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Abstract

In this paper, the reliability estimation of single component stress-strength model is
studied with strength(X) and stress(Y) of the component follow Lomax exponential distri-
bution. The maximum likelihood and Bayesian estimation methods are applied to derive
estimators of reliability. The Bayesian estimators for reliability are constructed under dif-
ferent loss functions such as squared error and linex loss functions with non-informative and
gamma priors using Lindley’s approximation technique. The simulation experiment is con-
ducted to estimate the mean squared error of the estimators which enable the comparison of
different estimators. The construction of asymptotic confidence interval of reliability is also
constructed. The real data analysis is done to illustrate the developed procedures.

Key words: Lomax exponential distribution (LED); Stress-strength reliability; maximum
likelihood estimation; Bayesian inference; Lindley’s approximation technique.

1. Introduction

In the recent years there has been growing interest in defining new generators for
univariate continuous distributions by introducing one or more additional shape parameters
to the baseline distribution. Some well-known generators are beta-G and gamma-G due to
Eugene and Famoye| (2002)) and |Zografos and Balakrishnan| (2009), respectively. [Torabi and
Montazeri (2014)) introduced the logistic-G family. Recently, Cordeiro and Pescim, (2014))
studied a new family of distributions based on the Lomax distribution. The probability
density function (pdf) and cumulative distribution function (cdf) of Lomax-G family with
two additional parameters « and [ are given by

-1

f @) =apg(@) (1 - G@)]{B—log[l -G @), 2>0,0 8>0

and
Fx)=1-8*B—log[l =G (x)])™*,2>0,a,3>0

where g(x) and G(x) are the pdf and cdf of parent distribution. The parameters o and
are the shape and scale parameters of the distribution, respectively.
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In this paper, the estimation of stress-strength reliability is considered when X and Y are
independently distributed Lomax exponential distribution (LED) which was introduced by
leren and Kuhe| (2018) which is a new generalization of exponential distribution. The LED
is constructed by Cordeiro and Pescim| (2014) using Lomax-G family. The general form
of cumulative distribution function (cdf) and probability density function (pdf) of Lomax
G-family with baseline distribution G is given below:

The cumulative distribution function (cdf) and probability density function (pdf) are given
by

-1

f @) =apg(@) (1= G@]{B—log[l -G @), 2>0,0a 3>0

and

Fx)=1-08*(B—-1log[l =G (z)]) ", 2>0,a,>0

where g(x) and G(x) are the pdf and cdf of baseline distribution. The parameters o and
are the shape and scale parameters of the distribution, respectively.

In this paper, the problem of estimation of stress-strength reliability is considered when X
and Y are independently distributed Lomax exponential distribution (LED) due to leren
and Kuhe (2018)) with exponential distribution as baseline distribution. Then, the cdf and
pdf of LED are given by

Fx)=1-8B+X )", a>0,2>0,6>0,A>0

and
F@) =ar8*(B+Ax)" "™ 0 >0,2>0,8>0 A>0

It is denoted by LED(«, 5, A).
Some particular cases of Lomax exponential distribution are as given below:

1. If A=1 and =1, then LED is Pareto type-II distribution.
2. LED is Lomax standard exponential distribution, when A=1.

3. When =1, LED is generalized Pareto distribution.

The main focus of the paper is to study the problem of estimating stress-strength reliabil-
ity when stress and strength variables follow LED. In the literature several authors have
studied the estimation of stress-strength reliability for different life time distributions. Awad
and Gharrafl (1986) considered the estimation of R for Burr distribution. [Mokhlis (2005)
and [Panahi and Asadi (2011) estimated the stress-strength reliability for Burr type-III and
Lomax distributions respectively. |Abravesh and Mostafaiy| (2019) studied the classical and
Bayesian estimation of stress-strength reliability based on type II censored sample from
Pareto distribution.

The rest of the paper is organised as below. Section 2 deals with derivation of stress-strength
reliability when strength X and stress Y follow LED. Maximum likelihood estimation of R
and its asymptotic confidence intervals are given in Section 3. In Section 4, the Bayesian
estimator of R is presented. The real data analysis is considered in Section 5. Section 6
contains a simulation study and the conclusions are presented in Section 7.
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2. Stress-strength reliability

Let X and Y be two independent random variables having LED(«, 5, A) and LED(ax,
B, ) respectively.
Then, the stress-strength reliability is given by

R=P(X>Y)
= fOOOF(x)f(x) dx

%)

= (1)

Oél—i—ag

3. Maximum likelihood estimation (MLE) of reliability

Let X = (X1, Xs,...,X,) and Y = (Y1,Y5,...,Y,,) be independent random samples
from LED(ay, 8, A\) and LED(aw, 8, A), respectively. Then the likelihood function of a,

as, B and A\ given (g, g) is

L (Ofla as, 3, /\|$7 Z/) Halﬂal)\ b+ Az, —(@1+1) H 32\ 6"‘ \y ) (ag+1) (2)

and the log-likelihood function is

log L = nlogay + mlogas + (nay + mas)log B+ (n+m)log A — (o + 1) >0, log (8 + Ax;) —
(a2 +1) 272, log (B + Ay;)
(3)

The likelihood equations are

f—knlogﬁ Zlog (B4 Ax;) =0 (4)

=1

f—l—mlogﬁ Zlog +Ay;) =0 (5)

7j=1

nay + maoso " 1 m 1 B
7 _(“ﬁl)-z((mm) _(Q”I)Z((mw) =0 @

i=1 j=1

and

nt\m—(al—Fl)i(M) a2+1i<6+%)>:0 (7)

=1

The above equations do not yield solution in closed form. Hence, a popular iterative tech-
nique, namely, Newton Raphson technique is used.
Using the invariance property of MLE, the MLE of R is given by




232 PARAMESHWAR V. PANDIT AND KAVITHA N. [Vol. 22, No. 1

3.1. Asymptotic distribution of R

Under general regularity conditions, the asymptotic distribution of (é — Q) is mul-
tivariate N 4 (Q, I (Q)fl) distribution, where I () is the expected information matrix and
0 = [a1, a9, B, \]". Here, T (Q)_lcan be approximated by the inverse of observed information

A\ —1 ~
matrix / (Q) evaluated at #. This distribution is used to construct the 100(1-a)% confi-
dence interval for each parameters.
Asymptotic confidence intervals of the parameters are given by

o+ Zay/ Iy, ag &+ Zay/ I
B £ ZaI3 and X £ Ze/ 1

The asymptotic confidence interval of R is

R+ Zs\[AV (R),

2 2
AV (R) = [aR] 1111+[3R] I;
2

where
8041

4. Bayesian estimation of R

In this section, the Bayesian estimation of R under different loss functions and priors is
presented. The non-informative and gamma priors are considered to obtain Bayes estimator
of R. The prior distribution of oy, ay, § and A are gamma (¢, d;), gamma (cg, dy), gamma
(c3, d3) and gamma (c4, dyg), respectively.

The joint prior distribution of oy, as, 5 and A is given by

g1 (041, g, B, >\) =g (041) g (042> g (5) g O‘) (8)
where o
g(aq) = L exp (—dyay) a?_l, ar >0, ¢,d >0,
FCI
C2
g(ag) = 2 exp (—dayas) oz§2_1, ag >0, ¢y, dy >0,
FCQ
d§3 c3—1
g<6):FC3 eXp(_d3ﬂ)ﬁ3 7/8>07 C3, d3>0
and

C4

d
g(A) = Fi exp (—dy\) AN >0, ¢4, dy >0
4

If, s =co=c3=c4 =dy =dy =ds =dy =0, then it reduces to non-informative prior.
The posterior distribution is

_ L(Oél, o, B, >\> 9(041, Qg, 67 )‘)
fooo fooo fooo fOOOL(Oél, Qg ﬁ, )\) 9(0417 a2, Ba )‘) dc“ da? dﬂd}\

ﬂ-(ab Qg, /87 )\)
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G

A) = o0 (OO OO OO
7 (o, ag, B, A) IS IS T [ Gdoy dag dB dX

(9)

where

G = exp (—dlal) O/lH_Cl_l exp (_d2a2) Oégn-i—cg—l exp (—dgﬂ) exp (—d4)\) ﬂnal-&-maz—i—c;g—l
\ntmtea—1 H;L:1 (6 + )\Ii)_(a1+1) T:l (ﬁ + ij)—(ag—&-l)

The posterior distribution of R is non-tractable. Hence, the Lindley’s approximation tech-
nique is used to derive Bayes estimator of R.

For four parameter case, the Lindley’s approximation to Bayes estimator of R under squared
error loss function is given by

Rg = u+ (uray + usas + usas + ugay + as + ag) +
[A (U10'11 + U019 + U3013 + U4O’14)] +
[B (u1091 + U092 + U3093 + U4024)] + (10)
[C (U10'31 + U2032 -+ U3033 -+ U4O’34)] -+
[D (11041 + ug049 + U3043 + Us044)]

)

DO [0 | 00 [ =00 [ =

where,u = R, u, t = 1,2,3,4 and w5, 1,7 = 1, 2, 3, 4 are the first and second order
derivatives of R, 0y, 4, j = 1, 2, 3, 4 is the (i, j)™ element in the inverse of the matrix [-
L;;], Li; and L;;;, are the second and third order derivatives of log-likelihood function and
pi, t =1, 2, 3, 4 is the first order differentiation of log of prior with respect to ay, as, 8 and
A

Here,
a; = p1041 + P20io + P30z + paoia, i =1, 2, 3, 4.,
a5 = U12012 + U13013 + U14014 + U23023 + U24024 ,
1
Qg = 5 (U11011 + U092 + U3033 + Uga04a) |
A =o011L111 + 20190191 + 20130131 + 20141141 + 20931931 + 2094 Log1+
099L991 + 033L331 + 2034 L3471 + 044 L4471 ,
B = 011L112 + 2012 L1929 + 2013 L1392 + 2014 L1492 + 2093 L2390 + 2094 Loso+
0991990 + 033 L339 + 2034 L340 + 044 L1442 ,
C = o1 Lig + 2012L123 + 20130133 + 2014 L0143 + 20931933 + 2094 L3+
092 L9923 4 033333 + 2034 L343 + 044 L4z ,
and

D = 0110114 + 20191194 4 20130134 + 20141144 + 2093 L0934 + 2094 Logy+
0922 L904 + 033L334 + 2034 L344 + 044 Ligaa .

According to our case,
]‘?s =u+ (uray + ugas + ag) + % [A (u1011) + B (ug022)] + (11)
% [C (u1031 + ug032) + D (u1041 + U2042)]

where
a1 = P1011 + P3013 + P4014, Q2 = P2022 + P3023 + P4024

a5 = FU14014 + U23023 + U24024 ,
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1
ag = 5 (u11011 + U2092 + U33033 + Ugg0u4)

A = oyl + 029lao1 + 0330331 + 20341341 + 044 Laan,
B = 099L293 + 0331332 + 2034 L340 + 044 Liasa
C = 20130133 + 2014143 + 2093 La33 + 2024 Lioas + 0331333 + 2034 L343 + 044 L sz,
D = 20130134 + 20140144 + 2093 L234 + 2024 L4 + 033 L334 + 20340344 + 04444,

%) —Q9 a7
5, U3 = Uy = 07

U=y Uy = 3, Ug= — 5
Q1 + Qo (Gq + Go) (61 + &)
" 209 —20 Qo —
1= 3 U= 3, Wig =Ua1 = 7 — 3
(a1 + a2)3 (a1 + a2)3 (61 + a2)3
c1— 1 co — 1 c3 — 1 cy — 1
pP1 = lA —dy, p2 = 2A —dy, p3 = 3A —ds, p4=4f—d4,
ay Q2 6] A
n m
Ly = Loy = ——
11 d%’ 22 &%7
I I i ( 1 ) L
13 — 31 — — ~ = =
=1 \ B+ Az; B
n 1 m
L23—L32——Z<A = >+A,
=1 \B+ Ay; B
" T
Liy= Ly = — <A X ),
z; B+ Az
m yj
L24—L42——Z<A = ),
= \B+ Ay;
(ndy + mas) R n R m 1
L3z = — ~ +(041—|-1)Z —— +(a2+1)z N ,
B i=1 (ﬁ—ir)\a:i) j=1 (64—)\%)
n+m . W x? . m Y3
L44:—( X ) (Oél‘l‘l)z n = 3 —’—(Oég—f‘]_)z = JA R
A i=1 <5+)\xi> j=1 (ﬁ—l—)\yj)
L34—L43—<O&1+1)Z = mi +(@2+1)i N y]A y
i=1 <B+)\$Z> j=1 (64— )\y])
2n 2m
L1 = —5, Loz = —,
1 a3

Ly
Ligg = Lys = Lyyy = Lyyy = Lus1 = Lis =Y, | ———— |,
i=1 (6 + /\xi)
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Loyy = Lygy = Lyso = Z ﬁ
=\ (B + Ayy)

L234 = L423 = L324 = L342 = L432 = L243 = Z % )
=\ (B + Ayy)

Lus=Lys=Lin =5 | ——— |,
144 414 441 ; (3 N S\xz)z

n

~ Ty A - Yj
Lssa = Lag3 = Luygs = — (1 + 1) 3| —(e+1) 3|,
334 343 433 1 ; (6 N )\:ci)g 2 ]Z:; (5 N )\yj)g
L344:L434=L443=—(@1+1)i #3 —(d2+1)i #3 )
i=1 (6 + )\fﬂi) j=1 (5 + ij)
2 2
Ly = 677;’ Lags = (;L,
1 2

n

T
Liss = Lyys = Ly = Ly = Lzt = Lus =) | ———— | »
i=1 (6 + )\3:2-)
Loss = Lyps = Lus = ) | —2—= | .
=\ (B+Ay;)
Loss = Luss = Lsps = Lagp = Luszy = Loas = ) < )

j=1 (B + 5\%)2

n

A T N ua Y;
Lsgg = Lags = Lygs = —(Gn + 1)) | —— | — (G2 + 1) | —F—= |,
S\ (B A’ =\ (B +3w)”
L3sg = Lygg = Ly = — (61 + 1) Zn: - x? 5| — (G2 +1) i #3 ;
2\ Gey) )
n 1 n
Ly33 = L3ig = L3z = z; (3 3 >2 X
1= ZT;
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U 1 m
Loss=Lgss=Lsgn =Y | ——= | — =
=1 (6 + Ay;) B
2 (n&y; + ma ~ R U 1
L33z = ( 1A3 2) (1 +1)) 2@+ | 3,
o} i=1 (5 + ) j=1 (5 + )\yj)
and
2(n+m " 223 m y;
L444—(A3) G+ | ——= |- (Ga+1))] ,
A i=1 (ﬁ + )\xl) j=1 (ﬂ + )\yj>
Under linex loss function,
B - 1 oo [ Y + (v1a1 + vaaz + ag) + % [A(vio11) + B (v2022)] + (12)
g ) % [C (v1031 + v2032) + D (v1041 + 12042)] ’
where A A R
o) Qg o)
v=exp|—-0———|,v1=0exp | —0—— ;
p( a1+az> ' p( a1+042> (41 + G)?
——(5exp< ) OQA ) ~ alA 5
i+ Qs ) (Gq + o)
A Yo (0 + 2) + 24
V11 = — 86 exp <—5A 042A > [OZQ(AﬂL )A+4CY1] ’
a1 + Qo (&g + G2)
A A _ _ 5/\
Vig = Va1 = 0 €Xp (—5 - a2 - ) [041 A% - 611042]
aq + Qo (G + Go)
and

Voo = 0¥y €XP <—5 ~ -

5. Real data analysis

In this section, two real data sets are analysed to illustrate the proposed estimation
methods. These data sets are initially used by Nelson| (1982)). The data sets represent times
to breakdown of an insulating fluid between electrodes at different voltage. The failure times
(in minutes) for an insulating fluid between two electrodes subject to a voltage of 34kV and
36kV are presented as data set 1 and data set 2, respectively.

Data set 1 (X): 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06,
31.75, 32.52, 33.91, 36.71, 72.89.

Data set 2 (Y): 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77,
25.50.

To check the fitness for the two data sets, -logl, Akaike information criteria (AIC),
Bayesian information criteria (BIC), Akaike information criteria corrected (AICc), Kolmogrov-
smirnov (K-S) and Anderson-Darling (A-D) statistics with corresponding p-values are com-
puted and the results for both data sets are given in the Tables below.
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Table 1: Estimates of the parameters with corresponding standard error and the
values of -logL,, AIC, AICc, BIC, K-S and A-D statistics for different distributions
for data set 1

K-S A-D
(p — value) | (p — value)

0.12654 0.32203
(0.5029) | (0.9198)

Name of the distribution |Estimates of parameters| -logL AIC AlCc BIC

o = 2.0302(1.6632)
Lomax Exponential B =5.1863(11.6778) |68.4234|140.8468|142.4468 | 143.683
X = 0.3101(0.8155)

. a =0.7956(0.1561) . » 0.1613 0.3918
Weibull — 0.1752(0.0380) 69.1296 | 142.2592 | 143.0092 | 144.1481 (0.336) (0.8552)

. . a = 0.6825(0.1941) |, ) o= o 0.1886 0.5057
Exponentiated exponential 3 = 0.0535(0.0180) 69.3980| 142.796 | 143.546 | 144.684 (0.2202) (0.7388)

Table 2: Estimates of the parameters with corresponding standard error and the
values of -logL,, AIC, AICc, BIC, K-S and A-D statistics for different distributions
for data set 2

Name of the distribution |Estimates of parameters| -logl. | AIC | AICc | BIC k=5 A=D
(p — value) | (p — value)
a = 3.0369(2.889) =
Lomax Exponential £ =8.5039(3.124)  |36.9792|79.9583 |81.5584 | 77.794 ?01393??2) ?04{7)35195)
A =0.8991(1.182) ' ’
y a = 0.8891(0.1635) ’ ’ 0.1917 0.6271
Weibull — 0.2738(0.1151) 38.0125|81.3828|83.5646 | 80.7989 (0.2041) (0.6199)
: . a = 1.9271(0.5985) . 0.1979 1.3637
Exponentiated exponential — 0.3875(0.0954) 41.4606|86.9212 |87.6712| 88.810 (0.2724) (0.2125)

The estimate of reliability using MLE is 0.7042. Bayes estimates under different priors
and loss functions are presented in Table 3.

Table 3: MLE and the Bayes estimates under different loss functions with dif-
ferent priors.

Bayes estimaes
Non informative prior Gamma prior
MLE RS RL Ry Prior 1 Prior 2
Rg Ry R Rg Ry Rp
A unknown | 0.7042 | 0.7248 | 0.7247 | 0.7248 | 0.7312 | 0.7312 | 0.7312 | 0.7489 | 0.7591 | 0.7467
A known | 0.7046 | 0.7253 | 0.7252 | 0.7253 | 0.7343 | 0.7344 | 0.7343 | 0.8528 | 0.8583 | 0.8477

Rm refers to linex loss function with loss parameter 6 = —0.5.

6. Simulation study

A simulation study of 10000 observations is conducted by generating samples of dif-
ferent sizes such as (n, m) = (5, 5), (5, 10), (10, 10), (10, 15), (20, 20), (20, 25), (30, 30),
(30, 35) and (40, 40). The true values of R which are considered under simulation study are
0.57142 and 0.47058. The parameter values of the prior distribution for squared error and
linex loss functions are ¢; =1, d; = 0.8, ¢c0 =2, dy =0.4,¢c3=5,d3 =02, ¢y =1, dy =2
(priorl) and ¢ = 4,d; = 3, ¢ =3,dy = 0.9, c3 =5, d3 =5, ¢4 = 1 and dy = 2 (prior
2). The values of loss parameters under linex loss function are 0.5 and -0.5. The proposed
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estimators are compared using mean squared error (MSE) criteria. The MLEs and Bayes
estimates with corresponding MSEs are given in the Tables given in annexure.

7. Conclusions

The estimation of stress-strength reliability (R) is considered, when stress and strength
variables follow LED. The maximum likelihood and Bayesian estimation methods are used to
estimate stress-strength reliability. MLEs are derived. Bayes estimators under different loss
functions such as squared error and linex loss functions with gamma and non-informative
priors are obtained. The Lindley’s approximation technique is used to approximate the Bayes
estimator of R. The real data analysis is conducted to illustrate the developed estimation
procedures. A simulation experiment is conducted to study the performance of estimators
which are derived in the paper and it reveals that Bayes estimator with non-informative
prior is better when compared to MLEs. However, the Bayes estimator with gamma prior
is better than that the non-informative prior. The gamma prior under linex loss function is
better than the squared error loss function. Specially, the linex with loss parameter -0.5 is
better than all.
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ANNEXURE

Table 4: The maximum likelihood and Bayes estimates of R with corresponding
MSES, when R = 047058, ] = 457 Qg = 4, 6 = 0257 A= 1, 1 = ]_, dl = 0.8,02 =
2, d220.4, 03:5, ngO.Q, 04:1andd4:2

Bayes estimates

Sample Size R Non-informative prior Gamma, prior
n, m RS RL RLl RS RL RLl

0.475778 0.476434 0.476434 0.476432 0.469151 0.469537 0.468764
(0.00935) | (0.00921) | (0.00921) | (0.00921) | (0.01326) | (0.01319) | (0.01333)
0.484687 0.484751 0.484751 0.484752 0.498398 0.498469 0.498328
(0.00761) | (0.00759) | (0.00758) | (0.00756) | (0.00568) | (0.00567) | (0.00568)
0.509822 0.518294 0.518835 0.517758 0.627643 0.631826 0.623797
(0.00386) | (0.00289) | (0.00283) | (0.00294) | (0.00342) | (0.00392) | (0.00298)
0.491192 0.49118 0.49119 0.49128 0.502418 0.502452 0.502386
(0.00646) | (0.00645) | (0.00646) | (0.00648) | (0.00482) | (0.004812) | (0.00482)
0.499716 0.502127 0.501969 0.501969 | 0.5360198 | 0.536513 0.535539
(0.00516) | (0.004826) | (0.004848) | (0.00484) | (0.001302) | (0.00127) | (0.001336)
0.493795 0.493784 0.493785 0.493784 0.502259 0.502278 0.502241
(0.00604) | (0.006042) | (0.006043) | (0.006042) | (0.00481) | (0.00485) | (0.004810)
0.498063 0.499178 0.499253 0.499104 0.517388 0.513875 0.517221
(0.00539) | (0.005233) | (0.005222) | (0.005243) | (0.002941) | (0.002923) | (0.002959)
0.495227 0.495219 0.495217 0.494567 0.501950 0.501961 501939
(0.005814) | (0.005815) | (0.005816) | (0.005834) | (0.002838) | (0.002837) | (0.002840)
0.497783 0.498424 0.498467 0.49838 0.510512 0.510596 0.510428
(0.005431) | (0.005337) | (0.005331) | (0.005343) | (0.002721) | (0.002711) | (0.002731)

Table 5: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, whenR = 047058, ay = 4.5, a5 =4, =025, A=1,¢1 =4,d; =3,c0 =3, dy =
0.9,03:5,d3:5, c4:1andd4:2

Bayes estimator
Gamma prior

Samplesize A A A A A A
nm Ry MSE (RS) R MSE (RL) R MSE (RM)
5 5 0.497594 | (0.001201) | 0.497486 | (0.001202) | 0.497486 | (0.001199)
10,10 0.496694 | (0.0006817) | 0.496698 | (0.0006819) | 0.4966903 | (0.0006815)

20, 20 0.495962 | (0.0006442) | 0.495967 | (0.0006445) | 0.4959559 | (0.0006439)
30, 30 0.493617 | (0.000531) | 0.493629 | (0.000532) | 0.493605 | (0.0005305)
40, 40 0.491194 | (0.000427) | 0.491219 | (0.000429) | 0.49117 (0.000426)
50, 50 0.490183 | (0.000419) | 0.491835 | (0.000422) | 0.490092 | (0.000418)




240

PARAMESHWAR V. PANDIT AND KAVITHA N.

[Vol. 22, No. 1

Table 6: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, whenR =0.57142, a; = 1.5, a0 = 2, 3 =005, A =1, ¢4 = 1.5,d; = 0.8, cp =
2, d220.4, C3:5, d320.2, C4:16L7’de4:2

Bayes estimates

Sample Size R Non-informative prior Gamma prior
n, m RS RL RLI RS RL RLl
0.512716 | 0.508545 | 0.608551 0.608536 | 0.608231 0.608375 | 0.608084
(0.008113) | (0.001532) | (0.001531) | (0.001532) | (0.001415) | (0.001414) | (0.001416)
0.598296 | 0.594557 | 0.594561 0.594554 | 0.592429 | 0.592497 | 0.592359
(0.001438) | (0.001177) | (0.001178) | (0.001176) | (0.000554) | (0.000556) | (0.000552)
0.584903 | 0.582614 | 0.582616 | 0.582613 | 0.584997 | 0.585012 | 0.584972
(0.001183) | (0.001032) | (0.001032) | (0.001031) | (0.000508) | (0.000509) | (0.000507)
0.585307 | 0.584972 | 0.581633 | 0.581278 | 0.580119 | 0.580272 | 0.581965
(0.000615) | (0.000230) | (0.000226) | (0.000234) | (0.000139) | (0.000136) | (0.000123)
0.579466 0.57843 0.571844 | 0.571843 | 0.566447 0.56646 0.466435
(0.001084) | (0.00098) | (0.000973) | (0.000981) | (0.000118) | (0.000125) | (0.000111)
0.578644 | 0.573740 | 0.573672 | 0.573808 | 0.572867 | 0.573873 | 0.573863
(0.000789) | (0.000538) | (0.000536) | (0.000542) | (0.000110) | (0.000111) | (0.000109)
0.576447 | 0.571814 | 0.572679 | 0.565506 | 0.569978 | 0.569784 | 0.569989
(0.000671) | (0.000411) | (0.000407) | (0.000415) | (0.000040) | (0.000039) | (0.000040)

Table 7: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, whenR =0.57142, a1 = 1.5, a0 =2, 8 =0.05, A\ =1,¢1 =4, d; = 3,c0 =3, dy =
09, c3=5,d3=5,c4,=1and dy =2

Bayes estimator

Gamma prior

S““’f’lﬁf”e Rs | MSE(Rs)| R, |MSE(R))| Ru |MSE(Ry)
5,5 0.614573 | (0.001506) | 0.614682 | (0.001492) | 0.614325 | (0.001485)
10,10 0591334 | (0.0008835) | 0.596698 | (0.0008829) | 0.5966903 | (0.0008821)
20, 20 0.583426 | (0.0007566) | 0.582466 | (0.0007545) | 0.581345 | (0.0007536)
30, 30 0.581215 | (0.0005104) | 0.581103 | (0.0005102) | 0.579996 | (0.0005009)
40, 40 0.579855 | (0.0004551) | 0.578847 | (0.0004545) | 0.577634 | (0.0004495)
50, 50 0.574673 | (0.0002486) | 0.573321 | (0.0002465) | 0.572589 | (0.0002355)
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