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ABSTRACT 

Bayesian approach is considered by several authors in mixture models under Type – I, 

Type – II and other censoring schemes in the area of life testing and survival analysis. In this 

paper we consider the estimation of parameters of a mixture of log logistic distributions under 

classical and Bayesian setup. The estimation is done based on progressive Type – II censored 

sample and the squared error loss function, K- loss function and precautionary loss function 

are used as loss functions under Bayesian approach. A simulation study is conducted to 

examine the performance of the proposed estimators based on mean squared error. Bayes 

estimators under the three types of loss functions are compared using posterior risk too. The 

results are also compared based on Progressive Type – II censoring and Type – II censoring 

schemes. Additionally a real life data is considered to determine whether the estimators have 

similar behavior as seen in simulation study. 

Key words: Maximum likelihood; Gamma prior; Log logistic distribution; Posterior risk; 

Importance sampling. 

1. Introduction 
 

The concept of censoring is generally used in life testing experiments and survival 

analysis since partial or complete destruction of the testing unit becomes quite expensive and 

time consuming. In literature there are many censoring schemes available, which are mainly 

based on Type – I or Type – II censoring schemes. When life test is terminated as soon as the 

pre-determined time is observed, such censoring scheme is known as Type – I censoring, where 

as in Type - II censoring the test is terminated as soon as pre-determined number of failures 

observed. 

One of the significant shortcoming of conventional censoring schemes is that other than 

the terminal point of the experiment they do not allow removal of the experimental units at any 

other points. A censoring scheme in which some of the experimental units are withdrawn 

during the test and test is continued after the withdrawal is known as progressive censoring 

scheme. Based on Type – I & Type – II censoring schemes progressive censoring schemes can 

be formulated as progressive Type – I & progressive Type – II censoring schemes. For detailed 

study of progressive censoring scheme one may refer Balakrishnan and Aggarwala (2000). The 

progressive Type – II censoring scheme became very popular among the researchers. Some of 

the references are Wu et al. (2006), Patel and Patel (2007), Gajjar and Patel (2008), Saraçoğlu 

et al. (2010) and Ahmed (2014). 
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Various types of lifetime models are available in the literature like Exponential, Weibull, 

Rayleigh, Power function, etc. Some of the works available in literature under progressive 

censoring for above mentioned lifetime models are considered by Fernández (2004), Jung and 

Chung (2011), Kim and Han (2009), etc. In the recent years, the estimation under Bayesian 

setup for log logistic distribution for progressive censoring is studied by Abbas and Tang 

(2016), Al-Shomrani et al. (2016), Kumar (2018), Yahaya and Ibrahim (2019), etc. 

In life testing experiments failure of unit may occur due to more than one causes for e.g. 

failure of an electrical component may occur due to fluctuations in voltage or its operating 

environment or a mechanical shock. Similarly death of a person may occur due to heart attack 

or old age or any other reason. In such situations a lifetime model based on multiple causes is 

considered which is known as mixture model. Suppose there are 𝑘 causes of failure of an 

experimental unit and 𝑝𝑖 be the probability of failure of a unit due to 𝑖𝑡ℎ cause such that 

∑ 𝑝𝑖
𝑘
𝑖=1 = 1 and 𝑓𝑖(𝑥) be the probability density function or probability mass function of 

lifetime of the failure units due to 𝑖𝑡ℎ cause then the mixture model is defined as  

𝑓(𝑥) = ∑ 𝑝𝑖 𝑓𝑖(𝑥)𝑘
𝑖=1                                                         (1) 

 

The mixture model is found useful in engineering, medical, agriculture, and many more fields. 

Pearson (1894) introduced a statistical model based on finite mixtures of distributions to 

analyse crab morphometry data. Based on their causes of failures Mendenhall and Hader (1958) 

studied a population of failures by dividing them in two sub-populations. For estimating the 

parameters of a mixture of Rayleigh distribution Saleem and Aslam (2009) have used Bayesian 

procedure. Bayesian estimation was considered by Kazmi et al. (2012) for a mixture of 

Maxwell distribution under Type-I censoring scheme. Bayesian estimation of mixture of power 

function distributions using Type – II censored sample was discussed by Bhavsar and Patel 

(2019). Complete and Type – I censored sample are considered by Saleem et al. (2010) for 

estimation of parameters of the mixture of power function distributions. Very few works are 

available in the area of estimation of mixture model of the log logistic distribution under 

Bayesian setup based on progressive censoring. This has motivated us to consider a problem 

of estimation for mixture of log logistic distribution under progressive Type – II censoring 

scheme. 

In this article, an estimation of the parameters of mixture of two log logistic distributions 

is carried out using the progressive Type – II censored sample considering the maximum 

likelihood estimation and Bayesian approach, and their respective mean squared errors and 

posterior risks are studied. The prior considered for the parameters 𝛽1 and 𝛽2 is gamma prior 

and uniform prior is considered for proportion parameter 𝑝 of the mixture model. The squared 

error loss function, K – loss function and precautionary loss function are considered to obtain 

the Bayes estimates and a comparison between them based on MSE & posterior risk is done. 

A simulation study is carried out to obtain some interesting conclusions and a real life data is 

also considered. The rest of the article is structured as follows. In section 2, a two-component 

mixture model for log logistic distribution and likelihood function under progressive Type – II 

censoring is described. In section 3, the parameter estimation is carried out using the maximum 

likelihood estimation approach and the estimators are derived along with their asymptotic 

variances. Section 4 covers the estimation carried out under the Bayesian setup considering 

three different loss functions. MSE and posterior risks are obtained for the Bayes estimators. 

A simulation study is conducted to compare the performance of the proposed estimators in 

section 5. In section 6, some discussion on the numerical results are presented. Section 7 gives 
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an idea about the behavior of the estimators for real life data under classical and Bayesian setup. 

The final conclusion is given in Section 8. 
 

2. Mixture Model 
 

The two - component mixture model for log logistic distribution is defined as follows 

                                              

𝑓(𝑥) = 𝑝𝑓1(𝑥) + (1 − 𝑝)𝑓2(𝑥)          (2) 

where 𝑓𝑖(𝑥) =  
𝛽𝑖𝑥

𝛽𝑖−1

(1+𝑥𝛽𝑖)2
,   𝑥 > 0, 𝛽𝑖 > 0 ,0 < 𝑝 < 1;  

is the probability density function of log logistic distribution and corresponding distribution 

function is  

𝐹𝑖(𝑥) =  
𝑥𝛽𝑖

(1+𝑥𝛽𝑖)
;         𝑖 = 1,2           (3) 

Here 𝛽1, 𝛽2 are unknown parameters of the log logistic distributions and 𝑝 is unknown mixing 

proportion with mixing weight 𝑝 ∶ 1 − 𝑝. 

The life testing experiment under progressive censoring can be conducted as follows. Let 

us suppose that 𝑛 experimental units are put on test and as soon as the 𝑚𝑡ℎ failure is observed 

the test is terminated. Considering a mixture model an experimental unit may fail due to cause 

1 or cause 2. The failed unit can easily be identified whether it is from sub population 1 (which 

failed due to cause 1) or sub population 2 (which failed due to cause 2). Since this is progressive 

censoring scheme, as soon as the 1st failure occurs 𝑅1 units are removed from the test which 

has remaining (𝑛 − 1) units on the test and the test is continued with (𝑛 − 1 − 𝑅1) units. 

Similarly on the (𝑚 − 1)𝑡ℎ failure 𝑅𝑚 units are withdrawn from the remaining units on the test 

and test is continued with (𝑛 − 𝑚 − 1 − ∑ 𝑅𝑖
𝑚−1
𝑖=1 ) units. The test is finally terminated as soon 

as the 𝑚𝑡ℎ failure is observed. 

Thus depending upon the cause of failure, we can identify the number of failures 𝑚1 due 

to cause 1 and 𝑚2 due to cause 2 from the 𝑚(= 𝑚1 + 𝑚2) observed failures. The remaining 

(𝑛 − 𝑚 − ∑ 𝑅𝑖
𝑚−1
𝑖=1 ) units are censored which provide no information about the sub population 

and survive beyond the time 𝑋(𝑚), the observed time of the 𝑚𝑡ℎ failure. 

To produce precise inferences a mixture model must be identifiable and in our model we 

have only shape parameters 𝛽1 and 𝛽2. Suppose 𝑥1𝑖 and 𝑥2𝑖 are the 𝑖𝑡ℎ failure time due to cause 

1 and cause 2 respectively. The general form of likelihood function for the two – component 

mixture distribution under progressive Type – II censoring is given by: 

𝐿(𝛽1, 𝛽2, 𝑝|𝑥) ∝  ∏ 𝑝. 𝑓1(𝑥1𝑖)
𝑚1
𝑖=1  ∏ (1 − 𝑝) 𝑓2 (𝑥2𝑖)

𝑚2
𝑖=1   

                           ∏  [1 − 𝑝𝑥𝑖
𝛽1  − (1 − 𝑝)𝑥𝑖

𝛽2]
𝑅𝑖𝑚

𝑖=1                                              (4) 

3. Maximum Likelihood Estimation (MLE) 
 

Using Eq. (2) and (4), the likelihood function under progressive Type – II censoring for 

mixture model is obtained as, 

 

𝐿 ∝  𝑝𝑚1𝛽1
𝑚1 ∏

(𝑥1𝑖)
𝛽1−1

(1+𝑥1𝑖
𝛽1)

2
𝑚1
𝑖=1 (1 − 𝑝)𝑚2𝛽2

𝑚2 ∏
(𝑥2𝑖)

𝛽2−1

(1+𝑥2𝑖
𝛽2)2

𝑚2
𝑖=1 ×   
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         ∏  [1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]
𝑅𝑖

𝑚
𝑖=1                                                (5) 

 

log 𝐿 ∝ 𝑚1𝑙𝑜𝑔𝑝 + 𝑚1𝑙𝑜𝑔𝛽1 + (𝛽1 − 1)∑ 𝑙𝑜𝑔𝑥1𝑖 − 2∑ log(1 + 𝑥1𝑖
𝛽1)

𝑚1
𝑖=1 +

𝑚1
𝑖=1

               𝑚2log (1 − 𝑝) + 𝑚2𝑙𝑜𝑔𝛽2 + (𝛽2 − 1)∑ 𝑙𝑜𝑔𝑥2𝑖 
𝑚2
𝑖=1 − 2∑ log(1 + 𝑥2𝑖

𝛽2)
𝑚1
𝑖=1  +

               ∑ 𝑅𝑖 log [1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

] 𝑚
𝑖=1                              (6) 

 

The first derivatives of equation Eq. (6) with respect to 𝛽1, 𝛽2 and 𝑝 are 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1
= 

𝑚1

𝛽1
+ ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1 − 2∑

𝑥1𝑖
𝛽1 log𝑥1𝑖

1+𝑥1𝑖
𝛽1

 
𝑚1
𝑖=1   

            + ∑ 𝑅𝑖
𝑚
𝑖=1  

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

 (−𝑝
𝑥𝑖

𝛽1  𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽1)2

)                           (7)  

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2
= 

𝑚2

𝛽2
+ ∑ 𝑙𝑜𝑔𝑥2𝑖

𝑚2
𝑖=1 − 2∑

𝑥2𝑖
𝛽2 log𝑥2𝑖

1+𝑥2𝑖
𝛽2

 
𝑚2
𝑖=1   

 + ∑ 𝑅𝑖
𝑚
𝑖=1   

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

(−(1 − 𝑝)
𝑥𝑖

𝛽2  𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽2)2

)       (8) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑝
= 

𝑚1

𝑝
− 

𝑚2

(1−𝑝)
− ∑ 𝑅𝑖

𝑚
𝑖=1 ( 

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

+
𝑥𝑖

𝛽1  

(1+𝑥𝑖
𝛽1)

− 
𝑥𝑖

𝛽2  

(1+𝑥𝑖
𝛽2)

 )    (9) 

On equating the Eq. (7), (8) and (9) with respect to 0, we get the likelihood equations for 𝛽1, 

𝛽2 and 𝑝 as 

𝛽1 =
𝑚1

− ∑ 𝑙𝑜𝑔𝑥1𝑖
𝑚1
𝑖=1

+2∑
𝑥1𝑖

𝛽1 log𝑥1𝑖

1+𝑥1𝑖
𝛽1

 
𝑚1
𝑖=1

 − ∑ 𝑅𝑖
𝑚
𝑖=1  

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

 (−𝑝
𝑥𝑖

𝛽1 𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽1)2

)

 

             (10) 

 

𝛽2 =
𝑚2

−  ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1

+2∑
𝑥2𝑖

𝛽2 log𝑥2𝑖

1+𝑥2𝑖
𝛽2

 
𝑚2
𝑖=1

 
 − ∑ 𝑅𝑖

𝑚
𝑖=1   

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

 (−(1−𝑝)
𝑥𝑖

𝛽2 𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽2)2

)

             (11) 

 

𝑝 =  

𝑚1−(𝑝 − 𝑝2)+∑ 𝑅𝑖
𝑚
𝑖=1 (

  
1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

] +
𝑥𝑖

𝛽1 

(1+𝑥𝑖
𝛽1)

− 
𝑥𝑖

𝛽2 

(1+𝑥𝑖
𝛽2)

  

) 

𝑚
               (12) 

 

which can be solved by any method of iteration and we get the MLEs 𝛽1̂, 𝛽2̂ and �̂�. 

 

To obtain Variance-Covariance matrix of ML estimators, we find second derivatives of 𝑙𝑜𝑔𝐿 

with respect to the parameters 𝛽1, 𝛽2 and 𝑝 as 

 

 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1
2 = 

−𝑚1

𝛽1
2 − 2∑ log 𝑥1𝑖  [

(1+𝑥1𝑖
𝛽1)𝑥1𝑖

𝛽1 log𝑥1𝑖− 𝑥1𝑖
𝛽1𝑥1𝑖

𝛽1 log𝑥1𝑖

(1+𝑥1𝑖
𝛽1)

2 ]
𝑚1
𝑖=1 − 
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                𝑝 ∑ 𝑅𝑖 log 𝑥𝑖
𝑚
𝑖=1 [(1 − 𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

) (1 + 𝑥𝑖
𝛽1)

2
𝑥𝑖

𝛽1  𝑙𝑜𝑔𝑥𝑖 − 

 

                𝑥𝑖
𝛽1  {

2(1 + 𝑥𝑖
𝛽1)𝑥𝑖

𝛽1  𝑙𝑜𝑔𝑥𝑖 − 𝑝(𝑥𝑖
𝛽1  𝑙𝑜𝑔𝑥𝑖 + 𝑥𝑖

2𝛽12 𝑙𝑜𝑔𝑥𝑖) −

(1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

 𝑥𝑖
𝛽1  𝑙𝑜𝑔𝑥𝑖  2(1 + 𝑥𝑖

𝛽1) 
} ×  

 

                 (1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)−2(1 + 𝑥𝑖
𝛽1)

−4
]                                                (13)         

     
 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
2 = 

−𝑚2

𝛽2
2 − 2∑ log 𝑥2𝑖  [

(1+𝑥2𝑖
𝛽2)𝑥2𝑖

𝛽2 log𝑥2𝑖− 𝑥2𝑖
𝛽2𝑥2𝑖

𝛽2 log𝑥2𝑖

(1+𝑥2𝑖
𝛽2)

2 ] −
𝑚2
𝑖=1      

             (1 − 𝑝)∑ 𝑅𝑖 log 𝑥𝑖
𝑚
𝑖=1  [(1 − 𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

) (1 + 𝑥𝑖
𝛽2)

2
𝑥𝑖

𝛽2 𝑙𝑜𝑔𝑥𝑖  – 

                                        

                 𝑥𝑖
𝛽2  {

2(1 + 𝑥𝑖
𝛽2)𝑥𝑖

𝛽2 𝑙𝑜𝑔𝑥𝑖 − (1 − 𝑝)(𝑥𝑖
𝛽2  𝑙𝑜𝑔𝑥𝑖 + 𝑥𝑖

2𝛽22 𝑙𝑜𝑔𝑥𝑖) −

(1 − 𝑝) (
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 𝑥𝑖
𝛽2  𝑙𝑜𝑔𝑥𝑖  2(1 + 𝑥𝑖

𝛽2))
} ×              

                (1 − 𝑝 𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

−2

(1 + 𝑥𝑖
𝛽1)

−4
]                                                                   (14) 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1𝜕𝛽2
 =  −𝑝 (1 − 𝑝) ∑ [

𝑅𝑖 𝑥𝑖
𝛽1  𝑥𝑖

𝛽2  (log𝑥𝑖)
2

(1+𝑥𝑖
𝛽1)

2
 (1+𝑥𝑖

𝛽2)
2
 (1−𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2]
𝑚
𝑖=1               (15) 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1𝜕𝑝
= ∑

𝑅𝑖 

(1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2
𝑚
𝑖=1 −

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

+ 
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

− 
𝑥𝑖

𝛽1 log𝑥𝑖

(1+𝑥𝑖
𝛽1)

2              (16) 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝑝
= ∑

𝑅𝑖 

(1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2
𝑚
𝑖=1 −

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

+ 
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

− 
𝑥𝑖

𝛽2 log𝑥𝑖

(1+𝑥𝑖
𝛽2)

2                 (17) 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝2 = − 
𝑚1

𝑝2  −  
𝑚2

(1−𝑝)2
∑

𝑅𝑖 

(1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2
𝑚
𝑖=1 −

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

+ 
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

              (18) 

The Variance – Covariance matrix of MLEs of the parameters is given by, 

𝑉 =  

[
 
 
 
 
 −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1
2  ] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1
]

−𝐸 [
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
2 ] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2
]

−𝐸 [
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝2 ]]
 
 
 
 
 
−1
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According to Lawless (2003) the estimate of variance covariance matrix is given as  

�̂� =  

[
 
 
 
 
 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1
2 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1

−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
2 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2

−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝2 ]
 
 
 
 
 
−1

(𝛽1,𝛽2,𝑝)=(�̂�1,�̂�2,𝑝)

                (19) 

The variances of 𝛽1̂, 𝛽2̂ and �̂� are given by diagonal elements of the matrix 𝑉. 

The mean squared error is calculated for each of the above parameter using the below equation 

Mean squared error (𝜃) = Variance (𝜃)  + (𝜃  −  𝜃)2 ,    𝜃 = (𝛽1, 𝛽2, 𝑝)             (20) 

4. Bayes Estimation 
 

The Bayesian approach considers prior information along with the information available 

from the data to form a posterior distribution which is used for Bayesian inference. 

Comparatively less sample data is required in Bayesian method than in classical sampling 

theory, which makes it more preferable in life testing and reliability estimation where sample 

data is costly and hard to obtain. 
 

Under Bayesian estimation, a joint distribution function 𝜙(𝜃, 𝑥) is obtained using the 

likelihood function and the specified prior distribution of the unknown parameters. A marginal 

distribution 𝑚(𝑥) is derived on integrating the joint distribution function over the range of its 

parameters. The joint posterior distribution 𝑔(𝜃|𝑥) is obtained by taking a ratio of joint 

distribution of 𝛽1, 𝛽2, 𝑝 and 𝑥 and marginal distribution 𝑚(𝑥). The marginal posterior 

distribution is derived by integrating joint posterior distribution over the range of its 

parameters. In this section, Bayes estimates of the parameters are obtained using the marginal 

posterior distributions of the parameters and their corresponding mean squared errors and 

posterior risks are also obtained. 

 

Consider the gamma priors for the parameter 𝛽1 and 𝛽2, and uniform prior for the parameter 𝑝. 
 

Π1(𝛽1) =  
𝑎1

𝑏1  𝛽1
𝑏1−1 𝑒−𝑎1𝛽1

Γ𝑏1
 , 𝛽1 > 0; 𝑎1, 𝑏1 > 0                  (21) 

 

Π2(𝛽2) =  
𝑎2

𝑏2  𝛽2
𝑏2−1 𝑒−𝑎2𝛽2

Γ𝑏2
 , 𝛽2 > 0; 𝑎2, 𝑏2 > 0                 (22) 

 

Π3(𝑝) = 1,   0 < 𝑝 < 1                    (23) 

Using the likelihood function in Eq. (5) and prior distributions in Eq. (21), (22) and (23), the 

joint distribution of parameters and sample becomes 
 

𝜙(𝛽1, 𝛽2, 𝑝, 𝑥)  ∝  𝐿 Π1 (𝛽1) Π2 (𝛽2) Π3 (𝑝)                  (24) 

 

𝜙(𝛽1, 𝛽2, 𝑝, 𝑥) ∝   𝑝𝑚1𝛽1
𝑚1 ∏

(𝑥1𝑖)
𝛽1−1

(1 + 𝑥1𝑖
𝛽1)2

𝑚1

𝑖=1

 (1 − 𝑝)𝑚2𝛽2
𝑚2 ∏

(𝑥2𝑖)
𝛽2−1

(1 + 𝑥2𝑖
𝛽2)2

𝑚2

𝑖=1
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∏ [1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]
𝑅𝑖

𝑚
𝑖=1  

𝑎1
𝑏1  𝛽1

𝑏1−1 𝑒−𝑎1𝛽1

Γ𝑏1
  

𝑎2
𝑏2  𝛽2

𝑏2−1 𝑒−𝑎2𝛽2

Γ𝑏2
             (25) 

 

The joint posterior distribution of 𝛽1, 𝛽2 and 𝑝 can be obtained as 

 

𝑔(𝛽1, 𝛽2, 𝑝|𝑥) =  
𝜙(𝛽1,𝛽2,𝑝,𝑥)

𝑚(𝑥)
                    (26) 

 

where 𝑚(𝑥) is the marginal distribution of 𝑥 that can be derived from the joint distribution as 

 

𝑚(𝑥) =  ∫ ∫ ∫ 𝜙(𝛽1, 𝛽2, 𝑝|𝑥) 𝑑𝑝 𝑑𝛽2 𝑑𝛽1𝑝𝛽2𝛽1
                 (27) 

 

Using the equations Eq. (25) and (27) the joint posterior distribution can be written as 

 

𝑔(𝛽1, 𝛽2, 𝑝|𝑥) ∝ 𝑝𝑚1(1 − 𝑝)𝑚2𝛽1
𝑚1+𝑏1−1𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1

)𝛽2
𝑚2+𝑏2−1

  

                           𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1 ) 𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   

                           𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
               (28) 

 

The marginal posterior distribution of 𝛽1, 𝛽2 and 𝑝 can be determined by integrating with 

respect to the other parameters. The marginal posterior distribution of prior 𝛽1 is given by 

 

ℎ1(𝛽1|𝑥) =  ∫ ∫ 𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1 ) 𝛽2

𝑚2+𝑏2−1 
𝑝𝛽2

  

 𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1 )  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   

𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
  𝑑𝑝 𝑑𝛽2               (29) 

Similarly the marginal posterior distribution of prior 𝛽2 and 𝑝 are given by 

ℎ2(𝛽2|𝑥) =  ∫ ∫ 𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1 ) 𝛽2

𝑚2+𝑏2−1 𝑝𝛽1
  

  𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1

) 𝑒
∑ 𝑅𝑖 log[1−𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   

𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1  𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
 𝑑𝑝 𝑑𝛽1              (30) 

 

ℎ3(𝑝|𝑥) =  ∫ ∫ 𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1

) 𝛽2
𝑚2+𝑏2−1  

𝛽2𝛽1
  

𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1 )  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1    

 𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1  𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
 𝑑𝛽2 𝑑𝛽1              (31) 
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It is not possible to obtain the above mentioned marginal posterior distributions in closed 

form, which makes it difficult to obtain Bayes estimators directly using marginal posterior 

distributions. In literature, there are various methods like numerical integration method, 

Lindley approximation, importance sampling, MCMC technique etc. that are useful in such 

cases. We have used here the importance sampling method used by Kundu and Pradhan (2009) 

to obtain Bayes estimates of the parameters in any kind of loss functions such as SELF, KLF, 

PLF etc. This method is discussed in many other articles also, some of them are Sultana et al. 

(2020), Madi and Raqab (2009) and Sultana et al. (2018). 

Based on theory of Bayes estimation a loss function gauges the difference between the 

estimate 𝜃 and the parameter 𝜃 and there is no particular procedures to select any loss functions. 

A posterior risk is the expected value of loss function and the posterior risks associated with 

the estimators are compared to evaluate the performances of the Bayes estimators. The loss 

functions used in this paper are described below: 

Squared Error loss function (SELF): The Squared error loss function is given by 𝑙(𝜃, 𝜃) =

(𝜃 − 𝜃)2. 

The Bayes estimate and the posterior risk are defined as 

𝜃 =  𝐸(𝜃|𝑥)                      (32) 

and 

𝜌(𝜃) = 𝐸(𝜃 − 𝜃)2                     (33) 

K – loss function (KLF): The K – loss function was proposed by Wasan (1970), is defined as 

 𝑙(𝜃, 𝜃) = (𝜃 − 𝜃)2/ 𝜃𝜃. 

The Bayes estimate and the posterior risk are defined as 

𝜃 =  √𝐸(𝜃|𝑥)/𝐸(𝜃−1|𝑥)                    (34) 

and 

𝜌(𝜃) = 2 {𝐸(𝜃|𝑥)𝐸(𝜃−1|𝑥) − 1}                   (35) 

respectively. 

Precautionary loss function (PLF): The Precautionary loss function was proposed by 

Norstrom (1996), is defined as 𝑙 (𝜃, 𝜃) = (𝜃 − 𝜃)2 / 𝜃.  

The Bayes estimate and the posterior risk are defined as 

𝜃 = {𝐸(𝜃2|𝑥)}
1

2                     (36) 

and  

𝜌(𝜃) = 2[{𝐸(𝜃2|𝑥)}
1

2  − 𝐸(𝜃|𝑥)]                   (37) 

respectively. 

To employ importance sampling method for Bayes estimation we rewrite the joint posterior 

distribution given in Eq. (28) as  

𝑔(𝛽1, 𝛽2, 𝑝|𝑥)  ∝  𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1𝐴1  𝛽2

𝑚2+𝑏2−1 𝑒−𝛽2𝐴2   

𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   𝑒−2∑ log(1+𝑥2𝑖

𝛽2)
𝑚2
𝑖=1  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1
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 𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)
𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
                  (38) 

where 𝐴1 = 𝑎1 − ∑ log 𝑥1𝑖
𝑚1
𝑖=1      and     𝐴2 = 𝑎2 − ∑ log 𝑥2𝑖

𝑚2
𝑖=1   

The above form can also be written as  

𝑔(𝛽1, 𝛽2, 𝑝|𝑥)  ∝ 𝑔1( 𝑝 | 𝑚1, 𝑚2) 𝑔2( 𝛽1 | 𝑥,𝑚1) 𝑔3( 𝛽2 | 𝑥,𝑚2) Ψ(𝑝, 𝛽1, 𝛽2 | 𝑥,𝑚)            (39) 

where 

𝑔1( 𝑝 | 𝑚1, 𝑚2) is the probability density function of 𝑏𝑒𝑡𝑎 (𝑚1 + 1,𝑚2 + 1) distribution 

𝑔2( 𝛽1 | 𝑥,𝑚1) is the probability density function of 𝑔𝑎𝑚𝑚𝑎 (𝑚1 + 𝑏1, 𝐴1) distribution 

𝑔3( 𝛽2 | 𝑥,𝑚2) is the probability density function of 𝑔𝑎𝑚𝑚𝑎 (𝑚2 + 𝑏2, 𝐴2) distribution 

Ψ(𝑝, 𝛽1, 𝛽2 | 𝑥,𝑚) =

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   𝑒−2∑ log(1+𝑥2𝑖

𝛽2)
𝑚2
𝑖=1  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

, a function of 

𝛽1, 𝛽2, 𝑝 and 𝑥. 

The hyper parameters used in the prior distributions are determined as follows: 

 Find means & variances of the MLEs of parameters 𝛽1, 𝛽2 and 𝑝 and considered them 

as prior information of the parameters. 

 These estimates are compared with theoretical mean & variance of the prior 

distribution. 

 Solving them we obtain estimates of the hyper parameters. 

Algorithm-1 

The steps of importance sampling to obtain Bayes estimates are as follows:  

Step - 1: Decide the values of 𝛽1, 𝛽2, 𝑝 and 𝑅1, 𝑅2, …𝑅𝑚 such that ∑ 𝑅𝑖 = (𝑛 − 𝑚)𝑚
𝑖=1 . 

Step - 2: Generate  

               𝑥1𝑖 ; 𝑖 = 1, 2, ……… ,𝑚1    and    𝑥2𝑖; 𝑖 = 1, 2, ……… ,𝑚2 

Step - 3: Generate  

𝑁 values of 𝑝 from 𝑏𝑒𝑡𝑎 (𝑚1 + 1,𝑚2 + 1) as (𝑝1, 𝑝2, … , 𝑝𝑁) 

𝑁 values of 𝛽1 from 𝑔𝑎𝑚𝑚𝑎 (𝑚1 + 𝑏1, 𝐴1) as (𝛽11, 𝛽12, … , 𝛽1𝑁) 

𝑁 values of 𝛽2 from 𝑔𝑎𝑚𝑚𝑎 (𝑚2 + 𝑏2, 𝐴2) as (𝛽21, 𝛽22, … , 𝛽2𝑁) 

Step - 4: Calculate the 𝐸(𝜃|𝑥) using the formula:  

      𝐸(𝜃|𝑥) =  
∑ 𝜃𝑖.Ψ(𝜃𝑖|𝑥,𝑚)𝑁

𝑖=1

∑ Ψ(𝜃𝑖|𝑥,𝑚)𝑁
𝑖=1

                                                                                                (40) 

Step - 5: Calculate 𝐸(𝑝|𝑥), 𝐸(𝑝2|𝑥), 𝐸 (
1

𝑝
|𝑥), 𝐸(𝛽1|𝑥), 𝐸(𝛽1

2|𝑥), 𝐸 (
1

𝛽1
|𝑥),         

             𝐸(𝛽2|𝑥), 𝐸(𝛽2
2|𝑥), 𝐸 (

1

𝛽2
|𝑥) using the Eq. (40) to calculate the estimate, PR, and  

             MSE using the squared error loss function, K – loss function and precautionary loss   

             function. 
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5. Simulation Study 
 

A simulation study is setup to check the performance of ML estimators and Bayes 

estimators obtained in the earlier sections. We have used the following inputs. 

 

To simulate samples from 2 component mixture of log logistic distributions, we have used the 

following algorithm with the inputs: 𝑆=5000 which is number of simulations,  𝑛 = 60 and 𝑚 = 

15 (25% censored) with censoring scheme 𝑅 = (0, 5, 2, 8, 0, 2, 5, 3, 0, 6, 4, 9, 1, 0, 0); 𝑚 = 25 

(42% censored) with censoring scheme 𝑅 = (0, 2, 5, 3, 2, 3, 0, 0, 0, 1, 4, 1, 1, 1, 2, 0, 0, 5, 2, 0, 

1, 0, 0, 2, 0) and 𝑚 = 35 (58% censored) with censoring scheme 𝑅 = (0, 0, 2, 0, 1, 0, 0, 3, 0, 1, 

1, 1, 1, 1, 2, 0, 0, 2, 2, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0). The values of the prior parameters 

are considered as 𝛽1= (0.9, 1.9), 𝛽2 = (2.0, 3.5) and 𝑝 = (0.7, 0.35) based on the method 

described before the algorithm-1. A Type – II censored sample is also generated using the 

above mentioned inputs to observe a comparison between performances of estimators using 

the progressive Type – II censoring and Type – II censoring. 

To generate the progressive Type – II censored sample for the mixture model we use the 

following algorithm. 
 

 

Algorithm-2 

Step - 1: A uniform random number (𝑢) is generated from 𝑈(0, 1) and if 𝑢 ≤ 𝑝 (mixture 

proportion parameter) then select first sub-population 𝑓1(𝑥) having parameter 𝛽1, otherwise 

second sub-population 𝑓2(𝑥) having parameter 𝛽2.  

Step - 2: To generate say 𝑟 observations from first or second sub-population (𝑟 = 𝑚1 𝑜𝑟 𝑚2), 

generate 𝑟 uniform random numbers 𝑢1, 𝑢2, … , 𝑢𝑟  ∼ 𝑈(0, 1) 

Step - 3: Set 𝜉𝑖 = ln(1 − 𝑢𝑖) ; 𝑖 = 1,… , 𝑟   

Step - 4: Let 𝑦1 = 
𝜉1

𝑟
 and  𝑦𝑖 = 𝑦𝑖−1 + 

𝜉𝑖

𝑛−∑ 𝑅𝑗−𝑖+1𝑖−1
𝑗=1

; 𝑖 = 2, 3, … , 𝑟 with ∑ 𝑅𝑖 = 𝑛 − 𝑟𝑟
𝑖=1  

Step - 5:  𝑥𝑖 = (1 − 𝑒−𝑦𝑖)
1

𝛽; 𝑖 = 1, 2, … , 𝑟 where 𝛽 = 𝛽1 or 𝛽2. 

Step - 6: Calculate ML estimates and Bayes estimates of parameters 𝑝, 𝛽1 and 𝛽2 using the 

respective formulas from section. 

Step - 7: Repeat the steps 1 - 5 for 𝑆 times, thus we have 𝛽1�̂�, 𝛽2�̂� and 𝑝�̂�, 𝑖 = 1,2, … , 𝑆. 

Step - 8: Calculate Bayes estimates of 𝛽1, 𝛽2, and 𝑝 by taking average of the S values in step 

7. 

Step - 9: Calculate Root Mean Square Error and PR, using the formula, 

𝑀𝑆𝐸 =
∑ (𝜃�̂� − 𝜃)2𝑆

𝑖=1

𝑆
 

The outputs obtained from the simulations are presented in Table A.1 to Table A.6. 

6. Discussion of Numerical Results 

From Table A.1 to Table A.6 we observe the following conclusions: 

i. The Bayes estimates are better compared to ML estimates based on MSE for both the 

censoring schemes that are considered. 

ii. For the considered values of the parameters 𝛽1, 𝛽2 and 𝑝 as 𝑚 increases, the MSE of 

the estimates decreases for both the censoring schemes for MLEs as well as Bayes 

estimators. 
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iii. The Bayes estimator under the K-loss function performs better with respect to MSE 

compared to squared error loss function for all the values of 𝛽1 and 𝛽2 under both types 

of censoring schemes adopted. 

iv. As the values of the parameters 𝛽1 and 𝛽2 increases, the MSE also increases, for 

Progressive Type - II censoring scheme. 

v. ML estimates and Bayes estimates give almost similar amount of bias. 
 

7. Real Life Example 

In this section the analysis of real-life dataset of failure of electrical cables is performed 

which is presented by Lawless (2003). The test involved 20 cables each with two types of 

insulations which are considered as Population – I and Population – II respectively. The 

purpose is to determine whether the estimators have the similar behavior for real life data as it 

was for simulated data. 

The Kolmogorov-Smirnov test is performed to determine whether the data follows log 

logistic distribution. The calculated value of KS test statistic is 0.1868 for Population – I and 

0.0715 for Population – II. The degrees of freedom for Population – I and Population – II are 

20 and the test is performed at 5% level of significance. The KS tabulated value for one sample 

test at 5% level of significance and 20 degrees of freedom is 0.294. The results clearly indicate 

that the Population – I and Population – II fits well to the log logistic distribution. 

From the original data we have prepared progressive type – II censored sample with 

𝑛 = 40, 𝑝 = 0.5,𝑚1 = 13,𝑚2 = 12, 𝑅 = (1,0,0,0,1,1,0,2,0,0,1,0,0,0,0,2,0,0,0,2,0,0,0,0,5). 

The censored mixture data is:  

Population – I: 32.0, 35.4, 39.8, 41.2, 45.5, 46.0, 46.2, 46.5, 47.3, 47.3, 49.2, 50.4, 56.3  

and  

Population – II: 45.3, 49.2, 51.3, 53.2, 53.2, 55.5, 57.1, 57.5, 59.2, 62.4, 63.8, 67.7.  

 

The results are obtained using Bayes and Maximum Likelihood Estimation approaches for 

the above mentioned real-life dataset and are given in the Table A.7. 

 

The analysis under real-life data supports the findings obtained from the simulation study. 

The Bayes estimates are better compared to the ML estimates and all the three loss functions 

SELF, KLF and PLF give similar results. This gives us more confidence to suggest the use of 

Bayes estimation for Progressive Type - II Censored Data using Mixture of Log Logistic 

Distributions. 

8. Conclusion 
 

In this paper, a two component mixture model based on log logistic distributions has been 

proposed. Maximum likelihood and Bayesian estimation have been used to estimate the 

parameters of mixture model under progressive Type – II censoring. Three types of loss 

functions namely, SELF, KLF and PLF are used. The posterior likelihood based on progressive 

Type – II censoring has no closed form due to which it is not possible to apply numerical 

integration. Importance sampling method was used to solve this. Finally, we observe that for 

precise estimation of the unknown parameters of log logistic distribution, Bayes estimation is 

preferable over maximum likelihood estimation under all the three types of loss functions and 

this holds true for real life data as well. 
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Appendix A 

Table A.1: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟏𝟓, 𝟎. 𝟗, 𝟐. 𝟎, 𝟎. 𝟕) 

 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 1.14 2.98 0.60 Progressive Type - II 

MLE MSE 0.11 1.18 0.02 Progressive Type - II 

SELF Estimate 1.11 2.86 0.59 Progressive Type - II 

SELF PR 0.05 0.20 0.03 Progressive Type - II 

SELF MSE 0.07 0.80 0.03 Progressive Type - II 

KLF Estimate 1.08 2.82 0.56 Progressive Type - II 

KLF PR 0.08 0.05 0.20 Progressive Type - II 

KLF MSE 0.06 0.76 0.03 Progressive Type - II 

PLF Estimate 1.13 2.90 0.61 Progressive Type - II 

PLF PR 0.04 0.07 0.04 Progressive Type - II 

PLF MSE 0.07 0.84 0.02 Progressive Type - II 

MLE Estimate 1.03 3.69 0.49 Type - II 

MLE MSE 0.05 3.11 0.06 Type - II 

SELF Estimate 0.97 3.48 0.53 Type - II 

SELF PR 0.04 0.24 0.02 Type - II 

SELF MSE 0.02 2.31 0.04 Type - II 

KLF Estimate 0.95 3.45 0.50 Type - II 

KLF PR 0.08 0.04 0.21 Type - II 

KLF MSE 0.02 2.25 0.05 Type - II 

PLF Estimate 0.99 3.52 0.55 Type - II 

PLF PR 0.04 0.07 0.04 Type - II 

PLF MSE 0.03 2.36 0.04 Type - II 
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Table A.2: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟏𝟓, 𝟏. 𝟗, 𝟑. 𝟓, 𝟎. 𝟑𝟓) 

 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 2.63 4.66 0.28 Progressive Type - II 

MLE MSE 0.68 1.94 0.01 Progressive Type - II 

SELF Estimate 2.55 4.52 0.31 Progressive Type - II 

SELF PR 0.15 0.60 0.02 Progressive Type - II 

SELF MSE 0.46 1.32 0.01 Progressive Type - II 

KLF Estimate 2.52 4.45 0.26 Progressive Type - II 

KLF PR 0.05 0.06 0.84 Progressive Type - II 

KLF MSE 0.43 1.24 0.01 Progressive Type - II 

PLF Estimate 2.58 4.59 0.35 Progressive Type - II 

PLF PR 0.06 0.13 0.06 Progressive Type - II 

PLF MSE 0.49 1.39 0.01 Progressive Type - II 

MLE Estimate 2.25 5.22 0.25 Type - II 

MLE MSE 0.27 3.44 0.01 Type - II 

SELF Estimate 2.19 4.96 0.28 Type - II 

SELF PR 0.14 0.48 0.02 Type - II 

SELF MSE 0.12 2.40 0.01 Type - II 

KLF Estimate 2.16 4.91 0.24 Type - II 

KLF PR 0.06 0.04 0.77 Type - II 

KLF MSE 0.11 2.33 0.02 Type - II 

PLF Estimate 2.22 5.01 0.31 Type - II 

PLF PR 0.06 0.10 0.06 Type - II 

PLF MSE 0.14 2.47 0.01 Type - II 
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Table A.3: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟐𝟓, 𝟎. 𝟗, 𝟐. 𝟎, 𝟎. 𝟕) 

 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 1.02 2.40 0.68 Progressive Type - II 

MLE MSE 0.04 0.45 0.01 Progressive Type - II 

SELF Estimate 1.01 2.34 0.67 Progressive Type - II 

SELF PR 0.02 0.25 0.02 Progressive Type - II 

SELF MSE 0.02 0.20 0.01 Progressive Type - II 

KLF Estimate 1.00 2.29 0.66 Progressive Type - II 

KLF PR 0.04 0.09 0.08 Progressive Type - II 

KLF MSE 0.02 0.18 0.01 Progressive Type - II 

PLF Estimate 1.02 2.40 0.68 Progressive Type - II 

PLF PR 0.02 0.11 0.02 Progressive Type - II 

PLF MSE 0.02 0.23 0.01 Progressive Type - II 

MLE Estimate 1.01 2.62 0.66 Type - II 

MLE MSE 0.03 0.81 0.01 Type - II 

SELF Estimate 0.98 2.50 0.66 Type - II 

SELF PR 0.02 0.33 0.02 Type - II 

SELF MSE 0.02 0.38 0.01 Type - II 

KLF Estimate 0.97 2.43 0.65 Type - II 

KLF PR 0.04 0.11 0.08 Type - II 

KLF MSE 0.01 0.33 0.01 Type - II 

PLF Estimate 0.99 2.56 0.67 Type - II 

PLF PR 0.02 0.13 0.02 Type - II 

PLF MSE 0.02 0.42 0.01 Type - II 
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Table A.4: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟐𝟓, 𝟏. 𝟗, 𝟑. 𝟓, 𝟎. 𝟑𝟓) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 2.41 3.97 0.34 Progressive Type - II 

MLE MSE 0.44 0.69 0.01 Progressive Type - II 

SELF Estimate 2.32 3.92 0.35 Progressive Type - II 

SELF PR 0.16 0.40 0.02 Progressive Type - II 

SELF MSE 0.22 0.34 0.01 Progressive Type - II 

KLF Estimate 2.29 3.87 0.32 Progressive Type - II 

KLF PR 0.06 0.05 0.36 Progressive Type - II 

KLF MSE 0.20 0.31 0.01 Progressive Type - II 

PLF Estimate 2.35 3.97 0.37 Progressive Type - II 

PLF PR 0.07 0.10 0.04 Progressive Type - II 

PLF MSE 0.25 0.37 0.01 Progressive Type - II 

MLE Estimate 2.25 4.16 0.33 Type - II 

MLE MSE 0.29 0.98 0.01 Type - II 

SELF Estimate 2.18 4.03 0.35 Type - II 

SELF PR 0.15 0.44 0.02 Type - II 

SELF MSE 0.13 0.50 0.01 Type - II 

KLF Estimate 2.14 3.98 0.32 Type - II 

KLF PR 0.06 0.06 0.35 Type - II 

KLF MSE 0.11 0.46 0.01 Type - II 

PLF Estimate 2.21 4.08 0.37 Type - II 

PLF PR 0.07 0.11 0.04 Type - II 

PLF MSE 0.14 0.53 0.01 Type - II 
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Table A.5: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟑𝟓, 𝟎. 𝟗, 𝟐. 𝟎, 𝟎. 𝟕𝟎) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 0.96 2.31 0.70 Progressive Type - II 

MLE MSE 0.02 0.40 0.00 Progressive Type - II 

SELF Estimate 0.96 2.32 0.69 Progressive Type - II 

SELF PR 0.01 0.27 0.01 Progressive Type - II 

SELF MSE 0.01 0.24 0.01 Progressive Type - II 

KLF Estimate 0.96 2.27 0.68 Progressive Type - II 

KLF PR 0.03 0.10 0.05 Progressive Type - II 

KLF MSE 0.01 0.22 0.01 Progressive Type - II 

PLF Estimate 0.97 2.38 0.70 Progressive Type - II 

PLF PR 0.01 0.12 0.02 Progressive Type - II 

PLF MSE 0.01 0.26 0.01 Progressive Type - II 

MLE Estimate 0.97 2.24 0.73 Type - II 

MLE MSE 0.02 0.58 0.00 Type - II 

SELF Estimate 0.96 2.14 0.72 Type - II 

SELF PR 0.01 0.35 0.01 Type - II 

SELF MSE 0.01 0.16 0.01 Type - II 

KLF Estimate 0.96 2.06 0.71 Type - II 

KLF PR 0.03 0.16 0.05 Type - II 

KLF MSE 0.01 0.14 0.01 Type - II 

PLF Estimate 0.97 2.22 0.72 Type - II 

PLF PR 0.01 0.16 0.01 Type - II 

PLF MSE 0.01 0.18 0.01 Type - II 
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Table A.6: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟑𝟓, 𝟏. 𝟗, 𝟑. 𝟓, 𝟎. 𝟑𝟓) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 2.07 3.83 0.35 Progressive Type - II 

MLE MSE 0.14 0.43 0.01 Progressive Type - II 

SELF Estimate 2.07 3.84 0.36 Progressive Type - II 

SELF PR 0.10 0.29 0.01 Progressive Type - II 

SELF MSE 0.06 0.25 0.01 Progressive Type - II 

KLF Estimate 2.04 3.81 0.34 Progressive Type - II 

KLF PR 0.05 0.04 0.23 Progressive Type - II 

KLF MSE 0.06 0.24 0.01 Progressive Type - II 

PLF Estimate 2.09 3.88 0.38 Progressive Type - II 

PLF PR 0.05 0.07 0.03 Progressive Type - II 

PLF MSE 0.07 0.27 0.01 Progressive Type - II 

MLE Estimate 2.14 3.69 0.37 Type - II 

MLE MSE 0.16 0.39 0.01 Type - II 

SELF Estimate 2.11 3.64 0.38 Type - II 

SELF PR 0.09 0.30 0.01 Type - II 

SELF MSE 0.07 0.13 0.01 Type - II 

KLF Estimate 2.09 3.60 0.36 Type - II 

KLF PR 0.04 0.05 0.23 Type - II 

KLF MSE 0.06 0.12 0.01 Type - II 

PLF Estimate 2.13 3.68 0.40 Type - II 

PLF PR 0.04 0.08 0.03 Type - II 

PLF MSE 0.07 0.14 0.01 Type - II 

  

Table A.7: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟒𝟎, 𝟐𝟓, 𝟎. 𝟒𝟎𝟓𝟒𝟖𝟗𝟔, 𝟎. 𝟑𝟖𝟒𝟎𝟔𝟓𝟐, 𝟎. 𝟓) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� 

MLE Estimate 0.27960 0.26342 0.51278 

SELF Estimate 0.41468 0.39288 0.52065 

SELF PR 0.00005 0.00007 0.00228 

KLF Estimate 0.41462 0.39280 0.51853 

KLF PR 0.00058 0.00090 0.01640 

PLF Estimate 0.41474 0.39298 0.52284 

PLF PR 0.00013 0.00018 0.00438 
 


