
Statistics and Applications {ISSN 2454-7395 (online)}
Special Issue in Memory of Prof. C R Rao
Volume 22, No. 3, 2024 (New Series), pp 153–169
http://www.ssca.org.in/journal

Survey of C.R. Rao’s Orthogonal Arrays, Balanced Arrays,
and Their Applications

Gour Mohan Saha1, Bikas Kumar Sinha1 and Ganesh Dutta2
1Retired Professor of Statistics, Indian Statistical Institute, Kolkata-700108, India

2Basanti Devi College, 147B Rash Behari Avenue, Kolkata-700029, India

Received: 13 May 2024; Revised: 15 June 2024; Accepted: 17 June 2024

Abstract
This comprehensive review article on orthogonal arrays (OAs), balanced arrays (BAs)

and their practical applications serves as a tribute to the life and ground breaking contribu-
tions of the legendary statistician, C.R. Rao (1920-2023). It highlights his profound influence
on the field of statistical sciences and explores the significant contributions he made to the
realms of OAs and BAs. His work in these areas has left an indelible impact on the domains
of experimental design, combinatorial mathematics, and statistical analysis. In this article,
we delve into some noteworthy applications of OAs and BAs.

Key words: Orthogonal array; Balanced array; Mixed orthogonal array; Balanced incomplete
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1. Introduction

The foundation for the concepts of Latin squares and mutually orthogonal Latin
squares was laid in the early 20th century. Later, these foundational ideas were expanded
and generalized to include Latin cubes and hypercubes, as well as orthogonal Latin cubes
and hypercubes (cf. Kishen (1942, 1949)). These developments marked significant progress
in the field of experimental design, as they allowed for the exploration of more complex
experimental scenarios with multiple factors and levels.

Rao (1946) further extended these concepts by introducing the notion of arrays with a
specific strength. These arrays became a versatile tool for designing experiments with various
factors, enabling researchers to investigate complex relationships and interactions efficiently.
The pivotal moment in the evolution of these ideas came when Rao (1947) introduced the
concept of OAs as a unifying framework that generalized and brought together the previously
mentioned structures. This marked a significant leap in the field of experimental design and
made it more accessible to practitioners in diverse fields.

Furthermore, Rao (1973) continued to expand his contributions by generalizing OAs
to mixed orthogonal arrays (MOAs) of strength d. This development allowed researchers
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to work with experiments that involved factors at different levels, thus accommodating a
broader range of real world scenarios.

The evolution of experimental design, from the early concepts of Latin squares to the
sophisticated OAs, represents a remarkable journey of continuous innovation and generaliza-
tion. C. R. Rao’s pioneering work (1946, 1947, 1949, 1961, 1973) has been instrumental in
this evolution, establishing these arrays as fundamental tools in experimental design. Rao’s
contributions have proven invaluable in both industrial and scientific research by enabling
highly efficient experiments that require fewer runs. His brilliance is further exemplified by
expanding OAs into higher dimensions, thus broadening their applicability across diverse
experimental settings. This expansion has notably enhanced the efficiency of experimen-
tation and optimization in various industries, including manufacturing and quality control.
Taguchi’s work in the 1980s popularized the use of OAs in industry, known as Taguchi meth-
ods, which determine optimum combinations of factors to achieve high output and robustness
to environmental changes. An article in Forbes Magazine (March 11, 1996, pp. 114-118)
highlighted the significance of OAs, dubbing them a “New Mantra” in various U.S. indus-
trial establishments. This recognition underscores the practical utility of OAs in enhancing
efficiency and reducing the number of experimental runs required in industrial research. Be-
yond industry, OAs have also made profound impacts in agricultural and medical sciences,
as discussed by Parsad, Gupta, and Gopinath (2020). Additionally, OAs find applications in
coding theory, cryptography, and computer experiments. Comprehensive textbooks on this
subject, authored by Dey and Mukerjee (1999), Hedayat, Sloane, and Stufken (1999), and
Rosa (2017), provide an extensive exploration of these powerful tools, cementing their place
as indispensable resources in the realm of experimental design.

BAs, stemming from the foundational work on partially balanced arrays by Chakravarti
(1956, 1961) and further advanced by Srivastava and Chopra (1973), epitomize a sophisti-
cated concept within experimental design. Initially termed as partially balanced arrays, the
pioneering research by Chakravarti (1956) laid the groundwork for their exploration. Build-
ing upon this foundation, Srivastava and Chopra (1973) made significant strides, advocating
for the simplification of the term to “balanced arrays”, a change we have embraced. This
evolution represents a pivotal moment in the realm of experimental design and statistical
methodologies. BAs provide a structured and efficient means to investigate the intricate
relationships among multiple factors and their respective levels. By systematically vary-
ing factors while minimizing confounding effects, these arrays offer a robust framework for
achieving statistical efficiency. In essence, they stand as a testament to the ongoing advance-
ment of experimental design, empowering researchers to uncover insights with clarity and
precision.

Within the broader framework of OAs, BAs emerge as a noteworthy and important
subset. OAs are a specialized type of BAs. They hold a unique and powerful position in the
field of experimental design, as they are specifically designed to ensure that the effects of
different factors do not interfere with each other. In other words, OAs allow researchers to
explore and quantify the impact of various factors on the outcome of interest without undue
influence from unrelated factors. In essence, OAs and BAs are intertwined components of
experimental design, with BAs serving as a foundational concept and OAs as a refined and
focused tool within this framework. Together, they provide researchers with a comprehensive
toolkit to design and execute experiments effectively, ensuring that the results obtained are
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both reliable and interpretable.

In this review article, we provide definitions of OAs, MOAs, and BAs in Section 2.
We focus on the construction of incomplete block designs from BAs and OAs in Section
3. Section 4 discusses the construction of optimum chemical balance weighing designs from
BAs. Section 5 covers the construction of second order rotatable designs (SORDs) using
BAs. In Section 6, we discuss some methods for constructing BAs. Section 7 considers the
construction of orthogonal resolution plans and fractional factorial plans using OAs. Section
8 addresses the application of OAs in Taguchi methods. Section 9 explores other diverse
applications of OAs and MOAs in modern research and experimentation. Finally, Section
10 presents the conclusion.

2. Overview of OAs and BAs

In this section, we provide a comprehensive overview of OAs and BAs. While these
concepts might be familiar to the audience of this special issue, we briefly revisit them for
the sake of completeness and to ensure smooth reading.

2.1. OA

OAs are mathematical structures extensively used in experimental design, coding the-
ory, and quality engineering. They facilitate the systematic testing of different combinations
of variables while minimizing the number of experimental runs required.

Definition 1: Consider an array A of size k × N , where its elements are drawn from a set
S comprising s symbols or levels, denoted by 0, 1, . . . , s − 1. This array A is termed an OA
possessing s levels, with a strength of t, and an index denoted by λ, under the condition
that each t × N subarray within A contains every t-tuple derived from S precisely λ times
as a column.

We denote such an array by OA(N, sk, t). Clearly, N = λst.

Definition 2: A MOA OA(N, sk1
1 sk2

2 . . . skv
v , t) is an array of size k × N , where k = k1 +

k2 + ... + kv is the total number of factors, in which the first k1 rows have symbols from
{0, 1, . . . , s1 − 1}, the next k2 rows have symbols from {0, 1, . . . , s2 − 1}, and so on. The
array has the property that in any t × N subarray, every possible t-tuple occurs an equal
number of times as a column. Of course, if all si’s are equal, we get the usual OA(N, sk, t)
as of Definition 1.

For further understanding, readers may refer to authoritative textbooks by Raghavarao
(1971), Dey and Mukerjee (1999), Hedayat et al. (1999) and Rosa (2017). Additionally,
valuable insights can be gained from online resources such as TS-DOC: TS-723 - OAs by WF
Kuhfeld, OA testing on Wikipedia, and the design resources server of the Indian Agricultural
Statistics Research Institute (IASRI). N. J. A. Sloane’s “A Library of OAs” also provides
comprehensive information. Furthermore, important references, including works by Bose
(1950), Bose and Bush (1952), Bush (1952), Cheng (1980), and Mukhopadhyay (1981), offer
deeper insights into the topic.
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2.2. BA

BAs are similar to OAs but are specifically designed for applications that require
balanced representation across various combinations. This characteristic makes them par-
ticularly valuable in the field of combinatorial design.

Definition 3: Let A be an k×N array with elements 0,1,2,. . . , s−1. Consider the st possible
vectors X′ = (x1, x2, . . . , xt) , where each xi can take any value from {0, 1, . . . , s − 1} for
i = 1, 2, . . . , t. Associate with each t × 1 vector X a positive integer λ(x1, x2, . . . , xt), which
remains unchanged under permutations of (x1, x2, . . . , xt). If for every t rowed subarray of
A, the st distinct t × 1 vectors X appear as columns exactly λ(x1, x2, . . . , xt) times, then the
array A is called a BA of strength t in N assemblies, with m constraints, s symbols, and the
specified λ(x1, x2, . . . , xt) parameters.

It is to be noted that if λ(x1, x2, . . . , xt) = λ for all (x1, x2, . . . , xt), then A is called an OA
of index λ.

The literature on this topic is extensive, making it challenging to cite every relevant work.
Therefore, we reference a selection of seminal articles from the early stages, including those
by Chakravarti (1956, 1961), Srivastava and Chopra (1973), Rafter and Seiden (1974), and
Saha (1981).

3. Constructing incomplete block designs with BAs and OAs

A methodology emerges for constructing BAs, employing the Kronecker product ap-
plied to two BAs. This approach leads to the derivation of six distinct balanced incomplete
block designs (BIBDs) from a given symmetric balanced incomplete block design (SBIBD).
Notably, the method involves operations such as unions, intersections, and difference sets on
pairs of blocks of an SBIBD and their complementary designs. Significantly, certain newly
generated BIBDs fulfill the minimum replication requirements for specified parameters like
v (number of varieties or treatments) and k (block size), showcasing the method’s efficiency
and efficacy. Expanding beyond its original scope, the study suggests broader applications
for this method. It proposes leveraging the new series of SBIBDs to derive additional series
of BIBDs, hinting at the potential for an iterative process where new designs build upon
established ones, thus enriching the repertoire of available BIBDs. Independent confirma-
tions by Vanstone (1975) and Majindar (1978) regarding the existence of the six BIBDs
corresponding to an SBIBD reinforce the method’s validity and reliability.

In Saha (1975), the tactical configurations (or t designs) are generalized to G systems
of order β, and their equivalence to 2 symbol BAs of strength β is established. This extension
confirms their equivalence to 2 symbol BAs of strength β. These findings are then applied
to demonstrate that when β is even, A∪Ac yields another 2 symbol BA of strength β + 1,
where A is a 2 symbol BA of strength β, and Ac is the complementary array (obtained from
A by interchanging 0s and 1s). This holds true for 2 symbol OAs of strength β when β
is even as well. Furthermore, the research identified specific series of 2 symbol OAs with a
strength of three, which were obtained from carefully selected 2 symbol BAs with a strength
of two. Saha (1975) demonstrated how tactical configurations (t designs) generalize to G
systems of order β and established their equivalence to 2 symbol BAs of strength β. It also
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sheds light on the behavior of combining such arrays and provides insights into obtaining
series of 2 symbol OAs with a higher strength from BAs.

Building upon these foundational works, Saha et al. (1985) extend the method to
generate s symbol BAs with a strength of t. This advancement is then applied to derive
diverse partially balanced incomplete block designs (PBIBDs) characterized by m associate
classes. Additionally, their research reveals the coexistence of six distinct series of PBIBDs
alongside a linked block PBIBD, showcasing the versatility of the method in addressing
various experimental design needs and its significant contributions to advancing the field.

For detailed definitions and further reading on BIBD, SBIBD, PBIBD, and association
schemes, several excellent textbooks are available, with Raghavarao (1971) being particularly
recommended.

4. Optimal chemical balance weighing designs from BAs and BIBDs

Optimal chemical balance weighing designs are experimental frameworks used in
chemical experiments to measure the weights of multiple substances simultaneously with
high accuracy. These designs aim to minimize the variance of the estimated weights, ensur-
ing precise and unbiased measurements. The key characteristics of optimal chemical balance
weighing designs include efficiency, as they maximize the information obtained from a lim-
ited number of weighings; balance, by distributing errors evenly across all measurements to
reduce systematic biases; and replication, through repeated measurements to enhance relia-
bility. Additionally, these designs often employ combinatorial structures like BAs and BIBDs
to systematically arrange substances on the balance, optimizing the weighing process. In
essence, these designs provide a structured approach to achieving high precision and minimal
error in the measurement of multiple substances. For further reading, refer to Raghavarao
(1971), Silvey (1980), Shah and Sinha (1989) and Pukelsheim (1993).

Dey (1971), Saha (1975), Kageyama and Saha (1983), along with other researchers,
initially showcased the derivation of optimal chemical balance weighing designs from the
incidence matrices of BIBDs.

Dey (1971) utilized the incidence matrices of BIBDs and balanced ternary designs for
constructing optimal chemical balance weighing designs.

Regarding the relationship between BIBDs and optimum chemical balance weighing
designs, Saha (1975) proved two significant theorems:

Theorem 1: The existence of a BIBD with parameters v, b, r, k, λ satisfying b ≤ 4(r − λ)
implies the existence of an optimum chemical balance weighing design for v objects in 4(r−λ)
weighings.

Theorem 2: The existence of an affine resolvable BIBD with parameters v, b = 2r, r, k, λ
implies the existence of an optimum chemical balance weighing design for r objects in v
weighings.

Kageyama and Saha (1983) investigated a BIBD with parameters v, b, r, k, λ satisfying
b ≤ 4(r −λ) and tabulated the parameters (in the practical range) of BIBDs which validated
the above theorems of Saha (1983).
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Expanding upon this foundation, Saha and Kageyama (1984) further developed the
methodology by illustrating that optimum weighing designs could also be derived from care-
fully selected two symbol BAs of strength two. Importantly, these arrays were not limited
to being incidence matrices of BIBDs, thus widening the potential design scope. To im-
plement this approach, the first step involves identifying two symbol BAs of strength two
with desired properties for optimum chemical balance weighing design construction. These
arrays must meet specific criteria to ensure suitability. By leveraging the identified arrays,
the optimum chemical balance weighing designs can be generated, utilizing the array’s struc-
ture and properties. This process involves transforming the array into a design that meets
the requirements for the optimum chemical balance weighing. Thus, the findings lead us to
construct new optimum chemical balance weighing designs other than the above mentioned
methods. This research has far reaching implications for the optimum design of chemical
balance experiments and provides a more flexible and versatile framework for developing
such designs beyond the limitations of traditional BIBDs.

5. Constructing SORDs using BAs for response surface studies

SORDs are a type of experimental design used primarily in response surface method-
ology (RSM) to model and optimize processes. These designs are particularly effective when
the relationship between the factors and the response variable is quadratic. They accom-
modate a second order (quadratic) polynomial model, encompassing linear, interaction, and
squared terms of the input variables. A design is considered rotatable if the variance of
the predicted response at any point depends solely on the distance from the design center,
rather than the direction, thereby ensuring uniform precision of prediction at all equidistant
points from the center. The most common type of SORD is the central composite design
(CCD), which combines a factorial or fractional factorial design with center points and axial
(or star) points to estimate curvature. These designs efficiently estimate the coefficients of
a second order polynomial, enabling the detection of curvature in the response surface and
the identification of optimal conditions. Their flexibility and efficiency in handling multi-
ple factors make SORDs indispensable tools in industrial and scientific research for process
optimization. For further details, we refer to Khuri and Cornell (1996).

The integration of BAs has significantly expanded the toolkit available to researchers
involved in designing SORD for analyzing response surfaces. A pivotal contribution to this
field was made by Das and Saha (1973), who demonstrated the successful construction of
SORDs under specific conditions. They outlined requirements for 2 symbol BAs of strength
two, which enabled the creation of 4 level SORDs. Leveraging these principles, they intro-
duced several novel series of 4 level SORDs. Notably, they uncovered an intriguing finding:
a 4 level SORD can be derived for (i) v − x factors from b magnitude sets, and (ii) v fac-
tors from b + c magnitude sets, from a BIBD meeting certain criteria, such as r > 3λ, or
5r − 2b − 3λ > 0 (x > 0, c > 0). Furthermore, these designs can be augmented by select-
ing appropriate magnitude sets in addition to those derived from the incidence matrices of
BIBDs.

Such designs present researchers with a flexible and adaptable framework, facilitating
the conduct of response surface experiments and providing a nuanced exploration into the
behavior of intricate systems.
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6. Construction of BAs

Association schemes with a large number of associate classes have historically been
investigated primarily for their combinatorial significance, without a focus on their applica-
tion in the development of practical experimental designs. However, Saha (1981) introduced
a novel approach by utilizing a new class of cyclic association scheme with m associate
classes, referred to as NCm association scheme. This approach was employed to construct
(m+1) symbol BAs of strength two. The resulting BIBDs derived from these arrays were
also explored in the same paper.

In a more recent study by Yonglin (2004), association schemes have been employed
to investigate their relationship with OAs and frequency squares, which represent a general-
ization of Latin squares. This research demonstrates the evolving and diverse applications
of association schemes in combinatorial design theory, shedding light on their connection to
other fundamental structures and concepts.

Researchers made notable contributions for constructing BAs with a strength of two
from block designs. For instance, Sinha et al. (2002) achieved this by using various types
of block designs, including (i) rectangular designs; (ii) group divisible designs; (iii) nested
balanced incomplete block designs. These constructions result in BAs, which are useful in
experimental design and combinatorial applications.

Balanced nested designs share intricate connections with other combinatorial struc-
tures like BAs and balanced n-ary designs. Specifically, the presence of symmetric bal-
anced nested designs mirrors the existence of certain BAs. Delving into this relationship,
Fuji-Hara et al. (2002) conducted a comprehensive exploration of balanced nested designs.
They focused on elucidating the interplay between balanced nested designs and BAs with
a strength of two, offering diverse constructions for symmetric balanced nested designs.
These constructions proved instrumental in delineating the spectrum of symmetric balanced
nested incomplete block designs with block sizes of 3 and 4. Notably, their research un-
veiled the equivalence between symmetric balanced nested designs and specific categories of
BAs. Beyond enriching our understanding of BAs, their work provided invaluable insights
into constructing symmetric balanced nested designs, thereby advancing the broader field of
combinatorial design theory.

7. Orthogonal resolution and fractional factorial plans with OAs

Orthogonal resolution plans and fractional factorial plans are two types of experimen-
tal designs commonly employed in industrial and scientific research to efficiently explore the
effects of multiple factors on a response variable while minimizing the number of experimen-
tal runs needed. Orthogonal resolution plans are characterized by their ability to provide
unbiased estimates of main effects and interactions between factors, even in the presence
of confounding. These plans achieve orthogonality by ensuring that each factor is varied
independently of the others at different levels, thereby allowing for the unambiguous iden-
tification of the effects of individual factors. Additionally, orthogonal resolution plans are
designed to have certain desirable properties such as clear aliasing patterns, which aid in the
interpretation of results. On the other hand, fractional factorial plans are a subset of orthog-
onal resolution plans that further reduce the number of experimental runs by systematically
selecting a fraction of the total number of possible treatment combinations. Despite this
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reduction in the number of experimental runs, fractional factorial plans retain the ability
to estimate main effects and selected interactions with minimal loss of information. These
plans are particularly useful when the number of factors under investigation is large and con-
ducting a full factorial experiment would be impractical or prohibitively expensive. Overall,
orthogonal resolution plans and fractional factorial plans are valuable tools in experimen-
tal design, offering efficient and cost effective approaches to exploring complex systems and
optimizing processes in various fields.

OAs play a crucial role in the construction of orthogonal resolution plans and sub-
classes of fractional factorial plans, which are essential for optimizing experimental efficiency
and reliability. In orthogonal resolution plans, OAs help organize experiments to ensure
clarity and precision in identifying the effects of different factors by minimizing confounding
and enhancing the interpretability of results. These plans are categorized by their resolution,
with higher resolutions indicating clearer distinctions between main effects and interactions.
OAs also aid in constructing fractional factorial plans, which allow researchers to study the
most significant factors and interactions using a fraction of the total runs required in a full
factorial design. This systematic approach significantly reduces the number of experimental
runs needed, saving time and resources while maintaining experimental integrity. By en-
suring balanced representation and systematic variation of factor levels, OAs enhance the
efficiency and robustness of experimental designs, making them indispensable tools across
various scientific and industrial fields. An excellent textbook in this area is authored by Dey
and Mukerjee (1999), offering comprehensive insights into the construction and application
of OAs and fractional factorial designs in experimental design.

8. Application of OAs in Taguchi methods

Taguchi methods, pioneered by Japanese engineer and statistician Genichi Taguchi,
have profoundly influenced quality engineering and process optimization. These methods
prioritize robust design, focusing on making products and processes resistant to variations,
thus enhancing quality and performance without significant cost increases. Taguchi methods
are extensively applied to improve the quality of manufactured goods and refine product and
process design. Central to this approach is the optimization of designs to make them robust
against various sources of variation, such as manufacturing inconsistencies or environmental
changes. This robustness ensures that products and processes perform consistently under
diverse conditions. Robust design in Taguchi methods emphasizes reducing the sensitivity
of products to variations by identifying and optimizing controllable factors, thus minimizing
the impact of uncontrollable noise factors.

A fundamental aspect of Taguchi methods is the design of experiments, which utilizes
OAs, a type of fractional factorial design. These arrays enable the efficient study of multiple
factors simultaneously, allowing for the identification of main effects and interactions with
a minimal number of experimental runs. This efficiency makes Taguchi methods particu-
larly valuable in industries where improving quality and reducing costs are critical, such
as automotive, electronics, telecommunications, and manufacturing. Applications of these
methods range from enhancing product design robustness to optimizing process parameters
for high quality outputs with minimal variability. In quality improvement, Taguchi meth-
ods systematically identify and address sources of defects and inconsistencies in production
processes.
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Balanced repeated replications (BRRs) are crucial for obtaining reliable and general-
izable results in experimental design. Taguchi methods inherently support this through the
use of OAs, ensuring balanced and systematic experimentation. These arrays are designed
to test each factor level an equal number of times across the experiment, thus preventing
data skew from imbalance. Incorporating replication and randomization into the experimen-
tal design controls for random variations and ensures that observed effects are due to the
studied factors rather than external influences. Analysis of variance is often employed to an-
alyze experimental results, identifying significant factors and interactions, thereby ensuring
conclusions are based on balanced and reliable data.

In conclusion, Taguchi methods offer a powerful approach to quality engineering and
process optimization by emphasizing robust design and systematic experimental designs.
The application of BRRs within these methods ensures that experimental results are reliable
and generalizable, making them highly valuable across various industries. The use of OAs
allows for the efficient examination of multiple parameters in a condensed set of experiments.
Determining optimal parameter levels requires an in depth understanding of the process and
the consideration of the cost of conducting experiments. By selecting the appropriate OA,
based on the number of parameters and levels, researchers can ensure that each variable and
setting is tested equally, thereby achieving reliable and comprehensive experimental results.
Key references in this field include works by Gupta et al. (1982), Taguchi (1987), Taguchi
and Konishi (1987), Kacker et al. (1991), Sitter (1993) and Rosa (2017).

9. Other diverse applications of OAs and MOAs in modern research

Venturing beyond the discussed domains, let us delve into the diverse realms where
OAs and MOAs leave their lasting impression. From coding theory and cryptography to
computer experiments and beyond, OAs and MOAs emerge as indispensable tools, enriching
modern research and experimentation with precision and efficiency. Join us in this section as
we unravel the intricate tapestry of applications where these mathematical constructs play
pivotal roles, shaping the landscape of information science, technology, and the design of
experiments.

9.1. Coding theory, cryptography and computer experiments

Coding theory, cryptography and computer experiments are three distinct yet inter-
connected domains at the intersection of mathematics, computer science, and engineering.
Coding theory, a fundamental component of information theory, focuses on the design and
analysis of error detecting and error correcting codes essential for reliable data transmis-
sion and storage in the presence of noise or errors. By systematically encoding data into
a form that can withstand errors, coding theory enhances the robustness and integrity of
digital communication systems like telecommunications networks and data storage devices.
Cryptography, on the other hand, stands as the guardian of communication and information
security, employing sophisticated mathematical techniques and algorithms to develop cryp-
tographic protocols and algorithms, orchestrating secure communication and data storage
by encoding sensitive information. Cryptography’s paramount mission lies in upholding the
pillars of confidentiality, integrity, and authenticity within digital communications, serving
as a formidable barrier against unauthorized access and malicious intrusions. For deeper in-
sights, readers can explore the works of Kahn (1996) and Stinson and Paterson (2018), along
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with the references cited herein. Computer experiments represent a complementary domain
leveraging computational methods, simulations, and modeling techniques to study complex
systems and phenomena. By designing and conducting simulations or computational mod-
els, researchers can explore the behavior, performance, and characteristics of systems under
various conditions, providing a cost effective and efficient means of investigating complex
systems, enabling validation of theoretical models, optimization of system designs, and ex-
ploration of theoretical concepts across diverse fields from engineering and physics to biology
and economics. In summary, coding theory, cryptography, and computer experiments each
contribute unique insights and methodologies to the broader landscape of information science
and technology, forming essential pillars supporting the development of robust and secure
communication systems and the exploration and optimization of complex systems across
various domains.

OAs serve as invaluable assets in diverse domains, including coding theory, cryptogra-
phy, and computer experiments. In coding theory, OAs play a pivotal role in the design and
analysis of error correcting codes, crucial for reliable data transmission in communication
systems. By systematically varying parameters and configurations, OAs aid in constructing
codes that can detect and correct errors efficiently, enhancing the robustness and reliabil-
ity of communication channels. In cryptography, OAs contribute to the development of
secure encryption methods by ensuring the resilience of cryptographic algorithms against
various attack vectors. Their systematic approach facilitates the design and testing of cryp-
tographic protocols, strengthening the confidentiality and integrity of sensitive information
in digital communications. Furthermore, in computer experiments, OAs provide a structured
framework for algorithm testing and simulation studies. By enabling systematic exploration
of different algorithmic configurations and scenarios, OAs facilitate comprehensive evalua-
tion and optimization of algorithm performance across diverse computational environments.
Through their versatility and systematic variation of factors, OAs play a pivotal role in ad-
vancing coding theory, cryptography, and computational research, ensuring the development
of robust and efficient solutions in today’s digital landscape. For further exploration of these
topics, notable references include works by Bose and Shrikhande (1959), Niederreiter (1992),
Kahn (1996), Hedayat et al. (1999), Massey (2002), Adhikari and Bose (2004), Adhikari
et al. (2007), Bose and Mukerjee (2006, 2010, 2013), Bose et al. (2013) and Stinson and
Paterson (2018).

9.2. OA based Latin hypercube designs (OALHDs)

OA based Latin hypercube designs (OALHDs) are advanced statistical tools used in
computer experiments to ensure space filling properties, which are crucial for comprehensive
exploration of the experimental space. OALHDs combine the strengths of OAs and Latin hy-
percube sampling, facilitating the creation of experimental designs that uniformly cover the
entire parameter space. This uniformity ensures that the design points are spread out evenly,
preventing clustering and enhancing the reliability of simulation outcomes. The space filling
properties of OALHDs are particularly valuable in computer experiments, where they allow
researchers to efficiently sample a wide range of input configurations and explore the perfor-
mance of complex systems under various conditions. By ensuring a thorough and balanced
exploration of the input space, OALHDs help in constructing accurate surrogate models,
optimizing system performance, and validating theoretical models. Their application spans
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numerous fields, including engineering, physics, and environmental science, where robust and
efficient design of experiments is critical for gaining insights into complex phenomena and
making informed decisions. For detail, readers may consider Sacks et al. (1989), Koehler
and Owen (1996) and Lin and Tang (2022).

9.3. OAs as BRR structures for variance estimation

A BRR structure is a sampling design commonly used in survey sampling for variance
estimation. In BRR, the sample is divided into several balanced replicates, ensuring that
each replicate represents the population equally well. Within each replicate, the same survey
weights and adjustments are applied as in the original sample. Variance estimation is then
performed by computing the variance across these replicates, taking into account both within
replicate and between replicate variations. BRR helps to improve the efficiency and accuracy
of variance estimation, especially in complex survey designs where traditional methods may
be inadequate.

OAs serve as invaluable tools for variance estimation, particularly in the context
of large scale complex survey designs where non linear statistics are involved. Acting as
BRR structures, OAs provide a systematic and efficient approach to estimating the variance
of non linear statistics derived from survey data. By systematically varying factors and
configurations within the survey design, OAs ensure balanced representation and systematic
variation, thereby capturing the complexities inherent in the survey data. This balanced
approach is crucial for accurately estimating the variance of non linear statistics, which may
exhibit complex relationships and interactions among survey variables. Additionally, OAs
offer the advantage of reducing the computational burden associated with variance estimation
in large scale surveys, allowing for efficient and reliable estimation of variance even in complex
survey designs. Overall, the utilization of OAs as BRR structures enhances the precision
and robustness of variance estimation methods, thereby improving the reliability of survey
data analysis in diverse fields. Notable references in this area include works by Gupta et al.
(1982), Gupta and Nigam (1987), Wu (1991), Sitter (1993), and Parsad and Gupta (2007).

9.4. Optimum covariate designs

In recent years, the quest for experimental units with precisely defined covariate values
to achieve optimal precision in regression parameter estimation has garnered significant
interest among researchers. The pioneering work by Troya (1982a, 1982b) introduced the
concept of optimal covariates designs (OCDs), laying the groundwork for exploring optimal
designs to estimate regression parameters associated with controllable covariates. OCDs,
renowned for their capacity to offer the most efficient estimation of covariate effects within a
presumed linear model, have emerged as indispensable tools in experimental design. Building
upon Troya’s ground breaking contributions, Das et al. (2003) delved into combinatorial
solutions, particularly focusing on the estimability of regression coefficients in randomized
block designs and certain series of BIBDs.

Rao et al. (2003) further elucidated the construction of OCDs derived from MOAs,
unraveling the intrinsic relationship between OCDs and experimental designs like completely
randomized designs and randomized block designs, both grounded in MOAs. This revelation
not only underscores the versatility of MOAs but also expands their application horizons into



164
SPECIAL ISSUE IN MEMORY OF PROF. C. R. RAO

SAHA, SINHA AND DUTTA [Vol. 22, No. 3

experimental design realms. For an in depth exploration of this captivating subject, Das,
Dutta, Mandal, and Sinha (2015) offer a comprehensive textbook, serving as an invaluable
reference for enthusiasts and practitioners alike in the domain of experimental design.

9.5. Optimizing super absorbent composites: leveraging OAs

At the Indian Agricultural Research Institute (IARI) in New Delhi, a ground break-
ing experiment was devised to engineer super absorbent composites with optimized water
absorption characteristics and improved stability in plant growth media. The objective is to
maximize absorbency while minimizing the concentrations of monomer, cross linker, and al-
kali. This intricate experiment encompassed a multitude of factors, including the nature and
concentration of alkali, duration and temperature of exposure, backbone clay ratio, monomer
concentration, cross linker concentration, initiator concentration, volume of water, and more.
With 3 factors at 3 levels and 6 factors at 5 levels, the experiment constituted a daunting
33 × 56 factorial design, necessitating a staggering 421,875 runs for a single replication − an
impractical endeavor given limited resources.

In light of the experimenter’s interest in orthogonal estimation of main effects and
constrained resources, a MOA of strength two emerged as a pragmatic solution, slashing the
number of runs to a manageable 225. Although sacrificing intra effect orthogonality, the
MOA ensured sufficient resolution and interaction detection. Furthermore, modifications to
the experimental objectives led to the creation of a 35 × 68 factorial design, accommodating
additional factors and selected interactions, all within the confines of 72 runs. The strategic
utilization of MOAs empowered the experimenter to efficiently explore a diverse array of
factors and interactions while upholding the integrity of the experiment.

Additionally, IASRI has harnessed OAs for orthogonal main effect plans in asym-
metrical factorials and for variance estimations in large scale complex survey data. These
endeavors underscore the versatility and utility of OAs across diverse experimental settings.
For further insights, we encourage readers to explore the institute’s websites.

10. Conclusion

This review article pays homage to the enduring legacy and profound contributions of
the legendary statistician, C. R. Rao (1920-2023), across the realms of experimental design,
information science, technology, and industry. Delving into the intricate interplay of OAs and
BAs, this article offers readers profound insights into the transformative influence of these
arrays, as conceptualized by Professor Rao. Referencing seminal works by Parsad, Gupta,
Gopinath (2020), Rao (2020), Kannan and Kundu (2021), and Peddada and Khattree (2023),
it invites deeper exploration into Prof. Rao’s extraordinary contributions and his profound
impact on statistical sciences.

Professor Rao’s visionary insights have indelibly shaped experimental design, com-
binatorial mathematics, and statistical analysis, profoundly influencing these disciplines.
This article meticulously navigates through the multifaceted applications of OAs and BAs,
eloquently showcasing their versatility and paramount importance across various domains.
From the intricate construction of BIBDs to the precision of optimum chemical balance
weighing designs, and from SORDs to Taguchi methods, orthogonal resolution plans, frac-



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

SURVEY ON BAs AND OAs 165

tional factorial plans, coding theory, cryptography, computer experiments, OALHDs, and
OCDs, this article unveils the methodological advancements fostered by BAs, OAs, and
MOAs.

Through meticulous examination, it elucidates the nuanced relationships between
association schemes, OAs, and BAs, revealing their immense potential in both experimental
design and combinatorial theory. While acknowledging the remarkable strides made thus far,
the article passionately underscores the imperative for ongoing research endeavors to fully
unlock the latent capabilities of these abstract mathematical structures and their practical
applications in experimental design. Indeed, further exploration and analysis in this domain
hold the promise of ushering in more advanced and potent experimental design techniques
and strategies, thereby enriching the fabric of scientific inquiry and discovery.

In this article, we choose not to delve into mathematical intricacies, recognizing the
extensive literature available on the subject. Condensing such a vast topic into a few pages
presents a daunting task, and we are mindful of the challenges it entails. Nevertheless,
our objective remains clear to offer a lucid exposition that captivates readers beyond this
specialized field, sparking their curiosity and nurturing a deeper interest in the subject
matter.
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