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Abstract
This paper focuses on predicting the movement of State Bank of India (SBI) stock

prices using the Markov model, a challenging task in financial markets. It comprises two
main sections: Firstly, it formulates probability distributions for various states using Markov
model parameters, deriving Pearson’s coefficients like average, variance, skewness, and kur-
tosis. Secondly, real-time SBI data is gathered and divided into five datasets representing
each business day. Numerical calculations are performed using R software, computing pa-
rameters such as transition probability matrix (TPM) and initial probability vector (IPV)
for each dataset. Expected returns and closing price predictions are determined, validated
through the Chi-square test for goodness of fit, and assessed for robustness using Akaike in-
formation criterion (AIC) and Bayesian information criterion (BIC). The model is designed
to facilitate optimal investment strategies and could benefit from user-friendly digital inter-
faces for traders. It explores indicators such as timing for buying/selling, probability of price
movements, expected gains/losses, and estimated closing prices to enhance understanding of
SBI’s market behaviour in the Indian context.

Key words: Markov model; Share price; Probability distribution; Transition probability;
Initial probability.

AMS Subject Classifications: 62K05, 05B05.

1. Introduction

Mathematical and stochastic modeling are pivotal tools in unraveling the intricacies
of the stock market and projecting its future trends. This paper is dedicated to crafting
a three-state Markov probability distribution model to analyse stocks and anticipate their
forthcoming price fluctuations.

Certainly, at the core of every nation’s economic structure lies an indispensable link
with its stock market. This intricate connection serves as the lifeblood of the country’s
financial stability, embodying a sophisticated network where a diverse spectrum of individ-
uals and entities converge. Participants engage in a multifaceted interplay of buying and
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selling an extensive array of financial instruments within this bustling marketplace. This
dynamic interaction propels economic activities and nurtures an environment teeming with
opportunities for trading and investment.

Amidst this whirlwind of financial transactions, traders emerge as the linchpin, fueled
by the relentless pursuit of optimal outcomes. Their endeavours are marked by a meticulous
analysis of market trends, a process that involves an exhaustive examination of historical
data, intricate technical analyses, and a keen understanding of global economic influences.
Armed with this knowledge, traders navigate the intricate pathways of the market, making
calculated and strategic decisions.

Crucially, these traders are not guided by mere intuition but rather by a commitment
to informed decision-making. They implement sophisticated risk management strategies,
diligently assessing potential risks and rewards. Their objective is crystal clear: to optimise
profits and minimise losses. Every move within this dynamic financial landscape is a result
of careful consideration, a balance between seizing opportunities and mitigating risks.

In the grand tapestry of the stock market, the significance of this strategic decision-
making cannot be overstated. It not only influences individual financial destinies but also
ripples through the larger economic fabric of the nation. The stock market becomes a
barometer, reflecting the collective confidence and sentiment of investors, thereby shaping
the economic trajectory of the entire country.

In essence, the stock market embodies more than just financial transactions; it sym-
bolizes the aspirations, strategies, and challenges of a nation’s economic journey. Armed
with their expertise and insights, traders play a pivotal role in shaping this intricate land-
scape, where every decision made resonates far beyond individual portfolios, weaving into
the intricate tapestry of a nation’s economic prosperity.

A Markov regime ARCH model used to investigate and analyse the volatility within
market behaviour (Cai (1994)). There is sufficient evidence on the usage of Wiener–Hopf
results for solving the option pricing problems with the Markov processes (Jobert and Rogers
(2006)). When applied to forecast data from the stock market, the HMM with fuzzy model
innovation produced results that were more accurate than those from forecasting models
like ARIMA, ANN, etc. (Hassan (2009)). A flexible Mixed HMM approach that considers
temporal and spatial variability. This method is adaptable because it can handle the dis-
tinctive features of financial time series data, such as asymmetry, kurtosis, and unobserved
heterogeneity (Dias et al. (2010)). HMM and support vector machines were used to predict
the movement of the stock price (Rao and Hong (2010)). The stock price dynamics were
examined through a semi-Markov return model (D’Amico and Petroni (2012)). A finite state
Markov chain model was used to evaluate share price movements in the share market (Choji
et al. (2013)). The utilization of a Markov-switching using GARCH approach has provided
a method for predicting the volatility in the Tehran Stock Exchange-TSE (Abounoori et al.
(2016)). The Nigerian Stock Exchange market has utilized the Markov chain model for
analysing its behaviour (Adesokan et al. (2017)). The Markov chain model was used to fore-
cast the stock price movement of the Taiwanese company High Tech Computer (Huang et al.
(2017)). The Markov chain is used in forecasting the behaviour of the Nepal Stock Exchange
Index (Bhusal (2017)). The Markov chain model is used to predict the stock market trend
in the context of the Indian stock market (Padi et al. (2022)). The HMM was utilised to
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properly comprehend the financial factors in the stock market, and the results were more
helpful for portfolio managers in making the best choices (Dar et al. (2022)). The impact of
international trade on the share prices of the Industrial Bank of Korea was assessed through
the utilization of stochastic prediction modelling (Dar et al. (2023)).

Numerous studies have predominantly concentrated on classical methodologies for
either developing new models or applying existing Markov models to forecast market be-
haviour. However, there exists a dearth of research on deriving probability distributions
for sequences of states and estimating parameters through predictive modeling, specifically
tailored to Markov processes. Delving into the probability distributions of transitional states
can furnish more precise information inputs. The parametric estimation within the Markov
model and its extension into probability distributions have been largely overlooked by prob-
ability researchers.

In response to this research gap, our study underscores the importance of Markov
modeling in formulating probability distributions by constructing the Markov model based
on parameters such as TPM and IPV. We have mathematically derived explicit relationships
for various statistical measures using these formulated probability distributions. Focusing
on three states - Rise State, Stable State, and Fall State - of SBI shares, our General Markov
model entails two key parameters: TPM, governing transitions among states, and IPV,
describing the likelihood of each state’s initial occurrence. Our primary objective is to es-
tablish probability distributions separately for Rise State, Stable State, and Fall State across
all segregated data sets for different business days. We have derived explicit mathematical
relationships for diverse statistical measures and Pearson’s coefficients. Sensitivity analysis
has been conducted by determining Markov model parameters, obtaining probability distri-
butions, and analysing statistical measures to gain a comprehensive understanding of SBI
share price behaviour. Additionally, our model encompasses an additional study where ex-
pected returns and closing prices of SBI are computed using the formulas outlined in Section
2.7.

2. Stochastic model

The Markov model is a type of mathematical model that focuses on predicting the
next event based on the event that happened just before it, without considering events from
a long time ago. This means, it doesn’t have a memory of past events beyond the most
recent one. The schematic diagram for the model is placed below.
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Figure 1: Schematic Diagram of Three-State Markov Model

In this study, the main aim is to figure out the likelihood of different states happening.
These states are divided into three categories: Rise State, Stable State, and Fall State. The
Markov model consists of two key parameters namely TPM and IPV.

2.1. Transition probability matrix (TPM)

A Transition Probability Matrix (TPM) is often called a Stochastic Matrix. It is
defined as

P =
( Yn

Yn−1 Pjk

)
∀j, k = 1, 2, 3

P{Yn = k/Y0 = 1, Y1 = 2, ..., Yn−1 = j} = P [Yn = k/Yn−1 = j] = Pjk be the transition
probability from jth state to kth state. Every TPM must satisfy the following conditions
like,

• The matrix must possess equal numbers of rows and columns; i.e., TPM is a squared
matrix.

• Each element within the matrix must represent a probability; i.e., Pjk ≥ 0 .

• The sum of each row must be equivalent to one; i.e.,
3∑

k=1
Pjk = 1, ∀j, k = 1, 2, 3.

It earns the label “Doubly Stochastic Matrix” when the sums of both its each row
and each column are equal to one.
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2.2. Initial probability vector (IPV)

The initial probability vector determines the chance of happening in a particular
state. It is denoted by π.

π = (π1, π2, π3)

2.3. Notations and terminology

πk : Initial probability for the kth state, πk ≥ 0; for all k=1,2,3;
3∑

k=1
πk = 1; πk = nk

n
;

n =
3∑

k=1
nk, i.e., Total number of observations considered for the study in the specific

business day

pjk: The transition probability between states j and k represents the likelihood of moving
from state j to state k in a given system or process.
i.e., P{Yn = k/Yn−1 = j} ≥ 0; 0 ≤ pjk ≤ 1 and

3∑
k=1

pjk = 1∀j = 1, 2, 3.

j : Origin state

k : Destination state

yt: Share price of the SBI on tth day

∆yt: yt − yt−1 ; The difference between the current day (t) share price and previous day
(t-1) share price in SBI

dyt: Derivative of the share price’s return at time ‘t’; dyt = ∆yt

yt−1

R : Rise State occurs in SBI; R =
(

dyt ≥ µ + 3σ√
n

)

S : Stable State occurs in SBI; S =
(

µ − 3σ√
n

< dyt < µ + 3σ√
n

)

F : Fall State occurs in SBI; F =
(

dyt ≤ µ − 3σ√
n

)
µ: Mean of dyt

σ: standard deviation of dyt

n : Total number of observations in the business day

m : Number of estimated values for testing the goodness of fit

Oi: Observed share value on ith day; i=1,2, . . . , n

Ei: Estimated share value on ith day; i=1,2, . . . , n

v : Number of parameters in the study of specific business day
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Y (ω1): Number of times Rise State occurs, [Y (ω1) = y] = 0, 1

Y (ω2): Number of times Stable State occurs, [Y (ω2) = y] = 0, 1

Y (ω3): Number of times Fall State occurs, [Y (ω3) = y] = 0, 1

2.4. Probability distribution and some statistical measures for Rise State

2.4.1. The probability distribution for Rise State

Let us consider a random variable denoted by Y (ω1) = y which represents the hap-
pening of the Rise State. This variable can assume values 0 and 1, where ‘0’ signifies its
absence of the Rise State and ‘1’ signifies its presence of the Rise State.

P [Y (ω1) = y] =



3∑
k=1

3∑
j=2

πkpkj ; for y = 0
3∑

k=1
πkpk1 ; for y = 1

0 ; otherwise(y ≥ 2)

(1)

2.4.2. Statistical measures for Rise State

The Average Occurrence of Rise State

µR =
3∑

k=1
πkpk1 (2)

The Variance of a Rise State

σ2
R = µ2

R

( 3∑
k=1

3∑
j=2

πkpkj

)
+ (1 − µR)2

( 3∑
k=1

πkpk1

)
(3)

The Third Central Moment for Rise State

µ3R = −µ3
R

( 3∑
k=1

3∑
j=2

πkpkj

)
+ (1 − µR)3

( 3∑
k=1

πkpk1

)
(4)

The Coefficient of skewness for Rise State

β1R =
[

− µ3
R

( 3∑
k=1

3∑
j=2

πkpkj

)
+ (1 − µR)3

( 3∑
k=1

πkpk1

)]2
×

[
µ2

R

( 3∑
k=1

3∑
j=2

πkpkj

)
+ (1 − µR)2

( 3∑
k=1

πkpk1

)]−3
(5)

Coefficient of Kurtosis for Rise State

β2R =
[
µ4

R

( 3∑
k=1

3∑
j=2

πkpkj

)
+(1−µR)4

( 3∑
k=1

πkpk1

)][
µ2

R

( 3∑
k=1

3∑
j=2

πkpkj

)
+(1−µR)2

( 3∑
k=1

πkpk1

)]−2

(6)
The Coefficient of Variation for Rise State

C.VR =
[
µ2

R

( 3∑
k=1

3∑
j=2

πkpkj

)
+ (1 − µR)2

( 3∑
k=1

πkpk1

)]1/2[ 3∑
k=1

πkpk1

]−1
% (7)
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2.4.3. Moment generating function for Rise State

MY R(t) =
( 3∑

k=1

3∑
j=2

πkpkj

)
+ et

( 3∑
k=1

πkpk1

)
(8)

2.4.4. Characteristic function for Rise State

ϕY R(t) =
( 3∑

k=1

3∑
j=2

πkpkj

)
+ eit

( 3∑
k=1

πkpk1

)
(9)

2.4.5. Probability generating function for Rise State

PSR(t) =
( 3∑

k=1

3∑
j=2

πkpkj

)
+ S

( 3∑
k=1

πkpk1

)
(10)

2.5. Probability distribution and some statistical measures for Stable State

2.5.1. The probability distribution for Stable State

Let us consider a random variable denoted by Y (ω2) = y which represents the hap-
pening of the Stable State. This variable can assume values 0 and 1, where ‘0’ signifies its
absence of the Stable State and ‘1’ signifies its presence of the Stable State.

P [Y (ω2) = y] =



3∑
k=1

3∑
j=1,j ̸=2

πkpkj ; for y = 0
3∑

k=1
πkpk2 ; for y = 1

0 ; otherwise(y ≥ 2)

(11)

2.5.2. Statistical measures for Stable State

The Average Occurrence of Stable State

µS =
3∑

k=1
πkpk2 (12)

The Variance of a Stable State

σ2
S = µ2

S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)
+ (1 − µS)2

( 3∑
k=1

πkpk2

)
(13)

The Third Central Moment for Stable State

µS3 = −µ3
S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)
+ (1 − µS)3

( 3∑
k=1

πkpk2

)
(14)
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The Coefficient of Skewness for Stable State

β1S =
[

− µ3
S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)
+ (1 − µS)3

( 3∑
k=1

πkpk2

)]2[
µ2

S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)

(1 − µS)2
( 3∑

k=1
πkpk2

)]−3
(15)

Coefficient of Kurtosis for Stable State

β2S =
[
µ4

S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)
+ (1 − µS)4

( 3∑
k=1

πkpk2

)][
µ2

S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)

(1 − µS)2
( 3∑

k=1
πkpk2

)]−2
(16)

Coefficient of variation for Stable State

C.VS =
[
µ2

S

( 3∑
k=1

3∑
j=1,j ̸=2

πkpkj

)
+ (1 − µS)2

( 3∑
k=1

πkpk2

)]1/2( 3∑
k=1

πkpk2

)−1
% (17)

2.5.3. Moment generating function for Stable State

MY S(t) =
( 3∑

k=1

3∑
j=1,j ̸=2

πkpkj

)
+ et

( 3∑
k=1

πkpk2

)
(18)

2.5.4. Characteristic function for Stable State

ϕY S(t) =
( 3∑

k=1

3∑
j=1,j ̸=2

πkpkj

)
+ eit

( 3∑
k=1

πkpk2

)
(19)

2.5.5. Probability generating function for Stable State

PSS(t) =
( 3∑

k=1

3∑
j=1,j ̸=2

πkpkj

)
+ S

( 3∑
k=1

πkpk2

)
(20)

2.6. Probability distribution and some statistical measures for Fall State

2.6.1. The Probability distribution for Fall State

Let us consider a random variable denoted by Y (ω3) = y which represents the hap-
pening of the Fall State. This variable can assume values 0 and 1, where ‘0’ signifies its



2025] THREE-STATE MARKOV PROBABILITY DISTRIBUTIONS 257

absence of the Fall State and ‘1’ signifies its presence of the Fall State.

P [Y (ω3) = y] =



3∑
k=1

2∑
j=1

πkpkj ; for y = 0
3∑

k=1
πkpk3 ; for y = 1

0 ; otherwise(y ≥ 2)

(21)

2.6.2. Statistical measures for Fall State

The Average Occurrence of Fall State

µF =
3∑

k=1
πkpk3 (22)

The Variance of a Fall State

σ2
F = µ2

F

( 3∑
k=1

2∑
j=1

πkpkj

)
+ (1 − µF )2

( 3∑
k=1

πkpk3

)
(23)

The Third Central Moment for Fall State

µ3
F = −µ3

F

( 3∑
k=1

2∑
j=1

πkpkj

)
+ (1 − µF )3

( 3∑
k=1

πkpk3

)
(24)

The Coefficient of Skewness for Fall State

β1F =
[

− µ3
F

( 3∑
k=1

2∑
j=1

πkpkj

)
+ (1 − µF )3

( 3∑
k=1

πkpk3

)]2
×

[
µ2

F

( 3∑
k=1

2∑
j=1

πkpkj

)
+ (1 − µF )2

( 3∑
k=1

πkpk3

)]−3
(25)

Coefficient of Kurtosis for Fall State

β2F =
[
µ4

F

( 3∑
k=1

2∑
j=1

πkpkj

)
+(1−µF )4

( 3∑
k=1

πkpk3

)][
µ2

F

( 3∑
k=1

2∑
j=1

πkpkj

)
+(1−µF )2

( 3∑
k=1

πkpk3

)]−2

(26)
The Coefficient of Variation for Fall State

C.VF =
[
µ2

F

( 3∑
k=1

2∑
j=1

πkpkj

)
+ (1 − µF )2

( 3∑
k=1

πkpk3

)]1/2( 3∑
k=1

πkpk3

)−1
% (27)

2.6.3. Moment generating function for Fall State

MY F (t) =
( 3∑

k=1

2∑
j=1

πkpkj

)
+ et

( 3∑
k=1

πkpk3

)
(28)
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2.6.4. Characteristic function for Fall State

ϕY F (t) =
( 3∑

k=1

2∑
j=1

πkpkj

)
+ eit

( 3∑
k=1

πkpk3

)
(29)

2.6.5. Probability generating function for Fall State

PSF (t) =
( 3∑

k=1

2∑
j=1

πkpkj

)
+ S

( 3∑
k=1

πkpk3

)
(30)

2.7. Predictions of returns on income

2.7.1. Expected returns on SBI shares

The explicit mathematical relation for computing expected share returns

[E.S.R]3×1 = [pjk]n3×3[M.S]3×1; ∀ n = 1, 2, ... (31)

E.S.R =Expected share price returns
P n = Limiting Probability Matrix (Computed using TPM)
M.S =Mean state

2.7.2. Prediction of closing prices of SBIs shares

The explicit mathematical relation for predicted Closing prices of SBI shares

P.S.P = (YRt × µR) + (YSt × µS) + (YF t × µF ) (32)

where,

YRt = Expected closing price of the SBIs share on the current day for the Rise State
YSt= Expected closing price of the SBIs share on the current day for the Stable State
YF t= Expected closing price of the SBIs share on the current day for the Fall State
µR= Average chance for occurrence of the Rise State
µS = Average chance for occurrence of the Stable State
µF = Average occurrence for occurrence of the Fall State

2.8. Validation of the model

2.8.1. Testing for model’s goodness of fit

The Chi-Square test statistic, denoted as χ2 , is utilized to assess the goodness of
fit between observed and expected categorical data. In the context of comparing observed
(original) and expected (predicted) share prices, the formula for χ2 is:

χ2 =
m∑

i=1

[Oi − Ei]2
Ei

∼ χ2
m−1 (33)
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2.8.2. Computation of AIC and BIC

The formulas for calculating AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) are as follows:

AIC = −2 loglikelihood + 2v (34)

BIC = −2 loglikelihood + v 2logn (35)

3. Data description for the developed model

Figure 2 provides a clear depiction of the data and methodology employed in the cur-
rent study. It delineates the detailed procedures utilized to assess the results with precision
and thoroughness.

Figure 2: Three-State Markov model data description & methodology flow chart

3.1. Data source and organization of the data

The detailed description of Figure 2; in order to utilise the Markov model that was
developed, real-time data on the closing prices of SBI (State Bank of India) stocks was
considered. This real-time data, crucial for evaluating the model’s effectiveness, consisted
of 251 observations collected over a period spanning from 2nd May 2022 to 5th May 2023.
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These observations were meticulously sourced from the renowned financial platform, Yahoo
Finance, accessible via the internet link (https://in.finance.yahoo.com).

The dataset, which served as the foundation for this analysis, was specifically focused
on the closing prices of SBI stocks. Closing prices, in the context of stock market analysis,
represent the final prices at which a stock trades during a regular trading session. These
prices are often used to assess the overall performance of a particular stock.

This dataset, constituting 251 data points, is of paramount importance for evaluating
the Markov model’s predictive capabilities in real-world scenarios. It forms the basis upon
which the model’s predictions and effectiveness in forecasting SBI stock prices are tested
and validated. The historical closing prices, meticulously organized and structured, were
compiled into a comprehensive sample data template, as detailed in Table 1. This template
serves as the primary reference for the subsequent analysis and assessment of the Markov
model’s accuracy and reliability in predicting the closing prices of SBI stocks during the
specified period.

Table 1: SBI’s sample data matrix

S.No. Date Closing Price
1 02-05-2022 491
2 04-05-2022 479.649994
3 05-05-2022 480
... ... ...

249 03-05-2023 570.5
250 04-05-2023 580
251 05-05-2023 576.5

3.2. Data formulation

In light of the observed influence of market seasonality on closing prices concerning
specific weekdays, the 251 collected observations were categorized based on business days
(Monday, Tuesday, Wednesday, Thursday, and Friday). The Sample data matrix of Mondays
data placed in Table 2. Remaining business days also done like Mondays data.

Table 2: SBI’s Monday data matrix

S.No. Date Closing Price Returns State Transition
1 02-05-2022 491 - - -
2 09-05-2022 475.899994 -0.03075 F -
3 16-05-2022 455 -0.04392 F FF
... ... ... ... ... ...

49 10-04-2023 526.299988 -0.00085 S RS
50 17-04-2023 544 0.033631 R SR
51 24-04-2023 554.599976 0.019485 R RR

To delve deeper into this segmentation and its impact, individual sensitivity studies
were undertaken for each business day. Prior to these studies, the data from all five datasets
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were pooled together, facilitating comprehensive analysis. Within each dataset, a meticulous
classification was performed, focusing on the transient state of returns. This systematic
approach allowed for a detailed exploration of how market dynamics and price fluctuations
varied across different weekdays, shedding light on the intricate relationship between market
behaviour and specific business days.

3.3. Data disclosure

The states are determined according to the values of dYt and are categorized into three
distinct types: Rise(State-1) when the condition dYt ≥ µ + 3σ√

n
is met, Stable (State-2) when

the condition µ − 3σ√
n

< dYt < µ + 3σ√
n

is satisfied, and Fall (State-3) when the condition
dYt ≤ µ − 3σ√

n
holds true. In these definitions, µ represents the mean, σ represents the

standard deviation of dYt, and n signifies the number of observations within the segregated
dataset.

Classification of states for Monday, Tuesday, Wednesday, Thursday, and Friday are
placed in the Figures 3, 4, 5, 6, and 7 respectively.

Figure 3: Classification of states in Monday data

Figure 4: Classification of states in Tuesday data
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Figure 5: Classification of states in Wednessday data

Figure 6: Classification of states in Thursday data

Figure 7: Classification of states in Friday data

Markov model is a composition of TPM, and IPV, which are computed with real-time
data through R programming. Separate probability distributions, and statistical character-
istics like average, variance, third central moments, skewness, kurtosis etc. are obtained
for all segregated data sets. However, we have considered the averages for computing the
predicted closing prices. The expected returns for SBI of all data sets are calculated by a
formula as in section 2.7.1. We have obtained the predicted values (about 10 observations) of
expected returns using the notion of sections 2.7.1 and 2.7.2. The developed Markov model
is validated with the Chi-Square test for all data sets individually. AIC and BIC are also
computed for each data set separately for the model’s goodness of fit.
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4. Results and discussion

The below parameters are placed in sections 4.1 and 4.2 which are computed by the
above methodology.

4.1. Transition probability matrix (TPM) for SBI share closing prices

The explored TPM for Monday, Tuesday, Wednesday, Thursday, and Friday sets are
as follows.

4.1.1. Transition behaviour of the market from monday to friday

The explored TPMs from Monday to Friday data placed in below Table 3.

Table 3: Transition Probabilities for all Business Days in a Week

Day Transition Probabilities
RR RS RF SR SS SF FR FS FF

Monday 0.4706 0.2353 0.2941 0.4286 0.3571 0.2143 0.2222 0.2778 0.5
Tuesday 0.625 0.1875 0.1875 0.3125 0.375 0.3125 0.1429 0.5 0.3571

Wednesday 0.4445 0.2222 0.3333 0.3529 0.3529 0.2941 0.3077 0.5385 0.1538
Thursday 0.45 0.3 0.25 0.1538 0.3077 0.5385 0.625 0.1875 0.1875

Friday 0.4 0.4 0.2 0.1667 0.5 0.3333 0.375 0.25 0.375

The graphical representation of the above table is placed in Figure 8. It gives a clear
interpretation of the transition behaviour of all business days in a week.

Figure 8: Transition probabilities for all business days in a week
From the above Table 3 and Figure 8 transition probabilities on Monday data set, it is

observed that Fall State in the current day given that Fall State in the previous day is having
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the highest likelihood (50%); similarly Rise State in the current day given that Rise State
in the previous day is having second highest likelihood (47.06%); Rise State in the current
day given that Stable State in the previous day is having third highest likelihood (42.86%);
and Fall State in the current day given that Stable State in the previous day having least
likelihood (21.43%).

Based on the transition probabilities gleaned from Table 3 and Figure 8 of the Tuesday
data set, it is observed that Rise State in the current day given that Rise State in the previous
day is having the highest likelihood (62.5%); similarly Stable State in the current day given
that Fall State in the previous day is having second highest likelihood (50%); Stable State in
the current day given that Stable State in the previous day is having third highest likelihood
(37.5%); and Rise State in the current day given that Fall State in the previous day having
least likelihood (14.29%).

In analysing the transition probabilities extracted from Table 3 and Figure 8 of the
Wednesday data set, it is observed that Stable State on the current day given that Fall State
in the previous day is having the highest likelihood (53.85%); similarly Rise State in the
current day given that Rise State in the previous day is having second highest likelihood
(44.45%); Stable State in the current day given that Stable State in the previous day and
Rise State in the current day and Stable State in the previous day both are having third
highest likelihood (35.29%); and Fall State in the current day given that Fall State in the
previous day having least likelihood (15.38%).

Examining the transition probabilities sourced from Table 3 and Figure 8 of the
Thursday data set, it is observed that Rise State in the current day given that Fall State in
the previous day is having the highest likelihood (62.5%); similarly, Fall State in the current
day given that Stable State in the previous day is having the second highest likelihood
(53.85%); Rise State in the current day given that Rise State in the previous day is having
third highest likelihood (45%); and Rise State in the current day given that Stable State in
the previous day having least likelihood (15.38%).

From the above Table 3 and Figure 8 transition probabilities of Friday data set, it is
observed that Stable State in the current day given that Stable State in the previous day is
having the highest likelihood (50%); similarly Rise State in the current day given that Rise
State previous day and Stable State in the current day and Rise State in the previous day are
having second highest likelihood (40%); Fall State in the current day given that Fall State
in the previous day and Rise State in the current day and Fall State in the previous day are
having third highest likelihood (37.5%); and Fall State in the current day given that Rise
State in the previous day having least likelihood (20%).

These findings highlight distinct patterns in SBI’s share prices throughout the week,
indicating varying transient behaviours. This information can be invaluable for portfolio
managers, enabling them to assess how SBI’s share prices transition between Rise, Stable,
and Fall states each day. These indicators provide crucial insights, allowing managers to
strategize effectively, capitalize on profit opportunities, and implement corrective measures
to mitigate losses.
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4.2. Initial probability vector (IPV) for SBI share prices

After a thorough process of the real-time data, the IPVs of the Rise, Stable, and Fall
states are obtained.

4.2.1. Indicators of Rise, Stable, and Fall States on Monday to Friday

The indicators on the chances of Rise, Stable, and Fall states the data under study
are as below.

Table 4: Initial Probabilities for all Business Days in a Week

Day Initial Probabilities
Rise Stable Fall

Monday 0.36 0.28 0.36
Tuesday 0.3617 0.3404 0.2979

Wednesday 0.3673 0.3673 0.2654
Thursday 0.42 0.26 0.32

Friday 0.30 0.38 0.32

The graphical representation of the above Table 4 is placed in Figure 9.

Figure 9: Initial probabilities for all business days in a week

From the above Table 4 and Figure 9, it is observed that on Monday, the likelihood
of both Rise State and Fall State is equal at 36%. From Tuesday to Thursday, Rise State
consistently has a higher likelihood than the other states, with Thursday having the highest
probability at 42%, followed by Wednesday at 36.73%. Conversely, on Friday, the likelihood
of the Rise State drops to its lowest at 30% compared to the other states. This suggests a
strategy for short-term traders: consider selling shares during the middle of the week when
the probability of a price increase is notably higher.
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4.3. Probability distributions for Rise, Stable, and Fall states

The probability distributions for Rise, Stable, and Fall states of all business days in
a week (Monday, Tuesday, Wednesday, Thursday, and Friday) are as in Table 5.

Table 5: Probability distributions of all states

Day Chance of happening of the state
Rise Stable Fall

Monday 0.3694 0.2847 0.3459
Tuesday 0.375 0.3444 0.2806

Wednesday 0.3745 0.3541 0.2713
Thursday 0.429 0.266 0.305

Friday 0.3033 0.39 0.3067

Figure 10 illustrates the occurrence of Rise, Stable, and Fall states graphically. It
provides a visual representation of the frequency of each state over the observed period.

Figure 10: Chance of happening of Rise, Stable, and Fall states

According to the data presented in Table 5 and Figure 10, there is a noticeable trend
in the occurrence of Rise and Fall states across different days of the week. Specifically, the
likelihood of the Rise State is highest on Thursdays, closely followed by Tuesdays. Similarly,
Fridays exhibit the highest probability of the Rise State, with Wednesdays following closely
behind. In contrast, the Fall State is more likely to occur on Mondays, with Fridays showing
the next highest probability.

This information suggests certain patterns or tendencies in market behaviour through-
out the week. Traders may find it useful to be aware of these tendencies when making
decisions about trading strategies, timing of trades, and risk management. For instance, un-
derstanding that Thursdays often have a higher chance of experiencing the Rise State could
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influence traders to adjust their positions accordingly or anticipate potential market move-
ments. Similarly, knowledge of increased Fall State occurrences on Mondays might prompt
traders to exercise caution or implement specific risk mitigation measures at the beginning of
the trading week. Overall, awareness of these patterns can help traders make more informed
decisions and navigate market dynamics more effectively.

Statistical measures/characteristics are useful in understanding the behaviour of the
probability distributions.

4.4. Discussion on statistical measures

In order to have a better understanding of the model behaviour and the probability
distributions, the statistical measures are computed and placed in Table 6.

Table 6: Statistical measures for Rise, Stable and Fall states

State Statistical Measure Monday Tuesday Wednesday Thursday Friday

Rise State

Average 0.3694 0.375 0.3745 0.429 0.3033
Variance 0.2329 0.2344 0.2343 0.245 0.2113

3rd central moment 0.0608 0.0586 0.0588 0.0348 0.0831
Beta -1 0.2928 0.2667 0.2687 0.0823 0.7321
Beta -2 1.2928 1.2667 1.2687 1.0823 1.7321

C.V. 130.652 129.099 129.223 115.369 150.953

Stable State

Average 0.2847 0.3444 0.3541 0.266 0.39
Variance 0.2036 0.2258 0.2287 0.1952 0.2379

3rd central moment 0.0877 0.0703 0.0667 0.0914 0.0523
Beta -1 0.9104 0.4288 0.3721 1.1218 0.2034
Beta -2 1.9104 1.4288 1.3721 2.1218 1.2035

C.V. 158.505 137.966 135.045 166.114 125.064

Fall State

Average 0.3459 0.2806 0.2713 0.305 0.3067
Variance 0.2262 0.2019 0.1977 0.212 0.2126

3rd central moment 0.0697 0.0886 0.0904 0.0827 0.0822
Beta -1 0.4199 0.954 1.0582 0.7175 0.7032
Beta -2 1.4199 1.954 2.0582 1.7175 1.7032

C.V. 137.519 160.124 163.885 150.953 150.361

4.4.1. Discussion on the results

The results presented in Table 6 indicates that the Rise State is more frequently
observed from Monday to Thursday compared to the Stable and Fall states. Specifically,
there is a higher probability of the Rise State occurring during these days. Furthermore,
Thursday stands out as the day with the highest likelihood for the Rise State in comparison
to other business days.

Conversely, the Stable State exhibits a higher probability of occurrence on Fridays,
suggesting a distinct pattern at the end of the week. This observation implies that different
states (Rise, Stable, and Fall) exhibit varying likelihoods on different days, providing valuable
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insights into the underlying patterns of the data. The below Figure 11 shows the graphical
representation of this content.

Figure 11: Averages of Rise, Stable, and Fall states in different days in a week

The analysis of the provided Table 6 reveals interesting patterns in the variability
(variance) of different states (Rise, Stable, and Fall) across the weekdays. In the Rise State,
similar variances are observed from Monday to Thursday, indicating consistent behaviour
during these days. However, on Friday, there is a notable decrease in variance, suggesting a
more stable trend compared to the preceding days.

In the Stable State, the highest variance is observed on Friday, signifying fluctuations,
and unpredictability in the stock market towards the end of the week. Conversely, Thursday
stands out with the least variance in this state, indicating a more stable and predictable
market behaviour on that day.

For the Fall State, high variance is noted on Monday, suggesting significant fluctu-
ations at the beginning of the week. In contrast, Wednesday exhibits the least variance in
this state, indicating a relatively calmer and more predictable market environment.

Interestingly, the data emphasizes that Thursday is characterized by the least variance
across all states (Rise, Stable, and Fall). This suggests that Thursdays tend to have a
more stable market behaviour, making them potentially favourable for certain investment
strategies.

These observations provide valuable insights for investors, indicating specific days of
the week when the stock market is either more stable or prone to fluctuations. Investors could
potentially use this information to inform their trading decisions, adapting their strategies
based on the observed patterns of variance in different market states across weekdays.
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The positive skewness indicated by the non-negative third central moment across
all states (Rise, Stable, and Fall) implies that in the stock market, there are more frequent
occurrences of small or moderate gains. These modest gains are a common feature, suggesting
relative stability in stock prices. However, the presence of occasional significant upward shifts
in stock prices, although infrequent, contributes to the overall positive skewness.

For investors, this pattern highlights the regularity of stable or moderately positive
market movements, punctuated by occasional notable upticks. Recognizing these infrequent
but substantial positive shifts is vital for investors seeking opportunities for significant profits.
However, it also underscores the need for prudent risk management, as these occasional
large movements can result in substantial losses if not carefully navigated. Understanding
this skewed distribution is essential for making informed investment decisions in the stock
market.

The kurtosis values being less than three for all states (Rise, Stable, and Fall) on
every business day indicate a platykurtic distribution in the stock market.

The observation of the lowest coefficient of variation in the Rise State on Thursday
(115.369) implies that this particular day showcases a remarkable consistency and stability
in stock market performance, graphically it is presented in Figure 12.

Figure 12: Coefficient of variation for Rise, Stable, and Fall states in different
days in a week

Hence, Figure 12 may advise to short-term traders that Thursday might be an op-
portune day to consider selling stocks to maximise returns. The lower coefficient of variation
indicates reduced volatility and fluctuations, indicating a more predictable market environ-
ment. This stability can provide short-term traders with confidence in making strategic
decisions, potentially leading to optimal returns on their investments. Understanding these
patterns in the coefficient of variation aids traders in identifying favourable moments for
executing trades and capitalizing on market stability.
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4.5. Expected (predicted) returns for SBI’s shares

The expected returns computed for all days in a week are separately computed using
the formula mentioned in Section 2.7.1.

4.5.1. Expected returns for SBIs all business days data of all states

The given below are the expected SBI share price returns in 10 business days due to
Rise, Stable, and Fall states.

Table 7: Expected returns for Rise, Stable, and Fall states

State Day Monday Tuesday Wednesday Thursday Friday
Rise t=1 0.009207387 0.015662265 0.003799441 0.008274521 0.013172060

t=2 0.004862423 0.009527704 0.004649036 0.003889552 0.005524245
Stable t=1 0.010790754 0.002533674 0.002325153 0.013513428 0.001853549

t=2 0.006335824 0.004617461 0.004317823 0.006204354 0.002929969
Fall t=1 -0.006832183 -0.003926799 0.007331084 0.016880182 0.004984202

t=2 0.001627426 0.002101875 0.003548923 0.005802842 0.006345211

Analysing the resulted Table 7, it is observed there is expected returns of Fall State
on Monday and Tuesday are negative, it may indicate to the traders there is a risk factor
involved in share market, so these results may advise to the short-term traders to adopt risk
tolerance and portfolio strategy to overcome the loss on investment.

4.5.2. Estimated (Predicted) closing prices of SBI shares

The SBI’s closing prices are predicted using the linearity formula which is placed in
Section 2.7.2 The predicted share prices are

Table 8: Predicted closing prices

Week Monday Tuesday Wednesday Thursday Friday
First 556.8796 578.5471 572.9164 582.9601 579.2679

Second 559.2062 570.899 575.3413 585.924 582.0315

Figure 13 depicts the observed and predicted closing prices of SBI shares. These
forecasts are valuable for short-term traders, enabling them to discern patterns in SBI share
prices and make informed decisions for trading in the upcoming week.

4.6. Validation of the model

4.6.1. Chi-square test

The Markov model developed was assessed using the Chi-Square test for goodness of
fit, considering both expected and observed values over two weeks (business days only). The
test’s null hypothesis (H0) posits that the developed model fits the data well, meaning there
is no significant difference between the observed and expected closing prices of SBI shares.
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Figure 13: Predicted Closing Prices of First and Second Week

The calculated probability value (p-value) for SBI is 0.9719 with 9 degrees of freedom.
The result indicates that the stated hypothesis is not rejected, confirming that the developed
model aligns with the data.

4.6.2. AIC and BIC

Additionally, the model’s robustness was evaluated using the Akaike information
criterion (AIC) and Bayesian information criterion (BIC).

The AIC and BIC were calculated using the formulae mentioned in the Section 2.8.2.
For Monday, Tuesday, Wednesday, Thursday, and Friday, the AIC values are 70.80734,
57.5237, 63.0746, 69.68, and 64.1920, while the corresponding BIC values are 91.6174,
75.8102, 81.7867, 90.49, and 83.1102. These findings indicate that the AIC and BIC val-
ues are lowest for Tuesday data, followed by Wednesday’s data. Consequently, the results
obtained from the developed model affirm that the upward trend in share value is notably
more consistent during the middle of the week.
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