n−1R4,

T2 = 1 + n−1/2R5 + n−1R6,

consequently we can express (T1T2)−1/2 as(
T1T2

)−1/2
= 1 + n−1/2R7 + n−1R8.

It is in the above expression, the condition dictating A is required, for establishing that R8
is indeed a random variable satisfying ER2k <∞.

Using the above terms, we now have that

ρ̂ =
(
T1T2

)−1/2
T3

= ρ+ n−1/2R9,

where R9 is a smooth function of all of the following terms:

T4 = n1/2
(
n−1

n∑
i=1

Yi,1 − µ1

)
,

T5 = n1/2
(
n−1

n∑
i=1

Yi,2 − µ2

)
,

T6 = n1/2
(
n−1

n∑
i=1

(Yi,1 − µ1)2 − σ2
1

)
,

T7 = n1/2
(
n−1

n∑
i=1

(Yi,2 − µ2)2 − σ2
2

)
,

T8 = n1/2
(
n−1

n∑
i=1

(Yi,2 − µ2)(Yi,2 − µ2)− ρσ1σ2

)
.

The rest of the analysis, along with the justification for the novel resampling scheme
used in this paper, now follows using fairly routine algebra, and the use of Lyapunov’s Central
Limit Theorem.

10. Future Considerations

In the above analysis, we build a model with a response variable containing pairwise
correlations between wavelet coefficients at different time-scales. Then, we perform a modi-
fied version of the wild bootstrap for statistical inference.

We utilized a small subset of the available data within the international tree-ring data-
bank. The analysis could be further modified or generalized in many ways. Multiple species
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within the same area could be included. It could be of interest to correlate records over a
larger land area, or even across contents. Finally, incorporating information, such as temper-
ature and precipitation, may help researchers to better understand past climate. However,
all these come with additional challenges, for example, the distribution of tree-ring records
over the world is patchy and inadequate in many regions, dependence of the data over dif-
ferent tree species and subspecies, between various climatic regions and other features need
to be carefully modeled. Additionally, many data records are incomplete, or are unevenly
spaced over time. The theoretical details behind the new resampling scheme deserves further
study.
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Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J. P. (2019). No

evidence for globally coherent warm and cold periods over the preindustrial common
era. Nature, 571 (7766), 550–554.

Ogden, R. T. (1997). Essential Wavelets for Statistical Applications and Data Analysis.
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