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Abstract

The partial product process is a sequence of non-negative random variables X1, X2, X3, ...
such that the distribution function of X1 is F (x) and the distribution function of Xi+1 is
F (βix) (i = 1, 2, 3, ...) where βi > 0 are constants and βi = β0β1β2...βi−1. It is a mono-
tone process. In this paper, the probabilistic properties of the partial product process
are studied and some limit theorems are also established.
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1. Introduction

The mathematical theory of reliability has put forth a great effort to issues of life-
testing, machine support, replacement, order statistics, and so on. The maintenance
problems are concerned about the circumstance that emerges about the reduction of the
productivity level of items or breakdown. The problem of replacement is to recognize
the best policy which enables determination of ideal replacement time that is generally
economical. One of the most interesting and critical topics to study in reliability is the
study of maintenance problems.

A common assumption in the initial period of studying maintenance issues is that
repair is perfect, a repairable framework after the repair is as good as new. This assump-
tion clearly has the effect of a natal way. In practice, most repairable systems deteriorate
because of the combined wear and tear impact. Barlow (1960) thusly presented a minimal
repair model in which a system after the repair has the same failure rate and effective age
as it was when it failed. Brown(1983) proposes an imperfect repair model, in which the
repair is perfect with likelihood p, and the repair is minimal with a probability of 1 − p.

Deteriorating systems have a different problem as the one portrayed above. For
instance, in machine maintenance problems, after every repair, the working time of a
machine will end up shorter and shorter, so the absolute working time or the existence
of the machine must be limited. However, in perspective on the aging and aggregate
wear, the repair time will turn out to be longer and tend to increase so that at the end
the machine is non-repairable. Therefore, there is need to consider a repair replacement
model for deteriorating systems, the progressive survival times are diminishing, while the
consecutive repair times are expanding.

Lam (1988) first presented a Geometric Process Repair model to model a deterio-
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rating system with the above characteristics.

Definition 1: The sequence {Xn, n = 1, 2, 3, . . .} of non negative independent random
variables is called a geometric process, if the distribution function of Xn is given by
F (an−1x) for n = 1, 2, 3, . . ., where a(> 0) is a constant.

In Geometric process, the operating times and repair times of a system are uniformly
decreasing. But practically, it is not uniform. To overcome this, the partial product
process was introduced by Babu et. al (2018).

Definition 2: Let {Xn, n = 1, 2, ...} be a sequence of non-negative independent random
variables and let F (x) be the distribution function of X1. Then {Xn, n = 1, 2, ...} is called
a partial product process, if the distribution function of Xi+1 is F (βix) (i = 1, 2, ...)
where βi > 0 are constants and βi = β0β1β2...βi−1.

By induction, it is clear that for real βi (i = 1, 2, ...), βi = β0
2i−1 . Thus, the distri-

bution function of Xi+1 is F
(
β0

2i−1
x
)

for i = 1, 2, ... .

The remainder of this paper are structured as follows. In section 2, some proba-
bilistic properties of the partial product process are studied and in section 3, some limit
theorems are established.

2. Probabilistic properties of partial product process

Let F and f be the distribution function and density function of X1 respectively,
and denote E (X1) = λ and V ar (X1) = σ2.

Then for i = 1, 2, ..., we have

E (Xi+1) = λ

β2i−1
0

and

V ar (Xi+1) = σ2

β2i

0
.

Thus, β0, λ and σ2 are three important parameters of partial product process.

Note that when F (0) < 1, then λ > 0.

Define S0 = 0 and

Sn =
n∑

i=1
Xi

Let Fn = σ (X1, X2, ..., Xn) be the σ- algebra generated by {Xi, i = 1, 2, ..., n}.

Theorem 1: If β0 > 1, then {Sn, n = 1, 2, ...} is a nonnegative submartingale with
respect to Fn = σ (X1, X2, ..., Xn).

Proof: Obviously, {Sn, n = 1, 2, ...} is a sequence of increasing non-negative random
variables with

E [Sn+1|Fn] = Sn + E [Xn+1] ⩾ Sn (1)
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Also,

Sup
n⩾0

E [|Sn|] = lim
n→∞

E [Sn]

= lim
n→∞

E

[
n∑

i=1
Xi

]

= lim
n→∞

n∑
i=1

E (Xi)

= lim
n→∞

[
λ +

n∑
i=2

λ

β0
2i−2

]

= λ

1 +
∞∑

i=2

(
1
β0

)2i−2 < ∞, (2)

where equation (2) is due to the fact that the series
∞∑

i=2

(
1

β0

)2i−2

is convergent by comparing
with geometric series if 1

β0
< 1.

Theorem 2: If β0 > 1, there exists a random variable S such that

Sn
a.s.−−→ S as n → ∞.

Proof: By Theorem 1 and Martingale Convergence Theorem(Ross, 1996), we have
Sn

a.s.−−→ S as n → ∞.

Theorem 3: If β0 > 1, {Sn, n = 1, 2, ...} has a unique decomposition such that

Sn = Ln − An (3)

where {Ln, n = 1, 2, ...} is a martingle, {An, n = 1, 2, ...} is decreasing with A1 = 0 and
An ∈ Fn−1.

Proof: Let L1 = S1 and A1 = 0. For n ⩾ 2, define

Ln = Ln−1 + (Sn − E [Sn|Fn−1]) , (4)

An = An−1 + (Sn−1 − E [Sn|Fn−1]) . (5)
From equations (4) and (5), we have

Ln − An =
n∑

i=2
(Si − Si−1) + S1 − A1 = Sn

and (3) follows. It is easy to check {Ln, n = 1, 2, ...} and {An, n = 1, 2, ...} satisfy the
requirements. Next, we need to prove such a decomposition is unique.

Suppose Sn = Ln
′ − An

′ is another decomposition. Then,

Ln − Ln
′ = An − An

′

Since A1 = A1
′ = 0, it is clear that L1 = L1

′. Also as L2 − L2
′ = A2 − A2

′ ∈ F1,, we have

L2 − L2
′ = E [L2 − L2

′|F1] = L1 − L1
′ = 0.

This implies that L2 = L2
′. Then, by induction, we can prove that Ln = Ln

′ and hence
An = An

′. Thus the uniqueness is proved.
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Theorem 4: If β0 > 1, then {Sn, n = 1, 2, ...} has a unique Riesz decomposition such
that

Sn = Yn + Zn (6)

where {Yn, n = 1, 2, ...} is a non-negative martingale and {Zn, n = 1, 2, ...} is a non-
positive submartingale with lim

n→∞
E [Zn] = 0.

Proof: From equation (2),

lim
n→∞

E [Sn] = λ

1 +
∞∑

i=2

(
1
β0

)2i−2 < ∞.

Thus the proof is complete by Riesz decomposition theorem(Ross, 1996).

Theorem 5: If β0 > 1, then {Sn, n = 1, 2, ...} has a Krickeberg decomposition such that

Sn = Ln − Mn

where {Ln, n = 1, 2, ...} is a non-positive submartingale and {Mn, n = 1, 2, ...} is a non-
positive martingale. Moreover, such a decomposition has the maximality such that for
any other decomposition Sn = Ln

′ − Mn
′ where Ln

′ , Mn
′ are nonpositive submartingale

and nonpositive martingale respectively, then

Ln ≥ Ln
′ and Mn ≥ Mn

′

Proof: Note that,

Sup
n

E
[
Sn

+
]

= Sup
n

E [Sn] = λ

1 +
∞∑

i=2

(
1
β0

)2i−2 < ∞.

Thus the proof is complete by Krickeberg decomposition(Ross, 1996).

3. Limit theorems for partial product process

In renewal process, Wald’s equation plays a key role. The following theorem is a
generalization of the Wald’s equation to a partial product process, it is called as Wald’s
equation for partial product process.

Theorem 6 (Wald’s equation for partial product process): Suppose that {Xn, n = 1, 2, ...}
forms a partial product process with E [X1] = λ < ∞, then for t > 0, we have

E
[
SN(t)+1

]
= λE

1 +
N(t)+1∑

n=2

1
β0

2n−2

 , (7)

where N(t) is the counting process which represents the number of occurrences of an
event up to time t.
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Proof: Let IA be the indicator function of event A. Then I{Sn−1≤t} = I{N(t)+1≥n} and Xn

are independent. Accordingly, for t > 0, we have

E
[
SN(t)+1

]
= E

N(t)+1∑
n=1

Xn



=
∞∑

n=1
E
[
XnI{N(t)+1≥n}

]

=
∞∑

n=1
E [Xn] P (N (t) + 1 ≥ n) (8)

= λE

1 +
N(t)+1∑

n=2

1
β0

2n−2

 .

Corollary 1:

E
[
SN(t)+1

]


> λ [E (N (t)) + 1], 0 < β0 < 1

= λ [E (N (t)) + 1], β0 = 1

< λ [E (N (t)) + 1], β0 > 1.

Proof: Let β0 > 1. Then,

1
β0

< 1 ⇒ E

1 +
N(t)+1∑

n=2

1
β0

2n−2

 < E

1 +
N(t)+1∑

n=2
(1)


⇒ λE

1 +
N(t)+1∑

n=2

1
β0

2n−2

 < λE [N (t) + 1]

⇒ E
[
SN(t)+1

]
< λ [E (N (t)) + 1] (by theorem 6).

Similarly, we can prove that E
[
SN(t)+1

]
> λ [E (N (t)) + 1] if β0 < 1. For β0 = 1, the

result is trivial.

Note that if β0 = 1, the partial product process reduces to a renewal process, while
corollary 1 gives E

[
SN(t)+1

]
= λ [E (N (t)) + 1]. This is Wald’s equation for the renewal

process.

Theorem 7: If a stochastic process {Xn, n = 1, 2, 3, ...} is a partial product process, then

(1) lim
t→∞

1
t
E
[
SN(t)+1

]
= 0 if β0 > 1.

(2) lim
t→∞

1
t
E
[
SN(t)+1

]
= 1 if β0 = 1.
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Proof: Let β0 > 1. Then from equation (8), we have

lim
t→∞

E
[
SN(t)+1

]
= lim

t→∞

∞∑
n=1

E [Xn] P (N (t) + 1 ≥ n)

=
∞∑

n=1
E [Xn] P (Sn < ∞)

=
∞∑

n=1
E [Xn] (1)

= λ

(
1 +

∞∑
n=2

1
β0

2n−2

)
< ∞.

Thus,
lim
t→∞

1
t
E
[
SN(t)+1

]
= 0.

This completes the proof of part (1).

Now, assume that β0 = 1. Then,

lim
t→∞

1
t
E
[
SN(t)+1

]
= lim

t→∞

λ

t
[E (N (t)) + 1]

= λ lim
t→∞

[
E (N (t))

t

]

= λ × 1
λ

= 1, (9)

where (9) due to Elementary Renewal Theorem. This completes the proof of part (2) and
theorem.

4. Conclusion

In this paper, some limit theorems and probability properties of the partial product
process are established. Since it is monotone process, it can be applied to the maintenance
model for a deteriorating system.
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