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Abstract 

 

Repeated droughts, population expansion and global warming force thorough 

limitations on irrigation practices. The low water usage efficiency is the universal problem 

encountered by most of the irrigation systems. A survey was carried out over irrigation 

practices, which comprises of conventional irrigation methods, micro-irrigation systems, 

intelligent irrigation approaches, estimation of reference evapotranspiration (ET0) using soft 

computing models and performance indicator models. The outcome of the survey reveals 

that, the software techniques must be integrated with traditional irrigation practices to 

improve water productivity and economy. 

 

Key words: Irrigation methods; Land suitability; Machine learning; Performance indicators. 

 

1. Introduction 

 

Economic progress and expanding worldwide populace extend the interest for 

innovative irrigation system. According to the expectation of food and agriculture 

organization (FAO), food necessity will increment about 60% by year 2050 (Alexandratos 

and Bruinsma, 2012). Internationally, evaluated that agriculture action devours around 70% 

of the gross water, grouped with 10% for civic use and remaining water is used by 

mechanical sector (Provenzano and Sinobas, 2014). Worldwide, inundated land represents 

302Mha and possesses just 16% of the cultivatable region (Playan et al., 2013). Presently, 

36% of land by bone-dry and semi-parched locales and anticipated that drought risk will 

further increment (Safriel et al., 2006; Alcamo et al., 2007; Arnell et al., 2011). The water 

productivity (WP) is the proportion between crop yield and complete water use (Pereira et al., 

2002). The water devoured by plants is under 65% of provided water and right volume of 

plants upon right time improves the WP (Chartzoulakis et al., 2015). The design of effective 

irrigation system is complex because of barometrical conditions, soil properties, crop species 

and irrigation strategy (Dabach et al., 2013; Soulis and Elmaloglou, 2018). The generally 
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utilized irrigation system strategies are surface, pressurized sprinkler, low volume drip and 

micro-sprinkler. The subsurface irrigation is another water system wherein water is applied 

straightforwardly inside the soil (Orang et al., 2008). The deficit irrigation method was an 

efficient strategy for Mediterranean environment land considering drought tolerant crop 

(Galindo et al., 2018; Hargreaves and Samani, 1984). The surface irrigation strategy is most 

widely utilized method and this methodology is generally popular and prudent but the low 

water system proficiency is the key issue (Raghuwanshi et al., 2010). The sprinkler water 

system structure includes pipe network water streams with power through spouts and it 

mimics precipitation with of overhead splashing (Valipour, 2015). In trickle water system, 

water is provided through fixed model line organization and gradually discharged to plants 

(Tindula et al., 2013). The advancement of first generation water system innovation was 

begun with multi-customer electronic hydrants for usage at regulation organization. The 

second era water system innovation was variable recurrence siphons. The micro-irrigation 

system strategy was the third era in irrigation innovation wherein WP was expanded however 

hardly introduced because of high initial speculation. The sub surface trickle water system 

was the fourth era in irrigation innovation designed to address the difficulties of surface drip 

water system, wherein producer obstructing issue is killed. The fifth era in water system 

innovation was deficiency water system developed for ideal water application considering 

crop development stage without influencing the yield (Levidow et al., 2014; kang et al., 

2017). Artificial intelligence (AI) based water system frameworks are likely ways to deal 

with affordable and effective models for agricultural water management (Torres-Rua et al., 

2012; Niu et al., 2017; Chlingaryan et al., 2018; Behmann et al., 2015; Griffiths et al., 2011;  

Gutierrez et al., 2018; Haider et al., 2008; Kamilaris and Prenafeta-Bouldu, 2018). 

 

2. Land Suitability for Different Irrigation Methods 

 

The land suitability for surface and micro-irrigation system was dissected utilizing 

parametric assessment strategy to decide the possible technique. The dirt properties were 

utilized to decide the reasonable water system technique in Fakkeh area of West Iran. The 

investigation displayed that trickle water system technique improved land sufficiency over 

sprinkler and surface strategy. The dirt surface was restricting variable for surface and 

sprinkler strategy, calcium carbonate was central question for drip irrigation system (Landi et 

al., 2008). The dirt properties were utilized to decide the appropriate water system techniques 

in Abbas plain territory of West Iran. The dirt properties were utilized to decide the 

appropriate water system strategy in Dosalegh locale of Iran. The investigation displayed that 

drip water system technique improved land sufficiency over sprinkler and surface strategy. 

The dirt surface, saltiness and incline were restricting components for surface and sprinkler 

strategy, calcium carbonate, soil surface and saltiness were key restricting variable for drip 

water system (Albaji et al., 2010). The dirt properties were utilized to decide the appropriate 

water system strategies in Gotvand plain zone of Iran. The investigation showed that 

sprinkler water system strategy improved land sufficiency over trickle and surface technique. 

The calcium carbonate and seepage were restricting variables for all water system strategies 

(Albaji et al., 2014). The dirt properties were utilized to decide the appropriate water system 

strategy in Rasht area of Iran. The investigation showed that trickle water system strategy 

improved land ampleness over sprinkler and surface technique. The dirt surface and seepage 

were key restricting variables for all the water system techniques (Seyedmohammadi et al., 

2016). The audit of soil properties and land appropriateness model shows that micro-

irrigation system surpasses surface water system over expanding irrigation land inside the 

accessible water resources. 
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3. Irrigation Methods 
 

The irrigation method adoption depends on soil and land characteristics, WP and 

Economic water productivity (EWP). In the following section the basin, tube sprinkler, 

pillow and drip irrigation strategies were compared over investment, electricity cost, water 

usage efficiency and crop yield.  The furrow and deficit drip strategies were compared on 

water savings and yield. The surface drip and sub surface drip were compared over emitter 

clogging, water consumption and yield. The drip and sprinkler methods were analyzed over 

delivery efficiency.   

 

3.1. Comparison of basin, pillow, drip, and tube sprinkler irrigation  

 

To address water scarcity, a field study was carried out at North China Plain, the three 

micro-irrigation methods improved WP but EWP of basin irrigation method was higher 

compared to micro irrigation methods. The comparisons of drip, basin, pillow and tube 

sprinkler irrigation methods are represented in Table 1 and Figure 1. 

 

Table 1: Comparison of basin, tube sprinkler pillow and drip irrigation methods  

 
References Irrigation 

method 

Investment 

cost  

(Yuan/ha) 

Electricity 

cost 

(Yuan/ha) 

Irrigation 

depth 

applied 

(mm) 

WP 

(kg/m3) 

Yield 

(kg/ha) 

Crop 

species 

Fang et al., 

(2018) 

Basin 700 

 

0.22 90 1.57 6217.5 Winter 

wheat 

Drip 4125 0.33 90 1.91 6937.8 

Pillow 3225 0.35 90 1.73 6898.3 

Tube 

Sprinkler 

4443 0.26 90 1.63 6614.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison of different irrigation over investment cost 

 

3.2. Comparison of furrow and drip irrigation 

 

In a semiarid region a field study was conducted on drip and furrow irrigation for sugar 

beet to analyze WP. The drip tape irrigation method surpasses furrow method on sugar beet 

with higher WP. The details of water savings and yield are represented in Table 2 and Figure 

2.  
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Table 2: Comparison of furrow and drip irrigation on WP 

 

References Irrigation method  

 

Water savings compare to 

furrow  irrigation 

Average 

yield  

(t/ha) 

Crop 

species 

with 

monitoring  

without 

monitoring  

Ghamarnia 

et al., 

(2011) 

Drip (100% ET) 28.8% 38.4% 15.55 Sugar 

beets Drip (75% ET) 46.6% 53.8% 14.62 

Drip (50% ET) 64.5% 69.2% 11.78 

Drip (25% ET) 82.2% 84.6% 9.36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of furrow and drip irrigation over WP 

 

3.3. Comparison of surface drip (DI) and subsurface drip irrigation (SDI) 
 

Irrigation efficiency is an important issue in semiarid region due to water scarcity. 

Detecting leakages and repairing them is difficult task in surface drip irrigation though it is 

very efficient method. To overcome the drawbacks mentioned above an alternative 

subsurface irrigation system was introduced in southern Spain. The subsurface drip irrigation 

WP was high comparing to traditional drip irrigation method and easy to install. Comparison 

of DI and SDI based on WP are outlined in Table 3.  

 

Table 3: Comparison of DI and SDI based on water WP and yield 

References Irrigation 

method 

WP 

(kg/m3) 

Average 

yield 

(kg/tree) 

Emitter Clogging issue 

 

 

Crop 

species 

Martinez and 

Reca, (2014) 

DI 

 

0.22 17.15 More exposure to emitter 

clogging and difficulty to 

detect clogged emitters and 

leakages. 

Organic 

olive 

orchard 

SDI 

 

0.24 19.24 Reduced exposure to emitter 

clogging and also easy to 

detect and replace clogged 

emitters. 
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3.4. Analysis of sprinkler and drip irrigation 
 

The drip and sprinkler irrigation strategies were compared on delivery efficiency (DE), 

maintenance cost and economy. The WP in drip irrigation system was lower than sprinkler 

irrigation system, in most of the plots water supply was higher than the actual requirement of 

water by crops. According to water users associations the sprinkler irrigation system has 

higher EWP than drip irrigation system (Corcoles et al., 2011). The comparison of sprinkler 

and drip irrigation performance are summarized in Table 4. 

 

Table 4: Comparison of drip and sprinkler irrigation on economy and efficiency 

 

References Irrigation 

method 

DE 

(%) 

MOMId 

(€/m3) 

Energy 

Cost 

OIa 

(€/ha) 

Crop species 

 

Corcoles 

et al., 

(2011) 

Sprinkler 92.7 0.05 45% of 

MOM 

4,408.16 Maize, Barley, Alfalfa, 

Onion, Carrot, Vineyard 

Drip 80 0.13 20% of 

MOM 

2,388.16 Vineyards, Olive trees, 

Almond trees 
MOMId = Management, Operation and Maintenance cost per unit irrigation delivery, OIa = Economic 

output per unit irrigation area. 

 

4.  Soft Computing (SC) Techniques for Irrigation System 

 

SC is a space of software engineering that emulates marvel of human mind (Gocic et 

al., 2015). The perspectives, for example, cognizance and perception are key highlights of SC 

strategies. The SC techniques abuse obstruction for vulnerability and imprecision and also 

guarantee similarity and offers prudent arrangements. (Keskin and Terzi, 2006). To assemble 

smart and reasonable machines SC strategies have been utilized in numerous applications 

including ET0. The ET0 is a significant measurement to comprehend the harvest water 

prerequisites to acquire good yield (Temesgen et al., 2005). The ET0 is crucial parameter for 

estimation of irrigation water requirements (Allen et al., 1991). 

 

4.1. Neural networks (NN) for irrigation system 

 

NN is an anatomical organization utilized for modelling non-linear systems using 

artificial intelligence methods. The NN data preparing structure is made like human neural 

organization and it comprises of three fundamental components, for example, input, 

concealed layers and yield. Shrouded layers among info and yield have number of neurons, 

hubs or cells. Information signal from the info layer arrives at the following connection by 

following all conceivable association ways and at each connection signal goes through 

change. NN comprises of many handling components arranged by connections and loads 

since its gigantic equal framework (Keskin and Terzi, 2006). The NN can gauge the cycle 

conduct even with halfway data. To gauge ET0 neural organization models were utilized with 

various methodologies. In this section different neural organization strategies utilized for 

forecast of ET0 are described.  

 

The Artificial NN (ANN) and NN integrated with auto regressive external input 

(NNARX) models performance were analyzed in hot and dry environment (Piri et al., 2009). 

Multiple regression (MLR) and NN model efficiency was analyzed considering humidity and 

temperature data (Laaboudi et al., 2012). Adaptive neuro-fuzzy inference system (ANFIS) 

model was analyzed for climate data of Kerman and Isfahan station (Karimaldini et al., 
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2011). The ANN and Evolutionary NN (ENN) models were analyzed for forecast of ET0. The 

feed forward back propagation NN (FFBP-NN) and second order NN (SONN) models were 

investigated for forecast of ET0 (Adamala et al., 2013). Cuckoo search algorithm (CSA) was 

integrated with NN (ANN+CSA) and ANFIS was integrated with CSA (ANFIS+CSA) for 

forecast of ET0 over twelve stations climate data of Serbia (Shamshirband et al., 2015). Back 

propagation neural networks (BPNN) was applied to forecast ET0 with the help of hybrid 

particle based back propagation (PF-BP), Imperialist competition algorithm (ICA-BP) was 

used for forecast of ET0 over Tabriz weather station data (Nazari and Shamshirband, 2018). 

Regression technique was applied for ET0 prediction (Khoshravesh et al., 2017). The survey 

reveals that PF-BP and ENN model surpasses the different NN methods for forecast of ET0. 

 

4.2. Support vector machines (SVM) for irrigation system 

 

SVM is a measurable learning hypothesis created by Vapnik. The informational 

collections of non-linearly distinct can be grouped by SVM utilizing kernels for plotting the 

information into high-dimensional component space. Support vector regression (SVR) is a 

way to deal with decide relapse through SVM. The fitting choice of bits and its boundaries 

portrays the performance of SVR model. Radial basis function (RBF) is the kernel function 

for SVM due to its favourable performance (Deo and Samui, 2017). Least square support 

vector machine (LSSVM) approach was applied to forecast ET0 considering weather data 

from Shihez station of China and the prediction of LSSVM method was compared with ANN 

(Chen, 2011). The SVR approach was applied for forecast of ET0 using regression procedures 

with SVM. The SVR model outperformed the other variants of SVM (Kisi and Cimen, 2009). 

 

4.3. Genetic programming (GP) for irrigation system 

 

The GP model discovers solution for issues utilizing traverse and change rules. Genetic 

calculation upholds equal inquiry dependent on Darwin development hypothesis. GP has self 

boundary choice potential to draw the features for improving the model without client 

impedance and it describes the program linearly.  Genetic algorithm and back propagation 

(GABP) NN approach was applied to estimate ET0 considering weather data of Tabriz 

station, Iran (Nazari and Shamshirband, 2018). A linear GP (LGP) was applied to forecast 

plant water requirement (Kisi and Guven, 2010). Gene expression programming (GEP) 

approach was applied to forecast plant water requirement using Egypt weather data (Mattar 

and Alazba, 2018). The LGP surpasses other GP variants for forecast of ET0. 

 

5. Intelligent Irrigation Systems  

 

Approximately 60% of the flooded land must be smoothed out by adopting innovative 

irrigation methods to satisfy future global food demand and to extend WP (Alexandratos and 

Bruinsma, 2012; Playan et al., 2013). The SC strategies, agent technology, wireless Sensor 

Networks (WSN), Fuzzy decision support system (FDSS), Internet of Things (IoT) and have 

great potential to extend water savings in irrigation management. The review of innovative 

irrigation system exhibits the key features which help to improve the performance of 

irrigation system. The Fuzzy decision support system (FDSS) for irrigation was planned to 

address the particular issues of online water system model called IRRINET (Giusti and 

Marsili-Libelli, 2015). Agent based irrigation was planned considering soil properties, crop 

thirst affectability, development stage and net return estimation of harvest yield. The day by 

day water revive model was planned thinking about precipitation, ET0, and introductory 

profundity of field water. The specialist model increases WP without yield reduction using 
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regulated deficit irrigation. The depth of water required for daily recharge to maintain soil 

water balance was decided using volume of soil moisture depleted. The experiment was 

conducted for multi-crop farm land using priority based irrigation scheduling, which exhibits 

increased water productivity (Anthony and Birendra, 2018). To optimize water for 

agricultural crops automated irrigation system was developed. An intelligent irrigation 

system was designed using WSN, which comprises of temperature and dampness sensors 

inserted in the root zone of the yields, detected and handled information moved to a web 

machine. Based on temperature and soil moisture data for real time monitoring and 

programming of irrigation graphical user interface software was implemented (Gutierrez et 

al., 2014). The drip irrigation scheduling was implemented using java application software 

tool called IRRIX. The water balance model was employed for forecast of plant water 

requirement and recharge strategy was applied to balance the soil water, based on the 

feedback data of soil and plant sensor. Experiments were conducted for automated full and 

deficit irrigation with conventional method. Automated irrigation surpasses the conventional 

method through increase in WP and economy (Casadesus et al., 2012). Multi-intelligent 

control system (MICS) was used with the help of IoT for irrigation management. MICS 

provides reliable and satisfactory solution and also increases WP and EWP over conventional 

irrigation system (Hadipour et al., 2020). A smart irrigation system was proposed using IoT 

and neural networks approach. Crop water requirement data set was used to train the neural 

networks algorithm to get the accurate results. Intelligent irrigation was compared with 

normal drip and conventional irrigation methods, where in intelligent irrigation model 

surpasses the conventional methods through increased water productivity (Nawandar and 

Satpute, 2019). Automated drip irrigation was proposed using smart phone and 

microcontroller for paddy crop. It was compared with flood and normal drip irrigation. The 

smart phone captures the soil image, estimates the moisture and passes the data onto the 

microcontroller using GSM module. Automated drip out performs the normal drip and flood 

irrigation system (Barkunan et al., 2019). 

 

5.1. Irrigation scheduling based on crop water stress  

 

Intelligent root zone water quality model based irrigation was used to predict crop 

water pressure progressively. The depth of water needed for day by day revive to deal with 

soil water balance was set considering the depth of soil dampness drained. The yield water 

pressure based water system was adjusted with field water system utilizing drip and sprinkler 

technique for corn and soybean crops individually. The model expands the water system 

proficiency in low precipitation territory and it burns-through somewhat more water in moist 

territories with expanded harvest yield (Gu et al., 2017). The software model anticipated 

irrigation was calibrated with field drip irrigation, which is highlighted in Table 5. 

 

Table 5: Comparison of software model based irrigation over field drip irrigation 

 

References Software 

model based 

irrigation 

Water savings when calibrated with 

field drip irrigation for 3 years 

Crop  Crop yield 

2008 2009 2010 

Gu et al., 

(2017) 

 

Simulated for 

full water 

supply 

30.5% 17.3% 7.1% Corn Negligible 

decrease 

between 

0.03-

3.81% 
Simulated for 

60-90% of full 

water supply 

35% 30% 16% 
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The crucial input parameters are identified in the survey considering various irrigation 

systems and which can be used as features for machine learning based irrigation system. 

Comparison of machine learning, IoT, cloud and agent based irrigation systems over water 

savings are outlined in Table 6. The vital input features required for efficient irrigation 

systems are outlined in Table 7. 

 

Table 6:  Comparison of various software based irrigation systems on water savings 

 

References Technology  Water 

savings 

 

Irrigation 

method 

Crop 

species 

Additional 

benefits 

Experiment 

duration 

Anthony 

and  

Birendra, 

(2018) 

Agent 

technology 

22.11%  

Without 

affecting 

the crop 

production

. 

Not 

mentioned 

Pastures 

Maize 

Tomato 

Potato  

High 

profit with 

priority-

based 

water 

allocation 

Not 

mentioned 

Gutierrez et 

al., 

(2014) 

Wireless 

sensor 

networks  

60% Drip Sage 

Thyme 

Origanum 

 Basil 

Energy 

autonomy  

And 

 Low cost 

18 Months 

Giusti and  

Marsili-

Libelli, 

(2015) 

Fuzzy logic  13.55 % 

compare 

to irrinet 

model 

Not 

mentioned 

Corn 

Kiwi 

Potato 

Vegetable  

and 

 Fruit 

crops 

Robust 

and 

Consistent 

2006-08 

 

Gu et al., 

(2017) 

RZWQM2 35% Drip, 

Sprinkler 

Corn 

 Soybean 

Crop 

production 

improvem

ent of 291 

kg/ 

hectare 

2008-10 

 

Niu et al., 

(2017) 

Machine 

learning 

 

Not 

mentioned 

Not 

mentioned 

Reeds 

Typha  

Orientalis 

Paddy 

High 

Accuracy 

Not 

mentioned 

Severino et 

al., 

(2018) 

 

Internet of 

things  

(IoT) 

Not 

mentioned 

Drip Not   

Mentioned 

Usage of 

recycled 

water 

 

Not 

mentioned 

Zhou and 

Li,  

(2017) 

Cloud 

services 

 

Not 

mentioned 

Not 

mentioned 

Not   

Mentioned 

Great 

market 

prospect 

Not 

mentioned 
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Table 7: Key features identified for efficient intelligent irrigation system 

 

References SM HU ST IM CS CG CD ET RF DP RO 

Anthony and Birendra, 

(2018) 
✔  ✔  ✔ ✔ ✔ ✔ ✔   

Gutierrez et al., (2014) ✔ ✔  ✔ ✔       

Giusti and Marsili-Libelli, 

(2015) 
✔ ✔ ✔ ✔ ✔ ✔  ✔ ✔   

Gu et al., (2017) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Niu et al., (2017) ✔ ✔   ✔ ✔  ✔ ✔   

Severino et al., (2018) ✔  ✔ ✔ ✔ ✔ ✔ ✔ ✔   

Zhou and Li, (2017) ✔ ✔   ✔ ✔  ✔    

SM= Soil moisture, HU= Humidity, ST= Soil type, IM= Irrigation method, CS= Crop 

species, CG=Crop growth stage, CD= Crop drought sensitivity, RF= Rain fall, DP= Deep 

percolation, RO= Runoff. 

 

6.  Performance Indicators for Irrigation System 

 

The performance indicators play a vital role in rating irrigation systems (Pereira et al., 

2012). In this section the key terminologies used for analyzing irrigation system performance 

are outlined. The ET determines the plant water requirement but how efficiently the irrigation 

system satisfies the need is computed through application efficiency (𝐴𝑒).  The AE is defined 

as the ratio of average depth of irrigation water consumed by crops and average depth of 

irrigation water applied. The aim of irrigation system is every part of the field should receive 

same amount of water. The distribution uniformity is defined as the ratio of average points of 

smallest water depth accumulated and average depth of water stored in all points. The 

irrigation efficiency (𝐼𝑒) is the ratio of beneficially used irrigation water and gross volume of 

irrigation water that leaves the boundary. The irrigation consumptive use coefficient (𝐼𝑐𝑢) is 

defined as the ratio of depth of irrigation water consumptively used and gross volume of 

irrigation water that leaves the boundary. The irrigation sagacity (Is) is the ratio that covers 

water usage for societal purpose along with crops consumption and gross volume of irrigation 

water that leaves the boundary. The other performance indicators such as adequacy (Aq), 

equity of water distribution (Eq), dependability of water supply (Dp), net Returns (Nr), yield 

Response, deep percolation ratio (Dr), tail water ratio (Tr), yearly relative water supply (Yrw), 

yearly relative irrigation supply (Yri), Transmission loss (Tl), Outcome per planted area (Opa), 

outcome per unit irrigated area (Oui), outcome per unit irrigation applied (Oia), outcome per 

unit irrigation depth consumed (Oic), relative water supply (Rw), relative irrigation supply 

(Ri), irrigation water delivery capability (Idc), dependability of duration (Dd), annual income 

(Ai), annual profit (Ap), net irrigation requirement (Nir), net regulated deficit irrigation (Nrdi), 

seasonal irrigation performance index (Sipi) are outlined  in the following section. The survey 

of irrigation performance indicator model exhibited that, the water productivity and economic 

water productivity models are the effective measures to understand water savings and 

economy (Pereira et al., 2012). The irrigation performance indicator model to measure 

application efficiency is outlined in Table 8. The Irrigation performance indicator model to 

measure   distribution uniformity (low quarter) is outlined in Table 9. The Irrigation 

performance indicators considering crop transpiration, evaporation, yield and profit are 

outlined in Table 10 (Appendix). 
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Table 8: Application efficiency models used in irrigation system 

 

References Model Variables considered  

Burt et al., 

(1997) 
𝐴𝑒= 

𝐴𝑡

𝐴𝑎
 × 100 

Ae: Application Efficiency 

At: Average depth of irrigation water 

providing to target 

Aa: Average depth of  Irrigation water 

applied 

Ghamarnia

et al., 

(2011) 

𝐴𝑒= 
Ia+ Ic

Is

 

 

Ae: Application Efficiency 

Ia: Irrigation depth accumulated upon 

root zone (m3) 

Ic: Irrigation depth consumed on the 

root zone (m3) 

Is: Total Irrigation depth supplied  (m3) 

Raghuwans

hi et al., 

(2010) 

𝐴𝑒= 
Ia

q
0
WTe

 × 100 

Ae: Application Efficiency 

Ia: Depth of irrigation water  

accumulated upon root zone (m3) 

q0: Flow in rate per unit border  extent 

(m3/ m/s) 

W: Border  extent (m) 

Te: End time (s) 

Reca et al., 

(2018) 

𝐴𝑒 = 1 + 𝑓 (
𝐷𝑟

𝐷𝑔
− 1) −

(𝐶𝑣 - 
v2

2
)

(√
     𝜋

     2
  )

 

 

Ae: Application Efficiency  

f: Fragment of the command area unit 

that is adequately  irrigated. 

Dr : Irrigation depth requirement 

Dg : Total irrigation depth 

Cv:  Coefficient  variation  of irrigation 

depth  applied 

v: Cumulative variable 

 

Table 9: Distribution uniformity low quarter (DUlq) models used in irrigation system  

 

References Model Variables considered  

Burt et al., 

(1997) 

𝐷𝑈𝑙𝑞 = 
𝐴𝐷𝑙𝑞

𝐴𝐷𝑒𝑓
 

 

𝐴𝐷𝑙𝑞 : Average depth of  irrigation water accrued in  low 

quarter field 

𝐴𝐷𝑒𝑓 : Average depth of  irrigation water accrued in entire 

field elements 

Raghuwanshi 

et al., 

(2010) 

 

𝐷𝑈𝑙𝑞= 
AP1q
̅̅ ̅̅ ̅̅

AP̅̅ ̅̅
 

 

𝐴𝑃𝑙𝑞
̅̅ ̅̅ ̅̅  : Average percolated depth for low field quarter (mm) 

AP̅̅̅̅  : Average percolated depth (mm) 

 

7. Conclusion 

 

Irrigation practices and software techniques applied for agricultural water management 

was reviewed to determine the effective method considering water productivity and economy. 

This paper reveals that, software techniques should be integrated with traditional irrigation 

methods to offer economical and efficient irrigation system. The empirical irrigation 
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strategies were analyzed for water productivity and economy. This paper exhibits that, 

suppose if economy is the decision making factor, then surface irrigation is the best method 

over expensive micro-irrigation. Suppose if water savings is the key objective, then micro-

irrigation technique is the best approach over surface irrigation system. The review of 

intelligent irrigation systems exhibits that, the software model based crop stress irrigation was 

the most effective technique with 30.5% water savings compared to field drip irrigation and 

this paper also reveals that software based irrigation system significantly improves  water 

productivity. The soft computing model based forecast of reference evapotranspiration 

approach outperforms conventional models with minimal number of input features.  

 

The survey opens-up future research on machine learning based surface irrigation 

system, which offers efficient and economical agricultural water management system. The 

machine learning based irrigation framework safeguards the advantage of low initial venture 

of conventional surface irrigation system with higher water productivity through the aid of 

artificial intelligence techniques. Real-time irrigation framework based on machine learning 

technique makes a significant improvement in water productivity. 
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APPENDIX 

 

Table 10: List of irrigation performance indicator models  

 

References Performance 

indicators 

Model Variables considered  

Arunkumar 

and 

Ambujam,  

(2010) 

 

𝑇𝑙: 

Transmission 

loss 

𝑇𝑙 = 
𝑅𝑖 - 𝑅𝑜

Aw × 𝑅𝑙
 

𝑅𝑖: Reach flow in rate 

(m3/s) 

𝑅𝑜: Reach flow out rate 

(m3/s) 

𝑅𝑙: Reach length (m) 

Aw: Avg. Wet area (m2) 

Opa: Outcome 

per planted area 

(Rs/ha) 

 

Opa = 
𝐶𝑃𝑣

Pa

 
𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

Pa: Planted area (ha) 

Oui: Outcome 

per unit 

irrigated area 

(Rs/ha) 

Oui = 
𝐶𝑃𝑣

A𝑢𝑖
 

𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

A𝑢𝑖: Unit irrigated area 

(ha) 

Oia: Outcome 

per unit 

irrigation depth 

applied  

(Rs/m3) 

O𝑖𝑎 = 
𝐶𝑃𝑣

Dia

 
𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

Dia: Depth of irrigation 

applied (m3) 

Oic: Outcome 

per unit depth 

of  irrigation 

consumed 

(Rs/m3) 

Oic= 
𝐶𝑃𝑣

Dic

 
𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

Dic: Unit depth of 

irrigation consumed 

(m3) 

Rw: Relative 

water supply 

 

𝑅𝑤 = 
𝐺𝑖𝑑

ETc

 
𝐺𝑖𝑑: Gross irrigation 

depth supply (m3) 

ETc: Crop ET 

requirement (m3) 
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Arunkumar 

and 

Ambujam,  

(2010) 

𝑅𝑖: Relative 

irrigation 

supply 

𝑅𝑖 = 
𝐼𝑎

𝐼𝑟
 

𝐼𝑎: Irrigation applied 

(m3) 

𝐼𝑟: Irrigation need  

𝐼𝑑𝑐: Irrigation 

water delivery 

capability 

𝐼𝑑𝑐 = 
Co

RPeak

 
Co: Outflow capability 

of  irrigation water at 

the system head 

RPeak: Peak 

consumptive 

requirement 

𝐷𝑑: 

Dependability 

of duration 

𝐷𝑑 = 
da

dp

 
da: Actual span of 

water supply (days) 

dp: Planned span of 

water supply (days) 

 

Broner and 

Lambert, 

(1989) 

 

𝑁𝑟: Net Returns 

 

𝑁𝑟 = (Y  * C ) –  (𝐼𝑎*  𝐼𝑒) 
 

Y: Yield (kg/ha) 

C: Cost ($/kg) 

 𝐼𝑎: Irrigation depth  

applied (cm) 

𝐼𝑒: Irrigation 

expenditure ($/cm) 

Burt et al., 

(1997) 

 

𝐼𝑒: Irrigation 

efficiency 
𝐼𝑒= 

𝐷𝑏

𝐷𝑎- 𝐷𝑠
 ×100% 

𝐷𝑏: Depth of irrigation 

water beneficially 

utilized 

𝐷𝑎:  Depth of applied 

irrigation water 

𝐷𝑠:  Depth of irrigation 

water storage 

𝐼𝑐𝑢: Irrigation 

consumptive 

use coefficient 

𝐼𝑐𝑢= 
𝐷𝑐

𝐷𝑎- 𝐷𝑠
 ×100 % 

𝐷𝑐: Depth of irrigation 

water consumptively 

utilized 

𝐷𝑎:  Depth of applied 

irrigation water 

𝐷𝑠:  Depth of irrigation 

water storage 

𝐼𝑠: Irrigation 

sagacity 
𝐼𝑠= 

𝐷𝑏/𝑟

𝐷𝑎- 𝐷𝑠
 ×100 % 

𝐷𝑏/𝑟:  Depth of 

irrigation water 

beneficially  / 

reasonably  utilized 

𝐷𝑎:  Depth of applied 

irrigation water 

𝐷𝑠:  Depth of irrigation 

water storage 

Corcoles et 

al., (2011) 
𝑌𝑟𝑤: Yearly  

relative water 

supply 

𝑌𝑟𝑤= 
𝑌𝑖𝑑+ Ep

ETc

 
𝑌𝑖𝑑: Yearly irrigation 

depth release (m3) 

Ep: Effective 

precipitation (m3) 

ETc: Crop water 

consumption (m3) 
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Corcoles et 

al., (2011) 
𝑌𝑟𝑖: Yearly 

relative 

irrigation 

supply 

𝑌𝑟𝑖= 
𝑌𝑖𝑑

ETc- Ep

 
𝑌𝑖𝑑: Yearly irrigation 

depth release (m3) 

Ep: Effective 

precipitation (m3) 

ETc: Crop water 

consumption (m3) 

Hargreaves 

and Samani, 

(1984) 

Yield response 
(1 −

Ya

Ym

) =  𝐾𝑦 (1 −
ETa

ETm

) 
Ya: Actual crop 

production 

Ym: Maximum crop 

production 

𝐾𝑦: Production 

response 

ETa: Actual crop water 

consumption 

ETm: Maximum crop 

water consumption 

Memon et 

al., (1986) 
𝐴𝑖: Annual 

income 

𝐴𝑖 = 𝑅𝑦 ∗ 𝑃𝑦 ∗ 𝑃𝑟 𝑅𝑦: Relative yield 

𝑃𝑦: Potential yield 

𝑃𝑟: Price 

𝐴𝑝: Annual 

profit 

𝐴𝑝 = 𝐴𝑖 − 𝐺𝑎𝑐 𝐴𝑖: Annual income 

𝐺𝑎𝑐: Gross annual cost 

Raghuwanshi 

et al., (2010) 

 

𝐷𝑟: Deep 

percolation ratio 
𝐷𝑟= 

Ddp

q
o
𝐵𝑒Te

 
Ddp: Depth of deep 

percolation (m3) 

q
o
: Flow in rate per unit 

border  extent (m3/ m/s) 

𝐵𝑒: Border  extent (m) 

Te: End time (s) 

𝑇𝑟: Tail water 

ratio 
𝑇𝑟 = 100 − 𝐷𝑟 − 𝐴𝑒 Dr: Deep percolation 

ratio 

Ae: Application 

efficiency 

Rowshon et 

al., (2014) 

 

Aq: The 

adequacy  of 

irrigation 

Aq= 
1

t
∑ {∑ [

1

i
(

Q
d

Q
r

)]

i

1

}

i

1

 

t:  Time periods for 

water supply 

i: Unit area belongs to a 

channel released by the 

system over time t. 

Qd: Daily actual 

discharge 

Qr: Irrigation need  

Eq: The equity 

of water 

distribution 

Eq=1 −
1

t
∑ Cvr

i

1

(
Q

d

Q
r

) 

Cvr: Spatial coefficient 

of variation 

Rowshon et 

al., (2014) 

 

Dp:The 

dependability  

of the water 

supply 

Dp=1 −
1

i
∑ Cvt

i

1

(
Q

d

Q
r

) 

When Q
d
≤ Q

r
 

Cvt: Temporal 

coefficient of variation 
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Stambouli et 

al., (2011) 
Nir: Net 

irrigation 

requirement 

Nir = (𝐾𝑐 ∗ 𝐸𝑇0) − 𝐸𝑟𝑓 ET0: Reference plant 

water consumption 

𝐸𝑟𝑓: Effective rain fall 

𝐾𝑐: Plant Coefficient 

Nrdi: Net 

regulated deficit 

irrigation 

Nrdi = (𝐾𝑐 ∗ 𝐾𝑟𝑐 ∗ 𝐸𝑇0) − 𝐸𝑟𝑓 𝐾𝑟𝑐: Reduction 

coefficient 

𝑆𝑖𝑝𝑖: Seasonal 

irrigation 

performance 

index 

𝑆𝑖𝑝𝑖= 
𝑁𝑖𝑟

𝐼𝑎𝑑
 

𝑁𝑖𝑟: Net irrigation 

requirement 

𝐼𝑎𝑑: Irrigation 

application depth 

Pereira et al., 

(2012) 

 

WP: Water 

productivity 

(kg/ m3) 

WP = 
Y

𝐼𝑤𝑠
 

Y: Yield (kg/ha) 

𝐼𝑤𝑠: Irrigation water 

supplied (m3) 

Cetin and 

Kara, 

(2019) 

𝐸𝑊𝑃: 

Economic water 

productivity 

($/m3) 

𝐸𝑊𝑃 = 
𝑁𝑟

Ia

 
𝑁𝑟: Net returns ($) 

Ia: Irrigation depth 

applied (m3) 

 


