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ABSTRACT

Bayesian approach is considered by several authors in mixture models under Type — I,
Type — Il and other censoring schemes in the area of life testing and survival analysis. In this
paper we consider the estimation of parameters of a mixture of log logistic distributions under
classical and Bayesian setup. The estimation is done based on progressive Type — Il censored
sample and the squared error loss function, K- loss function and precautionary loss function
are used as loss functions under Bayesian approach. A simulation study is conducted to
examine the performance of the proposed estimators based on mean squared error. Bayes
estimators under the three types of loss functions are compared using posterior risk too. The
results are also compared based on Progressive Type — Il censoring and Type — Il censoring
schemes. Additionally a real life data is considered to determine whether the estimators have
similar behavior as seen in simulation study.

Key words: Maximum likelihood; Gamma prior; Log logistic distribution; Posterior risk;
Importance sampling.

1. Introduction

The concept of censoring is generally used in life testing experiments and survival
analysis since partial or complete destruction of the testing unit becomes quite expensive and
time consuming. In literature there are many censoring schemes available, which are mainly
based on Type — | or Type — Il censoring schemes. When life test is terminated as soon as the
pre-determined time is observed, such censoring scheme is known as Type — | censoring, where
as in Type - Il censoring the test is terminated as soon as pre-determined number of failures
observed.

One of the significant shortcoming of conventional censoring schemes is that other than
the terminal point of the experiment they do not allow removal of the experimental units at any
other points. A censoring scheme in which some of the experimental units are withdrawn
during the test and test is continued after the withdrawal is known as progressive censoring
scheme. Based on Type — | & Type — Il censoring schemes progressive censoring schemes can
be formulated as progressive Type — | & progressive Type — I censoring schemes. For detailed
study of progressive censoring scheme one may refer Balakrishnan and Aggarwala (2000). The
progressive Type — Il censoring scheme became very popular among the researchers. Some of
the references are Wu et al. (2006), Patel and Patel (2007), Gajjar and Patel (2008), Saragoglu
et al. (2010) and Ahmed (2014).

Corresponding author: S. S. Bhavsar
Email: snehbhavsarl@gmail.com



230 S.S. BHAVSAR AND M.N. PATEL [Vol. 20, No. 1

Various types of lifetime models are available in the literature like Exponential, Weibull,
Rayleigh, Power function, etc. Some of the works available in literature under progressive
censoring for above mentioned lifetime models are considered by Ferndndez (2004), Jung and
Chung (2011), Kim and Han (2009), etc. In the recent years, the estimation under Bayesian
setup for log logistic distribution for progressive censoring is studied by Abbas and Tang
(2016), Al-Shomrani et al. (2016), Kumar (2018), Yahaya and Ibrahim (2019), etc.

In life testing experiments failure of unit may occur due to more than one causes for e.g.
failure of an electrical component may occur due to fluctuations in voltage or its operating
environment or a mechanical shock. Similarly death of a person may occur due to heart attack
or old age or any other reason. In such situations a lifetime model based on multiple causes is
considered which is known as mixture model. Suppose there are k causes of failure of an
experimental unit and p; be the probability of failure of a unit due to i*" cause such that

k p; =1 and f;(x) be the probability density function or probability mass function of
lifetime of the failure units due to i** cause then the mixture model is defined as

fG) =Ziipi fix) 1)
The mixture model is found useful in engineering, medical, agriculture, and many more fields.

Pearson (1894) introduced a statistical model based on finite mixtures of distributions to
analyse crab morphometry data. Based on their causes of failures Mendenhall and Hader (1958)
studied a population of failures by dividing them in two sub-populations. For estimating the
parameters of a mixture of Rayleigh distribution Saleem and Aslam (2009) have used Bayesian
procedure. Bayesian estimation was considered by Kazmi et al. (2012) for a mixture of
Maxwell distribution under Type-I censoring scheme. Bayesian estimation of mixture of power
function distributions using Type — Il censored sample was discussed by Bhavsar and Patel
(2019). Complete and Type — | censored sample are considered by Saleem et al. (2010) for
estimation of parameters of the mixture of power function distributions. Very few works are
available in the area of estimation of mixture model of the log logistic distribution under
Bayesian setup based on progressive censoring. This has motivated us to consider a problem
of estimation for mixture of log logistic distribution under progressive Type — Il censoring
scheme.

In this article, an estimation of the parameters of mixture of two log logistic distributions
is carried out using the progressive Type — Il censored sample considering the maximum
likelihood estimation and Bayesian approach, and their respective mean squared errors and
posterior risks are studied. The prior considered for the parameters 8, and 8, is gamma prior
and uniform prior is considered for proportion parameter p of the mixture model. The squared
error loss function, K — loss function and precautionary loss function are considered to obtain
the Bayes estimates and a comparison between them based on MSE & posterior risk is done.
A simulation study is carried out to obtain some interesting conclusions and a real life data is
also considered. The rest of the article is structured as follows. In section 2, a two-component
mixture model for log logistic distribution and likelihood function under progressive Type — 11
censoring is described. In section 3, the parameter estimation is carried out using the maximum
likelihood estimation approach and the estimators are derived along with their asymptotic
variances. Section 4 covers the estimation carried out under the Bayesian setup considering
three different loss functions. MSE and posterior risks are obtained for the Bayes estimators.
A simulation study is conducted to compare the performance of the proposed estimators in
section 5. In section 6, some discussion on the numerical results are presented. Section 7 gives
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an idea about the behavior of the estimators for real life data under classical and Bayesian setup.
The final conclusion is given in Section 8.

2. Mixture Model

The two - component mixture model for log logistic distribution is defined as follows

f)=pfilx) + (1 —p)fa(x) 2)

BixPit
(1+xFi)2’

where f;(x) = x>0 B>00<p<1;
is the probability density function of log logistic distribution and corresponding distribution
function is

——; i=12 (3)

Here B, B, are unknown parameters of the log logistic distributions and p is unknown mixing
proportion with mixing weightp : 1 — p.

The life testing experiment under progressive censoring can be conducted as follows. Let
us suppose that n experimental units are put on test and as soon as the m*" failure is observed
the test is terminated. Considering a mixture model an experimental unit may fail due to cause
1 or cause 2. The failed unit can easily be identified whether it is from sub population 1 (which
failed due to cause 1) or sub population 2 (which failed due to cause 2). Since this is progressive
censoring scheme, as soon as the 1% failure occurs R; units are removed from the test which
has remaining (n — 1) units on the test and the test is continued with (n — 1 — R;) units.
Similarly on the (m — 1) failure R,,, units are withdrawn from the remaining units on the test
and test is continued with (n —m — 1 — X771 R,) units. The test is finally terminated as soon
as the m*" failure is observed.

Thus depending upon the cause of failure, we can identify the number of failures m; due
to cause 1 and m, due to cause 2 from the m(= m,; + m,) observed failures. The remaining
(n —m — Y™ ' R,) units are censored which provide no information about the sub population
and survive beyond the time X ., the observed time of the mt" failure.

To produce precise inferences a mixture model must be identifiable and in our model we
have only shape parameters ; and ,. Suppose x,; and x,; are the i failure time due to cause
1 and cause 2 respectively. The general form of likelihood function for the two — component
mixture distribution under progressive Type — Il censoring is given by:

L(B1, B2 plx) H:le p. f1(x1;) nﬁzl(l —p) f2 (x21)
R;
2y [1-px - (1 -p)xf] @)
3. Maximum Likelihood Estimation (MLE)

Using Eqg. (2) and (4), the likelihood function under progressive Type — Il censoring for
mixture model is obtained as,

my ymy ()Pt my ymy  (xg)P21
Lo P A gy @ PR P e



232 S.S. BHAVSAR AND M.N. PATEL [Vol. 20, No. 1

xiﬁl xiﬁz Ri
=1 [1 TPk T 1 -p) 1+xiﬁ2] ©)
_ myq L mq B1
logL < mylogp + mylogBy + (By — 1) X2t logxy; — 2 X2 log(1 + x1,P1) +
m,log(1—p) + mzll?g/gz +(B—-1) 1;‘:121 logxy; — 2372 log(1 + x5,2) +
Xi 1 Xi 2
ﬁl R;log [1 -P 1+x;P1 —(1-p) 1+xiﬁ2] (6)
The first derivatives of equation Eq. (6) with respect to g,, 8, and p are
dlogL _ my m my x1;P1logxy;
81 - E + Zi=11 lngli - 22i=11 1+x1i/31
1 xiﬁl logx;
2R 1Py xiP? (—P (1+xiﬁ1)2) 0
_p1+xir’31 ~( _p}1+xir’32
dlogL _ my my o my x2:P2logx,;
EYS - B> + Zi:l longL 22i=1 1+x2iﬁ2
1 x;P2 logx;
+ 2:11 R; x;P1  x;P2 (_(1 —p) (i+xi32)21) (8)
1-p -(1-p
1+xii81 /1+xiﬁ2
dlogL _ m Mz om ' 1 x;P1 _ x;P2
e e LS N o R crey Rl cre o Y ®)
p1+xiﬁl p’1+xi52

On equating the Eq. (7), (8) and (9) with respect to 0, we get the likelihood equations for S,
B, and p as

m
Bl = my mlxlipl logxq; m : 1 xiﬁl logx; (10)
B e B Teo T SN <_ (1+xif’1>2>
p1+xiﬁl p11+xl-32
m
32 - mz ma %P2 logx,; ; 1 x;P2 logx; (11)
- . 2y, a4 = &b ym . —(1— i i
Zl=1logX21+ Zl=1 1+x2.[?2 E[:lRl x-Bl x-BZ ( (1 p) 1+x.B2 2)
' 1-p—t o —(1-p)—L ()
1+XiB1 1+.X'iﬁ2
1
B1 B2 B1 B2
2 m x x x x
myi—(p —p%)+Xit, R; _p 2 —(1-p)i X i
' ( ) =1 l( [1 p1+xi51 a P 1+Xi52 (1+xl-ﬁ1) (1+Xiﬁ2)>
- (12

m

which can be solved by any method of iteration and we get the MLESs B, B, and p.

To obtain Variance-Covariance matrix of ML estimators, we find second derivatives of logL
with respect to the parameters 5;, 8, and p as

9%logL. _ -my _
dB1” B:?

(1'|'x1i‘81)x1iﬁ1 logxq;— x1iﬁlx1iﬁllogx1i]
(1+x1:P1)*

2y log xy;
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B
p I Rilogx [(1-p 2 — (1 - p) 20) (1 + %) s loga, -

2(1 + xiﬁl)x-ﬁl logx- — p(xiﬁl logx; + x;%$12 logxi) -
B1
X; X
' 1-p)= x;Prlogx; 2(1 + x;P1)

1+x BZ
1-p ~ (1 -p) 22 (14 x )] (13)
1+x; 31 1+x; ﬁz t
d%logL —mz _9 Z  Jog x [(1+x21ﬁ2)x2152 logxzi— x21ﬁ2x2132 longL] .
o0p” B 2 (1+x:82)°

ﬁ1

(1-p) X2 Rilogx; [( P 1-p) o Bz) (1+ xlﬁz) x;P2 logx; -

2(1 + x;P2)x;P2 logx; — (1 — p)(x;P2 logx; + x;2P22 logx;) —

x;P2 P X
1-p) <1+xiﬁ1 x> logx; 2(1 + xiﬁz)
A1 F2 8
(1-pL - 2) (14" (14)
d%logL - —p(1-p) 3™ R; x;$1 x;P2 (log x;)? (15)
351552 p p =1 (1+ .31)2 (1+ .‘82)2 1— xiﬁl _(1_ \ xiﬁz 2
X X p1+xl-51 p}1+xiﬁ2
d%logL — ym R; _ x;P1 n x;P2 _ x;P1logx; (16)
aﬁlap =1 1— xiﬁl _(1 ) xiBZ 2 1+xi‘81 1+xiﬁ2 (1+xiB1)2
p1+ iﬁl p 1+XiB2
9%logL _ ym R; _xh + xP2  xP2logx; (17)
aﬁzap =1 1— xiﬁl _(1_ ) xiBZ 2 1+xi‘81 1+xiﬁ2 (1+xiB2)2
p1+ iﬁl p 1+XiB2
0%logL __m o m m R; _ x;P1 n x;P2 (18)
ap? p? (1-p)z &1=1 L7, (1-p) P2 \° 1+xfr 0 14xP2
p1+xi51 p 1+.X'iﬁ2

The Variance — Covariance matrix of MLEs of the parameters is given by,

ad el B e e |
2 2 2
el o Bl s Bl e

-8 [en] F [l - [5
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According to Lawless (2003) the estimate of variance covariance matrix is given as

-1

[ d%logL 0%logL 0%logL
|  o8.° dB20P1 apdp: |
V= |  8%i0gL 0%logL 6zlogL| (19)
| 06208, 9B°  opop, | |
l_ d%logL  9%logL azlogLJ
apaﬁl 6p6ﬁ2 (ﬁpﬁsz):(ﬁpﬁzﬁ)

The variances of B, B, and p are given by diagonal elements of the matrix V.

The mean squared error is calculated for each of the above parameter using the below equation

Mean squared error (8) = Variance (8) + (0 — 6)?, 0 = (81,B2p) (20)
4.  Bayes Estimation

The Bayesian approach considers prior information along with the information available
from the data to form a posterior distribution which is used for Bayesian inference.
Comparatively less sample data is required in Bayesian method than in classical sampling
theory, which makes it more preferable in life testing and reliability estimation where sample
data is costly and hard to obtain.

Under Bayesian estimation, a joint distribution function ¢ (6, x) is obtained using the
likelihood function and the specified prior distribution of the unknown parameters. A marginal
distribution m(g) is derived on integrating the joint distribution function over the range of its
parameters. The joint posterior distribution g(9|§) is obtained by taking a ratio of joint
distribution of By,B,,p and x and marginal distribution m(x). The marginal posterior
distribution is derived by integrating joint posterior distribution over the range of its
parameters. In this section, Bayes estimates of the parameters are obtained using the marginal
posterior distributions of the parameters and their corresponding mean squared errors and
posterior risks are also obtained.

Consider the gamma priors for the parameter ; and £, and uniform prior for the parameter p.

b1-1 ,-a1B1

by
H1(ﬁ1) = X b Tb,

) ﬁl > 0, aq, b1 >0 (21)

b2-1 ,-azB>

Tb,

b
My(B,) = 2P , By > 0; az, by >0 (22)

M;(p)=1, 0<p<1 (23)

Using the likelihood function in Eq. (5) and prior distributions in Eq. (21), (22) and (23), the
joint distribution of parameters and sample becomes

¢ (B1, B2, 0, x) < LII; (B1) I (B2) I3 (p) (24)
e T G TGP
¢ (B1, Barprx) X p™ Py m (1 —=p)™p, | | (1-596—21/”2)2
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B1 B2 Ri 4 b1 g b1-1 p-aipy bz g b2-1 ,-azp;
m X (1 X a,”1 By e az’2 B e
=1 [1 p 14x;P1 (1-p) 1+xiﬁ2] T'b, T'b, (25)
The joint posterior distribution of S;, 8, and p can be obtained as
P (B1.B2,0.X)
9(Bu Bapx) = =22 (26)

m(x)
where m(x) is the marginal distribution of x that can be derived from the joint distribution as
m(x) = [y [, [, #(B1. B2 plx) dp dB, dp; (27)
Using the equations Eq. (25) and (27) the joint posterior distribution can be written as

9(B1, B2, p|x) o< p™ (1 — p)m2 g, "t e hn (a:-2i5 logxui) g, maha 1

1 B2
m2 YiZq Rilog|1-p a B -(1-p) A B m11 B1
e~ B2 (az- X, 2% logxz) o 1+x;P1 1+x;P2| p-23;0] log(1+x,;P1)

b b
o~ 22123 1og(1422,P2) , = Bi11 l0g (1) o~ i3 log (az) Gt d272

to, T, (28)

The marginal posterior distribution of g,,5, and p can be determined by integrating with
respect to the other parameters. The marginal posterior distribution of prior j; is given by

h1(.81|£) = fBz fp p™ (1 —p)m= ,31ml+bl_1 e~F1 (a1= Xz togxa) 32m2+b2_1

M., Rilog|1- -(1- 52
o—B2 (a2- T2 logy;) ,~=1711%8 xBl pl1+xiﬁz 232} log(1+x:,71)
b
o2 T2 log(14x2,P2) , = 21} log (x17) o~ i3 l0g (x2:) (i}bl C;Zb dp dp, (29)
1 2

Similarly the marginal posterior distribution of prior 8, and p are given by
ha(Bal) = [y, J,pm (1= pyme gyt o (a3 o) gttt

i‘Bl xiﬁz

™ R;log|1-p—i—o —(1—
e B2 (02—2?;21 logx,;) ezl_1 1108 pl+xiﬁ1 ( p}1+xi32 —szl log(1+x,:A1)
my mq by by
o2 Tis3 log(1+x,,P2) o~ 31 log(x1) o= B4 10g (x2:) “Flb az ~ dp dp, (30)
1

hs(plx) = [p, Jp, ™ (1= p)me gyt e (@Y togran) g mathat

.B1 52
Z?;1Ril()g 1-p ai B -(1-p)——4- B miq B1
e 1+x;51 1+x;P2 —22i=110g(1+x1i )

e—ﬂz (az- Z:ii logx,;)

o222 log(14x2:F2) =T log(x1) o= 2iL3 l0g (x20) Ci“lbl a"2 dg, dB, (31)
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It is not possible to obtain the above mentioned marginal posterior distributions in closed
form, which makes it difficult to obtain Bayes estimators directly using marginal posterior
distributions. In literature, there are various methods like numerical integration method,
Lindley approximation, importance sampling, MCMC technique etc. that are useful in such
cases. We have used here the importance sampling method used by Kundu and Pradhan (2009)
to obtain Bayes estimates of the parameters in any kind of loss functions such as SELF, KLF,
PLF etc. This method is discussed in many other articles also, some of them are Sultana et al.
(2020), Madi and Ragab (2009) and Sultana et al. (2018).

Based on theory of Bayes estimation a loss function gauges the difference between the
estimate @ and the parameter 6 and there is no particular procedures to select any loss functions.
A posterior risk is the expected value of loss function and the posterior risks associated with
the estimators are compared to evaluate the performances of the Bayes estimators. The loss
functions used in this paper are described below:

Squared Error loss function (SELF): The Squared error loss function is given by l(é, 9) =
(6 — 0)2.

The Bayes estimate and the posterior risk are defined as

6 = E0|x) (32)
and
p(6) =E@6 - 6) (33)

K —loss function (KLF): The K — loss function was proposed by Wasan (1970), is defined as
1(8, 6) = (8 —0)?%/ de.

The Bayes estimate and the posterior risk are defined as

6= JE@|x)/E(0~1]x) (34)
and
p(0) = 2{EOIx)E(0|x) — 1} (35)

respectively.

Precautionary loss function (PLF): The Precautionary loss function was proposed by
Norstrom (1996), is defined as (8, 6) = (6 — §)? / 6.

The Bayes estimate and the posterior risk are defined as

§ = (E(0%|0)): (36)
and
p(6) = 2HE@ |0} — E@10)] 37)

respectively.

To employ importance sampling method for Bayes estimation we rewrite the joint posterior
distribution given in Eq. (28) as

g(ﬁpﬁz’PlE) e pml (1 _ p)mz ,B1m1+b1_1 e—ﬁlAl ﬁ2m2+b2_1 e—ﬁZAz

xiB1
1+Xiﬁ1

M Rilog|1—
e—zzglllog(lﬂcliﬁl) e—zzzizllog(lﬂczih) 621_1 i1081~P
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m b b
e~ Tini log(x1p) o= 515 log(xzy) Gt G272
by Tb,

(38)
where A; = a; — Y logxy;  and A, = a; — X2 logxy;

The above form can also be written as

9(B1, B plx) « gi(p I my,my) g,( By | x,my) g3( B | x,mp) W(p, Br, Bz | x,m) (39)
where

g1(p | my, my,) is the probability density function of beta (m, + 1, m, + 1) distribution

g2( B1 | x, my) is the probability density function of gamma (m, + by, A;) distribution

g3( B2 | x, m,) is the probability density function of gamma (m, + b,, A,) distribution
Y(p, BBzl x,m) =
e—zz{'z‘lllog(uxliﬁl) e—zzﬁzllog(uxzi
B1,B2,p and x.

The hyper parameters used in the prior distributions are determined as follows:

xiﬁz

w+xf2] 3 function of

xl-B

1
T -(1-p)

m . —_—
B2) eZi=1 Rilog|1 p1+xi/3’

» Find means & variances of the MLEs of parameters $;, 8, and p and considered them
as prior information of the parameters.

» These estimates are compared with theoretical mean & variance of the prior
distribution.

> Solving them we obtain estimates of the hyper parameters.

Algorithm-1
The steps of importance sampling to obtain Bayes estimates are as follows:
Step - 1: Decide the values of B;, 85, p and Ry, R,, ... R, such that I, R; = (n — m).
Step - 2: Generate
X130 =1,2, e oo ... ,my and x50 =1,2, . , M,

Step - 3: Generate

N values of p from beta (my + 1,m, + 1) as (p1,p2, -, Pn)

N values of B; from gamma (m, + by, A1) as (B11, P12y > Bin)

N values of B, from gamma (m, + by, A,) as (B1, Bz, -» Ban)
Step - 4: Calculate the E'(8]x) using the formula:

Y, 0, %(6;]x,m)

E(6]x) = EX, w(6dzm)

(40)

Step - 5: Calculate E(plx), E(p?[%), E (3 |x), E(Bilx), EB: 1), E (5 Ix),
E(B2]x), E(,822|x), E (ﬁi |x) using the Eq. (40) to calculate the estimate, PR, and
2

MSE using the squared error loss function, K — loss function and precautionary loss
function.
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5. Simulation Study

A simulation study is setup to check the performance of ML estimators and Bayes
estimators obtained in the earlier sections. We have used the following inputs.

To simulate samples from 2 component mixture of log logistic distributions, we have used the
following algorithm with the inputs: $=5000 which is number of simulations, n =60 and m =
15 (25% censored) with censoring scheme R = (0, 5, 2, 8,0, 2,5,3,0,6,4,9,1,0,0); m =25
(42% censored) with censoring scheme R = (0, 2,5,3,2,3,0,0,0,1,4,1,1,1,2,0,0,5, 2,0,
1,0,0, 2,0) and m = 35 (58% censored) with censoring scheme R = (0,0, 2,0, 1,0,0, 3,0, 1,
1,1,1,1,2,0,0,2,2,0,1,0,0,2,0,0,2,0,0,1,0,0,0, 2,0). The values of the prior parameters
are considered as B;= (0.9, 1.9), B, = (2.0, 3.5) and p = (0.7, 0.35) based on the method
described before the algorithm-1. A Type — Il censored sample is also generated using the
above mentioned inputs to observe a comparison between performances of estimators using
the progressive Type — Il censoring and Type — Il censoring.

To generate the progressive Type — Il censored sample for the mixture model we use the
following algorithm.

Algorithm-2

Step - 1: A uniform random number (u) is generated from U(0,1) and if u < p (mixture
proportion parameter) then select first sub-population f; (x) having parameter ;, otherwise
second sub-population £, (x) having parameter £3,.
Step - 2: To generate say r observations from first or second sub-population (r = m; or m,),
generate r uniform random numbers uy, u,, ..., u,, ~ U(0,1)
Step-3:Seté; =In(1— u);i=1,..,r
: _ 4 =y, S | S
Step-4: Lety, = . and y; = y;_1 + e
1

Step-5: x; = (1 —e™Yi)B;i =1,2,..,7 where § = 3, or S,.
Step - 6: Calculate ML estimates and Bayes estimates of parameters p, $; and 8, using the
respective formulas from section.
Step - 7: Repeat the steps 1 - 5 for S times, thus we have B,,, B, and p,, i = 1,2, ..., S.
Step - 8: Calculate Bayes estimates of ;, 5, and p by taking average of the S values in step
1.
Step - 9: Calculate Root Mean Square Error and PR, using the formula,

S a) 2

i=1(01 - 0)

i=23,.,rwithY_Ri=n—r

MSE =
The outputs obtained from the simulations are presented in Table A.1 to Table A.6.

6.  Discussion of Numerical Results
From Table A.1 to Table A.6 we observe the following conclusions:

I.  The Bayes estimates are better compared to ML estimates based on MSE for both the
censoring schemes that are considered.

ii.  For the considered values of the parameters $,, 5, and p as m increases, the MSE of
the estimates decreases for both the censoring schemes for MLEs as well as Bayes
estimators.
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ilii.  The Bayes estimator under the K-loss function performs better with respect to MSE
compared to squared error loss function for all the values of 8, and 8, under both types
of censoring schemes adopted.

iv.  As the values of the parameters 5, and B, increases, the MSE also increases, for
Progressive Type - Il censoring scheme.

v. ML estimates and Bayes estimates give almost similar amount of bias.

7.  Real Life Example

In this section the analysis of real-life dataset of failure of electrical cables is performed
which is presented by Lawless (2003). The test involved 20 cables each with two types of
insulations which are considered as Population — | and Population — 11 respectively. The
purpose is to determine whether the estimators have the similar behavior for real life data as it
was for simulated data.

The Kolmogorov-Smirnov test is performed to determine whether the data follows log
logistic distribution. The calculated value of KS test statistic is 0.1868 for Population — | and
0.0715 for Population — Il. The degrees of freedom for Population — | and Population — 11 are
20 and the test is performed at 5% level of significance. The KS tabulated value for one sample
test at 5% level of significance and 20 degrees of freedom is 0.294. The results clearly indicate
that the Population — I and Population — 11 fits well to the log logistic distribution.

From the original data we have prepared progressive type — Il censored sample with
n=40, p=05m; =13,m, =12, R = (1,0,0,0,1,1,0,2,0,0,1,0,0,0,0,2,0,0,0,2,0,0,0,0,5).
The censored mixture data is:

Population — I: 32.0,35.4,39.8,41.2,45.5,46.0,46.2,46.5,47.3,47.3,49.2,50.4,56.3
and
Population — I1: 45.3,49.2,51.3,53.2,53.2,55.5,57.1,57.5,59.2,62.4, 63.8, 67.7.

The results are obtained using Bayes and Maximum Likelihood Estimation approaches for
the above mentioned real-life dataset and are given in the Table A.7.

The analysis under real-life data supports the findings obtained from the simulation study.
The Bayes estimates are better compared to the ML estimates and all the three loss functions
SELF, KLF and PLF give similar results. This gives us more confidence to suggest the use of
Bayes estimation for Progressive Type - Il Censored Data using Mixture of Log Logistic
Distributions.

8. Conclusion

In this paper, a two component mixture model based on log logistic distributions has been
proposed. Maximum likelihood and Bayesian estimation have been used to estimate the
parameters of mixture model under progressive Type — Il censoring. Three types of loss
functions namely, SELF, KLF and PLF are used. The posterior likelihood based on progressive
Type — 11 censoring has no closed form due to which it is not possible to apply numerical
integration. Importance sampling method was used to solve this. Finally, we observe that for
precise estimation of the unknown parameters of log logistic distribution, Bayes estimation is
preferable over maximum likelihood estimation under all the three types of loss functions and
this holds true for real life data as well.
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Appendix A

Table A.1: MLE & Bayes Estimates, PR and MSE for (n,m, 84, 2, p) =
(60,15,0.9,2.0,0.7)

MLE / Bayes | Statistic B1 B, p | Type of Censoring
MLE Estimate | 1.14 2.98 | 0.60 | Progressive Type - Il
MLE MSE 0.11 1.18 | 0.02 | Progressive Type - Il
SELF Estimate | 1.11 2.86 | 0.59 | Progressive Type - Il
SELF PR 0.05 | 0.20 |0.03 | Progressive Type - Il
SELF MSE 0.07 0.80 | 0.03 | Progressive Type - Il
KLF Estimate | 1.08 2.82 | 0.56 | Progressive Type - Il
KLF PR 0.08 | 0.05 |0.20 | Progressive Type - Il
KLF MSE 0.06 0.76 | 0.03 | Progressive Type - Il

PLF Estimate | 1.13 2.90 | 0.61 | Progressive Type - Il
PLF PR 0.04 0.07 | 0.04 | Progressive Type - Il
PLF MSE 0.07 0.84 | 0.02 | Progressive Type - Il
MLE Estimate | 1.03 3.69 |0.49 Type - 11
MLE MSE 0.05 | 3.11 |0.06 Type - I
SELF Estimate | 0.97 | 3.48 |0.53 Type - I
SELF PR 0.04 | 0.24 |0.02 Type - I
SELF MSE 0.02 2.31 |0.04 Type - 11
KLF Estimate | 0.95 3.45 | 0.50 Type - |1
KLF PR 0.08 | 0.04 |0.21 Type - Il
KLF MSE 0.02 2.25 |0.05 Type - Il
PLF Estimate | 0.99 3.52 | 0.55 Type - |1
PLF PR 0.04 | 0.07 |0.04 Type - Il
PLF MSE 0.03 | 236 |0.04 Type - Il
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Table A.2: MLE & Bayes Estimates, PR and MSE for (n,m, 81, B2,P) =
(60, 15, 1.9, 3.5, 0.35)

MLE / Bayes | Statistic B B, p Type of Censoring
MLE Estimate | 2.63 | 4.66 | 0.28 | Progressive Type - Il
MLE MSE 0.68 | 1.94 | 0.01 | Progressive Type - Il
SELF Estimate | 2.55 | 4.52 | 0.31 | Progressive Type - Il
SELF PR 0.15 | 0.60 | 0.02 | Progressive Type - 1l
SELF MSE 0.46 | 1.32 | 0.01 | Progressive Type - Il
KLF Estimate | 2.52 | 4.45 | 0.26 | Progressive Type - Il
KLF PR 0.05 | 0.06 | 0.84 | Progressive Type - Il
KLF MSE 0.43 | 1.24 | 0.01 | Progressive Type - 1l
PLF Estimate | 2.58 | 4.59 | 0.35 | Progressive Type - Il
PLF PR 0.06 | 0.13 | 0.06 | Progressive Type - Il
PLF MSE 0.49 | 1.39 | 0.01 | Progressive Type - Il
MLE Estimate | 2.25 | 522 | 0.25 Type - 1l
MLE MSE 0.27 | 3.44 | 0.01 Type - |1
SELF Estimate | 2.19 | 496 | 0.28 Type - 1l
SELF PR 0.14 | 0.48 | 0.02 Type - |1
SELF MSE 0.12 | 240 | 0.01 Type - |1
KLF Estimate | 2.16 | 491 | 0.24 Type - 1l
KLF PR 0.06 | 0.04 | 0.77 Type - |1
KLF MSE 0.11 | 2.33 | 0.02 Type - 11

PLF Estimate | 2.22 | 5.01 | 0.31 Type - Il
PLF PR 0.06 | 0.10 | 0.06 Type - 11
PLF MSE 0.14 | 247 | 0.01 Type - 11
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Table A.3: MLE & Bayes Estimates, PR and MSE for (n,m, 81, B2,p) =

(60, 25, 0.9, 2.0, 0.7)

P

MLE /Bayes | Statistic B B> p | Type of Censoring
MLE Estimate | 1.02 | 2.40 | 0.68 | Progressive Type - Il
MLE MSE 0.04 | 0.45 | 0.01 | Progressive Type - Il
SELF Estimate | 1.01 | 2.34 | 0.67 | Progressive Type - Il
SELF PR 0.02 | 0.25 | 0.02 | Progressive Type - Il
SELF MSE 0.02 | 0.20 | 0.01 | Progressive Type - Il
KLF Estimate | 1.00 | 2.29 | 0.66 | Progressive Type - Il
KLF PR 0.04 | 0.09 | 0.08 | Progressive Type - Il
KLF MSE 0.02 | 0.18 | 0.01 | Progressive Type - Il
PLF Estimate | 1.02 | 2.40 | 0.68 | Progressive Type - Il
PLF PR 0.02 | 0.11 | 0.02 | Progressive Type - Il
PLF MSE 0.02 | 0.23 | 0.01 | Progressive Type - Il
MLE Estimate | 1.01 | 2.62 | 0.66 Type - 1l
MLE MSE 0.03 | 0.81 | 0.01 Type - |1
SELF Estimate | 0.98 | 250 | 0.66 Type - 11
SELF PR 0.02 | 0.33 | 0.02 Type - |1
SELF MSE 0.02 | 0.38 | 0.01 Type - 11
KLF Estimate | 0.97 | 2.43 | 0.65 Type - Il
KLF PR 0.04 | 0.11 | 0.08 Type - |1
KLF MSE 0.01 | 0.33 | 0.01 Type - 11
PLF Estimate | 0.99 | 2.56 | 0.67 Type - |l
PLF PR 0.02 | 0.13 | 0.02 Type - 11
PLF MSE 0.02 | 042 | 0.01 Type - |1
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Table A.4: MLE & Bayes Estimates, PR and MSE for (n,m, 81, 2,p) =
(60, 25, 1.9, 3.5, 0.35)

MLE /Bayes | Statistic B1 B> p Type of Censoring
MLE Estimate | 2.41 | 3.97 | 0.34 | Progressive Type - Il
MLE MSE 0.44 | 0.69 | 0.01 | Progressive Type - Il
SELF Estimate | 2.32 | 3.92 | 0.35 | Progressive Type - Il
SELF PR 0.16 | 0.40 | 0.02 | Progressive Type - 1l
SELF MSE 0.22 | 0.34 | 0.01 | Progressive Type - Il
KLF Estimate | 2.29 | 3.87 | 0.32 | Progressive Type - Il
KLF PR 0.06 | 0.05 | 0.36 | Progressive Type - Il
KLF MSE 0.20 | 0.31 | 0.01 | Progressive Type - Il
PLF Estimate | 2.35 | 3.97 | 0.37 | Progressive Type - Il
PLF PR 0.07 | 0.10 | 0.04 | Progressive Type - Il
PLF MSE 0.25 | 0.37 | 0.01 | Progressive Type - 1
MLE Estimate | 2.25 | 4.16 | 0.33 Type - 11
MLE MSE 029 | 098 | 0.01 Type - 11
SELF Estimate | 2.18 | 4.03 | 0.35 Type - 11
SELF PR 0.15 | 044 | 0.02 Type - 11
SELF MSE 0.13 | 050 | 0.01 Type - 11
KLF Estimate | 2.14 | 3.98 | 0.32 Type - 11
KLF PR 0.06 | 0.06 | 0.35 Type - 11
KLF MSE 0.11 | 046 | 0.01 Type - 11

PLF Estimate | 2.21 | 4.08 | 0.37 Type - 1l
PLF PR 0.07 | 0.11 | 0.04 Type - 11
PLF MSE 0.14 | 053 | 0.01 Type - 11
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Table A.5: MLE & Bayes Estimates, PR and MSE for (n,m, 81, f2,p) =
(60, 35, 0.9, 2.0, 0.70)

MLE / Bayes | Statistic B1 B> p Type of Censoring
MLE Estimate | 0.96 2.31 | 0.70 | Progressive Type - Il
MLE MSE 0.02 0.40 | 0.00 | Progressive Type - Il
SELF Estimate | 0.96 2.32 | 0.69 | Progressive Type - Il
SELF PR 0.01 0.27 | 0.01 | Progressive Type - Il
SELF MSE 0.01 0.24 | 0.01 | Progressive Type - Il
KLF Estimate | 0.96 2.27 | 0.68 | Progressive Type - Il
KLF PR 0.03 0.10 | 0.05 | Progressive Type - Il
KLF MSE 0.01 0.22 | 0.01 | Progressive Type - Il
PLF Estimate | 0.97 2.38 | 0.70 | Progressive Type - Il
PLF PR 0.01 0.12 | 0.02 | Progressive Type - Il
PLF MSE 0.01 0.26 | 0.01 | Progressive Type - Il
MLE Estimate | 0.97 2.24 | 0.73 Type - 11
MLE MSE 0.02 0.58 | 0.00 Type - 11
SELF Estimate | 0.96 214 | 0.72 Type - 11
SELF PR 0.01 0.35 | 0.01 Type - 11
SELF MSE 0.01 0.16 | 0.01 Type - 11
KLF Estimate | 0.96 206 | 0.71 Type - 11
KLF PR 0.03 0.16 | 0.05 Type - 11
KLF MSE 0.01 0.14 | 0.01 Type - 11
PLF Estimate | 0.97 222 | 0.72 Type - 1l
PLF PR 0.01 0.16 | 0.01 Type - 11
PLF MSE 0.01 0.18 | 0.01 Type - 11
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Table A.6: MLE & Bayes Estimates, PR and MSE for (n,m, 81, B2,p) =
(60, 35, 1.9, 3.5, 0.35)

MLE / Bayes | Statistic B1 B> p Type of Censoring
MLE Estimate | 2.07 3.83 | 0.35 | Progressive Type - Il
MLE MSE 0.14 | 0.43 | 0.01 | Progressive Type - Il
SELF Estimate | 2.07 3.84 | 0.36 | Progressive Type - Il
SELF PR 0.10 | 0.29 | 0.01 | Progressive Type - Il
SELF MSE 0.06 0.25 | 0.01 | Progressive Type - Il
KLF Estimate | 2.04 | 3.81 | 0.34 | Progressive Type - Il
KLF PR 0.05 | 0.04 | 0.23 | Progressive Type - Il
KLF MSE 0.06 0.24 | 0.01 | Progressive Type - Il
PLF Estimate | 2.09 | 3.88 | 0.38 | Progressive Type - Il
PLF PR 0.05 0.07 | 0.03 | Progressive Type - Il
PLF MSE 0.07 0.27 | 0.01 | Progressive Type - Il
MLE Estimate | 2.14 | 3.69 | 0.37 Type - 11
MLE MSE 0.16 | 0.39 | 0.01 Type - 11
SELF Estimate | 2.11 | 3.64 | 0.38 Type - 11
SELF PR 0.09 | 0.30 | 0.01 Type - 11
SELF MSE 0.07 | 0.13 | 0.01 Type - 11
KLF Estimate | 2.09 3.60 | 0.36 Type - Il
KLF PR 0.04 | 0.05 | 0.23 Type - 11
KLF MSE 0.06 | 0.12 | 0.01 Type - 11

PLF Estimate | 2.13 3.68 | 0.40 Type - 1l
PLF PR 0.04 | 0.08 | 0.03 Type - 11
PLF MSE 0.07 | 0.14 | 0.01 Type - 11

Table A.7: MLE & Bayes Estimates, PR and MSE for (n,m, 81, B2,P) =
(40, 25, 0.4054896, 0.3840652, 0.5)

MLE /Bayes | Statistic B1 B p
MLE Estimate | 0.27960 | 0.26342 | 0.51278
SELF Estimate | 0.41468 | 0.39288 | 0.52065
SELF PR 0.00005 | 0.00007 | 0.00228
KLF Estimate | 0.41462 | 0.39280 | 0.51853
KLF PR 0.00058 | 0.00090 | 0.01640

PLF Estimate | 0.41474 | 0.39298 | 0.52284
PLF PR 0.00013 | 0.00018 | 0.00438




