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Abstract
It is shown that a Wishart matrix of standard complex normal random variables is

asymptotically freely independent of an independent random matrix, under minimal condi-
tions, in two different sense of asymptotic free independence.
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1. Introduction

Since the seminal discovery of [10], there have been several folklores regarding free in-
dependence. For example, one such folklore is that any two independent Wigner matrices are
asymptotically freely independent, and another is that any Wishart matrix is asymptotically
freely independent of a deterministic matrix. While such folklores are true, more often than
not, there are a few problems. The first and foremost problem is that the meaning of the
phrase “asymptotically freely independent” varies with context. A widely used definition is
in terms of the normalized expected trace (or without the expectation). Unfortunately, with
this definition, the claim of asymptotic free independence can easily fail, in the absence of
any other assumption. The counter example in [7] is noteworthy. This articulates the second
problem with the folklore, which is that the required assumptions are usually missing. Nev-
ertheless, in the literature, there are several rigorous proofs of various versions of Voiculescu’s
theorem; see, for example, the monographs [9], [2] and [8]. The reader will notice that the
versions in the above references are not monotonic in strength, that is, one version does not
necessarily imply another. In other words, there is no general theorem regarding asymptotic
free independence from which most results of interest follow.

This note is a modest attempt at settling some of the issues mentioned above in a spe-
cific example. Theorems 1 and 2 claim asymptotic free independence of a Wishart matrix
WN of standard complex normal random variables and an independent matrix YN , under two
different definitions of asymptotic free independence. The former is the usual definition, in
terms of normalized expected trace, while the latter is in terms of the limiting spectral dis-
tribution of random matrices, which is weaker than the former. In both the above mentioned
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theorems, the limiting spectral distribution of YN is assumed to be compactly supported,
at the least. This assumption is relaxed in Theorem 3, a consequence of which is that the
claim is also significantly weakened. The proofs of Theorems 2 and 3 are based on truncation
arguments.

We choose to work with the complex normal distribution because they yield the
strongest results in that the assumptions on YN become minimal. This is why, for example,
Theorem 22.35 of [9] assumes the distribution to be complex normal. It is worth noting that
Theorem 2 of [1] and the results in [6] are similar in spirit. Although the results are stated
for a Wishart matrix, they hold for a Wigner matrix as well.

2. The Results

Let (Zi,j : i, j ∈ N) be a family of i.i.d. standard complex Normal random variables.
That is, (<(Zi,j) : i, j ≥ 1) and (=(Zi,j) : i, j ≥ 1) are independent families of i.i.d. real
N(0, 1/2) random variables. Suppose that (MN : N ≥ 1) is a sequence of positive integers
such that

lim
N→∞

N

MN

= λ ∈ (0,∞) . (1)

For each N ≥ 1, let XN be the MN ×N random matrix defined by

XN(i, j) := Zi,j, 1 ≤ i ≤MN , 1 ≤ j ≤ N .

For N ≥ 1, define an N ×N random Hermitian matrix by

WN := 1
MN

X∗NXN .

Notice that for 1 ≤ i, j ≤ N ,

WN(i, j) = 1
MN

MN∑
k=1

Zk,iZk,j .

Hence WN is a Wishart matrix.

For a random Hermitian N × N matrix Z, its “empirical spectral distribution” and
“expected empirical spectral distribution”, denoted by ESD(Z) and EESD(Z), respectively,
are probability measures on R, defined as

ESD(Z) = 1
N

N∑
i=1

1(λi ∈ ·) ,

EESD(Z) = 1
N

N∑
i=1

P (λi ∈ ·) ,

where λ1, . . . , λN are the eigenvalues of Z, counted with multiplicity.

It is well known that as N →∞,

ESD(WN)→ νλ ,
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weakly in probability, where νλ, with λ as in (1), is the Marčenko-Pastur distribution, defined
by

νλ(dx) =


(
1− 1

λ

)
1(0 ∈ dx) + 1

2π

√
(λ+−x)(x−λ−)

λx
1[λ−,λ+](x) dx, λ > 1 ,

1
2π

√
(λ+−x)(x−λ−)

λx
1[λ−,λ+](x) dx, λ ≤ 1 ,

with λ± = (1±
√
λ)2.

For each N ≥ 1, YN is an N × N random complex Hermitian matrix, independent
of (Zi,j : i, j ∈ N). The exact assumption on the spectrum of YN will vary from result to
result, and hence will be mentioned in the statements of the respective results. However, at
the very least, there exists a (non-random) probability measure µ on R such that

ESD(YN)→ µ , (2)

weakly in probability, as N →∞.

The statements of the following results are based on the theory of C∗-probability spaces.
A reader unacquainted with this may look at [9]. It is known that given probability measures
µ1 and µ2 which are supported on a compact subset of R, there exist a C∗-probability space
(A, ϕ), and two freely independent self-adjoint elements a1, a2 ∈ A such that

ϕ (ani ) =
� ∞
−∞

xnµi(dx), n ∈ N, i = 1, 2 .

The probability measures µ1 and µ2 are called the distributions of a1 and a2, and denoted
by L(a1) and L(a2), respectively.

The first result shows asymptotic free independence between WN and YN in the sense
of normalized expected trace.

Theorem 1: Assume that µ is compactly supported, and that for each n ∈ N,

lim
N→∞

E
[ 1
N

Tr(Y n
N )
]

=
� ∞
−∞

xnµ(dx) , and (3)

lim
N→∞

Var
[ 1
N

Tr(Y n
N )
]

= 0 . (4)

Then, there exists a C∗-probability space (A, ϕ), in which there are two freely independent
self-adjoint elements w and y, having distributions νλ and µ, respectively, and satisfying the
following: For every polynomial p in two variables having complex coefficients,

lim
N→∞

1
N

ETr [p (WN , YN)] = ϕ
(
p(w, y)

)
. (5)

Consequently, if p (WN , YN) has real eigenvalues, a.s., for all N , then as N →∞,

EESD (p (WN , YN)) w−→ L (p (w, y)) . (6)

Remark 1: When YN is deterministic, the assumptions of Theorem 1 just mean that

lim
n→∞

1
N

Tr(Y n
N ) =

� ∞
−∞

xnµ(dx) ,
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which is stronger than (2). In general, (3) and (4) together imply (2) whenever µ is deter-
mined by its moments, which is necessarily the case if µ is compactly supported.

Remark 2: The claim (6) is an immediate consequence of (5), whenever p is such that the
eigenvalues of p(WN , YN) are a.s. real. For example, if WN is non-negative definite, then the
above holds for

p(x, y) = xy .

In the next result, both the hypotheses and the claim are weakened to (2) and (6),
respectively. In other words, this results proves asymptotic free independence in the sense
of (6) as opposed to (5).

Theorem 2: If µ, as in (2), is compactly supported, then for every polynomial p in two
variables having complex coefficients such that p (WN , YN) has real eigenvalues, a.s., for all
N , (6) holds.

The last result deals with the case when the support of µ is possibly unbounded.
For measures with possibly unbounded support, ‘�’ and ‘�’ denote their free additive and
multiplicative convolutions, respectively. For the latter, at least of one of the two measures
has to be supported on the non-negative half line. See [5] for the details.

Theorem 3: If (2) holds for a probability measure µ which is not necessarily compactly
supported, then

EESD(YN +WN) w−→ µ� νλ , and
EESD(YNWN) w−→ µ� νλ ,

as N →∞.

Remark 3: Theorems 1 - 3 hold true, if the Wishart matrix is replaced by a Wigner matrix
with standard complex normal entries, and the Marčenko-Pastur distribution is replaced by
the semicircle law.

3. Some Facts

For the proofs of the results mentioned in Section 2, a few facts will be needed, which
are stated here. The proofs are omitted because the results are either elementary or can be
found in a cited reference.

The first one is a comparison between ranks of deterministic matrices.

Fact 3.1: Let p be a polynomial in two variables, with complex coefficients. Then, there
exists a finite constant C, depending only on the polynomial p, such that

Rank (p(A,B)− p(A′, B)) ≤ CRank(A− A′) ,

for square matrices A,A′, B of the same order.

The next result, which is also based on rank, follows from Theorem A.43, page 503, of
[4].



2021] FOLKLORE OF FREE INDEPENDENCE 191

Fact 3.2: For probability measures µ1 and µ2 on R, let d(µ1, µ2) denote their Lévy distance,
defined by

d(µ1, µ2) := inf {ε > 0 : µ1 ((−∞, x− ε]) ≤ µ2 ((−∞, x]) ≤ µ1 ((−∞, x+ ε])} .

For N ×N random Hermitian matrices A and B, it holds that

d (EESD(A),EESD(B)) ≤ 1
N

E [Rank(A−B)] .

The following fact essentially follows from uniform integrability. Nonetheless, a proof
is given.

Fact 3.3: For each N ≥ 1, suppose that YN is an N×N random Hermitian matrix satisfying
(3) and (4). Then it holds that for any n ≥ 1 and k1, . . . , kn ≥ 0,

lim
N→∞

N−nE
(

n∏
i=1

Tr
(
Y ki
N

))
=

n∏
i=1

αki ,

where αn denotes the right hand side of (3).

Proof: Fix n ≥ 1 and k1, . . . , kn ≥ 0. A consequence of (3) and (4) is that for all fixed
k ≥ 1,

1
N

Tr
(
Y k
N

)
P−→ αk , N →∞ .

Therefore,
N−n

n∏
i=1

Tr
(
Y ki
N

)
P−→

n∏
i=1

αki , N →∞ . (7)

Let
k =

n∑
i=1

ki ,

which we assume without loss of generality to be at least 1, and observe that

N−n
∣∣∣∣∣
n∏
i=1

Tr
(
Y ki
N

)∣∣∣∣∣ =
n∏
i=1

∣∣∣∣∣
� ∞
−∞

xki (ESD(YN)) (dx)
∣∣∣∣∣

≤
n∏
i=1

� ∞
−∞
|x|ki (ESD(YN)) (dx)

≤
n∏
i=1

(� ∞
−∞

x2k (ESD(YN)) (dx)
)ki/2k

=
( 1
N

Tr
(
Y 2k
N

))1/2
,

the penultimate line following from the Lyapunov inequality. Thus,

lim sup
N→∞

E
(N−n n∏

i=1
Tr
(
Y ki
N

))2
 ≤ lim

N→∞
E
( 1
N

Tr
(
Y 2k
N

))
= α2k <∞ ,
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the equality being implied by (3). Hence,(
N−n

n∏
i=1

Tr
(
Y ki
N

)
: N ≥ 1

)

is an uniformly integrable family, which in conjunction with (7) completes the proof.

The next fact is elementary.

Fact 3.4: Let Z1, . . . , ZN be i.i.d. standard complex normal, that is for each i = 1, . . . , N ,
the real and imaginary parts of Zi are independent N(0, 1/

√
2). If Z denotes the column

vector whose i-th component is Zi, and U is an N × N deterministic unitary matrix, then
the components of UZ are also i.i.d. standard complex normal.

The next fact has essentially been proved in page 386 of [9]. As mentioned therein, an
N ×N Haar unitary matrix is a random matrix distributed according to the Haar measure
on the group of N ×N unitary matrices. Before stating the fact, we need to introduce a few
notations. Let Sn denote the group of permutations on {1, . . . , n} for n ≥ 1. A permutation is
identified with the partition of {1, . . . , n}, induced by the cyclic decomposition. For α ∈ Sn,
#α denotes the number of blocks in α, that is the number of cycles. For any block θ ∈ α,
#θ denotes the length of the cycle θ. For example, for

α ∈ S4,

defined by
α(1) = 2, α(2) = 4, α(3) = 3, α(4) = 1 ,

we write
α = {(1, 2, 4), (3)} ,

and hence #α = 2. If the elements of α, as listed above, are labelled as θ1 and θ2, respectively,
then

#θ1 = 3, #θ2 = 1 .

Fact 3.5: For a fixed N , let A and B be deterministic N ×N Hermitian matrices. If U is
an N ×N Haar unitary matrix, then for any 1 ≤ n ≤ N and k1, . . . , kn ≥ 0,

ETr
[
n∏
i=1

(
UAkiU∗B

)]

=
∑

α,β∈Sn
Wg(N,α−1β)

∏
θ∈α

Tr
(
A
∑

i∈θ ki
) ∏

θ∈β−1γ

Tr
(
B#θ

) ,

where Wg is the Weingarten function defined by

Wg(N,α) = E
[
U(1, 1) . . . U(n, n)U(1, α(1)) . . . U(n, α(n))

]
,

for α ∈ Sn, N ≥ n and
γ = {(1, . . . , n)} ∈ Sn .
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The following has essentially been proved in the course of the proof of Theorem 23.14
of [9].

Fact 3.6: For a fixed n ≥ 1 and α ∈ Sn,
φ(α) := lim

N→∞
N2n−#αWg(N,α) exists and is real.

Furthermore, if (A, ϕ), w and y are as in the statement of Theorem 1, then for n ≥ 1 and
k1, . . . , kn ≥ 0,

ϕ
(
wk1y . . . wkny

)
=

∑
α,β∈Sn:

#(α−1β)+#α+#(β−1γ)=2n+1

φ(α−1β)
∏
θ∈α

ϕ
(
w
∑

i∈θ ki
) ∏

θ∈β−1γ

ϕ
(
y#θ

) .

The following result is Corollary 2 of [3].

Fact 3.7: For a fixed N ∈ N, there exists a measurable map
ψ : CN×N → CN×N ,

where CN×N is the space of all N ×N matrices with complex entries, such that ψ(M) is an
unitary matrix for every M ∈ CN×N , and

ψ(M)∗Mψ(M)
is upper triangular for every M .

4. Proofs

Proof of Theorem 1: Let (A, ϕ), w and y be as in the statement. In order to prove the
claim, all that needs to be shown is that

lim
N→∞

N−1E
[
Tr
(
W k1
N YN . . .W

kn
N YN

)]
= ϕ

(
wk1y . . . wkny

)
, (8)

for fixed n ≥ 1 and k1, . . . , kn ≥ 0.

The foremost task is to show that the expectation on the left hand side of (8) exists.
To that end, it suffices to show that there exists N0 such that

E [|YN(i, j)|n] <∞ for all N ≥ N0, 1 ≤ i, j ≤ N . (9)
Fix N ≥ 1 and enumerate the eigenvalues of YN in ascending order by λ1, . . . , λN . Notice
that

N∑
i,j=1
|YN(i, j)|2n ≤

 N∑
i,j=1
|YN(i, j)|2

n

=
(

N∑
i=1

λ2
i

)n

≤ Nn−1
N∑
i=1

λ2n
i

= Nn−1Tr(Y 2n
N ) .
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Since (3) implies that the expectation of the right hand side is finite for N large, an N0
satisfying (9) exists.

Proceeding towards (8), fix N ≥ N0, and let

F := σ (XN , YN) ,

that is F is the smallest σ-field with respect to which the entries of XN and YN are measur-
able. Let UN be a Haar unitary matrix independent of F . Fact 3.4 implies that conditioned
on UN , the entries of UNXN are i.i.d. standard complex Normal. That is, the conditional
joint distribution of the entries of UNXN , given UN , is the same as that of XN . Therefore

(UNWNU
∗
N , YN) d= (WN , YN) .

As a result,

CN := E
[
Tr
(
W k1
N YN . . .W

kn
N YN

)]
= E

[
Tr
(
(UNWNU

∗
N)k1YN . . . (UNWNU

∗
N)knYN

)]
= E

[
Tr
(
UNW

k1
N U

∗
NYN . . . UNW

kn
N U∗NYN

)]
= E EF

[
Tr
(
UNW

k1
N U

∗
NYN . . . UNW

kn
N U∗NYN

)]
,

where EF is the conditional expectation given F . By an appeal to Fact 3.5,

EF
[
Tr
(
UNW

k1
N U

∗
NYN . . . UNW

kn
N U∗NYN

)]
=

∑
α,β∈Sn

Wg(N,α−1β)
∏
θ∈α

Tr
(
W

∑
i∈θ ki

N

) ∏
θ∈β−1γ

Tr
(
Y #θ
N

) .

Taking the unconditional expectation of both sides, and using the independence of WN and
YN , we get that

CN =
∑

α,β∈Sn
Wg(N,α−1β)E

∏
θ∈α

Tr
(
W

∑
i∈θ ki

N

)E
 ∏
θ∈β−1γ

Tr
(
Y #θ
N

) . (10)

It is well known that for all k ∈ N,

lim
N→∞

E
(
N−1Tr(W k

N)
)

= ϕ(wk) ,

lim
N→∞

Var
(
N−1Tr(W k

N)
)

= 0 .

Combining the above with Fact 3.3 yields that

lim
N→∞

E
∏
θ∈α

N−1Tr
(
W

∑
i∈θ ki

N

) =
∏
θ∈α

ϕ
(
w
∑

i∈θ ki
)
. (11)
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Similarly, (3), (4) and Fact 3.3 together imply that

lim
N→∞

E
 ∏
θ∈β−1γ

N−1Tr
(
Y #θ
N

) =
∏

θ∈β−1γ

ϕ
(
y#θ

)
. (12)

Rewrite (10) as

N−1CN∑
α,β∈Sn

N#α+#(β−1γ)−1Wg(N,α−1β)

E
∏
θ∈α

N−1Tr
(
W

∑
i∈θ ki

N

)E
 ∏
θ∈β−1γ

N−1Tr
(
Y #θ
N

) .

The first claim of Fact 3.6 implies that for fixed α, β ∈ Sn,

N#α+#(β−1γ)−1Wg(N,α−1β) = O
(
N#(α−1β)+#α+#(β−1γ)−2n−1

)
= O(1) ,

because

#α + #(α−1β) + #(β−1γ) ≤ 2n+ 1 ,

as shown in (23.4) and the following display on page 387 in [9]. Therefore, letting N → ∞
in (13) and using the first claim of Fact 3.6 along with (11) and (12), we get that

lim
N→∞

N−1CN

=
∑

α,β∈Sn:
#(α−1β)+#α+#(β−1γ)=2n+1

φ(α−1β)
∏
θ∈α

ϕ
(
w
∑

i∈θ ki
) ∏

θ∈β−1γ

ϕ
(
y#θ

) .
The second claim of Fact 3.6 shows that the right hand side of the above equation is the
same as that of (8). Thus the latter follows, which completes the proof.

Proof of Theorem 2: Since µ is compactly supported, let M > 1 be such that

µ ([−(M − 1),M − 1]) = 1 .

Letting ψ be as in Fact 3.7, define

PN = ψ(YN) ,

and
TN := P ∗NYNPN ,

which is an upper triangular matrix. Define an N ×N matrix T ′N by

T ′N(i, j) :=
{
TN(i, j), i 6= j ,

TN(i, i)1(|TN(i, i)| ≤M), i = j ,
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and let
Y ′N := PNT

′
NP

∗
N . (13)

In order to complete the proof, it suffices to show that for a fixed polynomial p satisfying
the hypothesis,

EESD (p(WN , Y
′
N)) w−→ L (p(w, y)) , (14)

and
lim
N→∞

d (EESD (p(WN , YN)) ,EESD (p(WN , Y
′
N))) = 0 , (15)

where d is the Lévy metric, convergence in which is equivalent to weak convergence.

We start by showing (15). To that end, note that

N−1Rank(YN − Y ′N) = N−1Rank(TN − T ′N)
= N−1#{1 ≤ i ≤ N : |TN(i, i)| > M}
= (ESD(YN)) ([−M,M ]c) ,

the inequality in the second line being based on the fact that TN − T ′N is a diagonal matrix,
and hence

N−1Rank(YN − Y ′N) P−→ 0 (16)
as N →∞. Fact 3.1 and the bounded convergence theorem show that

lim
N→∞

E
[ 1
N

Rank(p(WN , YN)− p(WN , Y
′
N))

]
= 0 .

An appeal to Fact 3.2 establishes (15).

Proceeding towards (14), in view of Theorem 1 and Remark 2, it suffices to show that
(3) and (4) hold with YN replaced by Y ′N . Equation (16) and the hypotheses imply that

ESD(Y ′N)→ µ ,

weakly in probability, as N →∞. Since

(ESD(Y ′N)) ([−M,M ]c) = (ESD(T ′N)) ([−M,M ]c) = 0, N ≥ 1 ,

and
µ ([−M + 1,M − 1]c) = 0 ,

it follows that for a fixed n ≥ 1, as N →∞,
� ∞
−∞

xn (ESD(Y ′N)) (dx) P−→
� ∞
−∞

xnµ(dx) .

The observations that
1
N

Tr [(Y ′N)n] =
� ∞
−∞

xn (ESD(Y ′N)) (dx) ,

and that the modulus of the above quantity is bounded by Mn, show, by bounded conver-
gence theorem, that (3) and (4) hold, with YN replaced by Y ′N . Theorem 1 now shows (14),
which, in turn, completes the proof.
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Proof of Theorem 3: As in the preceding proof, let

PN = ψ(YN), N ≥ 1 .

Fix M > 0 and let Y ′N be as in (13), M being suppressed in the notation. Theorem 2 implies
that

EESD(Y ′N +WN) w−→ µM � νλ ,

and
EESD(Y ′NWN) w−→ µM � νλ

as N →∞, where

µM(B) = µ(B ∩ [−M,M ]) + µ ([−M,M ]c) 1(0 ∈ B)

for every Borel set B ⊂ R. Proposition 4.13 and Corollary 6.7 of [5] imply, respectively, that
as M →∞,

µM � νλ
w−→ µ� νλ , and

µM � νλ
w−→ µ� νλ .

In view of Facts 3.1 and 3.2, and recalling that convergence in the Lévy metric defined in
the latter is equivalent to weak convergence, it suffices to show that

lim
M→∞

lim sup
N→∞

1
N

E [Rank(YN − Y ′N)] = 0 .

However, arguments as in the proof of Theorem 2 show that for M such that

µ({−M,M}) = 0 ,

it holds that
lim sup
N→∞

1
N

E [Rank(YN − Y ′N)] = µ ([−M,M ]c) .

Hence the proof follows.
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